JP6739290B2 - Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same - Google Patents

Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same Download PDF

Info

Publication number
JP6739290B2
JP6739290B2 JP2016166545A JP2016166545A JP6739290B2 JP 6739290 B2 JP6739290 B2 JP 6739290B2 JP 2016166545 A JP2016166545 A JP 2016166545A JP 2016166545 A JP2016166545 A JP 2016166545A JP 6739290 B2 JP6739290 B2 JP 6739290B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
group
layer
conversion element
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166545A
Other languages
Japanese (ja)
Other versions
JP2018014474A (en
Inventor
一樹 新見
一樹 新見
裕介 刀祢
裕介 刀祢
秀典 薬師寺
秀典 薬師寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JP2018014474A publication Critical patent/JP2018014474A/en
Application granted granted Critical
Publication of JP6739290B2 publication Critical patent/JP6739290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は光電変換素子、撮像素子、光センサー及び有機半導体デバイス等に用い得る新規な縮合多環芳香族化合物に関する。 The present invention relates to a novel fused polycyclic aromatic compound that can be used in photoelectric conversion devices, image pickup devices, optical sensors, organic semiconductor devices and the like.

近年、有機エレクトロニクスデバイスへの関心が高まっている。その特徴としてはフレキシブルな構造をとり、大面積化が可能である事、更にはエレクトロニクスデバイス製造プロセスにおいて安価で高速の印刷方法を可能にすることが挙げられる。代表的なデバイスとしては有機EL素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子などが挙げられる。有機EL素子はフラットパネルディスプレイとして次世代ディスプレイ用途のメインターゲットとして期待され、携帯電話のディスプレイやTVなどに応用され、更に高機能化を目指した開発が継続されている。有機太陽電池素子などはフレキシブルで安価なエネルギー源として、有機トランジスタ素子などはフレキシブルなディスプレイや安価なICへと研究開発がなされている。 In recent years, interest in organic electronic devices has increased. Its characteristics are that it has a flexible structure and can be made large in area, and further, it enables an inexpensive and high-speed printing method in the electronic device manufacturing process. Typical devices include organic EL elements, organic solar cell elements, organic photoelectric conversion elements, organic transistor elements, and the like. Organic EL devices are expected to serve as main targets for next-generation display applications as flat panel displays, are applied to mobile phone displays, TVs, etc., and are being further developed for higher functionality. Organic solar cell elements and the like have been researched and developed as flexible and inexpensive energy sources, and organic transistor elements and the like have been made into flexible displays and inexpensive ICs.

有機エレクトロニクスデバイスの開発には、そのデバイスを構成する材料の開発が非常に重要である。そのため各分野において数多くの材料が検討されているが、十分な性能を有しているとは言えず、現在でも各種デバイスに有用な材料の開発が精力的に行われている。その中で、ベンゾチエノベンゾチオフェン等を母骨格とした化合物も有機エレクトロニクス材料として開発されており(特許文献1乃至3)、ベンゾチエノベンゾチオフェンのアルキル誘導体を用いた場合は、印刷プロセスで半導体薄膜を形成するのに十分な溶媒溶解度を有するが、アルキル鎖長に対する縮環数が相対的に少ないことにより低温で相転移を起こしやすく、有機エレクトロニクスデバイスの耐熱性が劣ることが問題であった。 In the development of organic electronic devices, the development of materials that make up the devices is very important. Therefore, many materials have been studied in each field, but they cannot be said to have sufficient performance, and materials useful for various devices are still being vigorously developed. Among them, compounds having a mother skeleton of benzothienobenzothiophene or the like have also been developed as organic electronic materials (Patent Documents 1 to 3), and when an alkyl derivative of benzothienobenzothiophene is used, a semiconductor thin film is formed by a printing process. However, it has a problem that the heat resistance of the organic electronic device is inferior because a phase transition is likely to occur at a low temperature because the number of condensed rings is relatively small with respect to the alkyl chain length.

また、近年の有機エレクトロニクスの中で、有機光電変換素子は、次世代の撮像素子への展開が期待されており、いくつかのグループからその報告がなされている。例えば、キナクリドン誘導体、もしくはキナゾリン誘導体を光電変換素子に用いた例(特許文献4)、キナクリドン誘導体を用いた光電変換素子を撮像素子へ応用した例(特許文献5)、ジケトピロロピロール誘導体を用いた例(特許文献6)がある。一般的に、撮像素子は、高コントラスト化、省電力化を目的として、暗電流の低減を目指すことによって、性能は向上すると考えられる。そこで、暗時の光電変換部からのリーク電流を減らす為、光電変換部と電極部間に、正孔ブロック層、もしくは電子ブロック層を挿入する手法が用いられる。 Further, in recent years in organic electronics, the organic photoelectric conversion element is expected to be developed into a next-generation image pickup element, and some groups have reported on it. For example, an example in which a quinacridone derivative or a quinazoline derivative is used for a photoelectric conversion element (Patent Document 4), an example in which a photoelectric conversion element using a quinacridone derivative is applied to an imaging element (Patent Document 5), and a diketopyrrolopyrrole derivative is used. There is an example (Patent Document 6). In general, it is considered that the performance of an image pickup device is improved by aiming to reduce dark current for the purpose of achieving high contrast and power saving. Therefore, in order to reduce the leak current from the photoelectric conversion unit in the dark, a method of inserting a hole blocking layer or an electron blocking layer between the photoelectric conversion unit and the electrode unit is used.

正孔ブロック層、並びに電子ブロック層は、有機エレクトロニクスデバイスの分野では一般に広く用いられており、それぞれ、デバイスの構成膜中において、電極もしくは導電性を有する膜と、それ以外の膜の界面に配置され、正孔もしくは電子の逆移動を制御する機能を有する膜であり、不必要な正孔もしくは電子の漏れを調整するものであり、デバイスの用途により、耐熱性、透過波長、成膜方法等の特性を考慮し、選択して用いるものである。しかしながら、特に光電変換素子用途の材料の要求性能は高く、これまでの正孔ブロック層、もしくは電子ブロック層では、リーク電流防止特性、プロセス温度に対する耐熱性、可視光透明性などの面で、十分な性能を有しているとは言えず、商業的に活用されるに至っていない。 The hole blocking layer and the electron blocking layer are generally widely used in the field of organic electronic devices, and are arranged at the interface between an electrode or a conductive film and other films in the constituent films of the device, respectively. It is a film having a function of controlling the reverse transfer of holes or electrons, and is a film for adjusting unnecessary leakage of holes or electrons. Depending on the device application, heat resistance, transmission wavelength, film forming method, etc. It is selected and used in consideration of the characteristics of. However, the performance requirements for materials for photoelectric conversion devices are particularly high, and conventional hole blocking layers or electron blocking layers are sufficiently satisfactory in terms of leakage current prevention characteristics, heat resistance to process temperature, and visible light transparency. It cannot be said that it has excellent performance, and has not yet been used commercially.

特開2008−258592号公報JP, 2008-258592, A WO2008−047896公報WO2008-047896 WO2010−098372公報WO2010-098372 特許4945146号Patent 4945146 特許第5022573号Patent No. 5022573 特開第2008−290963号Japanese Patent Laid-Open No. 2008-290963

J.Am.Chem.Soc.,2006,128(39),12604.J. Am. Chem. Soc., 2006, 128(39), 12604.

本発明は、この様な状況に鑑みてなされたものであり、正孔もしくは電子リーク防止特性、正孔もしくは電子輸送特性、プロセス温度に対する耐熱性、可視光透明性等に優れた、光電変換素子や、移動度や耐熱性に優れた有機トランジスタ等をはじめとする種々のエレクトロニクスデバイスに用い得る新規の縮合多環芳香族化合物を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a photoelectric conversion element having excellent hole or electron leakage prevention characteristics, hole or electron transport characteristics, heat resistance to process temperature, visible light transparency, and the like. Another object of the present invention is to provide a novel fused polycyclic aromatic compound that can be used in various electronic devices including organic transistors having excellent mobility and heat resistance.

本発明者は、上記課題を解決すべく、鋭意努力した結果、下記式(1)で表される化合物を用いることにより前記諸課題を解決することを見出し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
[1]下記式(1)
As a result of diligent efforts to solve the above problems, the present inventor has found that the above problems can be solved by using a compound represented by the following formula (1), and has completed the present invention.
That is, the present invention is as follows.
[1] The following formula (1)

Figure 0006739290
Figure 0006739290

(式(1)中、R及びRはそれぞれ独立に置換又は無置換のヘテロ環縮合芳香族基を表す。)で表される化合物を含む撮像素子用光電変換素子用材料、
[2]式(1)の化合物が下記式(2)
(In the formula (1), R 1 and R 2 each independently represent a substituted or unsubstituted heterocyclic condensed aromatic group), and a material for a photoelectric conversion element for an imaging element,
[2] The compound of formula (1) is represented by the following formula (2)

Figure 0006739290
Figure 0006739290

(式(2)中、R及びRは前項[1]に記載の式(1)におけるのと同じ意味を表す。)で表される化合物である前項[1]に記載の撮像素子用光電変換素子用材料、
[3]R及びRが表すヘテロ環縮合芳香族基に含まれるヘテロ原子が、それぞれ独立に硫黄原子または酸素原子である前項[1]に記載の撮像素子用光電変換素子用材料、
[4]R及びRが、それぞれ独立に置換若しくは無置換のフラン縮合芳香族基、又は置換若しくは無置換のチオフェン縮合芳香族基である前項[3]に記載の撮像素子用光電変換素子用材料、
[5]R及びRが、置換若しくは無置換のベンゾ[b]フラン、又は置換若しくは無置換のベンゾ[b]チオフェンである前項[4]に記載の撮像素子用光電変換素子用材料、
[6]前項[1]及至[5]のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子、
[7]p型有機半導体材料とn型有機半導体材料を有する光電変換素子であって、p型有機半導体材料が前項[1]及至[5]のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子、
[8](A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該(C)光電変換部が少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含んでなり、かつ該(c−2)光電変換層以外の有機薄膜層が前項[1]乃至[5]のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子、
[9](c−2)光電変換層以外の有機薄膜層が電子ブロック層である前項[8]に記載の撮像素子用光電変換素子、
[10](c−2)光電変換層以外の有機薄膜層が正孔ブロック層である前項[8]に記載の撮像素子用光電変換素子、
[11](c−2)光電変換層以外の有機薄膜層が電子輸送層である前項[8]に記載の撮像素子用光電変換素子、
[12](c−2)光電変換層以外の有機薄膜層が正孔輸送層である前項[8]に記載の撮像素子用光電変換素子、
[13]更に、(D)正孔蓄積部を有する薄膜トランジスタ及び(E)該薄膜トランジスタ内に蓄積された電荷に応じた信号を読み取る信号読み取り部を有する前項[6]乃至[12]のいずれか一項に記載の撮像素子用光電変換素子、
[14](D)正孔蓄積部を有する薄膜トランジスタが、更に(d)正孔蓄積部と第一の電極膜及び第二の電極膜のいずれか一方とを電気的に接続する接続部を有する前項[13]に記載の撮像素子用光電変換素子、
[15]前項[6]及至[14]のいずれか一項に記載の撮像素子用光電変換素子を複数アレイ状に配置した撮像素子、及び
[16]前項[6]及至[14]のいずれか一項に記載の撮像素子用光電変換素子または[15]に記載の撮像素子を含む光センサー。
(In the formula (2), R 1 and R 2 have the same meanings as those in the formula (1) described in the above item [1].) For the image pickup device described in the above item [1]. Photoelectric conversion element material,
[3] The material for a photoelectric conversion element as described in the above item [1], wherein the heteroatoms contained in the heterocyclic condensed aromatic group represented by R 1 and R 2 are each independently a sulfur atom or an oxygen atom,
[4] R 1 and R 2 are each independently a substituted or unsubstituted furan-condensed aromatic group or a substituted or unsubstituted thiophene-condensed aromatic group, and the photoelectric conversion element for an imaging device according to the above [3]. Materials for
[5] R 1 and R 2 are substituted or unsubstituted benzo[b]furan, or substituted or unsubstituted benzo[b]thiophene, the photoelectric conversion element material for an image sensor according to the above item [4],
[6] A photoelectric conversion element for an image pickup device, comprising the material for a photoelectric conversion device for an image pickup element according to any one of [1] to [5] above.
[7] A photoelectric conversion device having a p-type organic semiconductor material and an n-type organic semiconductor material, wherein the p-type organic semiconductor material is the photoelectric conversion device for an image pickup device according to any one of items [1] to [5]. A photoelectric conversion element for an image pickup element including an element material,
[8] Photoelectric conversion having (A) first electrode film, (B) second electrode film, and (C) photoelectric conversion unit arranged between the first electrode film and the second electrode film. An element, wherein the (C) photoelectric conversion part includes at least an organic thin film layer other than the (c-1) photoelectric conversion layer and the (c-2) photoelectric conversion layer, and the (c-2) photoelectric conversion layer. A photoelectric conversion element for an imaging device, wherein the organic thin film layer other than the layer includes the material for the photoelectric conversion device for an imaging device according to any one of [1] to [5] above,
[9] The photoelectric conversion element for an image pickup device according to the above item [8], wherein the organic thin film layer other than the photoelectric conversion layer (c-2) is an electron block layer.
[10] (c-2) The photoelectric conversion element for an image sensor according to the above item [8], wherein the organic thin film layer other than the photoelectric conversion layer is a hole blocking layer,
[11] (c-2) The photoelectric conversion element for an image pickup device according to the above item [8], wherein the organic thin film layer other than the photoelectric conversion layer is an electron transport layer.
[12] (c-2) The photoelectric conversion element for an image pickup device according to the above item [8], wherein the organic thin film layer other than the photoelectric conversion layer is a hole transport layer.
[13] Any one of the above [6] to [12], further including (D) a thin film transistor having a hole accumulating portion, and (E) a signal reading portion for reading a signal corresponding to an electric charge accumulated in the thin film transistor. The photoelectric conversion element for an image sensor according to the item,
[14] (D) A thin film transistor having a hole accumulating portion further has (d) a connecting portion that electrically connects the hole accumulating portion to one of the first electrode film and the second electrode film. The photoelectric conversion device for an image pickup device according to the item [13],
[15] An image pickup device in which the photoelectric conversion elements for an image pickup device according to any one of [6] to [14] are arranged in a plurality of arrays, and [16] any of [6] to [14]. An optical sensor including the photoelectric conversion element for an image sensor according to the item 1 or the image sensor according to the item [15].

本発明により、正孔又は電子のリーク防止性や輸送性、さらには耐熱性や可視光透明性等の要求特性に優れた、式(1)で表される化合物を使用した新規な撮像素子用光電変換素子を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a novel imaging device using a compound represented by the formula (1), which is excellent in required properties such as hole or electron leakage prevention property, transport property, heat resistance, and visible light transparency. A photoelectric conversion element can be provided.

図1は、本発明の撮像素子用光電変換素子の実施態様を例示した断面図を示す。FIG. 1 is a cross-sectional view illustrating an embodiment of the photoelectric conversion element for an image pickup device of the present invention.

本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されるものではない。 The contents of the present invention will be described in detail. The description of the constituent elements described below is based on the representative embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.

本発明の撮像素子用光電変換素子用材料の第1の特徴は、下記一般式(1)で表される化合物を含むことにある。 The first feature of the photoelectric conversion element material for an image sensor of the present invention is that it contains a compound represented by the following general formula (1).

Figure 0006739290
Figure 0006739290

上記式(1)中のR及びRはそれぞれ独立に置換又は無置換のヘテロ環縮合芳香族基を表す。 R 1 and R 2 in the above formula (1) each independently represent a substituted or unsubstituted heterocyclic fused aromatic group.

式(1)のR及びRが表すヘテロ環縮合芳香族基とは、ヘテロ環縮合芳香族から水素原子を一つ除いた残基を意味し、その具体例としては、ベンゾチエニル基、ナフトチエニル基、アントラチエニル基、ベンゾジチエニル基、ジベンゾチエニル基、ベンゾトリチエニル基、チエノチエニル基、ベンゾフラニル基、ナフトフラニル基、アントラフラニル基、ベンゾジフラニル基、ジベンゾフラニル基、ベンゾトリフラニル基、キノリル基、イソキノリル基、ベンゾピロリル基、インドレニル基、ベンゾイミダゾリル基、カルバゾリル基、キサンテニル基及びチオキサンテニル基等が挙げられる。これらのうち、ヘテロ環としてチオフェン環又はフラン環を有するヘテロ環縮合芳香族基が好ましく、ベンゾチエニル基又はベンゾフラニル基がより好ましく、2−ベンゾ[b]チエニル基又は2−ベンゾ[b]フラニル基が更に好ましい。また、R及びRの両者が同一であることが好ましい。 The heterocyclic fused aromatic group represented by R 1 and R 2 in formula (1) means a residue obtained by removing one hydrogen atom from a heterocyclic fused aromatic, and specific examples thereof include a benzothienyl group, Naphthienyl group, anthrathienyl group, benzodithienyl group, dibenzothienyl group, benzotrithienyl group, thienothienyl group, benzofuranyl group, naphthofuranyl group, anthrafuranyl group, benzodifuranyl group, dibenzofuranyl group, benzotrifuranyl group, quinolyl Group, isoquinolyl group, benzopyrrolyl group, indolenyl group, benzimidazolyl group, carbazolyl group, xanthenyl group and thioxanthenyl group. Of these, a heterocyclic condensed aromatic group having a thiophene ring or a furan ring as a heterocycle is preferable, a benzothienyl group or a benzofuranyl group is more preferable, and a 2-benzo[b]thienyl group or a 2-benzo[b]furanyl group is preferable. Is more preferable. Further, it is preferable that both R 1 and R 2 are the same.

ここで、「置換又は無置換のヘテロ環縮合芳香族基」とは、ヘテロ環縮合芳香族基上の水素原子が置換基で置換されたヘテロ環縮合芳香族基又はヘテロ環縮合芳香族基上の水素原子が置換基で置換されていないヘテロ環縮合芳香族基を意味する。ヘテロ環縮合芳香族基が置換基を有する場合は、少なくとも一種の置換基を有していればよく、置換位置と置換基数も特に制限されない。
式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基に制限はないが、例えばアルキル基、アルコキシ基、芳香族基、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アルキル置換アミノ基、アリール置換アミノ基、非置換アミノ基(NH基)、アシル基、アルコキシカルボニル基、シアノ基、イソシアノ基等が挙げられる。
Here, the "substituted or unsubstituted heterocyclic condensed aromatic group" means a heterocyclic condensed aromatic group or a heterocyclic condensed aromatic group in which a hydrogen atom on the heterocyclic condensed aromatic group is substituted with a substituent. Means a heterocyclic fused aromatic group in which the hydrogen atom of is not substituted with a substituent. When the heterocyclic fused aromatic group has a substituent, it may have at least one kind of substituent, and the substitution position and the number of substituents are not particularly limited.
The heterocyclic condensed aromatic group represented by R 1 and R 2 in the formula (1) has no limitation on the substituents, for example, an alkyl group, an alkoxy group, an aromatic group, a halogen atom, a hydroxyl group, a mercapto group, a nitro group. , An alkyl-substituted amino group, an aryl-substituted amino group, an unsubstituted amino group (NH 2 group), an acyl group, an alkoxycarbonyl group, a cyano group, an isocyano group and the like.

式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアルキル基は、直鎖状、分岐鎖状及び環状の何れにも限定されず、その炭素数も特に限定されないが、通常は炭素数1乃至4の直鎖状若しくは分岐鎖状のアルキル基であるか、または炭素数5乃至6の環状のアルキル基である。
式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、sec−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、シクロペンチル基及びシクロヘキシル基等が挙げられ、炭素数1乃至4の直鎖又は分岐鎖のアルキル基であることが好ましく、炭素数1又は2の直鎖のアルキル基であることがより好ましい。
The alkyl group as a substituent which the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) has is not limited to linear, branched or cyclic, and the number of carbon atoms is also particularly Although not limited, it is usually a linear or branched alkyl group having 1 to 4 carbon atoms, or a cyclic alkyl group having 5 to 6 carbon atoms.
Specific examples of the alkyl group as the substituent of the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, and an n- group. Examples thereof include a butyl group, an iso-butyl group, a tert-butyl group, a sec-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, a cyclopentyl group and a cyclohexyl group, each of which has a carbon number of 1 to 4 It is preferably a chain or branched alkyl group, and more preferably a linear alkyl group having 1 or 2 carbon atoms.

式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアルコキシ基の具体例としては,メトキシ基、エトキシ基、プロポキシ基、iso−プロポキシ基、n−ブトキシ基、iso−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、iso−ペンチルオキシ基、t−ペンチルオキシ基、sec−ペンチルオキシ基、n−ヘキシルオキシ基、iso−ヘキシルオキシ基、n−ヘプチルオキシ基、sec−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、sec−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−エイコシルオキシ基、ドコシルオキシ基、n−ペンタコシルオキシ基、n−オクタコシルオキシ基、n−トリコンチルオキシ基、5−(n−ペンチル)デシルオキシ基、ヘネイコシルオキシ基、トリコシルオキシ基、テトラコシルオキシ基、ヘキサコシルオキシ基、ヘプタコシルオキシ基、ノナコシルオキシ基、n−トリアコンチルオキシ基、スクアリルオキシ基、ドトリアコンチルオキシ基及びヘキサトリアコンチルオキシ基等の炭素数1乃至36のアルコキシ基が挙げられ、炭素数1乃至24のアルコキシ基であることが好ましく、炭素数1乃至20のアルコキシ基であることがより好ましく、炭素数1乃至12のアルコキシ基であることが更に好ましく、炭素数1乃至6のアルコキシ基であることが特に好ましく、炭素数1乃至4のアルコキシ基であることが最も好ましい。 Specific examples of the alkoxy group as the substituent of the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) include a methoxy group, an ethoxy group, a propoxy group, an iso-propoxy group, and an n-butoxy group. , Iso-butoxy group, t-butoxy group, n-pentyloxy group, iso-pentyloxy group, t-pentyloxy group, sec-pentyloxy group, n-hexyloxy group, iso-hexyloxy group, n-heptyl Oxy group, sec-heptyloxy group, n-octyloxy group, n-nonyloxy group, sec-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, n-tridecyloxy group, n-tetradecyloxy group, n-pentadecyloxy group, n-hexadecyloxy group, n-heptadecyloxy group, n-octadecyloxy group, n-nonadecyloxy group, n-eicosyloxy group, docosyloxy group, n -Pentacosyloxy group, n-octacosyloxy group, n-tricontyloxy group, 5-(n-pentyl)decyloxy group, heneicosyloxy group, tricosyloxy group, tetracosyloxy group, hexa C1-C36 alkoxy groups such as cosyloxy group, heptacosyloxy group, nonacosyloxy group, n-triacontyloxy group, squaryloxy group, dotriacontyloxy group and hexatriacontyloxy group. And an alkoxy group having 1 to 24 carbon atoms is preferable, an alkoxy group having 1 to 20 carbon atoms is more preferable, and an alkoxy group having 1 to 12 carbon atoms is further preferable. An alkoxy group having 1 to 6 is particularly preferable, and an alkoxy group having 1 to 4 carbon atoms is most preferable.

式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としての芳香族基の具体例としては、フェニル基及びナフチル基等の芳香族炭化水素基のみならず、上記したヘテロ環縮合芳香族基が挙げられ、芳香族炭化水素基であることが好ましい。ヘテロ環縮合芳香族基が有する置換基としての芳香族基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基と同じものが挙げられる。
式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアルキル置換アミノ基は、モノアルキル置換アミノ基及びジアルキル置換アミノ基の何れにも制限されず、これらアルキル置換アミノ基におけるアルキル基としては、式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアルキル基と同じものが挙げられる。
Specific examples of the aromatic group as the substituent of the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) include not only aromatic hydrocarbon groups such as phenyl group and naphthyl group but also the above The heterocyclic condensed aromatic group described above is included, and an aromatic hydrocarbon group is preferable. The aromatic group as the substituent which the heterocyclic fused aromatic group may have may have a substituent, and the substituent which may be present is represented by R 1 and R 2 of the formula (1). The same thing as the substituent which a heterocyclic condensed aromatic group has is mentioned.
Specific examples of the halogen atom as the substituent of the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The alkyl-substituted amino group as a substituent that the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) has is not limited to either a monoalkyl-substituted amino group or a dialkyl-substituted amino group, and these alkyl groups may be used. Examples of the alkyl group in the substituted amino group include the same as the alkyl group as the substituent of the heterocyclic fused aromatic group represented by R 1 and R 2 in formula (1).

式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアリール置換アミノ基は、モノアリール置換アミノ基及びジアリール置換アミノ基の何れにも制限されず、これらアリール置換アミノ基におけるアリール基としては、式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基の項に記載した芳香族炭化水素基と同じものが挙げられる。
式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアシル基としては、式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基の項に記載した芳香族炭化水素基や式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基の項に記載したアルキル基が、カルボニル基(=CO基)と結合した置換基が挙げられる。
式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアルコキシカルボニル基としては、式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としてのアルコキシ基がカルボニル基と結合した置換基が挙げられる。
式(1)のR及びRが表すヘテロ環縮合芳香族基が有する置換基としては、アルキル基、芳香族基、ハロゲン原子又はアルコキシル基であることが好ましく、ハロゲン原子又は無置換の芳香族炭化水素基であることがより好ましく、フェニル基又はビフェニル基であることが更に好ましい。
The aryl-substituted amino group as a substituent which the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) has is not limited to either a monoaryl-substituted amino group or a diaryl-substituted amino group, and these aryls As the aryl group in the substituted amino group, the same aromatic hydrocarbon groups as those described in the paragraph of the substituent contained in the heterocyclic condensed aromatic group represented by R 1 and R 2 of the formula (1) can be mentioned.
The acyl group as the substituent which the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) has is a substituent which the heterocyclic fused aromatic group represented by R 1 and R 2 of the formula (1) has. The alkyl group described in the item of the substituent which the aromatic hydrocarbon group described in the item of the group or the heterocyclic condensed aromatic group represented by R 1 and R 2 of the formula (1) has is a carbonyl group (=CO group) And a substituent bonded to.
The alkoxycarbonyl group as a substituent of the heterocyclic condensed aromatic group represented by R 1 and R 2 of the formula (1) has the heterocyclic condensed aromatic group represented by R 1 and R 2 of the formula (1). The substituent which the alkoxy group as a substituent couple|bonded with the carbonyl group is mentioned.
The substituent that the heterocyclic fused aromatic group represented by R 1 and R 2 in formula (1) has is preferably an alkyl group, an aromatic group, a halogen atom or an alkoxyl group, and a halogen atom or an unsubstituted aromatic group A group hydrocarbon group is more preferable, and a phenyl group or a biphenyl group is further preferable.

式(1)におけるR及びRとしては、両者が同一の、置換又は無置換の2−ベンゾ[b]チエニル基又は2−ベンゾ[b]フラニル基であることが好ましく、両者が同一のハロゲン原子及び無置換の芳香族基からなる群より選択される一つ以上の置換基を有するベンゾ[b]チエニル基又は2−ベンゾ[b]フラニル基であることがより好ましく、両者が同一のフェニル基を有するベンゾ[b]チエニル基又は2−ベンゾ[b]フラニル基であることが更に好ましい。 As R 1 and R 2 in the formula (1), it is preferable that they are the same substituted or unsubstituted 2-benzo[b]thienyl group or 2-benzo[b]furanyl group, and both are the same. A benzo[b]thienyl group or a 2-benzo[b]furanyl group having one or more substituents selected from the group consisting of a halogen atom and an unsubstituted aromatic group is more preferable, and both are the same. A benzo[b]thienyl group or a 2-benzo[b]furanyl group having a phenyl group is more preferable.

上記式(1)におけるR及びRの置換位置は特に制限されないが、式(1)中の[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンにおける2,7位であることが好ましい。即ち、式(1)で表される化合物としては、下記一般式(2)で表される化合物が好ましい。 The substitution position of R 1 and R 2 in the above formula (1) is not particularly limited, but it should be the 2,7 position in [1]benzothieno[3,2-b][1]benzothiophene in the formula (1). Is preferred. That is, as the compound represented by the formula (1), a compound represented by the following general formula (2) is preferable.

Figure 0006739290
Figure 0006739290

式(2)中、R及びRは式(1)におけるのと同じ意味を表し、好ましいものも式(1)におけるのと同じである。
即ち、式(2)で表される化合物としては、式(2)におけるR及びRの両者が、上記した式(1)における好ましい乃至最も好ましい態様のものが好ましい。
In formula (2), R 1 and R 2 have the same meanings as in formula (1), and preferred ones are also the same as in formula (1).
That is, as the compound represented by the formula (2), those in which both R 1 and R 2 in the formula (2) are preferable or most preferable in the above-mentioned formula (1) are preferable.

式(1)で表される化合物の具体例を以下に示すが、本発明はこれらの具体例に限定されるものではない。 Specific examples of the compound represented by the formula (1) are shown below, but the present invention is not limited to these specific examples.

Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290

Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290

Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290

Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290

Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290

Figure 0006739290
Figure 0006739290
Figure 0006739290
Figure 0006739290

式(1)で表される化合物は、特許文献1、特許文献6及び非特許文献1に開示された公知の方法などにより合成することができる。例えば以下のスキームに記された方法が挙げられる。原料としてニトロスチルベン誘導体(A)を用いて、ベンゾチエノベンゾチオフェン骨格(D)を形成し、これを還元することによりアミノ化物(E)(式(1)におけるR及びRがアミノ基の化合物)が得られる。この化合物(E)をハロゲン化してやればハロゲン化物(F)(式(1)におけるR及びRがハロゲンの化合物、以下のスキームには一例としてR及びRがヨウ素の化合物を記載した)が得られ、この化合物(F)を更にホウ酸誘導体とカップリングをしてやれば式(1)におけるR及びRが芳香族基等の化合物を得ることが可能である。なお、特許文献5の方法によれば、対応するベンズアルデヒド誘導体から式(1)におけるR及びRが芳香族基等の化合物を1ステップで製造できるため、より効果的である。 The compound represented by the formula (1) can be synthesized by a known method disclosed in Patent Document 1, Patent Document 6 and Non-Patent Document 1. For example, the method described in the following scheme can be mentioned. A nitrostilbene derivative (A) is used as a raw material to form a benzothienobenzothiophene skeleton (D), and this is reduced to form an amination compound (E) (R 1 and R 2 in the formula (1) are amino groups. Compound) is obtained. When this compound (E) is halogenated, a halide (F) (a compound in which R 1 and R 2 in the formula (1) are halogen, and a compound in which R 1 and R 2 are iodine is described in the following scheme as an example. ) Is obtained, and this compound (F) is further coupled with a boric acid derivative to obtain a compound in which R 1 and R 2 in the formula (1) are aromatic groups and the like. The method of Patent Document 5 is more effective because a compound in which R 1 and R 2 in the formula (1) are aromatic groups or the like can be produced from the corresponding benzaldehyde derivative in one step.

Figure 0006739290
Figure 0006739290

式(1)で表される化合物の精製方法は、特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。 The method for purifying the compound represented by formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be adopted. Moreover, these methods can be combined as needed.

本発明の撮像素子用光電変換素子(以下、単に「光電変換素子」ということもある。)は、対向する(A)第一の電極膜と(B)第二の電極膜との二つの電極膜間に、(C)光電変換部を配置した素子であって、(A)第一の電極膜又は(B)第二の電極膜の上方から光が光電変換部に入射されるものである。(C)光電変換部は前記の入射光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合は、入射光量に加え入射位置情報をも示すため、撮像素子となる。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いても良い。可視光領域にそれぞれ異なる吸収波長を有する複数の光電変換素子を積層して用いることにより、多色の撮像素子(フルカラーフォトダイオードアレイ)とすることができる。 The photoelectric conversion device for an image pickup device of the present invention (hereinafter, may be simply referred to as “photoelectric conversion device”) has two electrodes facing each other (A) a first electrode film and (B) a second electrode film. An element in which (C) a photoelectric conversion unit is arranged between films, and light is incident on the photoelectric conversion unit from above (A) the first electrode film or (B) the second electrode film. .. (C) The photoelectric conversion unit generates electrons and holes according to the incident light amount, and the semiconductor reads out a signal corresponding to the charge, and the incident light amount according to the absorption wavelength of the photoelectric conversion film unit. Is an element showing. A transistor for reading may be connected to the electrode film on the side where light does not enter. When a large number of photoelectric conversion elements are arranged in an array, the photoelectric conversion elements show incident position information in addition to the amount of incident light, so that the photoelectric conversion elements are image pickup elements. When the photoelectric conversion element arranged closer to the light source does not block (transmit) the absorption wavelength of the photoelectric conversion element arranged behind it when viewed from the light source side, a plurality of photoelectric conversion elements are stacked. You may use. By stacking and using a plurality of photoelectric conversion elements each having a different absorption wavelength in the visible light region, a multicolor image pickup element (full-color photodiode array) can be obtained.

本発明の撮像素子用光電変換素子材料は、上記(C)光電変換部を構成する材料に用いられる。
(C)光電変換部は、(c−1)光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等からなる群より選択される一種又は複数種の(c−2)光電変換層以外の有機薄膜層とからなることが多い。本発明の撮像素子用光電変換素子材料は(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層のいずれにも用いることができるが、(c−2)光電変換層以外の有機薄膜層に用いることが好ましい。
The photoelectric conversion element material for an image sensor of the present invention is used as a material forming the photoelectric conversion part (C).
The (C) photoelectric conversion part is selected from the group consisting of (c-1) the photoelectric conversion layer, and an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization preventing layer, an interlayer contact improving layer, and the like. It is often composed of an organic thin film layer other than the selected (c-2) photoelectric conversion layer. The photoelectric conversion element material for an image pickup device of the present invention can be used in any of the organic thin film layers other than the (c-1) photoelectric conversion layer and the (c-2) photoelectric conversion layer. It is preferably used for an organic thin film layer other than the layer.

本発明の撮像素子用光電変換素子が有する(A)第一の電極膜及び(B)第二の電極膜は、後述する(C)光電変換部に含まれる(c−1)光電変換層が正孔輸送性を有する場合や、(c−2)光電変換層以外の有機薄膜層(以下、光電変換層以外の有機薄膜層を、単に「(c−2))有機薄膜層」とも表記する)が正孔輸送性を有する正孔輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、また(C)光電変換部に含まれる(c−1)光電変換層が電子輸送性を有する場合や、(c−2)有機薄膜層が電子輸送性を有する電子輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から電子を取り出してこれを吐出する役割を果たすものである。よって、(A)第一の電極膜及び(B)第二の電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する(c−1)光電変換層や(c−2)有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。(A)第一の電極膜及び(B)第二の電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。(A)第一の電極膜及び(B)第二の電極膜に用いる材料の導電性も光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば(A)第一の電極膜及び(B)第二の電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。 The (A) first electrode film and the (B) second electrode film that the photoelectric conversion element for an image sensor of the present invention has (C-1) photoelectric conversion layer included in the (C) photoelectric conversion unit to be described later. In the case of having a hole transport property, or (c-2) an organic thin film layer other than the photoelectric conversion layer (hereinafter, the organic thin film layer other than the photoelectric conversion layer is also simply referred to as “(c-2)) organic thin film layer”. Is a hole transporting layer having a hole transporting property, it plays a role of taking out holes from the (c-1) photoelectric conversion layer or (c-2) organic thin film layer and collecting the holes. When (c-1) the photoelectric conversion layer contained in the (C) photoelectric conversion part has an electron transporting property, or (c-2) the organic thin film layer is an electron transporting layer having an electron transporting property, It plays a role of taking out electrons from the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer and discharging the electrons. Therefore, the materials that can be used as the (A) first electrode film and the (B) second electrode film are not particularly limited as long as they have a certain degree of conductivity, but adjacent (c-1) photoelectric conversion layers (C-2) It is preferable to select it in consideration of the adhesion to the organic thin film layer, the electron affinity, the ionization potential, the stability, and the like. Examples of materials that can be used as (A) the first electrode film and (B) the second electrode film include tin oxide (NESA), indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO). Conductive metal oxides; metals such as gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel and tungsten; inorganic conductive substances such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline Carbon, etc. may be mentioned. If necessary, a plurality of these materials may be mixed and used, or a plurality of these materials may be stacked in two or more layers and used. The conductivity of the material used for (A) the first electrode film and (B) the second electrode film is not particularly limited as long as it does not hinder the light reception of the photoelectric conversion element more than necessary. From the viewpoint of electric power, it is preferable to be as high as possible. For example, an ITO film having a sheet resistance of 300 Ω/□ or less sufficiently functions as (A) the first electrode film and (B) the second electrode film, but has a conductivity of about several Ω/□. It is desirable to use such a substrate having high conductivity, since a commercial product of a substrate provided with an ITO film having is available. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually 5 to 500 nm, preferably about 10 to 300 nm. Examples of methods for forming a film of ITO or the like include conventionally known vapor deposition methods, electron beam methods, sputtering methods, chemical reaction methods, coating methods, and the like. If necessary, the ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like.

(A)第一の電極膜及び(B)第二の電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)等が挙げられる。(c−1)光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 Among the (A) first electrode film and the (B) second electrode film, as the material of the transparent electrode film used on at least one of the light incident sides, ITO, IZO, SnO 2 , ATO ( Examples thereof include antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2 and FTO (fluorine-doped tin oxide). (C-1) The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and 95% or more. It is particularly preferable that

また、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは(A)第一の電極膜及び(B)第二の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。 Further, when a plurality of photoelectric conversion layers having different wavelengths to be detected are laminated, the electrode films used between the photoelectric conversion layers (other than (A) the first electrode film and (B) the second electrode film). It is necessary to transmit light having a wavelength other than the light detected by each photoelectric conversion layer, and it is preferable to use a material that transmits 90% or more of incident light for the electrode film. It is more preferable to use a material that transmits% or more of light.

電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマ与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、またはプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。 It is preferable that the electrode film is formed without plasma. By forming these electrode films without using plasma, the influence of the plasma on the substrate on which the electrode films are provided can be reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that plasma is not generated during the formation of the electrode film, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state in which plasma is reduced.

電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。 Examples of the apparatus that does not generate plasma during the formation of the electrode film include an electron beam evaporation apparatus (EB evaporation apparatus) and a pulse laser evaporation apparatus. Hereinafter, a method of forming a transparent electrode film using an EB evaporation device is called an EB evaporation method, and a method of forming a transparent electrode film using a pulse laser evaporation device is called a pulse laser evaporation method.

成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。 As an apparatus that can realize a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film formation apparatus), for example, a facing target type sputtering apparatus, an arc plasma vapor deposition apparatus, or the like can be considered.

透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(TransparentConductiveOxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。 When the transparent conductive film is used as an electrode film (for example, the first conductive film), DC short circuit or increase in leak current may occur. One of the causes of this is that minute cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transparent Conductive Oxide), and between the transparent conductive film and the electrode film (second conductive film) on the opposite side. It is thought that this is due to an increase in the conduction of. Therefore, when a material such as Al having a poor film quality is used for the electrode, the increase in leak current is unlikely to occur. By controlling the film thickness of the electrode film according to the film thickness of the photoelectric conversion layer (the depth of cracks), it is possible to suppress an increase in leak current.

通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の撮像素子用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。また、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。 Usually, when the conductive film is made thinner than a predetermined value, the resistance value rapidly increases. The sheet resistance of the conductive film in the photoelectric conversion element for an image sensor of the present embodiment is usually 100 to 10000 Ω/□, and the degree of freedom in film thickness is large. In addition, the thinner the transparent conductive film, the smaller the amount of light absorbed, and generally the higher the light transmittance. When the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion ability is improved, which is very preferable.

本発明の撮像素子用光電変換素子が有する(C)光電変換部は、少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含む。
(C)光電変換部を構成する(c−1)光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2乃至10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。
The (C) photoelectric conversion part included in the photoelectric conversion element for an image pickup device of the present invention includes at least an organic thin film layer other than the (c-1) photoelectric conversion layer and the (c-2) photoelectric conversion layer.
An organic semiconductor film is generally used for the photoelectric conversion layer (c-1) constituting the photoelectric conversion part (C), but the organic semiconductor film may be a single layer or a plurality of layers. A P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film thereof (bulk heterostructure) is used as the material. On the other hand, in the case of a plurality of layers, the number of layers is about 2 to 10 and is a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk hetero structure) thereof is laminated. A buffer layer may be inserted in.

(c−1)光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。 (C-1) The organic semiconductor film of the photoelectric conversion layer has a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, a polysilane compound depending on the absorption wavelength band. , Thiophene compound, phthalocyanine compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole compound, pyrrole compound, pyrazole compound, polyarylene compound, carbazole derivative, naphthalene derivative, anthracene derivative, chrysene derivative, phenanthrene derivative, pentacene derivative, Phenyl butadiene derivative, styryl derivative, quinoline derivative, tetracene derivative, pyrene derivative, perylene derivative, fluoranthene derivative, quinacridone derivative, coumarin derivative, porphyrin derivative, fullerene derivative and metal complex (Ir complex, Pt complex, Eu complex, etc.) are used. be able to.

本発明の撮像素子用光電変換素子において、(C)光電変換部を構成する(c−2)光電変換層以外の有機薄膜層は、(c−1)光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層からなる群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。 In the photoelectric conversion device for an image pickup device of the present invention, the organic thin film layer other than the (c-2) photoelectric conversion layer constituting the (C) photoelectric conversion part is a layer other than the (c-1) photoelectric conversion layer, for example, an electron. It is also used as a transport layer, a hole transport layer, an electron blocking layer, a hole blocking layer, a crystallization preventing layer, an interlayer contact improving layer, or the like. In particular, by using it as one or more thin film layers selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer and a hole block layer, an element capable of efficiently converting an electrical signal even with weak light energy can be obtained. Therefore, it is preferable.

電子輸送層は、(c−1)光電変換層で発生した電子を(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、電子輸送先の電極膜から(c−1)光電変換層に正孔が移動するのをブロックする役割とを果たす。
正孔輸送層は、発生した正孔を(c−1)光電変換層から(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、正孔輸送先の電極膜から(c−1)光電変換層に電子が移動するのをブロックする役割とを果たす。
電子ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への電子の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。
正孔ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への正孔の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。
正孔ブロック層は正孔阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。正孔ブロック層に使用することができる化合物としては、上記一般式(1)で表される化合物の他に、バソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体などが挙げられ、これらのうち、一種又は二種以上を用いることができる。
The electron transport layer plays a role of transporting the electrons generated in (c-1) the photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and (c) from the electrode film of the electron transport destination (c). -1) It plays a role of blocking the transfer of holes to the photoelectric conversion layer.
The hole transport layer transports the generated holes from the (c-1) photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and the hole transport destination electrode film. To (c-1), it plays a role of blocking the transfer of electrons to the photoelectric conversion layer.
The electron blocking layer prevents transfer of electrons from the (A) first electrode film or the (B) second electrode film to the (c-1) photoelectric conversion layer, and (c-1) within the photoelectric conversion layer. It plays a role of preventing recombination and reducing dark current.
The hole blocking layer prevents movement of holes from (A) the first electrode film or (B) the second electrode film to the (c-1) photoelectric conversion layer, and It has the function of preventing the recombination in and reducing the dark current.
The hole blocking layer is formed by stacking or mixing two or more kinds of hole blocking substances. The hole blocking substance is not limited as long as it is a compound capable of blocking holes from flowing out of the electrode to the outside of the device. Examples of the compound that can be used in the hole blocking layer include, in addition to the compound represented by the general formula (1), phenanthroline derivatives such as bathophenanthroline and bathocuproine, silole derivatives, quinolinol derivative metal complexes, and oxadiazole derivatives. , Oxazole derivatives, quinoline derivatives and the like, and of these, one kind or two or more kinds can be used.

上記一般式(1)で表される化合物を含む(c−2)光電変換層以外の有機薄膜層は、特に正孔ブロック層として好適に用いることが出来る。リーク電流を防止するという観点からは正孔ブロック層の膜厚は厚い方が良いが、光入射時の信号読み出しの際に充分な電流量を得るという観点からは膜厚はなるべく薄い方が良い。これら相反する特性を両立するために、一般的には(c−1)及び(c−2)を含む(C)光電変換部の膜厚が5乃至500nm程度であることが好ましい。なお、一般式(1)で表される化合物が用いられる層が、どのような働きをするかは、光電変換素子に他にどのような化合物を用いるかで変わってくる。
また、正孔ブロック層及び電子ブロック層は、(c−1)光電変換層の光吸収を妨げないために、光電変換層の吸収波長の透過率が高いことが好ましく、また薄膜で用いることが好ましい。
The organic thin film layer other than the (c-2) photoelectric conversion layer containing the compound represented by the general formula (1) can be particularly preferably used as the hole blocking layer. From the viewpoint of preventing leakage current, the hole blocking layer should have a large film thickness, but from the viewpoint of obtaining a sufficient amount of current when reading out a signal when light is incident, it is preferable that the film thickness be as thin as possible. .. In order to make these contradictory properties compatible, it is generally preferable that the film thickness of the (C) photoelectric conversion part including (c-1) and (c-2) is about 5 to 500 nm. The function of the layer in which the compound represented by the general formula (1) is used depends on what other compound is used in the photoelectric conversion element.
In addition, the hole blocking layer and the electron blocking layer preferably have a high transmittance at the absorption wavelength of the photoelectric conversion layer in order to prevent light absorption of the photoelectric conversion layer (c-1), and are preferably used as a thin film. preferable.

薄膜トランジスタは、光電変換部により生じた電荷に基づき、信号読み取り部へ信号を出力する。薄膜トランジスタは、ゲート電極、ゲート絶縁膜、活性層、ソース電極、及びドレイン電極を有し、活性層は、シリコン半導体、酸化物半導体又は有機半導体により形成されている。 The thin film transistor outputs a signal to the signal reading unit based on the charge generated by the photoelectric conversion unit. The thin film transistor has a gate electrode, a gate insulating film, an active layer, a source electrode, and a drain electrode, and the active layer is formed of a silicon semiconductor, an oxide semiconductor, or an organic semiconductor.

薄膜トランジスタに用いられる活性層を酸化物半導体により形成すれば、アモルファスシリコンの活性層に比べて電荷の移動度がはるかに高く、低電圧で駆動させることができる。また、酸化物半導体を用いれば、通常、シリコンよりも光透過性が高く、可撓性を有する活性層を形成することができる。また、酸化物半導体、特にアモルファス酸化物半導体は、低温(例えば室温)で均一に成膜が可能であるため、プラスチックのような可撓性のある樹脂基板を用いるときに特に有利となる。また、複数の二次受光画素を積層させるため、上段の二次受光画素を形成する際に下段の二次受光画素が影響を受ける。特に光電変換層は熱の影響を受けやすいが、酸化物半導体、特にアモルファス酸化物半導体は低温成膜が可能であるため有利である If the active layer used for the thin film transistor is formed of an oxide semiconductor, the mobility of charges is much higher than that of the active layer of amorphous silicon, and it can be driven at a low voltage. In addition, when an oxide semiconductor is used, it is possible to form an active layer which has higher light transmittance than silicon and which is flexible. In addition, since an oxide semiconductor, particularly an amorphous oxide semiconductor, can be uniformly formed at a low temperature (for example, room temperature), it is particularly advantageous when a flexible resin substrate such as plastic is used. Further, since a plurality of secondary light receiving pixels are stacked, the lower secondary light receiving pixels are affected when forming the upper secondary light receiving pixels. The photoelectric conversion layer is particularly susceptible to heat, but oxide semiconductors, especially amorphous oxide semiconductors, are advantageous because they can be formed at low temperatures.

活性層を形成するための酸化物半導体としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn−O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn−Zn−O系、In−Ga−O系、Ga−Zn−O系)がより好ましく、In、Ga及びZnを含む酸化物が更に好ましい。In−Ga−Zn−O系酸化物半導体としては、結晶状態における組成がInGaO (ZnO)m (mは6未満の自然数)で表される酸化物半導体が好ましく、特に、InGaZnO がより好ましい。この組成のアモルファス酸化物半導体の特徴としては、電気伝導度が増加するにつれ、電子移動度が増加する傾向を示す As the oxide semiconductor for forming the active layer, an oxide containing at least one of In, Ga, and Zn (for example, In—O system) is preferable, and at least two of In, Ga, and Zn are included. An oxide containing (for example, In-Zn-O-based, In-Ga-O-based, Ga-Zn-O-based) is more preferable, and an oxide containing In, Ga, and Zn is further preferable. As the In-Ga-ZnO based oxide semiconductor, the composition in a crystalline state is an oxide semiconductor is preferably represented by InGaO 3 (ZnO) m (m is a natural number less than 6), in particular, more preferably InGaZnO 4 .. The characteristic of the amorphous oxide semiconductor of this composition is that the electron mobility tends to increase as the electrical conductivity increases.

信号読み取り部は、光電変換部に生成及び蓄積される電荷または前記電荷に応じた電圧を読み取る。 The signal reading unit reads charges generated and accumulated in the photoelectric conversion unit or a voltage corresponding to the charges.

図1に本発明の撮像素子用光電変換素子の代表的な素子構造を詳細に説明するが、本発明はこれらの構造には限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜(第一の電極膜又は第二の電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(第二の電極膜又は第一の電極膜)、7が絶縁基材、もしくは積層された光電変換素子をそれぞれ表す。読み出しのトランジスタ(図中には未記載)は、2又は6いずれかの電極膜と接続されていればよく、例えば、光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側(電極膜2の上側、又は電極膜6の下側)に成膜されていてもよい。光電変換素子を構成する光電変換層以外の薄膜層(電子ブロック層や正孔ブロック層等)が光電変換層の吸収波長を極度に遮蔽しないものであれば、光が入射する方向は上部(図1における絶縁部1側)または下部(図1における絶縁基板7側)のいずれでもよい。 FIG. 1 illustrates in detail the typical device structures of the photoelectric conversion device for an image sensor of the present invention, but the present invention is not limited to these structures. In the example of the embodiment shown in FIG. 1, 1 is an insulating part, 2 is one electrode film (first electrode film or second electrode film), 3 is an electron block layer, 4 is a photoelectric conversion layer, and 5 is a hole block. A layer, 6 represents the other electrode film (second electrode film or first electrode film), and 7 represents an insulating base material or a laminated photoelectric conversion element. The readout transistor (not shown in the drawing) may be connected to either the electrode film 2 or 6 and, for example, if the photoelectric conversion layer 4 is transparent, the side opposite to the light incident side. The film may be formed on the outer side of the electrode film (above the electrode film 2 or below the electrode film 6). If the thin film layers (electron block layer, hole block layer, etc.) other than the photoelectric conversion layer constituting the photoelectric conversion element do not extremely block the absorption wavelength of the photoelectric conversion layer, the direction of light incidence is at the top (Fig. 1) or the lower part (the insulating substrate 7 side in FIG. 1).

本発明の撮像素子用光電変換素子における(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層の形成方法には、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、更にはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は7乃至5000nmの範囲であり、好ましくは1乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。 In the method for forming the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer other than the (c-2) photoelectric conversion layer in the photoelectric conversion element for an image pickup device of the present invention, generally, resistance heating vapor deposition which is a vacuum process, Coating methods such as electron beam evaporation, sputtering, molecular lamination method, solution process casting, spin coating, dip coating, blade coating, wire bar coating, spray coating, etc., inkjet printing, screen printing, offset printing, letterpress printing, etc. A soft lithography method such as a printing method or a microcontact printing method, or a method combining a plurality of these methods can be adopted. The thickness of each layer cannot be limited because it depends on the resistance value and charge mobility of each substance, but is usually in the range of 7 to 5000 nm, preferably 1 to 1000 nm, more preferably 5 to 500 nm. Is the range.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。
実施例中に記載のブロック層は正孔ブロック層及び電子ブロック層のいずれでも良い。光電変換素子の作製はグローブボックスと一体化した蒸着機で行い、作製した光電変換素子は窒素雰囲気のグローブボックス内で密閉式のボトル型計測チャンバー(エイエルエステクノロジー社製)に光電変換素子を設置し、電流電圧の印加測定を行った。電流電圧の印加測定は、特に指定のない限り、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定のない限り、PVL−3300(朝日分光社製)を用い、照射光波長550nm、照射光半値幅20nmにて行った。実施例中の明暗比は光照射を行った場合の電流値を暗所での電流値で割ったものを示す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The blocking layer described in the examples may be either a hole blocking layer or an electron blocking layer. The photoelectric conversion element is manufactured by a vapor deposition machine integrated with the glove box, and the photoelectric conversion element is installed in a closed bottle-type measurement chamber (made by ALS Technology Co., Ltd.) in a nitrogen atmosphere glove box. Then, the application of the current voltage was measured. Unless otherwise specified, the current/voltage application measurement was performed using a semiconductor parameter analyzer 4200-SCS (Keithley Instruments Inc.). Unless otherwise specified, PVL-3300 (manufactured by Asahi Bunko Co., Ltd.) was used to irradiate incident light with an irradiation light wavelength of 550 nm and an irradiation light half-value width of 20 nm. The light-dark ratio in the examples indicates the current value when light irradiation is performed divided by the current value in the dark place.

合成例1(2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
DMF(250部)に、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.8部)、一般に入手可能なベンゾ[b]フラン−2−イルボロン酸(1.9部)、リン酸三カリウム(27部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.47部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(250部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.1で表される化合物(2.6部、収率73%)を得た。
Synthesis Example 1 (Synthesis of 2,7-bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene)
2,7-diiodo[1]benzothieno[3,2-b][1]benzothiophene (3.8 parts) synthesized by the method described in Japanese Patent No. 4945757 in DMF (250 parts), generally available Benzo[b]furan-2-ylboronic acid (1.9 parts), tripotassium phosphate (27 parts) and tetrakis(triphenylphosphine)palladium (0.47 parts) were mixed and at 90° C. under a nitrogen atmosphere. Stir for 6 hours. The obtained reaction solution was cooled to room temperature, water (250 parts) was added, and the solid content was collected by filtration. The obtained solid content was washed with acetone, dried, and then subjected to sublimation purification to obtain No. 1 of the above specific example. A compound represented by 1 (2.6 parts, yield 73%) was obtained.

合成例2(2,7−ビス(ベンゾ[b]チオフェン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
ベンゾ[b]フラン−2−イルボロン酸(1.9部)の代わりに、一般に入手可能なベンゾ[b]チオフェン−2−イルボロン酸(2.1部)を使用したこと以外は、合成例1に準じて上記具体例のNo.5で表される化合物(2.7部、収率70%)を得た。
Synthesis Example 2 (Synthesis of 2,7-bis(benzo[b]thiophen-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene)
Synthesis Example 1 except that a commonly available benzo[b]thiophen-2-ylboronic acid (2.1 parts) was used instead of benzo[b]furan-2-ylboronic acid (1.9 parts). No. of the above specific example according to the above. A compound represented by 5 (2.7 parts, yield 70%) was obtained.

実施例1(光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として、5Vの電圧を印加したときの明暗比は2.5×10であった。
Example 1 (Production of photoelectric conversion element and evaluation thereof)
2,7-Bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzo was added to ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm). Thiophene (a compound represented by No. 1 obtained in Synthesis Example 1) was deposited as a block layer by resistance heating vacuum deposition to a thickness of 50 nm. Next, 100 nm of quinacridone was vacuum-deposited as a photoelectric conversion layer on the block layer. Finally, 100 nm of aluminum was vacuum-deposited as an electrode on the above-mentioned photoelectric conversion layer, and the photoelectric conversion element for imaging devices of the present invention was produced. The light/dark ratio was 2.5×10 5 when a voltage of 5 V was applied using ITO and aluminum as electrodes.

実施例2 (光電変換素子の作製およびその評価)
2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、2,7−ビス(ベンゾ[b]チオフェン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例2で得られたNo.5で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、5Vの電圧を印加したときの明暗比は2.5×10であった。
Example 2 (Production of photoelectric conversion element and its evaluation)
2,7-Bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene (Compound represented by No. 1 obtained in Synthesis Example 1) Instead of 2,7-bis(benzo[b]thiophen-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene (shown in No. 5 obtained in Synthesis Example 2). The evaluation was carried out according to Example 1 except that the compound) was used, and the light/dark ratio was 2.5×10 5 when a voltage of 5 V was applied.

比較例1(光電変換素子の作製およびその評価)
2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)を使用しないこと以外は、実施例1に準じて評価を行ったところ、5Vの電圧を印加したときの明暗比は4.7であった。
Comparative Example 1 (Production of photoelectric conversion element and its evaluation)
2,7-Bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene (Compound represented by No. 1 obtained in Synthesis Example 1) Evaluation was carried out in accordance with Example 1 except that No. was used, and the bright/dark ratio was 4.7 when a voltage of 5 V was applied.

比較例2(光電変換素子の作製およびその評価)
2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、2,7−ジフェニル[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(下記式(11)で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、5Vの電圧を印加したときの明暗比は600であった。
Comparative Example 2 (Production of photoelectric conversion element and its evaluation)
2,7-Bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene (Compound represented by No. 1 obtained in Synthesis Example 1) According to Example 1, except that 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (a compound represented by the following formula (11)) was used instead of As a result of evaluation, the light/dark ratio was 600 when a voltage of 5 V was applied.

Figure 0006739290
Figure 0006739290

比較例3(光電変換素子の作製およびその評価)
2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、トリス(8−キノリノラト)アルミニウムを使用したこと以外は、実施例1に準じて評価を行ったところ、5Vの電圧を印加したときの明暗比は31であった。
Comparative Example 3 (Production of photoelectric conversion element and evaluation thereof)
2,7-Bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene (Compound represented by No. 1 obtained in Synthesis Example 1) Evaluation was carried out in accordance with Example 1 except that tris(8-quinolinolato)aluminum was used instead of, and the light/dark ratio was 31 when a voltage of 5 V was applied.

比較例4(光電変換素子の作製およびその評価)
2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、2,7−ビス(9−フェナントレニル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(下記式(12)で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、5Vの電圧を印加したときの明暗比は690であった。
Comparative Example 4 (Production of photoelectric conversion element and evaluation thereof)
2,7-Bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene (Compound represented by No. 1 obtained in Synthesis Example 1) Instead of using 2,7-bis(9-phenanthrenyl)-[1]benzothieno[3,2-b][1]benzothiophene (a compound represented by the following formula (12)), When evaluated in accordance with Example 1, the light/dark ratio was 690 when a voltage of 5 V was applied.

Figure 0006739290
Figure 0006739290

比較例5(光電変換素子の作製およびその評価)
2,7−ビス(ベンゾ[b]フラン−2−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、2,7−ビス(1−ナフチル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(下記式(13)で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、5Vの電圧を印加したときの明暗比は240であった。
Comparative Example 5 (Production of photoelectric conversion element and evaluation thereof)
2,7-Bis(benzo[b]furan-2-yl)-[1]benzothieno[3,2-b][1]benzothiophene (Compound represented by No. 1 obtained in Synthesis Example 1) Instead of using 2,7-bis(1-naphthyl)-[1]benzothieno[3,2-b][1]benzothiophene (compound represented by the following formula (13)), When evaluated in accordance with Example 1, the light/dark ratio was 240 when a voltage of 5 V was applied.

Figure 0006739290
Figure 0006739290

上記の実施例1及び2の評価において得られた明暗比は撮像素子用光電変換素子として明らかに優れた特性を示す。 The brightness/darkness ratios obtained in the evaluations of Examples 1 and 2 above clearly show excellent characteristics as a photoelectric conversion element for an image sensor.

上記の評価結果より、式(1)で表される化合物を含む本発明の撮像素子用光電変換素子用材料を含む実施例の撮像素子用光電変換素子が、比較例の撮像素子用光電変換素子よりも優れた特性を有することは明らかである。 From the above evaluation results, the photoelectric conversion element for an image sensor of the example including the material for a photoelectric conversion element for an image sensor of the present invention containing the compound represented by the formula (1) is the photoelectric conversion element for the image sensor of the comparative example. It is clear that it has better properties than.

以上の様に、式(1)で表さる化合物を含む本発明の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子は、有機光電変換特性に優れた性能を有しており、高解像度と高応答性を有する有機撮像素子はもとより有機EL素子、有機太陽電池素子及び有機トランジスタ素子等の有機エレクトロニクスデバイス、光センサー、赤外センサー、紫外センサー、X線センサーやフォトンカウンター等のデバイスやそれらを利用したカメラ、ビデオカメラ、赤外線カメラ等の分野への応用が期待される。 As described above, the photoelectric conversion element for an image pickup device including the material for photoelectric conversion device for an image pickup device of the present invention containing the compound represented by the formula (1) has excellent performance in organic photoelectric conversion characteristics, Not only organic imaging devices with high resolution and high response, but also organic electronic devices such as organic EL devices, organic solar cell devices and organic transistor devices, optical sensors, infrared sensors, ultraviolet sensors, devices such as X-ray sensors and photon counters. And their applications in the fields of cameras, video cameras, infrared cameras, etc. are expected.

1 絶縁部
2 上部電極
3 電子ブロック層もしくは正孔輸送層
4 光電変換部
5 正孔ブロック層もしくは電子輸送層
6 下部電極
7 絶縁基材、もしくは他光電変換素子


1 Insulation Part 2 Upper Electrode 3 Electron Block Layer or Hole Transport Layer 4 Photoelectric Conversion Part 5 Hole Block Layer or Electron Transport Layer 6 Lower Electrode 7 Insulating Substrate or Other Photoelectric Conversion Element


Claims (5)

(A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該(C)光電変換部が少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含んでなり、かつ該(c−2)光電変換層以外の有機薄膜層が下記式(2)
Figure 0006739290
(式(2)中、R及びR無置換のベンゾ[b]フラン、又は無置換のベンゾ[b]チオフェンを表す。)で表される化合物を含む撮像素子用光電変換素子用材料を含む電子ブロック層又は正孔ブロック層である撮像素子用光電変換素子
A photoelectric conversion element having (A) a first electrode film, (B) a second electrode film, and (C) a photoelectric conversion part arranged between the first electrode film and the second electrode film. The (C) photoelectric conversion part contains at least an organic thin film layer other than the (c-1) photoelectric conversion layer and the (c-2) photoelectric conversion layer, and the (c-2) photoelectric conversion layer other than The organic thin film layer is represented by the following formula (2)
Figure 0006739290
(In the formula (2) , R 1 and R 2 each represent an unsubstituted benzo[b]furan or an unsubstituted benzo[b]thiophene ). A photoelectric conversion element for an image pickup element, which is an electron block layer or a hole block layer containing:
更に、(D)正孔蓄積部を有する薄膜トランジスタ及び(E)該薄膜トランジスタ内に蓄積された電荷に応じた信号を読み取る信号読み取り部を有する請求項1に記載の撮像素子用光電変換素子。 The photoelectric conversion element for an image sensor according to claim 1 , further comprising (D) a thin film transistor having a hole accumulating portion and (E) a signal reading portion for reading a signal corresponding to an electric charge accumulated in the thin film transistor. (D)正孔蓄積部を有する薄膜トランジスタが、更に(d)正孔蓄積部と第一の電極膜及び第二の電極膜のいずれか一方とを電気的に接続する接続部を有する請求項2に記載の撮像素子用光電変換素子。 (D) a thin film transistor having a hole accumulation unit further (d) according to claim 2 having a connecting portion for electrically connecting the one of the positive hole accumulation portion and the first electrode film and second electrode film The photoelectric conversion element for an image sensor according to item 1. 請求項1及至3のいずれか一項に記載の撮像素子用光電変換素子を複数アレイ状に配置した撮像素子。 An image pickup device in which a plurality of photoelectric conversion devices for an image pickup device according to any one of claims 1 to 3 are arranged in an array. 請求項1乃至3のいずれか一項に記載の撮像素子用光電変換素子または請求項4に記載の撮像素子を含む光センサー。 An optical sensor including the photoelectric conversion element for an image pickup device according to claim 1 or the image pickup device according to claim 4 .
JP2016166545A 2016-07-07 2016-08-29 Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same Active JP6739290B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016134864 2016-07-07
JP2016134864 2016-07-07

Publications (2)

Publication Number Publication Date
JP2018014474A JP2018014474A (en) 2018-01-25
JP6739290B2 true JP6739290B2 (en) 2020-08-12

Family

ID=61020275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166545A Active JP6739290B2 (en) 2016-07-07 2016-08-29 Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same

Country Status (1)

Country Link
JP (1) JP6739290B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189134A1 (en) 2018-03-28 2019-10-03 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
JP7011056B2 (en) 2018-05-31 2022-01-26 富士フイルム株式会社 Photoelectric conversion element, image sensor, optical sensor, compound
WO2020013246A1 (en) 2018-07-13 2020-01-16 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
CN114902438A (en) 2020-01-10 2022-08-12 富士胶片株式会社 Photoelectric conversion element, imaging element, and optical sensor
WO2021172185A1 (en) * 2020-02-28 2021-09-02 日本化薬株式会社 Fused polycyclic aromatic compound
WO2021221108A1 (en) 2020-04-30 2021-11-04 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
EP4183780A4 (en) 2020-07-17 2023-12-27 FUJIFILM Corporation Photoelectric conversion element, imaging element, optical sensor, and compound
KR20230110560A (en) 2020-12-24 2023-07-24 후지필름 가부시키가이샤 Photoelectric conversion element, imaging element, optical sensor, compound
JPWO2022168856A1 (en) 2021-02-05 2022-08-11

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499422B2 (en) * 2006-06-28 2014-05-21 コニカミノルタ株式会社 Organic semiconductor material, organic semiconductor film, organic thin film transistor, and organic thin film transistor manufacturing method
JP5299807B2 (en) * 2007-08-31 2013-09-25 出光興産株式会社 Benzodithiophene derivative, organic thin film transistor and organic thin film light emitting transistor using the same
JP5252481B2 (en) * 2008-03-31 2013-07-31 国立大学法人広島大学 Light emitting element
KR102280686B1 (en) * 2014-02-11 2021-07-22 삼성전자주식회사 Carbazole-based compound and organic light emitting device including the same
KR102330625B1 (en) * 2014-04-25 2021-11-23 닛뽄 가야쿠 가부시키가이샤 Material for photoelectric conversion element for use in imaging element, and photoelectric conversion element including same

Also Published As

Publication number Publication date
JP2018014474A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6803362B2 (en) Photoelectric conversion element for image sensor
JP6739290B2 (en) Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same
JP6986887B2 (en) Photoelectric conversion element for image sensor
JP6836591B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP7128584B2 (en) Materials for photoelectric conversion devices and photoelectric conversion devices
JP6618785B2 (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP2018190755A (en) Photoelectric conversion element for imaging device
JP6862277B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6906357B2 (en) Photoelectric conversion element for image sensor
JP6864561B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6619806B2 (en) Fused polycyclic aromatic compounds
JP2020010024A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element
JP6890469B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6784639B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6759075B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6906388B2 (en) Photoelectric conversion element for image sensor
JP2018046267A (en) Photoelectric conversion element material for image pickup element, and photoelectric conversion element including the same
JP2017079317A (en) Material for photoelectric conversion element for image pickup device and photoelectric conversion element including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R150 Certificate of patent or registration of utility model

Ref document number: 6739290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250