WO2021172185A1 - Fused polycyclic aromatic compound - Google Patents

Fused polycyclic aromatic compound Download PDF

Info

Publication number
WO2021172185A1
WO2021172185A1 PCT/JP2021/006291 JP2021006291W WO2021172185A1 WO 2021172185 A1 WO2021172185 A1 WO 2021172185A1 JP 2021006291 W JP2021006291 W JP 2021006291W WO 2021172185 A1 WO2021172185 A1 WO 2021172185A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycyclic aromatic
aromatic compound
photoelectric conversion
thin film
condensed polycyclic
Prior art date
Application number
PCT/JP2021/006291
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 堀
希望 小野寺
秀典 薬師寺
裕介 刀祢
智史 岩田
一樹 新見
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020227029062A priority Critical patent/KR20220149666A/en
Priority to JP2022503325A priority patent/JPWO2021172185A1/ja
Priority to CN202180016971.3A priority patent/CN115151552A/en
Publication of WO2021172185A1 publication Critical patent/WO2021172185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to novel condensed polycyclic aromatic compounds and their uses. More specifically, the present invention refers to condensed polycyclic aromatic compounds which are benzothiophene [3,2-b] [1] benzothiophene (hereinafter abbreviated as "BTBT”) derivatives, organic thin films containing the compounds, and the organic thin films.
  • BTBT benzothiophene
  • the present invention relates to an organic semiconductor device (field effect transistor, organic photoelectric conversion element).
  • Patent Document 1 shows that a BTBT derivative exhibits excellent charge mobility and its thin film has organic semiconductor properties.
  • Patent Document 2 reports a field effect transistor manufactured by a solution process using an alkyl derivative of BTBT.
  • BTBT derivatives useful as organic electronics compounds have been developed so far, but the BTBT derivatives in these documents are organic semiconductors in the heat annealing step after manufacturing the electrodes of the field effect transistor element. There was a problem that the characteristics were significantly deteriorated.
  • organic photoelectric conversion elements are expected to be applied to next-generation image sensors, and several groups have reported on them.
  • a quinacridone derivative is used for a photoelectric conversion element (Patent Document 3)
  • a photoelectric conversion element using a quinacridone derivative is applied to an imaging device
  • a diketopyrrolopyrrole derivative is used (Patent Document 3).
  • a document 5 There is a document 5).
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is a condensed polycyclic aromatic compound having excellent heat resistance in a practical process temperature range, an organic thin film containing the compound, and the organic substance.
  • An object of the present invention is to provide an organic semiconductor device having a thin film (field effect transistor, organic photoelectric conversion element).
  • R 1 and R 2 are the general formula (2) or (3).
  • n represents an integer of 0 to 2.
  • X represents an oxygen atom, a sulfur atom or a selenium atom.
  • R 3 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group. Represents.
  • the substituent is represented by, and the other represents a hydrogen atom.
  • a condensed polycyclic aromatic compound having excellent heat resistance in a practical process temperature range, an organic thin film containing the compound, and an organic semiconductor device having the organic thin film (field effect transistor, organic photoelectric conversion element). ) can be provided.
  • FIG. 1 is a schematic cross-sectional view showing some examples of the structure of the field effect transistor (element) of the present invention, where A is a bottom contact-bottom gate type field effect transistor (element) and B is a top contact-bottom.
  • Gate type field effect transistor (element) C is top contact-top gate type field effect transistor (element)
  • D is top & bottom contact bottom gate type field effect transistor (element)
  • E is electrostatic induction type field effect transistor (element) Element
  • F indicates a bottom contact-top gate type field effect transistor (element).
  • FIG. 2 is an explanatory diagram for explaining a manufacturing process of a top contact-bottom gate type field effect transistor (element) as an example of one aspect of the field effect transistor (element) of the present invention, and FIGS.
  • FIG. 3 shows a cross-sectional view illustrating an embodiment of the organic photoelectric conversion element of the present invention.
  • FIG. 4 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention.
  • FIG. 5 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention.
  • FIG. 6 is an AFM image of an organic thin film prepared using a comparative example compound.
  • FIG. 7 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention.
  • FIG. 8 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention.
  • the condensed polycyclic aromatic compound of the present invention is represented by the above general formula (1).
  • one of R 1 and R 2 represents a substituent represented by the above general formula (2) or (3), and the other represents a hydrogen atom.
  • R 1 and R 2 in the formula (1) it is preferable that one of them is a substituent represented by the above general formula (2) and the other is a hydrogen atom, and R 1 is the above general formula (2). ), It is more preferable that R 2 is a hydrogen atom.
  • n represents an integer of 0 to 2, preferably 1 or 2, and more preferably 1.
  • X represents an oxygen atom, a sulfur atom or a selenium atom, an oxygen atom or a sulfur atom is preferable, and a sulfur atom is more preferable.
  • R 3 represents a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group.
  • the aromatic hydrocarbon group represented by R 3 is a residue obtained by removing one hydrogen atom from the aromatic ring of the aromatic hydrocarbon compound, and the aromatic hydrocarbon group preferably has 5 to 20 carbon atoms. .. Specific examples include a phenyl group, a biphenyl group (1-biphenyl group, 2-biphenyl group), a naphthyl group (1-naphthyl group, 2-naphthyl group) and the like. Of these, a phenyl group is more preferable.
  • substituted or unsubstituted means “having or not having a substituent”
  • substituted or unsubstituted aromatic hydrocarbon group means an aromatic having a substituent. It means an aromatic hydrocarbon having no hydrocarbon group or substituent. The substituent is not particularly limited.
  • the condensed polycyclic aromatic compound represented by the general formula (1) can be synthesized by various conventionally known methods, and the synthesis method of the following scheme will be described as an example.
  • the compound represented by the formula (1) can be synthesized by a known method disclosed in Patent Document 6, Patent Document 7, and Non-Patent Document 1.
  • a synthesis method based on the following scheme can be mentioned.
  • a nitrostilbene derivative (A') as a raw material, a benzothienobenzothiophene skeleton (D) is formed, and the benzothienobenzothiophene skeleton (D) is reduced to obtain an amination (E).
  • Halogenation of this compound (E) yields a halide (F) (an iodide is described as an example of the halide (F) in the scheme below, but is not limited thereto).
  • the compound represented by the formula (1') (R 1 in the formula (1) is the formula (2) or the formula (3). It is possible to obtain a compound in which R 2 is a hydrogen atom as a substituent). According to the method of Patent Document 5, the compound represented by the formula (1') can be produced from the corresponding benzaldehyde derivative in one step, which is more efficient. Note that boric acid derivative (G ') R 1 in the formula (1' corresponds to R 1 in).
  • the starting material in the above scheme is changed from the nitrostilbene derivative (A') to the nitrostilbene derivative (A ′′) represented by the following formula, and the boric acid derivative (G') is represented by the following formula.
  • an acid derivative (G ′′) By changing to an acid derivative (G ′′), it is possible to obtain a compound represented by the following formula (1 ′′) (a compound in which R 1 is a hydrogen atom and R 2 is a substituent in the formula (1)). Is.
  • the reaction temperature of the above coupling reaction is usually ⁇ 10 to 200 ° C., preferably 40 to 160 ° C., and more preferably 60 to 120 ° C.
  • the reaction time is not particularly limited, but is usually 1 to 72 hours, preferably 3 to 48 hours. Depending on the type of catalyst described later, the reaction temperature can be lowered or the reaction time can be shortened.
  • the above coupling reaction is preferably carried out in an inert gas atmosphere such as an argon atmosphere, a nitrogen substitution, a dry argon atmosphere, and a dry nitrogen stream.
  • catalysts for the coupling reaction using the halide (F) include tri-tert-butylphosphine, triadamantylphosphine, 1,3-bis (2,4,6-trimethylphenyl) imidazolidinium chloride, and 1,3-bis (2).
  • a palladium-based catalyst is preferable.
  • Pd (dppf) Cl 2, Pd (PPh 3) 2 Cl 2, Pd (PPh 3) 4 are more preferable, Pd (PPh 3) 4 is more preferred.
  • a plurality of types of these catalysts may be mixed and used, or other catalysts may be mixed and used with these catalysts.
  • the amount of these catalysts used in the coupling reaction is preferably 0.001 to 0.500 mol, more preferably 0.001 to 0.200 mol, and even more preferably 0.001 to 0.200 mol, based on 1 mol of the halide (F). Is 0.001 to 0.100 mol, most preferably 0.001 to 0.050 mol.
  • a basic compound for the coupling reaction using the halide (F) includes hydroxides such as lithium hydroxide, barium hydroxide, sodium hydroxide and potassium hydroxide; lithium carbonate, lithium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate and the like.
  • Carbonates such as cesium carbonate; Acetates such as lithium acetate, sodium acetate and potassium acetate; Phosphates such as trisodium phosphate and tripotassium phosphate; Alcoxides; metal hydrides such as sodium hydride and potassium hydroxide; organic bases such as pyridine, picolin, lutidine, triethylamine, tributylamine, diisopropylethylamine and N, N-dicyclohexylmethylamine, and phosphates.
  • hydroxide is preferable, and trisodium phosphate, tripotassium phosphate, sodium hydroxide, and potassium hydroxide are more preferable.
  • These basic compounds may be used alone or in combination of two or more. The amount of these basic compounds used in the coupling reaction is preferably 1 to 100 mol, more preferably 1 to 10 mol, based on 1 mol of the halide (F).
  • the above coupling reaction may be carried out in a solvent.
  • Any solvent can be used as long as it can dissolve a required raw material, a halide (F) or a boric acid derivative, and a catalyst, a basic compound, an alkali metal salt, etc., which are used as necessary.
  • the solvent include aromatic compounds such as chlorobenzene, o-dichlorobenzene, bromobenzene, nitrobenzene, toluene and xylene; saturated aliphatic hydrocarbons such as n-hexane, n-heptan and n-pentane; cyclohexane.
  • Cycloheptane, cyclopentane and other alicyclic hydrocarbons n-propyl bromide, n-butyl chloride, n-butyl bromide, dichloromethane, dibromomethane, dichloropropane, dibromopropane, dichlorobutane, chloroform, bromoform, tetrachloride
  • Saturated aliphatic halogenated hydrocarbons such as carbon, carbon tetrabromide, trichloroethane, tetrachloroethane and pentachloroethane;
  • cyclic halogenated hydrocarbons such as chlorocyclohexane, chlorocyclopentane and bromocyclopentane; ethyl acetate, propyl acetate, Esters such as butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionat
  • the method for purifying the condensed polycyclic aromatic compound represented by the general formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be adopted. Moreover, these methods can be combined as needed.
  • condensed polycyclic aromatic compound of the present invention represented by the general formula (1) in which R 3 in the formulas (2) and (3) is an aromatic hydrocarbon group include the above No.
  • examples thereof include compounds in which the furan ring or thiophene ring of the compounds represented by 1 to 36 is substituted with an aromatic hydrocarbon group such as a phenyl group, a biphenyl group and a naphthyl group.
  • the place of substitution is not particularly limited, but for example, the substituent is bonded to the carbon atom next to the S atom, Se atom, and O atom at both ends of the condensed polycyclic aromatic compound of the present invention. There are cases.
  • the organic thin film of the present invention contains a condensed polycyclic aromatic compound represented by the formula (1).
  • the film thickness of the organic thin film varies depending on the application, but is usually 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm, and more preferably 10 nm to 300 nm.
  • Examples of the method for forming the organic thin film include a dry process such as a thin film deposition method and various solution processes, but it is preferable to form the organic thin film by a solution process.
  • Examples of the solution process include spin coating method, drop casting method, dip coating method, spray method, flexo printing, letterpress printing method such as resin letterpress printing, offset printing method, dry offset printing method, and flat plate printing method such as pad printing method.
  • Recessed printing method such as gravure printing method, screen printing method, copy printing method, stencil printing method such as lingraph printing method, inkjet printing method, micro contact printing method, etc., and a method in which a plurality of these methods are combined can be mentioned. ..
  • the field effect transistor of the present invention controls the current flowing between two electrodes (source electrode and drain electrode) provided in contact with the organic thin film of the present invention by a voltage applied to another electrode called a gate electrode. It is a thing.
  • a structure in which the gate electrode is insulated with an insulating film is generally used.
  • a structure in which a metal oxide film is used as an insulating film is called a MOS structure, and a structure in which a gate electrode is formed via a Schottky barrier (that is, a MES structure) is also known.
  • the MIS structure is often used.
  • 1 is a source electrode
  • 2 is an organic thin film (semiconductor layer)
  • 3 is a drain electrode
  • 4 is an insulator layer
  • 5 is a gate electrode
  • 6 is a substrate.
  • a to D and F are called horizontal transistors because current flows in the direction parallel to the substrate.
  • A is called a bottom contact bottom gate structure
  • B is called a top contact bottom gate structure.
  • C is provided with a source electrode, a drain electrode, and an insulator layer on a semiconductor, and a gate electrode is formed on the source electrode, a drain electrode, and an insulator layer, which is called a top contact top gate structure.
  • D has a structure called a top & bottom contact bottom gate type transistor.
  • F has a bottom contact top gate structure.
  • E is a schematic diagram of a transistor having a vertical structure, that is, a static induction transistor (SIT).
  • SIT static induction transistor
  • the substrate is not shown in E in FIG. 1, a substrate is usually provided outside the source electrode or drain electrode represented by 1 and 3 in FIG. 1E.
  • the substrate 6 needs to be able to hold each layer formed on the substrate 6 without peeling.
  • insulating materials such as resin plates, films, paper, glass, quartz, and ceramics; insulating layers formed by coating on conductive substrates such as metals and alloys; materials made up of various combinations of resins and inorganic materials, etc.
  • the resin film that can be used include polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyamide, polyimide, polycarbonate, cellulose triacetate, and polyetherimide.
  • the thickness of the substrate is usually 1 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm.
  • a conductive material is used for the source electrode 1, the drain electrode 3, and the gate electrode 5.
  • metals such as platinum, gold, silver, aluminum, chromium, tungsten, tantalum, nickel, cobalt, copper, iron, lead, tin, titanium, indium, palladium, molybdenum, magnesium, calcium, barium, lithium, potassium and sodium.
  • conductive oxides such as InO 2 , ZnO 2 , SnO 2 , ITO
  • conductive polymer compounds such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene vinylene, polydiaacetylene; silicon, germanium, Semiconductors such as gallium arsenic; carbon materials such as carbon black, fullerene, carbon nanotubes, graphite and graphene can be used. Further, the conductive polymer compound and the semiconductor may be doped.
  • the dopant examples include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids having acidic functional groups such as sulfonic acid; Lewis acids such as PF 5 , AsF 5 , FeCl 3 ; halogen atoms such as iodine; lithium, sodium and potassium. Such as metal atoms and the like. Boron, phosphorus, arsenic and the like are also widely used as dopants for inorganic semiconductors such as silicon.
  • a conductive composite material in which carbon black, metal particles, etc. are dispersed in the above-mentioned dopant is also used.
  • the source electrode 1 and the drain electrode 3 that come into direct contact with the semiconductor it is important to select an appropriate work function or surface treatment in order to reduce the contact resistance.
  • the distance between the source electrode and the drain electrode is an important factor that determines the characteristics of the device, and an appropriate channel length is required. If the channel length is short, the amount of current that can be taken out increases, but short-channel effects such as the influence of contact resistance may occur, and the semiconductor characteristics may deteriorate.
  • the channel length is usually 0.01 to 300 ⁇ m, preferably 0.1 to 100 ⁇ m.
  • the width (channel width) between the source electrode and the drain electrode is usually 10 to 5000 ⁇ m, preferably 40 to 2000 ⁇ m. In addition, it is possible to form a longer channel width by making the electrode structure a comb-shaped structure, and it is necessary to make this channel width an appropriate length depending on the required current amount and device structure. be.
  • the structure (shape) of each of the source electrode and the drain electrode will be explained.
  • the structures of the source electrode and the drain electrode may be the same or different.
  • each electrode In the case of a bottom contact structure, it is generally preferable to prepare each electrode by a lithography method and to form each electrode in a rectangular parallelepiped. Recently, the printing accuracy of various printing methods has been improved, and it has become possible to manufacture electrodes with high accuracy by using techniques such as inkjet printing, gravure printing, and screen printing. In the case of a top contact structure having electrodes on a semiconductor, vapor deposition can be performed using a shadow mask or the like. It has become possible to directly print and form an electrode pattern using a technique such as inkjet.
  • the length of the electrode is the same as the channel width described above.
  • the width of the electrode is not particularly specified, but it is preferably short in order to reduce the area of the device within the range in which the electrical characteristics can be stabilized.
  • the width of the electrode is usually 0.1 to 1000 ⁇ m, preferably 0.5 to 100 ⁇ m.
  • the thickness of the electrode is usually 0.1 to 1000 nm, preferably 1 to 500 nm, and more preferably 5 to 200 nm. Wiring is connected to each of the electrodes 1, 3 and 5, but the wiring is also made of almost the same material as the electrodes.
  • a material having an insulating property is used.
  • Polymers such as resins and copolymers combining these; metal oxides such as silicon oxide, aluminum oxide, titanium oxide and tantalum oxide; strong dielectric metal oxides such as SrTIO 3 and BaTIO 3 ; silicon nitride, aluminum nitride and the like.
  • Dioxides such as nitrides, sulfides, and fluorides; or polymers in which particles of these dielectrics are dispersed can be used.
  • the insulator layer one having high electrical insulation characteristics can be preferably used in order to reduce the leakage current. As a result, the film thickness can be reduced, the insulation capacity can be increased, and the current that can be taken out increases. Further, in order to improve the mobility of the semiconductor, it is preferable that the surface energy of the surface of the insulator layer is lowered and the film is smooth without unevenness. Therefore, a self-assembled monolayer or a two-layer insulator layer may be formed.
  • the film thickness of the insulator layer 4 varies depending on the material, but is usually 0.1 nm to 100 ⁇ m, preferably 0.5 nm to 50 ⁇ m, and more preferably 1 nm to 10 ⁇ m.
  • the condensed polycyclic aromatic compound of the present invention is used as the material of the semiconductor layer 2.
  • the organic semiconductor film can be formed into the semiconductor layer 2 by a method similar to the method for forming the organic thin film shown above.
  • a plurality of layers may be formed for the semiconductor layer 2 (organic thin film), but a single layer structure is more preferable.
  • the film thickness of the semiconductor layer 2 is preferably as thin as long as it does not lose the necessary functions. In horizontal field-effect transistors as shown in A, B, and D, the characteristics of the device do not depend on the film thickness if the film thickness is equal to or greater than the specified value, but the leakage current increases as the film thickness increases. be.
  • the film thickness of the semiconductor layer 2 for exhibiting the required function is usually 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm, and more preferably 10 nm to 300 nm.
  • another layer can be provided between the substrate layer and the insulating film layer, between the insulating film layer and the semiconductor layer, and on the outer surface of the device as needed.
  • a protective layer is formed directly on the semiconductor layer 2 or through another layer, the influence of outside air such as humidity can be reduced.
  • the electrical characteristics can be stabilized, such as increasing the on / off ratio of the field effect transistor.
  • the material of the protective layer is not particularly limited, and is, for example, a film made of an epoxy resin, an acrylic resin such as polymethylmethacrylate, and various resins such as polyurethane, polyimide, polyvinyl alcohol, fluororesin, and polyolefin; silicon oxide, aluminum oxide, and nitrided.
  • Inorganic oxide films such as silicon; and films made of dielectrics such as nitride films are preferably used, and in particular, resins (polymers) having low oxygen and moisture permeability and water absorption are preferable.
  • Gas barrier protective materials developed for organic EL displays can also be used.
  • the film thickness of the protective layer can be selected as desired depending on the purpose, but is usually 100 nm to 1 mm.
  • the characteristics as a field effect transistor by performing surface modification or surface treatment on the substrate or insulator layer on which the organic thin film is laminated in advance. For example, by adjusting the degree of hydrophilicity / hydrophobicity of the substrate surface, the film quality and film forming property of the film formed on the substrate surface can be improved.
  • the characteristics of organic semiconductor materials may change significantly depending on the state of the film such as the orientation of molecules. Therefore, by surface-treating the substrate, the insulator layer, etc., the molecular orientation of the interface portion with the organic thin film formed thereafter is controlled, or the trap portion on the substrate or the insulator layer is reduced. , It is considered that the characteristics such as carrier mobility are improved.
  • the trap site refers to a functional group such as a hydroxyl group existing on the untreated substrate, and when such a functional group is present, electrons are attracted to the functional group, and as a result, the carrier mobility is lowered. Therefore, reducing the trap portion is often effective for improving characteristics such as carrier mobility.
  • Examples of the surface treatment for improving the characteristics as described above include self-assembling monolayer treatment with hexamethyldisilazane, octyltrichlorosilane, octadecyltrichlorosilane, etc., surface treatment with polymers, hydrochloric acid, sulfuric acid, acetic acid, etc. Acid treatment with sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, etc., ozone treatment, fluorination treatment, plasma treatment with oxygen, argon, etc., Langmuir Brodget film formation treatment, and other insulators. And semiconductor thin film formation treatment, mechanical treatment, electrical treatment such as corona discharge, rubbing treatment using fibers and the like, and a combination of these can also be performed.
  • each layer such as a substrate layer and an insulating film layer or an insulating film layer and a semiconductor layer (organic thin film)
  • the above-mentioned vacuum process and solution process can be appropriately adopted.
  • the field-effect transistor of the present invention is manufactured by providing various necessary layers and electrodes on the substrate 6 (see FIG. 2 (1)).
  • the substrate the one described above can be used. It is also possible to perform the above-mentioned surface treatment on this substrate.
  • the thickness of the substrate 6 is preferably thin as long as it does not interfere with the required functions. Although it depends on the material, it is usually 1 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm. Further, if necessary, the substrate can be provided with the function of an electrode.
  • the gate electrode 5 is formed on the substrate 6 (see FIG. 2 (2)).
  • the electrode material the one described above is used.
  • a method for forming the electrode film various methods can be used, and for example, a vacuum vapor deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, a sol-gel method and the like are adopted. It is preferable to perform patterning as necessary so as to obtain a desired shape at the time of film formation or after film formation.
  • Various methods can be used as the patterning method, and examples thereof include a photolithography method in which patterning and etching of a photoresist are combined.
  • a vapor deposition method using a shadow mask, a sputtering method, an inkjet printing method, a printing method such as screen printing, offset printing, and letterpress printing, a soft lithography method such as a microcontact printing method, and a method in which a plurality of these methods are combined are used. It can also be used and patterned.
  • the film thickness of the gate electrode 5 varies depending on the material, but is usually 0.1 nm to 10 ⁇ m, preferably 0.5 nm to 5 ⁇ m, and more preferably 1 nm to 3 ⁇ m. Further, when the gate electrode and the substrate are also used, the film thickness may be larger than the above.
  • An insulator layer 4 is formed on the gate electrode 5 (see FIG. 2 (3)).
  • the material of the insulator layer 4 the material described above is used.
  • Various methods can be used to form the insulator layer 4. For example, application methods such as spin coating, spray coating, dip coating, casting, bar coating, blade coating, screen printing, offset printing, printing methods such as inkjet, vacuum deposition method, molecular beam epitaxial growth method, ion cluster beam method, ion play. Examples thereof include a dry process method such as a ting method, a sputtering method, an atmospheric pressure plasma method, and a CVD method.
  • a method of forming an oxide film on a metal by a thermal oxidation method such as a sol-gel method, alumite on aluminum, or silicon oxide on silicon is adopted.
  • a predetermined surface treatment may be applied to the insulator layer in order to favorably orient the molecules of the compounds constituting the semiconductor at the interface between the two layers.
  • the surface treatment method the same method as the surface treatment of the substrate can be used.
  • the film thickness of the insulator layer 4 is preferably as thin as possible because the amount of electricity taken out can be increased by increasing its electric capacity.
  • the film is thin as long as its function is not impaired. It is usually 0.1 nm to 100 ⁇ m, preferably 0.5 nm to 50 ⁇ m, and more preferably 5 nm to 10 ⁇ m.
  • a coating method such as a dip coating method, a die coater method, a roll coater method, a bar coater method, and a spin coating method, a forming method by a solution process such as an inkjet method, a screen printing method, an offset printing method, and a microcontact printing method.
  • a solution process such as an inkjet method, a screen printing method, an offset printing method, and a microcontact printing method.
  • the method of forming an organic thin film by a solution process will be described.
  • the organic semiconductor composition is applied to a substrate (insulator layer, exposed portion of source electrode and drain electrode).
  • the coating method includes spin coating method, drop casting method, dip coating method, spray method, flexo printing, letterpress printing method such as resin letterpress printing, offset printing method, dry offset printing method, and flat plate printing method such as pad printing method.
  • Recessed printing method such as gravure printing method, silk screen printing method, copy printing method, stencil printing method such as lingraph printing method, inkjet printing method, micro contact printing method, etc. Will be printed.
  • a Langmuir project method in which a monomolecular film of an organic thin film prepared by dropping the above composition on the water surface is transferred to a substrate and laminated, and two liquid crystal or melted materials are used. It is also possible to adopt a method of sandwiching between substrates and introducing them between substrates by capillarity.
  • the environment such as the temperature of the substrate and composition at the time of film formation is also important, and the characteristics of the field effect transistor may change depending on the temperature of the substrate and composition, so it is preferable to carefully select the temperature of the substrate and composition. ..
  • the substrate temperature is usually 0 to 200 ° C, preferably 10 to 120 ° C, and more preferably 15 to 100 ° C. Care must be taken as it largely depends on the solvent in the composition used.
  • the film thickness of the organic thin film produced by this method is preferably thin as long as the function is not impaired. There is a concern that the leakage current will increase as the film thickness increases.
  • the film thickness of the organic thin film is usually 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm, and more preferably 10 nm to 300 nm.
  • the characteristics of the organic thin film thus formed can be further improved by post-treatment.
  • heat treatment improves and stabilizes the characteristics of organic semiconductors because the distortion in the film generated during film formation is alleviated, pinholes are reduced, and the arrangement and orientation in the film can be controlled. Can be achieved.
  • the field effect transistor of the present invention is manufactured, it is effective to perform this heat treatment in order to improve the characteristics.
  • the heat treatment is performed by heating the substrate after forming the organic thin film.
  • the temperature of the heat treatment is not particularly limited, but is usually about 180 ° C. from room temperature, preferably 40 to 160 ° C., and more preferably 45 to 150 ° C.
  • the heat treatment time at this time is not particularly limited, but is usually about 10 seconds to 24 hours, preferably about 30 seconds to 3 hours.
  • the atmosphere at that time may be in the atmosphere, but it may also be in an inert atmosphere such as nitrogen or argon.
  • the film shape can be controlled by solvent vapor.
  • an oxidizing or reducing gas such as oxygen or hydrogen or an oxidizing or reducing liquid induces a change in characteristics due to oxidation or reduction. You can also do it. This can be used, for example, for the purpose of increasing or decreasing the carrier density in the membrane.
  • the characteristics of the organic thin film can be changed by adding a trace amount of elements, atomic groups, molecules, and polymers to the organic thin film.
  • acids such as oxygen, hydrogen, hydrochloric acid, sulfuric acid, sulfonic acid ; Lewis acids such as PF 5 , AsF 5 , FeCl 3 ; halogen atoms such as iodine; metal atoms such as sodium and potassium; tetrathiafluvalene (TTF) and Donor compounds such as phthalocyanine can be doped.
  • acids such as oxygen, hydrogen, hydrochloric acid, sulfuric acid, sulfonic acid ; Lewis acids such as PF 5 , AsF 5 , FeCl 3 ; halogen atoms such as iodine; metal atoms such as sodium and potassium; tetrathiafluvalene (TTF) and Donor compounds such as phthalocyanine
  • TTF tetrathiafluvalene
  • Donor compounds such as phthal
  • dopings can be added at the time of synthesizing the organic semiconductor compound, added to the organic semiconductor composition, added in the step of forming the organic thin film, or the like, even if it is not after the production of the organic thin film.
  • the material used for doping is added to the material that forms the organic thin film during vapor deposition and co-deposited, or the organic thin film is mixed with the surrounding atmosphere when the organic thin film is produced (the organic thin film is formed in an environment where the doping material is present). It is also possible to accelerate the ions in a vacuum and cause them to collide with the membrane for doping.
  • the effects of these dopings include changes in electrical conductivity due to an increase or decrease in carrier density, changes in carrier polarity (p-type, n-type), changes in Fermi levels, and the like.
  • the source electrode 1 and the drain electrode 3 can be formed in the same manner as in the case of the gate electrode 5 (see FIG. 2 (5)). Further, various additives and the like can be used to reduce the contact resistance with the organic thin film.
  • Forming the protective layer 7 on the organic thin film has the advantages that the influence of the outside air can be minimized and the electrical characteristics of the field effect transistor can be stabilized (see FIG. 2 (6)).
  • the above-mentioned material is used as the material of the protective layer.
  • the film thickness of the protective layer 7 can be any film thickness depending on the purpose, but is usually 100 nm to 1 mm.
  • the protective layer is made of resin
  • a method of applying a resin solution and then drying to form a resin film for example, a method of applying a resin solution and then drying to form a resin film; a resin monomer is applied or vapor-deposited. Examples thereof include a method of polymerizing later. Crosslinking may be performed after the film formation.
  • a forming method by a vacuum process such as a sputtering method or a vapor deposition method
  • a forming method by a solution process such as a sol-gel method
  • a protective layer can be provided as needed between each layer as well as on the organic thin film. These layers may help stabilize the electrical properties of field effect transistors.
  • the field effect transistor can also be used as a digital device such as a memory circuit device, a signal driver circuit device, a signal processing circuit device, or an analog device. Further, by combining these, it becomes possible to manufacture a display, an IC card, an IC tag, and the like. Further, since the field effect transistor can change its characteristics by an external stimulus such as a chemical substance, it can also be used as a sensor.
  • the material for an organic photoelectric conversion element of the present invention contains a condensed polycyclic aromatic compound represented by the above formula (1).
  • the content of the compound represented by the formula (1) in the material for an organic photoelectric conversion element of the present invention is not particularly limited as long as the performance required in the application using the material for an organic photoelectric conversion element is exhibited, but is usually limited. Is 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more.
  • the material for an organic photoelectric conversion element of the present invention includes a compound other than the compound represented by the formula (1) (for example, a material for an organic photoelectric conversion element other than the compound represented by the formula (1)), an additive and the like. It may be used together.
  • the compounds and additives that can be used in combination are not particularly limited as long as the performance required in the application using the material for the organic photoelectric conversion element is exhibited.
  • the organic photoelectric conversion element of the present invention has the organic thin film of the present invention.
  • An organic photoelectric conversion element is an element in which a photoelectric conversion unit (film) is arranged between a pair of electrode films facing each other, and light is incident on the photoelectric conversion unit from above the electrode films.
  • the photoelectric conversion unit generates electrons and holes in response to the incident light, and a semiconductor reads out a signal corresponding to the electric charge to indicate the amount of incident light according to the absorption wavelength of the photoelectric conversion film unit.
  • a transistor for reading may be connected to the electrode film on the side where light is not incident.
  • organic photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the organic photoelectric conversion element arranged behind the organic photoelectric conversion element when viewed from the light source side
  • a plurality of organic photoelectric conversion elements may be used. It may be used by laminating.
  • the organic photoelectric conversion element of the present invention uses an organic thin film containing a condensed polycyclic aromatic compound represented by the above formula (1) as a constituent material of the photoelectric conversion unit.
  • the photoelectric conversion unit is one or a plurality of types selected from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. It often consists of an organic thin film layer other than the photoelectric conversion layer.
  • the condensed polycyclic aromatic compound of the present invention is preferably used as an organic thin film layer of a photoelectric conversion layer, but in addition to the above organic thin film layers (particularly, an electron transport layer, a hole transport layer, an electron block layer, and holes). It can also be used as a block layer).
  • the electron block layer and the hole block layer are also represented as a carrier block layer.
  • a photoelectric conversion layer it may be composed of only the condensed polycyclic aromatic compound of the present invention, but may contain an organic semiconductor material in addition to the condensed polycyclic aromatic compound of the present invention.
  • These organic thin film layers may have a laminated structure, but may include an organic thin film formed by co-depositing a material, and at the same time, a co-deposited film, a single film, or another co-deposited film is formed in a plurality of layers. , It may be an organic thin film that functions.
  • the electrode film used in the organic photoelectric conversion element of the present invention is positive when the photoelectric conversion layer included in the photoelectric conversion unit described later has hole transportability or when the organic thin film layer other than the photoelectric conversion layer has hole transportability.
  • a hole transport layer it plays a role of extracting holes from the photoelectric conversion layer and other organic thin film layers and collecting them, and the photoelectric conversion layer included in the photoelectric conversion unit has electron transportability.
  • the organic thin film layer is an electron transporting layer having electron transporting properties, it plays a role of extracting electrons from the photoelectric conversion layer and other organic thin film layers and discharging them.
  • the material that can be used as the electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adhesion to the adjacent photoelectric conversion layer and other organic thin film layers, electron affinity, ionization potential, stability, etc. It is preferable to select in consideration of.
  • Materials that can be used as the electrode film include conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); gold, silver, platinum, chromium and aluminum.
  • Metals such as iron, cobalt, nickel and tungsten; inorganic conductive substances such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline; carbon and the like. If necessary, a plurality of these materials may be mixed and used, or a plurality of these materials may be laminated in two or more layers.
  • the conductivity of the material used for the electrode film is not particularly limited as long as it does not interfere with the light reception of the organic photoelectric conversion element more than necessary, but it is preferably as high as possible from the viewpoint of the signal strength of the organic photoelectric conversion element and the power consumption.
  • an ITO film having a sheet resistance value of 300 ⁇ / ⁇ or less functions sufficiently as an electrode film, but a commercially available substrate having an ITO film having a conductivity of several ⁇ / ⁇ is also available. Therefore, it is desirable to use a substrate having such high conductivity.
  • the thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm.
  • Examples of the method for forming a film such as ITO include a conventionally known vapor deposition method, electron beam method, sputtering method, chemical reaction method, coating method and the like.
  • the ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like, if necessary.
  • the transparent electrode film used for at least one of the electrode films on the side where light is incident ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide) , GZO (gallium-doped zinc oxide), TiO 2 and FTO (fluorinated tin oxide) and the like.
  • the transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and particularly preferably 95% or more. ..
  • the electrode film used between the photoelectric conversion layers (this is an electrode film other than the pair of electrode films described above) is the respective photoelectric conversion. It is necessary to transmit light having a wavelength other than the light detected by the layer, and it is preferable to use a material that transmits 90% or more of the incident light, and a material that transmits 95% or more of the light is used for the electrode film. Is more preferable.
  • the electrode film is plasma-free.
  • plasma-free means that plasma is not generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state in which the plasma is reduced.
  • Examples of devices that do not generate plasma during film formation of the electrode film include electron beam vapor deposition devices (EB thin film deposition devices) and pulse laser vapor deposition devices.
  • EB thin film deposition devices electron beam vapor deposition devices
  • pulse laser vapor deposition devices pulse laser vapor deposition devices.
  • the method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method
  • the method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
  • an opposed target type sputtering device As a device that can realize a state in which plasma can be reduced during film formation, for example, an opposed target type sputtering device, an arc plasma vapor deposition device, or the like can be considered.
  • the transparent conductive film When the transparent conductive film is used as an electrode film (for example, the first conductive film), a DC short circuit or an increase in leakage current may occur.
  • One of the causes is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transient Conductive Oxide), and the conduction between the transparent conductive film and the electrode film on the opposite side is increased. it is conceivable that. Therefore, when a material having a relatively inferior film quality such as Al is used for the electrode, the leakage current is unlikely to increase.
  • TCO Transient Conductive Oxide
  • the sheet resistance of the conductive film in the organic photoelectric conversion element for an optical sensor of the present embodiment is usually 100 to 10000 ⁇ / ⁇ , and the degree of freedom in film thickness is large. Further, the thinner the transparent conductive film, the smaller the amount of light absorbed, and generally the higher the light transmittance. When the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion ability is improved, which is very preferable.
  • the photoelectric conversion unit included in the organic photoelectric conversion element of the present invention may include an organic thin film layer other than the photoelectric conversion layer and the photoelectric conversion layer.
  • An organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion unit, but the organic semiconductor film may be one layer or a plurality of layers, and in the case of one layer, a P-type organic semiconductor film, An N-type organic semiconductor film or a mixed film thereof (bulk heterostructure) is used.
  • a plurality of layers there are about 2 to 10 layers, which is a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) thereof is laminated, and the layers are layers.
  • a buffer layer may be inserted in.
  • the thickness of the photoelectric conversion layer is usually 50 to 500 nm.
  • the organic semiconductor film of the photoelectric conversion layer has a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, a polysilane compound, a thiophene compound, and a phthalocyanine, depending on the wavelength band to be absorbed.
  • the condensed polycyclic aromatic compound of the present invention When used as the photoelectric conversion layer, it is preferable to have a HOMO level shallower than the HOMO (Highest Occupied Molecular Orbital) level of the organic semiconductor to be combined described above. This makes it possible to improve the photoelectric conversion efficiency in addition to suppressing the generation of dark current.
  • HOMO Highest Occupied Molecular Orbital
  • the organic thin film layer other than the photoelectric conversion layer constituting the photoelectric conversion unit is a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, an electron block layer, and a hole block. It is also used as a layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like.
  • an element that efficiently converts even weak light energy into an electric signal can be obtained. Therefore, it is preferable.
  • the electron transport layer plays a role of transporting electrons generated in the photoelectric conversion layer to the electrode film and a role of blocking holes from moving from the electrode film of the electron transport destination to the photoelectric conversion layer.
  • the hole transport layer plays a role of transporting generated holes from the photoelectric conversion layer to the electrode film and a role of blocking the movement of electrons from the electrode film of the hole transport destination to the photoelectric conversion layer.
  • the electron block layer plays a role of hindering the movement of electrons from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.
  • the hole block layer has a function of hindering the movement of holes from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.
  • the hole block layer is formed by laminating or mixing a hole blocking substance alone or two or more kinds.
  • the hole-blocking substance is not limited as long as it is a compound capable of preventing holes from flowing out from the electrode to the outside of the device.
  • Examples of the compound that can be used for the hole blocking layer include phenanthroline derivatives such as vasophenanthroline and vasocuproin, silol derivatives, quinolinol derivative metal complexes, oxaziazole derivatives, oxazole derivatives, and quinoline derivatives.
  • phenanthroline derivatives such as vasophenanthroline and vasocuproin
  • silol derivatives such as vasophenanthroline and vasocuproin
  • silol derivatives such as vasophenanthroline and vasocuproin
  • silol derivatives such as vasophenanthroline and vasocuproin
  • silol derivatives such as vasoph
  • FIG. 3 shows a typical element structure of the organic photoelectric conversion element of the present invention, but the present invention is not limited to this structure.
  • 1 is an insulating layer
  • 2 is one electrode film
  • 3 is an electron block layer
  • 4 is a photoelectric conversion layer
  • 5 is a hole block layer
  • 6 is the other electrode film
  • 7 is an insulating group.
  • the transistor for reading is not shown in the figure, it suffices if it is connected to the electrode film of 2 or 6, and if the photoelectric conversion layer 4 is transparent, the side opposite to the side on which the light is incident is opposite. It may be formed on the outside of the electrode film of. Light is incident on the photoelectric conversion element from either the upper part or the lower part unless the components other than the photoelectric conversion layer 4 extremely prevent the light of the main absorption wavelength of the photoelectric conversion layer from being incident. But it may be.
  • reaction temperature is the internal temperature in the reaction system unless otherwise specified.
  • EI-MS was measured using ISQ7000 manufactured by Thermo Scientific
  • thermal analysis measurement was performed using TGA / DSC1 manufactured by Metertredo
  • nuclear magnetic resonance (NMR) was measured using JNM-EC400 manufactured by JEOL Ltd. ..
  • the mobility of the field effect transistor was evaluated using B1500 or 4155C, which is a mobility evaluation semiconductor parameter manufactured by Agilent.
  • the surface of the organic thin film was observed using an atomic force microscope (AFM) AFM5400L manufactured by Hitachi High-Technology.
  • AFM atomic force microscope
  • the current and voltage application measurement of the organic photoelectric conversion element in the examples was performed using a semiconductor parameter analyzer 4200-SCS (manufactured by Keithley Instruments).
  • the light-dark ratio in the examples means a current obtained by dividing the current when light irradiation is performed by the current in a dark place.
  • Example 1 Synthesis of condensed polycyclic aromatic compound represented by No. 5 of Specific Example
  • Step 1 Synthesis of 2- (benzo [1,2-b: 5,4-b'] dithiophene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane THF (140 parts) was mixed with benzo [1,2-b: 5,4-b'] dithiophene (5.0 parts) synthesized by a known method, and 2.8 M normal butyl at ⁇ 75 ° C. under a nitrogen atmosphere. Lithium (10.4 parts) was added and the mixture was stirred for 1 hour.
  • pinacol isopropoxyboronic acid (5.8 parts) was added at ⁇ 75 ° C., and the mixture was stirred for 30 minutes, heated to 20 ° C., and then stirred for another 2 hours.
  • the obtained reaction solution was quenched with water (100 parts) and separated and extracted with chloroform.
  • the obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by a silica gel column (developing solvent: toluene) and recrystallized in toluene to obtain 2- (benzo [1,2-b: 5,4-b'] dithiophene-2-. Il) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.6 parts, yield 45%) was obtained.
  • Step 2 2,7-Bis (benzo [1,2-b: 5,4-b'] dithiophen-2-yl) [1] benzothioeno [3,2-b] [1] synthesis of benzothiophene DMF (300 parts), water (12 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (1.9 parts) synthesized by the method described in Patent No. 4945757. , 2- (Benzo [1,2-b: 5,4-b'] dithiophene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane obtained in step 1.
  • Example 2 Synthesis of condensed polycyclic aromatic compound represented by No. 14 of Specific Example
  • Step 3 Synthesis of 2- (benzo [1,2-b: 4,5-b'] dithiophene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane THF (140 parts) was mixed with benzo [1,2-b: 4,5-b'] dithiophene (5.0 parts) synthesized by a known method, and 2.8 M normal butyl at ⁇ 75 ° C. under a nitrogen atmosphere. Lithium (10.4 parts) was added and the mixture was stirred for 1 hour.
  • pinacol isopropoxyboronic acid (5.8 parts) was added at ⁇ 75 ° C., and the mixture was stirred for 30 minutes, heated to 20 ° C., and then stirred for another 2 hours.
  • the obtained reaction solution was quenched with water (100 parts) and separated and extracted with chloroform.
  • the obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by a silica gel column (developing solvent: toluene) and recrystallized in toluene to obtain 2- (benzo [1,2-b: 4,5-b'] dithiophene-2-yl. ) -4,4,5,5-Tetramethyl-1,3,2-dioxaborolane (3.6 parts, yield 45%) was obtained.
  • Step 4 2,7-Bis (benzo [1,2-b: 4,5-b'] dithiophen-2-yl) [1] benzothioenoe [3,2-b] [1] synthesis of benzothiophene DMF (300 parts), water (12 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (1.9 parts) synthesized by the method described in Patent No. 4945757.
  • Example 3 (Preparation of Field Effect Transistor of the Present Invention) No. 1 of the specific example obtained in Example 1 was placed on an n-doped silicon wafer with a Si thermal oxide film surface-treated with 1,1,1,3,3,3-hexamethyldisilazane.
  • the condensed polycyclic aromatic compound represented by 5 was formed into a 100 nm film by resistance heating vacuum deposition.
  • Au was vacuum-deposited on the organic thin film obtained above using a shadow mask to prepare a source electrode and a drain electrode having a channel length of 20 to 200 ⁇ m and a channel width of 2000 ⁇ m, respectively, to prepare the top contact type of the present invention.
  • a field effect transistor (FET) element 1 (configuration shown in FIG. 1B) was made.
  • the thermal oxide film in the n-doped silicon wafer with the thermal oxide film has the function of an insulating layer, and the n-doped silicon wafer also has the functions of the substrate and the gate electrode.
  • Example 4 (Preparation of Field Effect Transistor of the Present Invention) No. of the specific example obtained in Example 1.
  • the condensed aromatic compound represented by No. 5 was used in Example No. 2 obtained in Example 2.
  • the field effect transistor (FET) element 2 of the present invention was produced by a method according to Example 3 except that the compound was changed to the compound represented by 14.
  • Example 1 Manufacturing of Field Effect Transistor for Comparison No. of the specific example obtained in Example 1.
  • the method according to Example 3 was used except that the condensed polycyclic aromatic compound represented by 5 was changed to the compound represented by the following formula (x) synthesized by the method described in JP-A-2018-014474.
  • a field effect transistor (FET) element 3 for comparison was manufactured.
  • Ci is determined by the dielectric constant of the SiO 2 insulating film used
  • Z and L are determined by the device structure of the organic transistor device
  • Id and Vg are determined when measuring the current value of the field effect transistor device
  • Vt is determined by Id and Vg. Can be done.
  • Three field-effect transistor elements are respectively produced on one substrate by the method according to Examples 3 and 4 and Comparative Example 1, and after heating at 120 ° C. for 30 minutes under atmospheric pressure, the above method
  • the carrier mobility ⁇ was measured in.
  • the field-effect transistor elements 1 to 3 used for measuring the carrier mobility ⁇ after heating at 120 ° C. are heated under atmospheric pressure at 150 ° C. for 30 minutes, and then carrier transfer is performed by the above method.
  • the mobility ⁇ was measured.
  • the field-effect transistor elements 1 to 3 subjected to the measurement of the carrier mobility ⁇ after heating at 150 ° C. are heated under atmospheric pressure at 180 ° C. for 30 minutes, and then the carriers are subjected to the above method.
  • the mobility ⁇ was measured.
  • the criteria for determining heat resistance are as follows.
  • the average roughness (Ra) of the thin film was calculated using an AFM analysis program. The results are shown in Table 2. Further, the surface state of the organic thin film for calculating the average roughness used above was observed by AFM (scanning range: 1 ⁇ m). Specific example No. The AFM of the organic thin film containing the condensed polycyclic aromatic compound represented by No. 5 is shown in FIG. The AFM of the organic thin film containing the condensed polycyclic aromatic compound represented by 14 is shown in FIG. 5, and the AFM of the organic thin film containing the compound represented by the formula (x) is shown in FIG.
  • the field-effect transistor of the present invention has better heat resistance than the comparative field-effect transistor.
  • No. 5 and No. The organic thin film containing the condensed polycyclic aromatic compound of the present invention represented by 14 has a smaller change in average roughness before and after the heating test than the organic thin film containing the compound represented by the comparative formula (x). Recognize. This includes the image observed by the AFM of the organic thin film containing the condensed polycyclic aromatic compound of the present invention shown in FIGS. 4 and 5 and the compound represented by the comparative formula (x) shown in FIG. It is clear from the comparison with the image observed by AFM of the organic thin film.
  • Example 5 (Preparation and evaluation of an organic photoelectric conversion element of the compound represented by No. 5 of the specific example obtained in Example 1)
  • ITO transparent conductive glass manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm.
  • the condensed polycyclic aromatic compound represented by 5 was formed into a film having a film thickness of 90 nm by resistance heating vacuum deposition.
  • aluminum was vacuum-deposited at 100 nm as an electrode to produce the organic photoelectric conversion element of the present invention.
  • As an electrode of ITO and aluminum by applying a voltage of 5V, contrast ratio when an emission light wavelength was 460nm of light irradiation was 4.4 ⁇ 10 5.
  • Comparative Example 2 (Preparation and evaluation of organic photoelectric conversion element for comparison) No. of the specific example obtained in Example 1. Comparison was performed by a method according to Example 4 except that the condensed polycyclic aromatic compound represented by 5 was changed to a compound represented by the formula (x) synthesized by the method described in JP-A-2018-014474. An organic photoelectric conversion element for use was prepared and evaluated. Contrast ratio was 3.8 ⁇ 10 4.
  • Example 6 Synthesis of condensed polycyclic aromatic compound represented by No. 13 of Specific Example (Step 5) Synthesis of intermediate compound represented by the following formula a Benzo [1,2-b: 5,4-b'] difuran (0.84 part) synthesized in THF (30 parts) by a known method.
  • 1.6 M normal butyllithium 2.5 parts was added at ⁇ 75 ° C. under a nitrogen atmosphere, and the mixture was stirred for 1 hour.
  • carbon tetrabromide (1.9 parts) was added at ⁇ 75 ° C., and the mixture was stirred for 10 minutes, heated to 20 ° C., and then stirred for another 30 minutes.
  • the obtained reaction solution was quenched with water (30 parts) and separated and extracted with ethyl acetate.
  • the obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by a silica gel column (developing solvent: hexane) to obtain an intermediate compound represented by the following formula a (1.1 parts, yield 87%).
  • Step 6 No. of a specific example. Synthesis of condensed polycyclic aromatic compound represented by 13 Water (2 parts) in DMF (48 parts), compound represented by the following formula b synthesized by a known method (0.66 parts), in step 5. The obtained intermediate compound represented by the formula a (0.96 parts), tripotassium phosphate (1.1 parts), and tetrakis (triphenylphosphine) palladium (0.09 parts) are mixed to create a nitrogen atmosphere. Below, it was stirred at 80 ° C. for 6 hours. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by No. 13 (0.24 part, yield 32%) was obtained.
  • Example 7 Synthesis of condensed polycyclic aromatic compound in which a phenyl group is substituted on both terminal furan rings of No. 13 of Specific Example.
  • Step 7 Synthesis of intermediate compound represented by the following formula c
  • THF 40 parts
  • the intermediate compound (1.5 parts) represented by the formula a obtained in step 5 and phenylboronic acid (0 parts) are added.
  • .94 parts and 2M aqueous potassium carbonate solution (20 parts) were mixed and stirred under a nitrogen atmosphere. Tetrakis (triphenylphosphine) palladium (0.37 part) was added thereto, the temperature was raised to the reflux temperature, and the mixture was stirred for 3 hours.
  • Tetrakis (triphenylphosphine) palladium (0.37 part) was added thereto, the temperature was raised to the reflux temperature, and the mixture was stirred for 3 hours.
  • Step 8 Synthesis of Intermediate Compound Represented by Formula D below
  • the intermediate compound represented by Formula c (1.1 parts) obtained in Step 7 is mixed with THF (24 parts) under a nitrogen atmosphere.
  • 1.6 M normal butyllithium (2.1 parts) was added at ⁇ 75 ° C., and the mixture was stirred for 1 hour.
  • carbon tetrabromide (1.7 parts) was added at ⁇ 75 ° C. and stirred for 10 minutes, the temperature was raised to 20 ° C., and the mixture was further stirred for 30 minutes.
  • the resulting reaction was quenched with water (30 parts) and extracted twice with ethyl acetate (30 parts).
  • the obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by a silica gel column (developing solvent: chloroform) to obtain an intermediate compound represented by the following formula d (0.99 parts, yield 64%).
  • Step 9 The following formula No. Synthesis of condensed polycyclic aromatic compound represented by 13-Ph Water (2 parts) in DMF (54 parts), compound represented by the following formula b synthesized by a known method (0.53 parts), step.
  • the intermediate compound (0.85 part), tripotassium phosphate (1.7 part), and tetrakis (triphenylphosphine) palladium (0.16 part) obtained by the formula d obtained in 8 were mixed and mixed.
  • the mixture was stirred at 80 ° C. for 5 hours in a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain the following formula No.
  • a compound represented by 13-Ph (0.33 parts, yield 44%) was obtained.
  • Example 8 Synthesis of a condensed polycyclic aromatic compound in which a phenyl group is substituted on both terminal thiophene rings of No. 14 of Specific Example
  • Step 10 Synthesis of intermediate compound represented by the following formula f
  • THF 40 parts
  • the intermediate compound 2.0 parts represented by the formula e obtained by the same method as in step 3 and iodobenzene.
  • 1.6 parts and 2M aqueous potassium carbonate solution (20 parts) were mixed and stirred under a nitrogen atmosphere. Tetrakis (triphenylphosphine) palladium (0.37 part) was added thereto, the temperature was raised to the reflux temperature, and the mixture was stirred for 3 hours.
  • Step 11 Synthesis of Intermediate Compound Represented by Formula g below
  • An intermediate compound represented by Formula f (1.2 parts, 4.51 mmol) obtained in Step 10 was mixed with THF (45 parts).
  • 1.6 M normal butyllithium (2.0 parts) was added at ⁇ 75 ° C. under a nitrogen atmosphere, and the mixture was stirred for 1 hour.
  • pinacol isopropoxyboronic acid (0.92 part) was added at ⁇ 75 ° C. and the mixture was stirred for 30 minutes, the temperature was raised to 20 ° C., and the mixture was further stirred for 2 hours.
  • reaction solution was quenched with a saturated aqueous solution of ammonium chloride (50 parts), and separated and extracted with ethyl acetate.
  • organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by a silica gel column (developing solvent: chloroform) to obtain a compound represented by the following formula g (0.97 part, yield 55%).
  • Step 12 The following formula No. Synthesis of condensed polycyclic aromatic compound represented by 14-Ph Water (1.6 parts) was added to DMF (43 parts), and the compound represented by the following formula h (0.43 parts) synthesized by a known method. , The intermediate compound (0.85 parts, 2.17 mmol) of the formula g obtained in step 11, tripotassium phosphate (1.4 parts), and tetrakis (triphenylphosphine) palladium (0.12). Part) was mixed, and the mixture was stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain the following formula No. A compound represented by 14-Ph (0.19 part, yield 29%) was obtained.
  • Example 9 Synthesis of condensed polycyclic aromatic compound represented by No. 16 of Specific Example
  • Step 13 Synthesis of intermediate compound represented by the following formula i Naft [2,3-b: 6,7-b'] difuran (1.0 part) synthesized in THF (50 parts) by a known method.
  • 1.6 M normal butyllithium 2.2 parts
  • carbon tetrabromide 1.8 parts
  • the obtained reaction solution was quenched with water (30 parts) and separated and extracted with ethyl acetate.
  • the obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by a silica gel column (developing solvent: hexane) to obtain a compound represented by the following formula i (1.0 part, yield 73%).
  • Step 14 No. of a specific example. Synthesis of condensed polycyclic aromatic compound represented by 16 Water (2 parts) in DMF (48 parts), compound represented by the following formula b synthesized by a known method (0.57 parts), in step 13. The obtained intermediate compound represented by the formula i (1.0 part), tripotassium phosphate (1.0 part) and tetrakis (triphenylphosphine) palladium (0.09 part) are mixed and subjected to a nitrogen atmosphere. , 80 ° C. for 6 hours. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 16 (0.27 part, yield 34%) was obtained.
  • Example 10 Synthesis of condensed polycyclic aromatic compound represented by No. 17 of Specific Example
  • Step 15 Synthesis of intermediate compound represented by the following formula j Naft [2,3-b: 6,7-b'] difuran (1.5 parts) synthesized by a method known to THF (50 parts).
  • 1.6 M normal butyllithium 2.9 parts was added at ⁇ 75 ° C. under a nitrogen atmosphere, and the mixture was stirred for 1 hour.
  • carbon tetrabromide (2.3 parts) was added at ⁇ 75 ° C. and stirred for 10 minutes, the temperature was raised to 20 ° C., and the mixture was further stirred for 30 minutes.
  • the obtained reaction solution was quenched with water (30 parts) and separated and extracted with ethyl acetate.
  • the obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained solid was purified by a silica gel column (developing solvent: hexane) to obtain an intermediate compound represented by the following formula j (1.3 parts, yield 64%).
  • Step 16 No. of a specific example. Synthesis of condensed polycyclic aromatic compound represented by 17 In DMF (48 parts), water (2 parts), a compound represented by the following formula b synthesized by a known method (0.37 parts), in step 15. The obtained intermediate compound represented by the formula j (0.7 parts), tripotassium phosphate (0.6 parts) and tetrakis (triphenylphosphine) palladium (0.05 parts) are mixed and subjected to a nitrogen atmosphere. , 80 ° C. for 6 hours. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. The compound represented by 17 (0.13 part, yield 24%) was obtained.
  • Example 11 (Preparation of Field Effect Transistor of the Present Invention) No. of the specific example obtained in Example 1.
  • the condensed aromatic compound represented by No. 5 was used in Example No. 6 obtained in Example 6.
  • the field effect transistor (FET) element 4 of the present invention was produced by a method according to Example 3 except that the compound was changed to the compound represented by 13.
  • Example 12 (Preparation of Field Effect Transistor of the Present Invention) No. of the specific example obtained in Example 1.
  • the condensed aromatic compound represented by No. 5 was obtained in Example 7.
  • the field effect transistor (FET) element 5 of the present invention was produced by a method according to Example 3 except that the compound was changed to the compound represented by 13-Ph.
  • Example 6 Heat resistance test of organic thin film No. of the specific example obtained in Example 6.
  • the condensed polycyclic aromatic compound represented by No. 13 and No. 1 obtained in Example 7.
  • 100 nm organic thin films were prepared on n-doped silicon wafers with oxide films.
  • the organic thin film obtained above is heated at 120 ° C. for 30 minutes under atmospheric pressure and then cooled to room temperature, then heated at 150 ° C. for 30 minutes under atmospheric pressure and then cooled to room temperature. Then, after further heating at 180 ° C.
  • the average roughness (Ra) of the thin film was calculated using an AFM analysis program. The results are shown in Table 4. Further, the surface state of the organic thin film for calculating the average roughness used above was observed by AFM (scanning range: 1 ⁇ m). Specific example No. The AFM of the organic thin film containing the condensed polycyclic aromatic compound represented by No. 13 is shown in FIG. The AFMs of organic thin films containing condensed polycyclic aromatic compounds represented by 13-Ph are shown in FIG. 8, respectively.
  • Example 13 (Preparation and evaluation of an organic photoelectric conversion element of the compound represented by No. 13 of the specific example obtained in Example 6) No. of the specific example obtained in Example 1.
  • the organic photoelectric conversion element of the present invention was prepared and evaluated by a method according to Example 5 except that the compound was changed to the compound represented by 13. Contrast ratio was 5.4 ⁇ 10 4.
  • Example 14 (Preparation and evaluation of an organic photoelectric conversion element of the compound represented by No. 13-Ph obtained in Example 7) No. of the specific example obtained in Example 1.
  • the condensed polycyclic aromatic compound represented by No. 5 was obtained in Example 7.
  • the organic photoelectric conversion element of the present invention was prepared and evaluated by the method according to Example 5 except that the compound was changed to the compound represented by 13-Ph. Contrast ratio was 5.0 ⁇ 10 4.
  • a condensed polycyclic aromatic compound having excellent heat resistance in a practical process temperature range, an organic thin film containing the compound, and an organic semiconductor device having the organic thin film (field effect transistor, organic photoelectric conversion element). ) can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

The purpose of the present invention is to provide: a fused polycyclic aromatic compound having excellent heat resistance in a practical process temperature range; an organic thin film containing said compound; and an organic semiconductor device (field-effect transistor, organic photoelectric conversion element) having said organic thin film. The present invention includes a fused polycyclic aromatic compound represented by general formula (1): (in formula (1), regarding R1 and R2, one represents a hydrogen atom and the other represents a substituent represented by general formula (2) or (3): (in formulas (2) and (3), n represents an integer of 0-2, X represents an oxygen atom, a sulfur atom, or a selenium atom, R3 represents a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group)).

Description

縮合多環芳香族化合物Condensed polycyclic aromatic compounds
 本発明は、新規な縮合多環芳香族化合物とその用途に関する。更に詳しくは、本発明はベンゾチエノ[3,2-b][1]ベンゾチオフェン(以下、「BTBT」と略す)誘導体である縮合多環芳香族化合物、該化合物を含む有機薄膜及び該有機薄膜を有する有機半導体デバイス(電界効果トランジスタ、有機光電変換素子)に関する。 The present invention relates to novel condensed polycyclic aromatic compounds and their uses. More specifically, the present invention refers to condensed polycyclic aromatic compounds which are benzothiophene [3,2-b] [1] benzothiophene (hereinafter abbreviated as "BTBT") derivatives, organic thin films containing the compounds, and the organic thin films. The present invention relates to an organic semiconductor device (field effect transistor, organic photoelectric conversion element).
 近年、電界効果トランジスタや有機光電変換素子などの有機薄膜デバイスが注目されており、これらの薄膜デバイスに用いられる縮合多環芳香族化合物に代表される種々の有機エレクトロニクス材料が研究、開発されている。
 例えば、特許文献1にはBTBT誘導体は優れた電荷移動度を呈し、その薄膜が有機半導体特性を有することが示されている。
In recent years, organic thin film devices such as field effect transistors and organic photoelectric conversion elements have attracted attention, and various organic electronic materials represented by condensed polycyclic aromatic compounds used in these thin film devices have been researched and developed. ..
For example, Patent Document 1 shows that a BTBT derivative exhibits excellent charge mobility and its thin film has organic semiconductor properties.
 また、特許文献2にはBTBTのアルキル誘導体を用いて溶液プロセスによって作製した電界効果トランジスタが報告されている。 Further, Patent Document 2 reports a field effect transistor manufactured by a solution process using an alkyl derivative of BTBT.
 以上のように、これまで有機エレクトロニクス化合物として有益なBTBT誘導体の開発が行われてきたが、これらの文献のBTBT誘導体は、電界効果トランジスタ素子の電極を作製した後の加熱アニール工程において、有機半導体特性が著しく低下してしまうという問題があった。 As described above, BTBT derivatives useful as organic electronics compounds have been developed so far, but the BTBT derivatives in these documents are organic semiconductors in the heat annealing step after manufacturing the electrodes of the field effect transistor element. There was a problem that the characteristics were significantly deteriorated.
 一方で、有機光電変換素子は次世代の撮像素子への展開が期待されており、いくつかのグループからその報告がなされている。例えば、キナクリドン誘導体を光電変換素子に用いた例(特許文献3)、キナクリドン誘導体を用いた光電変換素子を撮像素子へ応用した例(特許文献4)、ジケトピロロピロール誘導体を用いた例(特許文献5)がある。 On the other hand, organic photoelectric conversion elements are expected to be applied to next-generation image sensors, and several groups have reported on them. For example, an example in which a quinacridone derivative is used for a photoelectric conversion element (Patent Document 3), an example in which a photoelectric conversion element using a quinacridone derivative is applied to an imaging device (Patent Document 4), and an example in which a diketopyrrolopyrrole derivative is used (Patent Document 3). There is a document 5).
 以上のように、有機半導体を用いた可視光領域に感度を有する光電変換素子の開発が行われてきたが、これらの文献で報告されているBTBT誘導体は可視光領域の感度が低いという問題があった。 As described above, photoelectric conversion elements having sensitivity in the visible light region using organic semiconductors have been developed, but the BTBT derivatives reported in these documents have a problem that the sensitivity in the visible light region is low. there were.
国際公開2006/077888号International Publication No. 2006/077888 特許第6214938号公報Japanese Patent No. 6214938 特許第4972288号公報Japanese Patent No. 4972288 特許第4945146号公報Japanese Patent No. 4945146 特許第5022573号公報Japanese Patent No. 5022573 特開2008-258592号公報Japanese Unexamined Patent Publication No. 2008-258592 特開2008-290963号公報Japanese Unexamined Patent Publication No. 2008-290963
 本発明は、上記従来の課題を鑑みてなされたものであり、その目的は、実用的なプロセス温度領域での耐熱性に優れた縮合多環芳香族化合物、該化合物を含む有機薄膜及び該有機薄膜を有する有機半導体デバイス(電界効果トランジスタ、有機光電変換素子)を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is a condensed polycyclic aromatic compound having excellent heat resistance in a practical process temperature range, an organic thin film containing the compound, and the organic substance. An object of the present invention is to provide an organic semiconductor device having a thin film (field effect transistor, organic photoelectric conversion element).
 本発明者らは鋭意検討の結果、特定構造の新規の縮合多環芳香族化合物を用いることにより上記の課題が解決されることを見出し、本発明を完成させるに至った。
 即ち、本発明は、
[1]一般式(1)
As a result of diligent studies, the present inventors have found that the above problems can be solved by using a novel condensed polycyclic aromatic compound having a specific structure, and have completed the present invention.
That is, the present invention
[1] General formula (1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R及びRの一方は一般式(2)または(3) (In the formula (1), one of R 1 and R 2 is the general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)及び(3)中、nは0乃至2の整数を表す。Xは酸素原子、硫黄原子またはセレン原子を表す。Rは水素原子又は置換若しくは無置換の芳香族炭化水素基を表す。)
で表される置換基を、他方は水素原子を表す。)
で表される縮合多環芳香族化合物;
[2]Rが水素原子である[1]に記載の縮合多環芳香族化合物;
[3]Rがフェニル基、ビフェニル基又はナフチル基である[1]に記載の縮合多環芳香族化合物;
[4]Rがフェニル基である[3]に記載の縮合多環芳香族化合物;
[5]R及びRの一方が一般式(2)で表される置換基である[1]乃至[4]のいずれか一項に記載の縮合多環芳香族化合物;
[6]R及びRの一方が一般式(3)で表される置換基である[1]乃至[4]のいずれか一項に記載の縮合多環芳香族化合物;
[7]nが1である[1]乃至[6]のいずれか一項に記載の縮合多環芳香族化合物;
[8]Xが酸素原子または硫黄原子である[1]乃至[7]のいずれか一項に記載の縮合多環芳香族化合物;
[9][1]乃至[8]のいずれか一項に記載の縮合多環芳香族化合物を含む有機光電変換素子用材料;
[10][1]乃至[8]のいずれか一項に記載の縮合多環芳香族化合物を含む有機薄膜;
[11][10]に記載の有機薄膜を有する電界効果トランジスタ;及び
[12][10]に記載の有機薄膜を有する有機光電変換素子;
に関する。
(In formulas (2) and (3), n represents an integer of 0 to 2. X represents an oxygen atom, a sulfur atom or a selenium atom. R 3 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group. Represents.)
The substituent is represented by, and the other represents a hydrogen atom. )
Condensed polycyclic aromatic compound represented by;
[2] The condensed polycyclic aromatic compound according to [1], wherein R 3 is a hydrogen atom;
[3] a fused polycyclic aromatic compound according to R 3 is a phenyl group, a biphenyl group or a naphthyl group [1];
[4] The condensed polycyclic aromatic compound according to [3], wherein R 3 is a phenyl group;
[5] The condensed polycyclic aromatic compound according to any one of [1] to [4], wherein one of R 1 and R 2 is a substituent represented by the general formula (2);
[6] The condensed polycyclic aromatic compound according to any one of [1] to [4], wherein one of R 1 and R 2 is a substituent represented by the general formula (3);
[7] The condensed polycyclic aromatic compound according to any one of [1] to [6], wherein n is 1.
[8] The condensed polycyclic aromatic compound according to any one of [1] to [7], wherein X is an oxygen atom or a sulfur atom;
[9] A material for an organic photoelectric conversion element containing the condensed polycyclic aromatic compound according to any one of [1] to [8];
[10] An organic thin film containing the condensed polycyclic aromatic compound according to any one of [1] to [8];
[11] A field effect transistor having an organic thin film according to [10]; and an organic photoelectric conversion element having an organic thin film according to [12] [10];
Regarding.
 本発明によれば、実用的なプロセス温度領域での耐熱性に優れた縮合多環芳香族化合物、該化合物を含む有機薄膜及び該有機薄膜を有する有機半導体デバイス(電界効果トランジスタ、有機光電変換素子)を提供することができる。 According to the present invention, a condensed polycyclic aromatic compound having excellent heat resistance in a practical process temperature range, an organic thin film containing the compound, and an organic semiconductor device having the organic thin film (field effect transistor, organic photoelectric conversion element). ) Can be provided.
図1は、本発明の電界効果トランジスタ(素子)の構造のいくつかの態様例を示す概略断面図であり、Aはボトムコンタクト-ボトムゲート型電界効果トランジスタ(素子)、Bはトップコンタクト-ボトムゲート型電界効果トランジスタ(素子)、Cはトップコンタクト-トップゲート型電界効果トランジスタ(素子)、Dはトップ&ボトムコンタクトボトムゲート型電界効果トランジスタ(素子)、Eは静電誘導型電界効果トランジスタ(素子)、Fはボトムコンタクト-トップゲート型電界効果トランジスタ(素子)を示す。FIG. 1 is a schematic cross-sectional view showing some examples of the structure of the field effect transistor (element) of the present invention, where A is a bottom contact-bottom gate type field effect transistor (element) and B is a top contact-bottom. Gate type field effect transistor (element), C is top contact-top gate type field effect transistor (element), D is top & bottom contact bottom gate type field effect transistor (element), E is electrostatic induction type field effect transistor (element) Element), F indicates a bottom contact-top gate type field effect transistor (element). 図2は、本発明の電界効果トランジスタ(素子)の一態様例としてのトップコンタクト-ボトムゲート型電界効果トランジスタ(素子)の製造工程を説明するための説明図であり、(1)乃至(6)は各工程を示す概略断面図である。FIG. 2 is an explanatory diagram for explaining a manufacturing process of a top contact-bottom gate type field effect transistor (element) as an example of one aspect of the field effect transistor (element) of the present invention, and FIGS. ) Is a schematic cross-sectional view showing each step. 図3は、本発明の有機光電変換素子の実施態様を例示した断面図を示す。FIG. 3 shows a cross-sectional view illustrating an embodiment of the organic photoelectric conversion element of the present invention. 図4は、本発明の縮合多環芳香族化合物を用いて作製した有機薄膜のAFM像である。FIG. 4 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention. 図5は、本発明の縮合多環芳香族化合物を用いて作製した有機薄膜のAFM像である。FIG. 5 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention. 図6は、比較例化合物を用いて作製した有機薄膜のAFM像である。FIG. 6 is an AFM image of an organic thin film prepared using a comparative example compound. 図7は、本発明の縮合多環芳香族化合物を用いて作製した有機薄膜のAFM像である。FIG. 7 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention. 図8は、本発明の縮合多環芳香族化合物を用いて作製した有機薄膜のAFM像である。FIG. 8 is an AFM image of an organic thin film prepared using the condensed polycyclic aromatic compound of the present invention.
 以下に、本発明をより詳細に説明する。
 本発明の縮合多環芳香族化合物は、上記一般式(1)で表される。
 一般式(1)中、R及びRの一方は上記一般式(2)または(3)で表される置換基を、他方は水素原子を表す。
 式(1)におけるR及びRとしては、どちらか一方が上記一般式(2)で表される置換基であって他方が水素原子であることが好ましく、Rが上記一般式(2)で表される置換基であってRが水素原子であることがより好ましい。
Hereinafter, the present invention will be described in more detail.
The condensed polycyclic aromatic compound of the present invention is represented by the above general formula (1).
In the general formula (1), one of R 1 and R 2 represents a substituent represented by the above general formula (2) or (3), and the other represents a hydrogen atom.
As R 1 and R 2 in the formula (1), it is preferable that one of them is a substituent represented by the above general formula (2) and the other is a hydrogen atom, and R 1 is the above general formula (2). ), It is more preferable that R 2 is a hydrogen atom.
 一般式(2)及び(3)中、nは0乃至2の整数を表し、1又は2が好ましく、1がより好ましい。
 尚、一般式(2)及び(3)で表される置換基において、n=0の場合はチエノチオフェン、フロフランまたはセレノフェノセレノフェンから水素原子を一つ除いた残基であり、n=1の場合はベンゾジチオフェン、ベンゾジフランまたはベンゾジセレノフェンから水素原子を一つ除いた残基であり、n=2の場合はナフトジチオフェン、ナフトジフランまたはナフトジセレノフェンから水素原子を一つ除いた残基である。
In the general formulas (2) and (3), n represents an integer of 0 to 2, preferably 1 or 2, and more preferably 1.
In the substituents represented by the general formulas (2) and (3), when n = 0, it is a residue obtained by removing one hydrogen atom from thienothiophene, flofuran or selenophenoselenophen, and n = 1. In the case of, it is a residue obtained by removing one hydrogen atom from benzodithiophene, benzodifuran or benzodyselenophen, and in the case of n = 2, one hydrogen atom is removed from naphthodithiophene, naphthodifuran or naphthodiselenophen. It is a residue.
 一般式(2)及び(3)中、Xは酸素原子、硫黄原子またはセレン原子を表し、酸素原子または硫黄原子が好ましく、硫黄原子が更に好ましい。 In the general formulas (2) and (3), X represents an oxygen atom, a sulfur atom or a selenium atom, an oxygen atom or a sulfur atom is preferable, and a sulfur atom is more preferable.
 一般式(2)及び(3)中、Rは水素原子又は置換若しくは無置換の芳香族炭化水素基を表す。
 Rが表す芳香族炭化水素基とは、芳香族炭化水素化合物の芳香環から水素原子を一つ除いた残基であり、当該芳香族炭化水素基は、好ましくは炭素数5乃至20を有する。具体例としては、フェニル基、ビフェニル基(1-ビフェニル基、2-ビフェニル基)、ナフチル基(1-ナフチル基、2-ナフチル基)などが挙げられる。なかでも、フェニル基がより好ましい。
 なお、「置換若しくは無置換の」とは、「置換基を有する若しくは置換基を有しない」ことを意味し、「置換若しくは無置換の芳香族炭化水素基」とは、置換基を有する芳香族炭化水素基若しくは置換基を有しない芳香族炭化水素を意味する。置換基は特に限定されるものではない。
In the general formulas (2) and (3), R 3 represents a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group.
The aromatic hydrocarbon group represented by R 3 is a residue obtained by removing one hydrogen atom from the aromatic ring of the aromatic hydrocarbon compound, and the aromatic hydrocarbon group preferably has 5 to 20 carbon atoms. .. Specific examples include a phenyl group, a biphenyl group (1-biphenyl group, 2-biphenyl group), a naphthyl group (1-naphthyl group, 2-naphthyl group) and the like. Of these, a phenyl group is more preferable.
In addition, "substituted or unsubstituted" means "having or not having a substituent", and "substituted or unsubstituted aromatic hydrocarbon group" means an aromatic having a substituent. It means an aromatic hydrocarbon having no hydrocarbon group or substituent. The substituent is not particularly limited.
 次に、本発明の一般式(1)で表される縮合多環芳香族化合物の合成方法について詳細に述べる。一般式(1)で表される縮合多環芳香族化合物は、従来公知の様々な方法で合成することができるが、一例として下記スキームの合成方法について説明する。 Next, the method for synthesizing the condensed polycyclic aromatic compound represented by the general formula (1) of the present invention will be described in detail. The condensed polycyclic aromatic compound represented by the general formula (1) can be synthesized by various conventionally known methods, and the synthesis method of the following scheme will be described as an example.
 式(1)で表される化合物は、特許文献6、特許文献7及び非特許文献1に開示された公知の方法などにより合成することができる。例えば以下のスキームによる合成方法が挙げられる。原料としてニトロスチルベン誘導体(A’)を用いて、ベンゾチエノベンゾチオフェン骨格(D)を形成し、これを還元することによりアミノ化物(E)が得られる。この化合物(E)をハロゲン化すればハロゲン化物(F)(以下のスキームにはハロゲン化物(F)の一例としてヨウ素化物を記載したが、これに限定されるものではない。)が得られ、このハロゲン化物(F)を更にホウ酸誘導体(G’)とカップリングすることにより式(1’)で表される化合物(式(1)におけるRが式(2)または式(3)の置換基でRが水素原子の化合物)を得ることが可能である。なお、特許文献5の方法によれば、対応するベンズアルデヒド誘導体から式(1’)で表される化合物を1ステップで製造できるため、より効率的である。なお、ホウ酸誘導体(G’)のRは、式(1’)のRに対応するものである。 The compound represented by the formula (1) can be synthesized by a known method disclosed in Patent Document 6, Patent Document 7, and Non-Patent Document 1. For example, a synthesis method based on the following scheme can be mentioned. Using a nitrostilbene derivative (A') as a raw material, a benzothienobenzothiophene skeleton (D) is formed, and the benzothienobenzothiophene skeleton (D) is reduced to obtain an amination (E). Halogenation of this compound (E) yields a halide (F) (an iodide is described as an example of the halide (F) in the scheme below, but is not limited thereto). By further coupling this halide (F) with the boric acid derivative (G'), the compound represented by the formula (1') (R 1 in the formula (1) is the formula (2) or the formula (3). It is possible to obtain a compound in which R 2 is a hydrogen atom as a substituent). According to the method of Patent Document 5, the compound represented by the formula (1') can be produced from the corresponding benzaldehyde derivative in one step, which is more efficient. Note that boric acid derivative (G ') R 1 in the formula (1' corresponds to R 1 in).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 尚、上記スキームにおける出発原料をニトロスチルベン誘導体(A’)から下記式で表されるニトロスチルベン誘導体(A’’)に変更し、かつホウ酸誘導体(G’)を下記式で表されるホウ酸誘導体(G’’)に変更することにより、下記式(1’’)で表される化合物(式(1)におけるRが水素原子でRが置換基の化合物)を得ることが可能である。 The starting material in the above scheme is changed from the nitrostilbene derivative (A') to the nitrostilbene derivative (A ″) represented by the following formula, and the boric acid derivative (G') is represented by the following formula. By changing to an acid derivative (G ″), it is possible to obtain a compound represented by the following formula (1 ″) (a compound in which R 1 is a hydrogen atom and R 2 is a substituent in the formula (1)). Is.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記のカップリング反応においては、ハロゲン化物(F)1モルに対して、ホウ酸誘導体(G’)又は(G’’)を2乃至10モル用いることが好ましく、2乃至4モル用いることがより好ましい。
 上記のカップリング反応の反応温度は、通常-10乃至200℃、好ましくは40乃至160℃、より好ましくは60乃至120℃である。また、反応時間は特に限定されないが、通常1乃至72時間、好ましくは3乃至48時間である。後述する触媒の種類により、反応温度を下げたり反応時間を短縮したりすることができる。
 上記のカップリング反応は、アルゴン雰囲気下、窒素置換下、乾燥アルゴン雰囲気下、乾燥窒素気流下等の不活性ガス雰囲気下で行うことが好ましい。
In the above coupling reaction, it is preferable to use 2 to 10 mol of the boric acid derivative (G') or (G ″) with respect to 1 mol of the halide (F), and more preferably 2 to 4 mol. preferable.
The reaction temperature of the above coupling reaction is usually −10 to 200 ° C., preferably 40 to 160 ° C., and more preferably 60 to 120 ° C. The reaction time is not particularly limited, but is usually 1 to 72 hours, preferably 3 to 48 hours. Depending on the type of catalyst described later, the reaction temperature can be lowered or the reaction time can be shortened.
The above coupling reaction is preferably carried out in an inert gas atmosphere such as an argon atmosphere, a nitrogen substitution, a dry argon atmosphere, and a dry nitrogen stream.
 ハロゲン化物(F)を用いたカップリング反応には触媒を用いることが好ましい。カップリング反応に用い得る触媒としては、例えば、トリ-tert-ブチルホスフィン、トリアダマンチルホスフィン、1,3-ビス(2,4,6-トリメチルフェニル)イミダゾリジニウムクロライド、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリジニウムクロライド、1,3-ジアダマンチルイミダゾリジニウムクロライド、又はそれらの混合物;金属Pd、Pd/C(含水又は非含水)、酢酸パラジウム、トリフルオロ酢酸パラジウム、メタンスルホン酸パラジウム、トルエンスルホン酸パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、ビス(アセトニトリル)パラジウム(II)ジクロリド、ビス(ベンゾニトリル)パラジウム(II)ジクロリド、テトラフルオロほう酸テトラキス(アセトニトリル)パラジウム(II)、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体及びビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリフェニルホスフィノ)パラジウムジクロライド(Pd(PPhCl)、(1,1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロライド(Pd(dppf)Cl)、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh)等が挙げられるが、パラジウム系の触媒が好ましく。Pd(dppf)Cl、Pd(PPhCl、Pd(PPhがより好ましく、Pd(PPhが更に好ましい。
 これらの触媒は複数種を混合して用いてもよいし、これらの触媒に他の触媒を混合して用いてもよい。
 カップリング反応の際のこれら触媒の使用量は、ハロゲン化物(F)1モルに対して、好ましくは0.001乃至0.500モル、より好ましくは、0.001乃至0.200モル、更に好ましくは0.001乃至0.100モル、最も好ましくは0.001乃至0.050モルである。
It is preferable to use a catalyst for the coupling reaction using the halide (F). Examples of catalysts that can be used in the coupling reaction include tri-tert-butylphosphine, triadamantylphosphine, 1,3-bis (2,4,6-trimethylphenyl) imidazolidinium chloride, and 1,3-bis (2). , 6-Diisopropylphenyl) imidazolidinium chloride, 1,3-diadamantyl imidazolidinium chloride, or mixtures thereof; metals Pd, Pd / C (hydrated or non-hydrated), palladium acetate, palladium trifluoroacetate, methanesulfone Palladium Acid, Palladium Toluenesulfonate, Palladium Chloride, Palladium Bromide, Palladium Iodide, Bis (acetalia) Palladium (II) Dichloride, Bis (Benzonitrile) Palladium (II) Dichloride, Tetrafluoroborate Tetrax (acetritic) Palladium (II) ), Tris (dibenzilidenacetone) dipalladium (0), Tris (dibenzilidenacetone) dipalladium (0) chloroform complex and bis (dibenzilidenacetone) palladium (0), bis (triphenylphosphino) palladium dichloride (Pd) (PPh 3 ) 2 Cl 2 ), (1,1'-bis (diphenylphosphino) ferrocene) palladium dichloride (Pd (dpppf) Cl 2 ), tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ), etc. However, a palladium-based catalyst is preferable. Pd (dppf) Cl 2, Pd (PPh 3) 2 Cl 2, Pd (PPh 3) 4 are more preferable, Pd (PPh 3) 4 is more preferred.
A plurality of types of these catalysts may be mixed and used, or other catalysts may be mixed and used with these catalysts.
The amount of these catalysts used in the coupling reaction is preferably 0.001 to 0.500 mol, more preferably 0.001 to 0.200 mol, and even more preferably 0.001 to 0.200 mol, based on 1 mol of the halide (F). Is 0.001 to 0.100 mol, most preferably 0.001 to 0.050 mol.
 ハロゲン化物(F)を用いたカップリング反応には、塩基性化合物を使用することが好ましい。塩基性化合物としては、例えば、水酸化リチウム、水酸化バリウム、水酸化ナトリウム及び水酸化カリウム等の水酸化物;炭酸リチウム、炭酸水素リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム及び炭酸セシウム等の炭酸塩;酢酸リチウム、酢酸ナトリウム及び酢酸カリウム等の酢酸塩;りん酸三ナトリウム及びりん酸三カリウム等のリン酸塩;ナトリウムメトキサイド、ナトリウムエトキサイド及びカリウムターシャリーブトキサイド等のアルコキサイド類;水素化ナトリウム及び水素化カリウム等の金属ヒドリド類;ピリジン、ピコリン、ルチジン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン及びN,N-ジシクロヘキシルメチルアミン等の有機塩基類等が挙げられ、りん酸塩又は水酸化物が好ましく、りん酸三ナトリウム、りん酸三カリウム、水酸化ナトリウム又は水酸化カリウムがより好ましい。これらの塩基性化合物は単独で用いてもよく2種以上を組み合わせて用いてもよい。
 カップリング反応の際のこれら塩基性化合物の使用量は、ハロゲン化物(F)1モルに対して、好ましくは1乃至100モル、より好ましくは1乃至10モルである。
It is preferable to use a basic compound for the coupling reaction using the halide (F). Examples of the basic compound include hydroxides such as lithium hydroxide, barium hydroxide, sodium hydroxide and potassium hydroxide; lithium carbonate, lithium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate and the like. Carbonates such as cesium carbonate; Acetates such as lithium acetate, sodium acetate and potassium acetate; Phosphates such as trisodium phosphate and tripotassium phosphate; Alcoxides; metal hydrides such as sodium hydride and potassium hydroxide; organic bases such as pyridine, picolin, lutidine, triethylamine, tributylamine, diisopropylethylamine and N, N-dicyclohexylmethylamine, and phosphates. Alternatively, hydroxide is preferable, and trisodium phosphate, tripotassium phosphate, sodium hydroxide, and potassium hydroxide are more preferable. These basic compounds may be used alone or in combination of two or more.
The amount of these basic compounds used in the coupling reaction is preferably 1 to 100 mol, more preferably 1 to 10 mol, based on 1 mol of the halide (F).
 上記のカップリング反応は、溶媒中で行ってもよい。用い得る溶媒は、必要な原料であるハロゲン化物(F)若しくはホウ酸誘導体、更には必要により用いられる触媒、塩基性化合物、アルカリ金属塩等を溶解し得る溶媒であれば、いかなるものでも使用可能である。
 溶媒の具体例としては、クロロベンゼン、o-ジクロロベンゼン、ブロモベンゼン、ニトロベンゼン、トルエン、キシレン等の芳香族化合物類;n-ヘキサン、n-ヘプタン並びにn-ペンタン等の飽和脂肪族炭化水素類;シクロヘキサン、シクロヘプタン並びにシクロペンタン等の脂環式炭化水素類;n-プロピルブロマイド、n-ブチルクロライド、n-ブチルブロマイド、ジクロロメタン、ジブロモメタン、ジクロロプロパン、ジブロモプロパン、ジクロロブタン、クロロホルム、ブロモホルム、四塩化炭素、四臭化炭素、トリクロロエタン、テトラクロロエタン並びにペンタクロロエタン等の飽和脂肪族ハロゲン化炭化水素類;クロロシクロヘキサン、クロロシクロペンタン並びにブロモシクロペンタン等のハロゲン化環状炭化水素類;酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル並びに酪酸ブチル等のエステル類;アセトン、メチルエチルケトン並びにメチルイソブチルケトン等のケトン類;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン並びに1,3-ジオキサン等のエーテル類;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド並びにN,N-ジメチルアセトアミド等のアミド類;エチレングリコール、プロピレングリコール並びにポリエチレングリコール等のグリコール類;及びジメチルスルホキシド等のスルホキシド類を挙げることができる。これらの溶媒は単独でも2種以上混合して使用してもよい。
The above coupling reaction may be carried out in a solvent. Any solvent can be used as long as it can dissolve a required raw material, a halide (F) or a boric acid derivative, and a catalyst, a basic compound, an alkali metal salt, etc., which are used as necessary. Is.
Specific examples of the solvent include aromatic compounds such as chlorobenzene, o-dichlorobenzene, bromobenzene, nitrobenzene, toluene and xylene; saturated aliphatic hydrocarbons such as n-hexane, n-heptan and n-pentane; cyclohexane. , Cycloheptane, cyclopentane and other alicyclic hydrocarbons; n-propyl bromide, n-butyl chloride, n-butyl bromide, dichloromethane, dibromomethane, dichloropropane, dibromopropane, dichlorobutane, chloroform, bromoform, tetrachloride Saturated aliphatic halogenated hydrocarbons such as carbon, carbon tetrabromide, trichloroethane, tetrachloroethane and pentachloroethane; cyclic halogenated hydrocarbons such as chlorocyclohexane, chlorocyclopentane and bromocyclopentane; ethyl acetate, propyl acetate, Esters such as butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate and butyl butyrate; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; diethyl ether, Ethers such as dipropyl ether, dibutyl ether, cyclopentylmethyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane and 1,3-dioxane; N-methyl-2-pyrrolidone, N, N-dimethylformamide and N, N -Amids such as dimethylacetamide; glycols such as ethylene glycol, propylene glycol and polyethylene glycol; and sulfoxides such as dimethylsulfoxide can be mentioned. These solvents may be used alone or in combination of two or more.
 一般式(1)で表される縮合多環芳香族化合物の精製方法は特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。 The method for purifying the condensed polycyclic aromatic compound represented by the general formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be adopted. Moreover, these methods can be combined as needed.
 式(2)又は(3)中のRが水素原子である一般式(1)で表される本発明の縮合多環芳香族化合物の具体例を以下に示すが、本発明はこれらの具体例に限定されるものではない。 Specific examples of the condensed polycyclic aromatic compound of the present invention represented by the general formula (1) in which R 3 in the formula (2) or (3) is a hydrogen atom are shown below. It is not limited to the example.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 尚、式(2)及び(3)中のRが芳香族炭化水素基である一般式(1)で表される本発明の縮合多環芳香族化合物の具体例としては、上記No.1乃至36で表される化合物が両末端に有するフラン環又はチオフェン環に、フェニル基、ビフェニル基及びナフチル基等の芳香族炭化水素基が置換した化合物が挙げられる。置換する場所は、特に限定されるものではないが、例えば、本発明の縮合多環芳香族化合物の両末端のS原子、Se原子、O原子の隣の炭素原子に置換基が結合している場合が挙げられる。 Specific examples of the condensed polycyclic aromatic compound of the present invention represented by the general formula (1) in which R 3 in the formulas (2) and (3) is an aromatic hydrocarbon group include the above No. Examples thereof include compounds in which the furan ring or thiophene ring of the compounds represented by 1 to 36 is substituted with an aromatic hydrocarbon group such as a phenyl group, a biphenyl group and a naphthyl group. The place of substitution is not particularly limited, but for example, the substituent is bonded to the carbon atom next to the S atom, Se atom, and O atom at both ends of the condensed polycyclic aromatic compound of the present invention. There are cases.
 本発明の有機薄膜は式(1)で表される縮合多環芳香族化合物を含む。有機薄膜の膜厚は、その用途によって異なるが、通常1nm乃至1μmであり、好ましくは5nm乃至500nmであり、より好ましくは10nm乃至300nmである。 The organic thin film of the present invention contains a condensed polycyclic aromatic compound represented by the formula (1). The film thickness of the organic thin film varies depending on the application, but is usually 1 nm to 1 μm, preferably 5 nm to 500 nm, and more preferably 10 nm to 300 nm.
 有機薄膜の形成方法は、蒸着法などのドライプロセスや種々の溶液プロセスなどがあげられるが、溶液プロセスで形成することが好ましい。溶液プロセスとしてはたとえば、スピンコート法、ドロップキャスト法、ディップコート法、スプレー法、フレキソ印刷、樹脂凸版印刷などの凸版印刷法、オフセット印刷法、ドライオフセット印刷法、パッド印刷法などの平板印刷法、グラビア印刷法などの凹版印刷法、スクリーン印刷法、謄写版印刷法、リングラフ印刷法などの孔版印刷法、インクジェット印刷法、マイクロコンタクトプリント法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。溶液プロセスで成膜する場合、上記の塗布、印刷したのち、溶媒を蒸発させて薄膜を形成することが好ましい。 Examples of the method for forming the organic thin film include a dry process such as a thin film deposition method and various solution processes, but it is preferable to form the organic thin film by a solution process. Examples of the solution process include spin coating method, drop casting method, dip coating method, spray method, flexo printing, letterpress printing method such as resin letterpress printing, offset printing method, dry offset printing method, and flat plate printing method such as pad printing method. , Recessed printing method such as gravure printing method, screen printing method, copy printing method, stencil printing method such as lingraph printing method, inkjet printing method, micro contact printing method, etc., and a method in which a plurality of these methods are combined can be mentioned. .. When forming a film by a solution process, it is preferable to form a thin film by evaporating the solvent after the above coating and printing.
 本発明の電界効果トランジスタは、本発明の有機薄膜に接して設けた2つの電極(ソース電極及びドレイン電極)の間に流れる電流を、ゲート電極と呼ばれるもう一つの電極に印加する電圧で制御するものである。 The field effect transistor of the present invention controls the current flowing between two electrodes (source electrode and drain electrode) provided in contact with the organic thin film of the present invention by a voltage applied to another electrode called a gate electrode. It is a thing.
 電界効果トランジスタには、ゲート電極が絶縁膜で絶縁されている構造(Metal-Insulator-Semiconductor MIS構造)が一般に用いられる。絶縁膜に金属酸化膜を用いたものはMOS構造と呼ばれ、これ以外にショットキー障壁を介してゲート電極が形成されている構造(すなわちMES構造)も知られているが、電界効果トランジスタの場合、MIS構造が用いられることが多い。 For the field effect transistor, a structure in which the gate electrode is insulated with an insulating film (Metal-Insulator-Semiconductor MIS structure) is generally used. A structure in which a metal oxide film is used as an insulating film is called a MOS structure, and a structure in which a gate electrode is formed via a Schottky barrier (that is, a MES structure) is also known. In this case, the MIS structure is often used.
 図1における電界効果トランジスタの各態様例において、1がソース電極、2が有機薄膜(半導体層)、3がドレイン電極、4が絶縁体層、5がゲート電極、6が基板をそれぞれ表す。尚、各層や電極の配置は、デバイスの用途により適宜選択できる。A乃至D及びFは基板と並行方向に電流が流れるので、横型トランジスタと呼ばれる。Aはボトムコンタクトボトムゲート構造、Bはトップコンタクトボトムゲート構造と呼ばれる。また、Cは半導体上にソース電極及びドレイン電極、絶縁体層を設け、さらにその上にゲート電極を形成しており、トップコンタクトトップゲート構造と呼ばれている。Dはトップ&ボトムコンタクトボトムゲート型トランジスタと呼ばれる構造である。Fはボトムコンタクトトップゲート構造である。Eは縦型の構造をもつトランジスタ、すなわち静電誘導トランジスタ(SIT)の模式図である。このSITは、電流の流れが平面状に広がるので一度に大量のキャリアが移動できる。またソース電極とドレイン電極が縦に配されているので電極間距離を小さくできるため応答が高速である。従って、大電流を流す、高速のスイッチングを行うなどの用途に好ましく適用できる。なお図1中のEには、基板を記載していないが、通常の場合、図1E中の1及び3で表されるソース電極又はドレイン電極の外側には基板が設けられる。 In each embodiment of the field effect transistor in FIG. 1, 1 is a source electrode, 2 is an organic thin film (semiconductor layer), 3 is a drain electrode, 4 is an insulator layer, 5 is a gate electrode, and 6 is a substrate. The arrangement of each layer and electrodes can be appropriately selected depending on the application of the device. A to D and F are called horizontal transistors because current flows in the direction parallel to the substrate. A is called a bottom contact bottom gate structure, and B is called a top contact bottom gate structure. Further, C is provided with a source electrode, a drain electrode, and an insulator layer on a semiconductor, and a gate electrode is formed on the source electrode, a drain electrode, and an insulator layer, which is called a top contact top gate structure. D has a structure called a top & bottom contact bottom gate type transistor. F has a bottom contact top gate structure. E is a schematic diagram of a transistor having a vertical structure, that is, a static induction transistor (SIT). In this SIT, since the current flow spreads in a plane, a large number of carriers can move at one time. Moreover, since the source electrode and the drain electrode are arranged vertically, the distance between the electrodes can be reduced, so that the response is fast. Therefore, it can be preferably applied to applications such as passing a large current and performing high-speed switching. Although the substrate is not shown in E in FIG. 1, a substrate is usually provided outside the source electrode or drain electrode represented by 1 and 3 in FIG. 1E.
 各態様例における各構成要素について説明する。基板6は、その上に形成される各層が剥離することなく保持できることが必要である。例えば樹脂板やフィルム、紙、ガラス、石英、セラミックなどの絶縁性材料;金属や合金などの導電性基板上にコーティング等により絶縁層を形成した物;樹脂と無機材料など各種組合せからなる材料等が使用できる。使用できる樹脂フィルムの例としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリカーボネート、セルローストリアセテート、ポリエーテルイミドなどが挙げられる。樹脂フィルムや紙を用いると、デバイスに可撓性を持たせることができ、フレキシブルで、軽量となり、実用性が向上する。基板の厚さとしては、通常1μm乃至10mmであり、好ましくは5μm乃至5mmである。 Each component in each embodiment will be described. The substrate 6 needs to be able to hold each layer formed on the substrate 6 without peeling. For example, insulating materials such as resin plates, films, paper, glass, quartz, and ceramics; insulating layers formed by coating on conductive substrates such as metals and alloys; materials made up of various combinations of resins and inorganic materials, etc. Can be used. Examples of the resin film that can be used include polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyamide, polyimide, polycarbonate, cellulose triacetate, and polyetherimide. By using a resin film or paper, the device can be made flexible, which makes it flexible, lightweight, and improves practicality. The thickness of the substrate is usually 1 μm to 10 mm, preferably 5 μm to 5 mm.
 ソース電極1、ドレイン電極3、ゲート電極5には導電性を有する材料が用いられる。例えば、白金、金、銀、アルミニウム、クロム、タングステン、タンタル、ニッケル、コバルト、銅、鉄、鉛、錫、チタン、インジウム、パラジウム、モリブデン、マグネシウム、カルシウム、バリウム、リチウム、カリウム、ナトリウム等の金属及びそれらを含む合金;InO、ZnO、SnO、ITO等の導電性酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレンビニレン、ポリジアセチレン等の導電性高分子化合物;シリコン、ゲルマニウム、ガリウム砒素等の半導体;カーボンブラック、フラーレン、カーボンナノチューブ、グラファイト、グラフェン等の炭素材料等が使用できる。また、導電性高分子化合物や半導体にはドーピングが行われていてもよい。ドーパントとしては、例えば、塩酸、硫酸等の無機酸;スルホン酸等の酸性官能基を有する有機酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;リチウム、ナトリウム、カリウム等の金属原子等が挙げられる。ホウ素、リン、砒素などはシリコンなどの無機半導体用のドーパントとしても多用されている。 A conductive material is used for the source electrode 1, the drain electrode 3, and the gate electrode 5. For example, metals such as platinum, gold, silver, aluminum, chromium, tungsten, tantalum, nickel, cobalt, copper, iron, lead, tin, titanium, indium, palladium, molybdenum, magnesium, calcium, barium, lithium, potassium and sodium. And alloys containing them; conductive oxides such as InO 2 , ZnO 2 , SnO 2 , ITO; conductive polymer compounds such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene vinylene, polydiaacetylene; silicon, germanium, Semiconductors such as gallium arsenic; carbon materials such as carbon black, fullerene, carbon nanotubes, graphite and graphene can be used. Further, the conductive polymer compound and the semiconductor may be doped. Examples of the dopant include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids having acidic functional groups such as sulfonic acid; Lewis acids such as PF 5 , AsF 5 , FeCl 3 ; halogen atoms such as iodine; lithium, sodium and potassium. Such as metal atoms and the like. Boron, phosphorus, arsenic and the like are also widely used as dopants for inorganic semiconductors such as silicon.
 また、上記のドーパントにカーボンブラックや金属粒子などを分散した導電性の複合材料も用いられる。直接、半導体と接触するソース電極1およびドレイン電極3はコンタクト抵抗を低減するために適切な仕事関数を選択するか、表面処理などが重要である。 In addition, a conductive composite material in which carbon black, metal particles, etc. are dispersed in the above-mentioned dopant is also used. For the source electrode 1 and the drain electrode 3 that come into direct contact with the semiconductor, it is important to select an appropriate work function or surface treatment in order to reduce the contact resistance.
 またソース電極とドレイン電極間の距離(チャネル長)がデバイスの特性を決める重要なファクターであり、適正なチャネル長が必要である。チャネル長が短ければ取り出せる電流量は増えるが、コンタクト抵抗の影響などの短チャネル効果が生じ、半導体特性を低下させることがある。該チャネル長は、通常0.01乃至300μm、好ましくは0.1乃至100μmである。ソース電極とドレイン電極間の幅(チャネル幅)は通常10乃至5000μm、好ましくは40乃至2000μmとなる。またこのチャネル幅は、電極の構造をくし型構造とすることなどにより、さらに長いチャネル幅を形成することが可能で、必要な電流量やデバイスの構造などにより、適切な長さにする必要がある。 Also, the distance between the source electrode and the drain electrode (channel length) is an important factor that determines the characteristics of the device, and an appropriate channel length is required. If the channel length is short, the amount of current that can be taken out increases, but short-channel effects such as the influence of contact resistance may occur, and the semiconductor characteristics may deteriorate. The channel length is usually 0.01 to 300 μm, preferably 0.1 to 100 μm. The width (channel width) between the source electrode and the drain electrode is usually 10 to 5000 μm, preferably 40 to 2000 μm. In addition, it is possible to form a longer channel width by making the electrode structure a comb-shaped structure, and it is necessary to make this channel width an appropriate length depending on the required current amount and device structure. be.
 ソース電極及びドレイン電極のそれぞれの構造(形)について説明する。ソース電極とドレイン電極の構造はそれぞれ同じであっても、異なっていてもよい。 The structure (shape) of each of the source electrode and the drain electrode will be explained. The structures of the source electrode and the drain electrode may be the same or different.
 ボトムコンタクト構造の場合は、一般的にはリソグラフィー法を用いて各電極を作製し、また各電極は直方体に形成するのが好ましい。最近は各種印刷方法による印刷精度が向上してきており、インクジェット印刷、グラビア印刷又はスクリーン印刷などの手法を用いて精度よく電極を作製することが可能となってきている。半導体上に電極のあるトップコンタクト構造の場合はシャドウマスクなどを用いて蒸着することが出来る。インクジェットなどの手法を用いて電極パターンを直接印刷形成することも可能となってきている。電極の長さは前記のチャネル幅と同じである。電極の幅には特に規定は無いが、電気的特性を安定化できる範囲で、デバイスの面積を小さくするためには短い方が好ましい。電極の幅は、通常0.1乃至1000μmであり、好ましくは0.5乃至100μmである。電極の厚さは、通常0.1乃至1000nmであり、好ましくは1乃至500nmであり、より好ましくは5乃至200nmである。各電極1、3、5には配線が連結されているが、配線も電極とほぼ同様の材料により作製される。 In the case of a bottom contact structure, it is generally preferable to prepare each electrode by a lithography method and to form each electrode in a rectangular parallelepiped. Recently, the printing accuracy of various printing methods has been improved, and it has become possible to manufacture electrodes with high accuracy by using techniques such as inkjet printing, gravure printing, and screen printing. In the case of a top contact structure having electrodes on a semiconductor, vapor deposition can be performed using a shadow mask or the like. It has become possible to directly print and form an electrode pattern using a technique such as inkjet. The length of the electrode is the same as the channel width described above. The width of the electrode is not particularly specified, but it is preferably short in order to reduce the area of the device within the range in which the electrical characteristics can be stabilized. The width of the electrode is usually 0.1 to 1000 μm, preferably 0.5 to 100 μm. The thickness of the electrode is usually 0.1 to 1000 nm, preferably 1 to 500 nm, and more preferably 5 to 200 nm. Wiring is connected to each of the electrodes 1, 3 and 5, but the wiring is also made of almost the same material as the electrodes.
 絶縁体層4としては絶縁性を有する材料が用いられる。例えば、ポリパラキシリレン、ポリアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、ポリシロキサン、ポリオレフィン、フッ素樹脂、エポキシ樹脂、フェノール樹脂等のポリマー及びこれらを組み合わせた共重合体;酸化珪素、酸化アルミニウム、酸化チタン、酸化タンタル等の金属酸化物;SrTiO、BaTiO等の強誘電性金属酸化物;窒化珪素、窒化アルミニウム等の窒化物、硫化物、フッ化物などの誘電体;あるいは、これら誘電体の粒子を分散させたポリマー等が使用しうる。この絶縁体層はリーク電流を少なくするために電気絶縁特性が高いものが好ましく使用できる。それにより膜厚を薄膜化し、絶縁容量を高くすることが出来、取り出せる電流が多くなる。また半導体の移動度を向上させるためには絶縁体層表面の表面エネルギーを低下させ、凹凸がなくスムースな膜であることが好ましい。その為に自己組織化単分子膜や、2層の絶縁体層を形成させる場合がある。絶縁体層4の膜厚は、材料によって異なるが、通常0.1nm乃至100μm、好ましくは0.5nm乃至50μm、より好ましくは1nm乃至10μmである。 As the insulator layer 4, a material having an insulating property is used. For example, polyparaxylylene, polyacrylate, polymethylmethacrylate, polystyrene, polyvinylphenol, polyamide, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, polysiloxane, polyolefin, fluororesin, epoxy resin, phenol. Polymers such as resins and copolymers combining these; metal oxides such as silicon oxide, aluminum oxide, titanium oxide and tantalum oxide; strong dielectric metal oxides such as SrTIO 3 and BaTIO 3 ; silicon nitride, aluminum nitride and the like. Dioxides such as nitrides, sulfides, and fluorides; or polymers in which particles of these dielectrics are dispersed can be used. As the insulator layer, one having high electrical insulation characteristics can be preferably used in order to reduce the leakage current. As a result, the film thickness can be reduced, the insulation capacity can be increased, and the current that can be taken out increases. Further, in order to improve the mobility of the semiconductor, it is preferable that the surface energy of the surface of the insulator layer is lowered and the film is smooth without unevenness. Therefore, a self-assembled monolayer or a two-layer insulator layer may be formed. The film thickness of the insulator layer 4 varies depending on the material, but is usually 0.1 nm to 100 μm, preferably 0.5 nm to 50 μm, and more preferably 1 nm to 10 μm.
 半導体層2の材料には、本発明の縮合多環芳香族化合物が用いられる。先に示した有機薄膜の形成方法に準じた方法で有機半導体膜を形成し、半導体層2とすることができる。 The condensed polycyclic aromatic compound of the present invention is used as the material of the semiconductor layer 2. The organic semiconductor film can be formed into the semiconductor layer 2 by a method similar to the method for forming the organic thin film shown above.
 半導体層2(有機薄膜)については複数の層を形成してもよいが、単層構造であることがより好ましい。半導体層2の膜厚は、必要な機能を失わない範囲で、薄いほど好ましい。A、B及びDに示すような横型の電界効果トランジスタにおいては、所定以上の膜厚があればデバイスの特性は膜厚に依存しないが、膜厚が厚くなると漏れ電流の増加が多くなるためである。必要な機能を示すための半導体層2の膜厚は、通常、1nm乃至1μm、好ましくは5nm乃至500nm、より好ましくは10nm乃至300nmである。 A plurality of layers may be formed for the semiconductor layer 2 (organic thin film), but a single layer structure is more preferable. The film thickness of the semiconductor layer 2 is preferably as thin as long as it does not lose the necessary functions. In horizontal field-effect transistors as shown in A, B, and D, the characteristics of the device do not depend on the film thickness if the film thickness is equal to or greater than the specified value, but the leakage current increases as the film thickness increases. be. The film thickness of the semiconductor layer 2 for exhibiting the required function is usually 1 nm to 1 μm, preferably 5 nm to 500 nm, and more preferably 10 nm to 300 nm.
 電界効果トランジスタには、例えば基板層と絶縁膜層の間、絶縁膜層と半導体層の間、デバイスの外面に必要に応じて他の層を設けることができる。例えば、半導体層2上に直接、又は他の層を介して、保護層を形成すると、湿度などの外気の影響を小さくすることができる。また、電界効果トランジスタのオン/オフ比を上げることができるなど、電気的特性を安定化できる利点もある。 For the field effect transistor, for example, another layer can be provided between the substrate layer and the insulating film layer, between the insulating film layer and the semiconductor layer, and on the outer surface of the device as needed. For example, if a protective layer is formed directly on the semiconductor layer 2 or through another layer, the influence of outside air such as humidity can be reduced. In addition, there is an advantage that the electrical characteristics can be stabilized, such as increasing the on / off ratio of the field effect transistor.
 上記保護層の材料は特に限定されないが、例えば、エポキシ樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、フッ素樹脂、ポリオレフィン等の各種樹脂からなる膜;酸化珪素、酸化アルミニウム、窒化珪素等の無機酸化膜;及び窒化膜等の誘電体からなる膜等が好ましく用いられ、特に、酸素や水分の透過率や吸水率の小さな樹脂(ポリマー)が好ましい。有機ELディスプレイ用に開発されているガスバリア性保護材料も使用可能である。保護層の膜厚は、その目的に応じて任意の膜厚を選択できるが、通常100nm乃至1mmである。 The material of the protective layer is not particularly limited, and is, for example, a film made of an epoxy resin, an acrylic resin such as polymethylmethacrylate, and various resins such as polyurethane, polyimide, polyvinyl alcohol, fluororesin, and polyolefin; silicon oxide, aluminum oxide, and nitrided. Inorganic oxide films such as silicon; and films made of dielectrics such as nitride films are preferably used, and in particular, resins (polymers) having low oxygen and moisture permeability and water absorption are preferable. Gas barrier protective materials developed for organic EL displays can also be used. The film thickness of the protective layer can be selected as desired depending on the purpose, but is usually 100 nm to 1 mm.
 また有機薄膜が積層される基板又は絶縁体層に予め表面改質や表面処理を行うことにより、電界効果トランジスタとしての特性を向上させることが可能である。例えば基板表面の親水性/疎水性の度合いを調整することにより、その上に成膜される膜の膜質や成膜性を改良することができる。特に、有機半導体材料は分子の配向など膜の状態によって特性が大きく変わることがある。そのため、基板、絶縁体層などへの表面処理によって、その後に成膜される有機薄膜との界面部分の分子配向が制御される、あるいは基板や絶縁体層上のトラップ部位が低減されることにより、キャリア移動度等の特性が改良されるものと考えられる。 Further, it is possible to improve the characteristics as a field effect transistor by performing surface modification or surface treatment on the substrate or insulator layer on which the organic thin film is laminated in advance. For example, by adjusting the degree of hydrophilicity / hydrophobicity of the substrate surface, the film quality and film forming property of the film formed on the substrate surface can be improved. In particular, the characteristics of organic semiconductor materials may change significantly depending on the state of the film such as the orientation of molecules. Therefore, by surface-treating the substrate, the insulator layer, etc., the molecular orientation of the interface portion with the organic thin film formed thereafter is controlled, or the trap portion on the substrate or the insulator layer is reduced. , It is considered that the characteristics such as carrier mobility are improved.
 トラップ部位とは、未処理の基板に存在する例えば水酸基のような官能基を指し、このような官能基が存在すると、電子が該官能基に引き寄せられ、この結果としてキャリア移動度が低下する。従って、トラップ部位を低減することもキャリア移動度等の特性改良には有効な場合が多い。 The trap site refers to a functional group such as a hydroxyl group existing on the untreated substrate, and when such a functional group is present, electrons are attracted to the functional group, and as a result, the carrier mobility is lowered. Therefore, reducing the trap portion is often effective for improving characteristics such as carrier mobility.
 上記のような特性改良のための表面処理としては、例えば、ヘキサメチルジシラザン、オクチルトリクロロシラン、オクタデシルトリクロロシラン等による自己組織化単分子膜処理、ポリマーなどによる表面処理、塩酸や硫酸、酢酸等による酸処理、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等によるアルカリ処理、オゾン処理、フッ素化処理、酸素やアルゴン等のプラズマ処理、ラングミュア・ブロジェット膜の形成処理、その他の絶縁体や半導体の薄膜の形成処理、機械的処理、コロナ放電などの電気的処理、繊維等を利用したラビング処理などがあげられ、それらの組み合わせた処理も行うことができる。 Examples of the surface treatment for improving the characteristics as described above include self-assembling monolayer treatment with hexamethyldisilazane, octyltrichlorosilane, octadecyltrichlorosilane, etc., surface treatment with polymers, hydrochloric acid, sulfuric acid, acetic acid, etc. Acid treatment with sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, etc., ozone treatment, fluorination treatment, plasma treatment with oxygen, argon, etc., Langmuir Brodget film formation treatment, and other insulators. And semiconductor thin film formation treatment, mechanical treatment, electrical treatment such as corona discharge, rubbing treatment using fibers and the like, and a combination of these can also be performed.
 これらの態様において、例えば基板層と絶縁膜層や絶縁膜層と半導体層(有機薄膜)等の各層を設ける方法としては、前記した真空プロセス、溶液プロセスが適宜採用できる。 In these aspects, for example, as a method of providing each layer such as a substrate layer and an insulating film layer or an insulating film layer and a semiconductor layer (organic thin film), the above-mentioned vacuum process and solution process can be appropriately adopted.
 次に、本発明の電界効果トランジスタの製造方法について、図1の態様例Bに示すトップコンタクトボトムゲート型電界効果トランジスタを例として、図2に基づき以下に説明する。この製造方法は前記した他の態様の電界効果トランジスタ等にも同様に適用しうるものである。 Next, the method for manufacturing the field effect transistor of the present invention will be described below with reference to FIG. 2 by taking the top contact bottom gate type field effect transistor shown in the embodiment B of FIG. 1 as an example. This manufacturing method can be similarly applied to the field effect transistors of the other aspects described above.
(電界効果トランジスタの基板及び基板処理について)
 本発明の電界効果トランジスタは、基板6上に必要な各種の層や電極を設けることで作製される(図2(1)参照)。基板としては上記で説明したものが使用できる。この基板上に前述の表面処理などを行うことも可能である。基板6の厚みは、必要な機能を妨げない範囲で薄い方が好ましい。材料によっても異なるが、通常1μm乃至10mmであり、好ましくは5μm乃至5mmである。また、必要により、基板に電極の機能を持たせるようにする事も出来る。
(About field effect transistor substrate and substrate processing)
The field-effect transistor of the present invention is manufactured by providing various necessary layers and electrodes on the substrate 6 (see FIG. 2 (1)). As the substrate, the one described above can be used. It is also possible to perform the above-mentioned surface treatment on this substrate. The thickness of the substrate 6 is preferably thin as long as it does not interfere with the required functions. Although it depends on the material, it is usually 1 μm to 10 mm, preferably 5 μm to 5 mm. Further, if necessary, the substrate can be provided with the function of an electrode.
(ゲート電極の形成について)
 基板6上にゲート電極5を形成する(図2(2)参照)。電極材料としては上記で説明したものが用いられる。電極膜を成膜する方法としては、各種の方法を用いることができ、例えば真空蒸着法、スパッタ法、塗布法、熱転写法、印刷法、ゾルゲル法等が採用される。成膜時又は成膜後、所望の形状になるよう必要に応じてパターニングを行うのが好ましい。パターニングの方法としても各種の方法を用いうるが、例えばフォトレジストのパターニングとエッチングを組み合わせたフォトリソグラフィー法等が挙げられる。また、シャドウマスクを用いた蒸着法やスパッタ法やインクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法、及びこれらの手法を複数組み合わせた手法を利用し、パターニングすることも可能である。ゲート電極5の膜厚は、材料によっても異なるが、通常0.1nm乃至10μmであり、好ましくは0.5nm乃至5μmであり、より好ましくは1nm乃至3μmである。また、ゲート電極と基板を兼ねるような場合は上記の膜厚より大きくてもよい。
(About the formation of gate electrodes)
The gate electrode 5 is formed on the substrate 6 (see FIG. 2 (2)). As the electrode material, the one described above is used. As a method for forming the electrode film, various methods can be used, and for example, a vacuum vapor deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, a sol-gel method and the like are adopted. It is preferable to perform patterning as necessary so as to obtain a desired shape at the time of film formation or after film formation. Various methods can be used as the patterning method, and examples thereof include a photolithography method in which patterning and etching of a photoresist are combined. In addition, a vapor deposition method using a shadow mask, a sputtering method, an inkjet printing method, a printing method such as screen printing, offset printing, and letterpress printing, a soft lithography method such as a microcontact printing method, and a method in which a plurality of these methods are combined are used. It can also be used and patterned. The film thickness of the gate electrode 5 varies depending on the material, but is usually 0.1 nm to 10 μm, preferably 0.5 nm to 5 μm, and more preferably 1 nm to 3 μm. Further, when the gate electrode and the substrate are also used, the film thickness may be larger than the above.
(絶縁体層の形成について)
 ゲート電極5上に絶縁体層4を形成する(図2(3)参照)。絶縁体層4の材料としては上記で説明した材料が用いられる。絶縁体層4を形成するにあたっては各種の方法を用いることができる。例えばスピンコーティング、スプレーコーティング、ディップコーティング、キャスト、バーコート、ブレードコーティングなどの塗布法、スクリーン印刷、オフセット印刷、インクジェット等の印刷法、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、イオンプレーティング法、スパッタリング法、大気圧プラズマ法、CVD法などのドライプロセス法が挙げられる。その他、ゾルゲル法やアルミニウム上のアルマイト、シリコン上の酸化珪素のように金属上に熱酸化法などにより酸化物膜を形成する方法等が採用される。尚、絶縁体層と半導体層が接する部分においては、両層の界面で半導体を構成する化合物の分子を良好に配向させるために、絶縁体層に所定の表面処理を行うこともできる。表面処理の手法は、基板の表面処理と同様のものを用いることができうる。絶縁体層4の膜厚は、その電気容量をあげることで取り出す電気量を増やすことが出来るため、出来るだけ薄い膜であることが好ましい。このときに薄い膜になるとリーク電流が増えるため、その機能を損なわない範囲で薄い方が好ましい。通常0.1nm乃至100μmであり、好ましくは0.5nm乃至50μmであり、より好ましくは5nm乃至10μmである。
(About the formation of the insulator layer)
An insulator layer 4 is formed on the gate electrode 5 (see FIG. 2 (3)). As the material of the insulator layer 4, the material described above is used. Various methods can be used to form the insulator layer 4. For example, application methods such as spin coating, spray coating, dip coating, casting, bar coating, blade coating, screen printing, offset printing, printing methods such as inkjet, vacuum deposition method, molecular beam epitaxial growth method, ion cluster beam method, ion play. Examples thereof include a dry process method such as a ting method, a sputtering method, an atmospheric pressure plasma method, and a CVD method. In addition, a method of forming an oxide film on a metal by a thermal oxidation method such as a sol-gel method, alumite on aluminum, or silicon oxide on silicon is adopted. In the portion where the insulator layer and the semiconductor layer are in contact with each other, a predetermined surface treatment may be applied to the insulator layer in order to favorably orient the molecules of the compounds constituting the semiconductor at the interface between the two layers. As the surface treatment method, the same method as the surface treatment of the substrate can be used. The film thickness of the insulator layer 4 is preferably as thin as possible because the amount of electricity taken out can be increased by increasing its electric capacity. At this time, if the film becomes thin, the leakage current increases, so it is preferable that the film is thin as long as its function is not impaired. It is usually 0.1 nm to 100 μm, preferably 0.5 nm to 50 μm, and more preferably 5 nm to 10 μm.
(有機薄膜の形成について)
 有機薄膜(半導体層)を形成するにあたっては、塗布及び印刷による方法等の各種の方法を用いることができる。具体的にはディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法等の塗布法、インクジェット法、スクリーン印刷法、オフセット印刷法、マイクロコンタクト印刷法などの溶液プロセスによる形成方法が挙げられる。
(About the formation of organic thin films)
In forming the organic thin film (semiconductor layer), various methods such as coating and printing can be used. Specifically, a coating method such as a dip coating method, a die coater method, a roll coater method, a bar coater method, and a spin coating method, a forming method by a solution process such as an inkjet method, a screen printing method, an offset printing method, and a microcontact printing method. Can be mentioned.
 溶液プロセスによって成膜し有機薄膜を得る方法について説明する。有機半導体組成物を、基板(絶縁体層、ソース電極及びドレイン電極の露出部)に塗布する。塗布の方法としては、スピンコート法、ドロップキャスト法、ディップコート法、スプレー法、フレキソ印刷、樹脂凸版印刷などの凸版印刷法、オフセット印刷法、ドライオフセット印刷法、パッド印刷法などの平板印刷法、グラビア印刷法などの凹版印刷法、シルクスクリーン印刷法、謄写版印刷法、リングラフ印刷法などの孔版印刷法、インクジェット印刷法、マイクロコンタクトプリント法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。 The method of forming an organic thin film by a solution process will be described. The organic semiconductor composition is applied to a substrate (insulator layer, exposed portion of source electrode and drain electrode). The coating method includes spin coating method, drop casting method, dip coating method, spray method, flexo printing, letterpress printing method such as resin letterpress printing, offset printing method, dry offset printing method, and flat plate printing method such as pad printing method. , Recessed printing method such as gravure printing method, silk screen printing method, copy printing method, stencil printing method such as lingraph printing method, inkjet printing method, micro contact printing method, etc. Will be printed.
 更に、塗布方法に類似した方法として水面上に上記の組成物を滴下することにより作製した有機薄膜の単分子膜を基板に移し積層するラングミュアプロジェクト法、液晶や融液状態の材料を2枚の基板で挟んで毛管現象で基板間に導入する方法等も採用できる。 Further, as a method similar to the coating method, a Langmuir project method in which a monomolecular film of an organic thin film prepared by dropping the above composition on the water surface is transferred to a substrate and laminated, and two liquid crystal or melted materials are used. It is also possible to adopt a method of sandwiching between substrates and introducing them between substrates by capillarity.
 製膜時における基板や組成物の温度などの環境も重要で、基板や組成物の温度によって電界効果トランジスタの特性が変化する場合があるので、注意深く基板及び組成物の温度を選択するのが好ましい。基板温度は通常0乃至200℃であり、好ましくは10乃至120℃であり、より好ましくは15乃至100℃である。用いる組成物中の溶媒などに大きく依存するため、注意が必要である。 The environment such as the temperature of the substrate and composition at the time of film formation is also important, and the characteristics of the field effect transistor may change depending on the temperature of the substrate and composition, so it is preferable to carefully select the temperature of the substrate and composition. .. The substrate temperature is usually 0 to 200 ° C, preferably 10 to 120 ° C, and more preferably 15 to 100 ° C. Care must be taken as it largely depends on the solvent in the composition used.
 この方法により作製される有機薄膜の膜厚は、機能を損なわない範囲で、薄い方が好ましい。膜厚が厚くなると漏れ電流が大きくなる懸念がある。有機薄膜の膜厚は、通常1nm乃至1μm、好ましくは5nm乃至500nm、より好ましくは10nm乃至300nmである。 The film thickness of the organic thin film produced by this method is preferably thin as long as the function is not impaired. There is a concern that the leakage current will increase as the film thickness increases. The film thickness of the organic thin film is usually 1 nm to 1 μm, preferably 5 nm to 500 nm, and more preferably 10 nm to 300 nm.
 このように形成された有機薄膜(図2(4)参照)は、後処理によりさらに特性を改良することが可能である。例えば、熱処理により、成膜時に生じた膜中の歪みが緩和されること、ピンホール等が低減されること、膜中の配列・配向が制御できる等の理由により、有機半導体特性の向上や安定化を図ることができる。本発明の電界効果トランジスタの作製時にはこの熱処理を行うことが特性の向上の為には効果的である。当該熱処理は有機薄膜を形成した後に基板を加熱することによって行う。熱処理の温度は特に制限は無いが通常、室温から180℃程度で、好ましくは40乃至160℃、さらに好ましくは45乃至150℃である。この時の熱処理時間については特に制限は無いが通常10秒間から24時間、好ましくは30秒間から3時間程度である。その時の雰囲気は大気中でもよいが、窒素やアルゴンなどの不活性雰囲気下でもよい。その他、溶媒蒸気による膜形状のコントロールなどが可能である。 The characteristics of the organic thin film thus formed (see FIG. 2 (4)) can be further improved by post-treatment. For example, heat treatment improves and stabilizes the characteristics of organic semiconductors because the distortion in the film generated during film formation is alleviated, pinholes are reduced, and the arrangement and orientation in the film can be controlled. Can be achieved. When the field effect transistor of the present invention is manufactured, it is effective to perform this heat treatment in order to improve the characteristics. The heat treatment is performed by heating the substrate after forming the organic thin film. The temperature of the heat treatment is not particularly limited, but is usually about 180 ° C. from room temperature, preferably 40 to 160 ° C., and more preferably 45 to 150 ° C. The heat treatment time at this time is not particularly limited, but is usually about 10 seconds to 24 hours, preferably about 30 seconds to 3 hours. The atmosphere at that time may be in the atmosphere, but it may also be in an inert atmosphere such as nitrogen or argon. In addition, the film shape can be controlled by solvent vapor.
 またその他の有機薄膜の後処理方法として、酸素や水素等の酸化性あるいは還元性の気体や、酸化性あるいは還元性の液体などを用いて処理することにより、酸化あるいは還元による特性変化を誘起することもできる。これは例えば膜中のキャリア密度の増加あるいは減少の目的で利用することが出来る。 In addition, as another post-treatment method for organic thin films, treatment with an oxidizing or reducing gas such as oxygen or hydrogen or an oxidizing or reducing liquid induces a change in characteristics due to oxidation or reduction. You can also do it. This can be used, for example, for the purpose of increasing or decreasing the carrier density in the membrane.
 また、ドーピングと呼ばれる手法において、微量の元素、原子団、分子、高分子を有機薄膜に加えることにより、有機薄膜の特性を変化させることができる。例えば、酸素、水素、塩酸、硫酸、スルホン酸等の酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;ナトリウム、カリウム等の金属原子;テトラチアフルバレン(TTF)やフタロシアニン等のドナー化合物をドーピングすることができる。これは、有機薄膜に対して、これらのガスを接触させたり、溶液に浸したり、電気化学的なドーピング処理をすることにより達成できる。これらのドーピングは有機薄膜の作製後でなくても、有機半導体化合物の合成時に添加したり、有機半導体組成物に添加したり、有機薄膜を形成する工程などで添加したりすることができる。また蒸着時に有機薄膜を形成する材料にドーピングに用いる材料を添加して共蒸着したり、有機薄膜を作製する時の周囲の雰囲気に混合したり(ドーピング材料を存在させた環境下で有機薄膜を作製する)、さらにはイオンを真空中で加速して膜に衝突させてドーピングすることも可能である。 Further, in a technique called doping, the characteristics of the organic thin film can be changed by adding a trace amount of elements, atomic groups, molecules, and polymers to the organic thin film. For example, acids such as oxygen, hydrogen, hydrochloric acid, sulfuric acid, sulfonic acid ; Lewis acids such as PF 5 , AsF 5 , FeCl 3 ; halogen atoms such as iodine; metal atoms such as sodium and potassium; tetrathiafluvalene (TTF) and Donor compounds such as phthalocyanine can be doped. This can be achieved by contacting the organic thin film with these gases, immersing them in a solution, or subjecting them to an electrochemical doping treatment. These dopings can be added at the time of synthesizing the organic semiconductor compound, added to the organic semiconductor composition, added in the step of forming the organic thin film, or the like, even if it is not after the production of the organic thin film. In addition, the material used for doping is added to the material that forms the organic thin film during vapor deposition and co-deposited, or the organic thin film is mixed with the surrounding atmosphere when the organic thin film is produced (the organic thin film is formed in an environment where the doping material is present). It is also possible to accelerate the ions in a vacuum and cause them to collide with the membrane for doping.
 これらのドーピングの効果としては、キャリア密度の増加あるいは減少による電気伝導度の変化、キャリアの極性の変化(p型、n型)、フェルミ準位の変化等が挙げられる。 The effects of these dopings include changes in electrical conductivity due to an increase or decrease in carrier density, changes in carrier polarity (p-type, n-type), changes in Fermi levels, and the like.
(ソース電極及びドレイン電極の形成)
 ソース電極1及びドレイン電極3の形成方法等はゲート電極5の場合に準じて形成することができる(図2(5)参照)。また有機薄膜との接触抵抗を低減するために各種添加剤などを用いることが可能である。
(Formation of source electrode and drain electrode)
The source electrode 1 and the drain electrode 3 can be formed in the same manner as in the case of the gate electrode 5 (see FIG. 2 (5)). Further, various additives and the like can be used to reduce the contact resistance with the organic thin film.
(保護層について)
 有機薄膜に保護層7を形成すると、外気の影響を最小限にでき、また、電界効果トランジスタの電気的特性を安定化できるという利点がある(図2(6)参照)。保護層の材料としては前記のものが使用される。保護層7の膜厚は、その目的に応じて任意の膜厚を採用できるが、通常100nm乃至1mmである。
(About the protective layer)
Forming the protective layer 7 on the organic thin film has the advantages that the influence of the outside air can be minimized and the electrical characteristics of the field effect transistor can be stabilized (see FIG. 2 (6)). The above-mentioned material is used as the material of the protective layer. The film thickness of the protective layer 7 can be any film thickness depending on the purpose, but is usually 100 nm to 1 mm.
 保護層を成膜するにあたっては各種の方法を採用しうるが、保護層が樹脂からなる場合は、例えば、樹脂溶液を塗布後、乾燥させて樹脂膜とする方法;樹脂モノマーを塗布あるいは蒸着したのち重合する方法などが挙げられる。成膜後に架橋処理を行ってもよい。保護層が無機物からなる場合は、例えば、スパッタリング法、蒸着法等の真空プロセスでの形成方法や、ゾルゲル法等の溶液プロセスでの形成方法も用いることができる。 Various methods can be adopted for forming the protective layer, but when the protective layer is made of resin, for example, a method of applying a resin solution and then drying to form a resin film; a resin monomer is applied or vapor-deposited. Examples thereof include a method of polymerizing later. Crosslinking may be performed after the film formation. When the protective layer is made of an inorganic substance, for example, a forming method by a vacuum process such as a sputtering method or a vapor deposition method, or a forming method by a solution process such as a sol-gel method can also be used.
 電界効果トランジスタにおいては有機薄膜上の他、各層の間にも必要に応じて保護層を設けることができる。それらの層は電界効果トランジスタの電気的特性の安定化に役立つ場合がある。 In the field effect transistor, a protective layer can be provided as needed between each layer as well as on the organic thin film. These layers may help stabilize the electrical properties of field effect transistors.
 電界効果トランジスタは、メモリー回路デバイス、信号ドライバー回路デバイス、信号処理回路デバイスなどのデジタルデバイスやアナログデバイスとしても利用できる。さらにこれらを組み合わせることにより、ディスプレイ、ICカードやICタグ等の作製が可能となる。更に、電界効果トランジスタは化学物質等の外部刺激によりその特性に変化を起こすことができるので、センサーとしての利用も可能である。 The field effect transistor can also be used as a digital device such as a memory circuit device, a signal driver circuit device, a signal processing circuit device, or an analog device. Further, by combining these, it becomes possible to manufacture a display, an IC card, an IC tag, and the like. Further, since the field effect transistor can change its characteristics by an external stimulus such as a chemical substance, it can also be used as a sensor.
 本発明の有機光電変換素子用材料は上記式(1)で表される縮合多環芳香族化合物を含む。本発明の有機光電変換素子用材料中の式(1)で表される化合物の含有量は、有機光電変換素子用材料を用いる用途において必要とされる性能が発現する限り特に限定されないが、通常は50質量%以上であり、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。
 本発明の有機光電変換素子用材料には、式(1)で表される化合物以外の化合物(例えば式(1)で表される化合物以外の有機光電変換素子用材料等)や添加剤等を併用してもよい。併用し得る化合物や添加剤等は、有機光電変換素子用材料を用いる用途において必要とされる性能が発現する限り特に限定されない。
The material for an organic photoelectric conversion element of the present invention contains a condensed polycyclic aromatic compound represented by the above formula (1). The content of the compound represented by the formula (1) in the material for an organic photoelectric conversion element of the present invention is not particularly limited as long as the performance required in the application using the material for an organic photoelectric conversion element is exhibited, but is usually limited. Is 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more.
The material for an organic photoelectric conversion element of the present invention includes a compound other than the compound represented by the formula (1) (for example, a material for an organic photoelectric conversion element other than the compound represented by the formula (1)), an additive and the like. It may be used together. The compounds and additives that can be used in combination are not particularly limited as long as the performance required in the application using the material for the organic photoelectric conversion element is exhibited.
 本発明の有機光電変換素子は本発明の有機薄膜を有する。有機光電変換素子は、対向する一対の電極膜間に光電変換部(膜)を配置した素子であって、電極膜の上方から光が光電変換部に入射されるものである。光電変換部は前記の入射光に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。有機光電変換素子がアレイ状に多数配置されている場合、入射光量に加え入射位置情報をも示すため、撮像素子となる。又、より光源近くに配置された有機光電変換素子が、光源側から見てその背後に配置された有機光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の有機光電変換素子を積層して用いてもよい。 The organic photoelectric conversion element of the present invention has the organic thin film of the present invention. An organic photoelectric conversion element is an element in which a photoelectric conversion unit (film) is arranged between a pair of electrode films facing each other, and light is incident on the photoelectric conversion unit from above the electrode films. The photoelectric conversion unit generates electrons and holes in response to the incident light, and a semiconductor reads out a signal corresponding to the electric charge to indicate the amount of incident light according to the absorption wavelength of the photoelectric conversion film unit. Is. A transistor for reading may be connected to the electrode film on the side where light is not incident. When a large number of organic photoelectric conversion elements are arranged in an array, it is an image sensor because it shows incident position information in addition to the amount of incident light. Further, when the organic photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the organic photoelectric conversion element arranged behind the organic photoelectric conversion element when viewed from the light source side, a plurality of organic photoelectric conversion elements may be used. It may be used by laminating.
 本発明の有機光電変換素子は、上記式(1)で表される縮合多環芳香族化合物を含む有機薄膜を光電変換部の構成材料として用いたものである。
 光電変換部は、光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等から成る群より選択される一種又は複数種の光電変換層以外の有機薄膜層とから成ることが多い。本発明の縮合多環芳香族化合物は光電変換層の有機薄膜層として用いることが好ましいが、他にも上記の有機薄膜層(特に、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層)としても利用することも可能である。電子ブロック層及び正孔ブロック層はキャリアブロック層とも表される。又、光電変換層に用いる場合は本発明の縮合多環芳香族化合物のみで構成されていてもよいが、本発明の縮合多環芳香族化合物以外に有機半導体材料を含んでいてもよい。これらの有機薄膜層は積層構造でもよいが、材料を共蒸着して成る有機薄膜を含んでいてもよく、併せて、共蒸着膜や単膜或いは別の共蒸着膜が複数層形成されて成り、機能する様な有機薄膜であってもよい。
The organic photoelectric conversion element of the present invention uses an organic thin film containing a condensed polycyclic aromatic compound represented by the above formula (1) as a constituent material of the photoelectric conversion unit.
The photoelectric conversion unit is one or a plurality of types selected from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. It often consists of an organic thin film layer other than the photoelectric conversion layer. The condensed polycyclic aromatic compound of the present invention is preferably used as an organic thin film layer of a photoelectric conversion layer, but in addition to the above organic thin film layers (particularly, an electron transport layer, a hole transport layer, an electron block layer, and holes). It can also be used as a block layer). The electron block layer and the hole block layer are also represented as a carrier block layer. When used in a photoelectric conversion layer, it may be composed of only the condensed polycyclic aromatic compound of the present invention, but may contain an organic semiconductor material in addition to the condensed polycyclic aromatic compound of the present invention. These organic thin film layers may have a laminated structure, but may include an organic thin film formed by co-depositing a material, and at the same time, a co-deposited film, a single film, or another co-deposited film is formed in a plurality of layers. , It may be an organic thin film that functions.
 本発明の有機光電変換素子に用いられる電極膜は、後述する光電変換部に含まれる光電変換層が正孔輸送性を有する場合や光電変換層以外の有機薄膜層が正孔輸送性を有する正孔輸送層である場合には、該光電変換層やその他の有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、又光電変換部に含まれる光電変換層が電子輸送性を有する場合や、有機薄膜層が電子輸送性を有する電子輸送層である場合には、該光電変換層やその他の有機薄膜層から電子を取り出して、これを吐出する役割を果たすものである。よって、電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する光電変換層やその他の有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。電極膜に用いる材料の導電性も、有機光電変換素子の受光を必要以上に妨げなければ特に限定されないが、有機光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば、電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV-オゾン処理やプラズマ処理等を施してもよい。 The electrode film used in the organic photoelectric conversion element of the present invention is positive when the photoelectric conversion layer included in the photoelectric conversion unit described later has hole transportability or when the organic thin film layer other than the photoelectric conversion layer has hole transportability. In the case of a hole transport layer, it plays a role of extracting holes from the photoelectric conversion layer and other organic thin film layers and collecting them, and the photoelectric conversion layer included in the photoelectric conversion unit has electron transportability. In some cases, or when the organic thin film layer is an electron transporting layer having electron transporting properties, it plays a role of extracting electrons from the photoelectric conversion layer and other organic thin film layers and discharging them. Therefore, the material that can be used as the electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adhesion to the adjacent photoelectric conversion layer and other organic thin film layers, electron affinity, ionization potential, stability, etc. It is preferable to select in consideration of. Materials that can be used as the electrode film include conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); gold, silver, platinum, chromium and aluminum. , Metals such as iron, cobalt, nickel and tungsten; inorganic conductive substances such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline; carbon and the like. If necessary, a plurality of these materials may be mixed and used, or a plurality of these materials may be laminated in two or more layers. The conductivity of the material used for the electrode film is not particularly limited as long as it does not interfere with the light reception of the organic photoelectric conversion element more than necessary, but it is preferably as high as possible from the viewpoint of the signal strength of the organic photoelectric conversion element and the power consumption. For example, an ITO film having a sheet resistance value of 300 Ω / □ or less functions sufficiently as an electrode film, but a commercially available substrate having an ITO film having a conductivity of several Ω / □ is also available. Therefore, it is desirable to use a substrate having such high conductivity. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm. Examples of the method for forming a film such as ITO include a conventionally known vapor deposition method, electron beam method, sputtering method, chemical reaction method, coating method and the like. The ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like, if necessary.
 電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO及びFTO(フッ素ドープ酸化スズ)等が挙げられる。光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 As the material of the transparent electrode film used for at least one of the electrode films on the side where light is incident, ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide) , GZO (gallium-doped zinc oxide), TiO 2 and FTO (fluorinated tin oxide) and the like. The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and particularly preferably 95% or more. ..
 又、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは上記した一対の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。 Further, when a plurality of photoelectric conversion layers having different wavelengths to be detected are laminated, the electrode film used between the photoelectric conversion layers (this is an electrode film other than the pair of electrode films described above) is the respective photoelectric conversion. It is necessary to transmit light having a wavelength other than the light detected by the layer, and it is preferable to use a material that transmits 90% or more of the incident light, and a material that transmits 95% or more of the light is used for the electrode film. Is more preferable.
 電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマが与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、又はプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。 It is preferable that the electrode film is plasma-free. By producing these electrode films in a plasma-free manner, the influence of plasma on the substrate on which the electrode film is provided can be reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that plasma is not generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state in which the plasma is reduced.
 電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と称し、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と称する。 Examples of devices that do not generate plasma during film formation of the electrode film include electron beam vapor deposition devices (EB thin film deposition devices) and pulse laser vapor deposition devices. The method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and the method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
 成膜中プラズマを減ずることが出来るような状態を実現できる装置としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。 As a device that can realize a state in which plasma can be reduced during film formation, for example, an opposed target type sputtering device, an arc plasma vapor deposition device, or the like can be considered.
 透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜との間の導通が増すためと考えられる。そのため、Alなど膜質が比較的劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。 When the transparent conductive film is used as an electrode film (for example, the first conductive film), a DC short circuit or an increase in leakage current may occur. One of the causes is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transient Conductive Oxide), and the conduction between the transparent conductive film and the electrode film on the opposite side is increased. it is conceivable that. Therefore, when a material having a relatively inferior film quality such as Al is used for the electrode, the leakage current is unlikely to increase. By controlling the film thickness of the electrode film according to the film thickness (crack depth) of the photoelectric conversion layer, an increase in leakage current can be suppressed.
 通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の光センサー用有機光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。又、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。 Normally, when the conductive film is made thinner than a predetermined value, a rapid increase in resistance value occurs. The sheet resistance of the conductive film in the organic photoelectric conversion element for an optical sensor of the present embodiment is usually 100 to 10000 Ω / □, and the degree of freedom in film thickness is large. Further, the thinner the transparent conductive film, the smaller the amount of light absorbed, and generally the higher the light transmittance. When the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion ability is improved, which is very preferable.
 本発明の有機光電変換素子が有する光電変換部は、光電変換層及び光電変換層以外の有機薄膜層を含む場合もある。光電変換部を構成する光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2乃至10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。光電変換層の厚みは通常、50乃至500nmである。 The photoelectric conversion unit included in the organic photoelectric conversion element of the present invention may include an organic thin film layer other than the photoelectric conversion layer and the photoelectric conversion layer. An organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion unit, but the organic semiconductor film may be one layer or a plurality of layers, and in the case of one layer, a P-type organic semiconductor film, An N-type organic semiconductor film or a mixed film thereof (bulk heterostructure) is used. On the other hand, in the case of a plurality of layers, there are about 2 to 10 layers, which is a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) thereof is laminated, and the layers are layers. A buffer layer may be inserted in. The thickness of the photoelectric conversion layer is usually 50 to 500 nm.
 光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。本発明の縮合多環芳香族化合物との組み合わせによってP型有機半導体、又はN型有機半導体として機能する。 The organic semiconductor film of the photoelectric conversion layer has a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, a polysilane compound, a thiophene compound, and a phthalocyanine, depending on the wavelength band to be absorbed. Compounds, cyanine compounds, merocyanine compounds, oxonor compounds, polyamine compounds, indol compounds, pyrrol compounds, pyrazole compounds, polyarylene compounds, carbazole derivatives, naphthalene derivatives, anthracene derivatives, chrysene derivatives, phenanthrene derivatives, pentacene derivatives, phenylbutadiene derivatives, styryl Derivatives, quinoline derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluorantene derivatives, quinacridone derivatives, coumarin derivatives, porphyrin derivatives, fullerene derivatives, metal complexes (Ir complex, Pt complex, Eu complex, etc.) and the like can be used. It functions as a P-type organic semiconductor or an N-type organic semiconductor in combination with the condensed polycyclic aromatic compound of the present invention.
 本発明の縮合多環芳香族化合物を光電変換層として用いた場合には、前述の組み合わせる有機半導体のHOMO(Highest Occupied Molecular Orbital)準位よりも浅いHOMO準位を有することが好ましい。これにより、暗電流の発生の抑制に加えて、光電変換効率を向上させることが可能となる。 When the condensed polycyclic aromatic compound of the present invention is used as the photoelectric conversion layer, it is preferable to have a HOMO level shallower than the HOMO (Highest Occupied Molecular Orbital) level of the organic semiconductor to be combined described above. This makes it possible to improve the photoelectric conversion efficiency in addition to suppressing the generation of dark current.
 本発明の有機光電変換素子において、光電変換部を構成する光電変換層以外の有機薄膜層は、光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層から成る群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。 In the organic photoelectric conversion element of the present invention, the organic thin film layer other than the photoelectric conversion layer constituting the photoelectric conversion unit is a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, an electron block layer, and a hole block. It is also used as a layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. In particular, by using it as one or more thin film layers selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer and a hole block layer, an element that efficiently converts even weak light energy into an electric signal can be obtained. Therefore, it is preferable.
 電子輸送層は、光電変換層で発生した電子を電極膜へ輸送する役割と、電子輸送先の電極膜から光電変換層に正孔が移動するのをブロックする役割とを果たす。正孔輸送層は、発生した正孔を光電変換層から電極膜へ輸送する役割と、正孔輸送先の電極膜から光電変換層に電子が移動するのをブロックする役割とを果たす。電子ブロック層は、電極膜から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。正孔ブロック層は、電極膜から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。
 正孔ブロック層は正孔阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。正孔ブロック層に使用することができる化合物としては、バソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体などが挙げられ、これらのうち、一種又は二種以上を用いることができる。
The electron transport layer plays a role of transporting electrons generated in the photoelectric conversion layer to the electrode film and a role of blocking holes from moving from the electrode film of the electron transport destination to the photoelectric conversion layer. The hole transport layer plays a role of transporting generated holes from the photoelectric conversion layer to the electrode film and a role of blocking the movement of electrons from the electrode film of the hole transport destination to the photoelectric conversion layer. The electron block layer plays a role of hindering the movement of electrons from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current. The hole block layer has a function of hindering the movement of holes from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.
The hole block layer is formed by laminating or mixing a hole blocking substance alone or two or more kinds. The hole-blocking substance is not limited as long as it is a compound capable of preventing holes from flowing out from the electrode to the outside of the device. Examples of the compound that can be used for the hole blocking layer include phenanthroline derivatives such as vasophenanthroline and vasocuproin, silol derivatives, quinolinol derivative metal complexes, oxaziazole derivatives, oxazole derivatives, and quinoline derivatives. One type or two or more types can be used.
 図3に本発明の有機光電変換素子の代表的な素子構造を示すが、本発明はこの構造に限定されるものではない。図3の態様例においては、1が絶縁層、2が一方の電極膜、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜、7が絶縁基材又は他の有機光電変換素子をそれぞれ表す。図中には読み出し用のトランジスタを記載していないが、2又は6の電極膜と接続されていればよく、更には光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側に成膜されていてもよい。光電変換素子への光の入射は、光電変換層4を除く構成要素が、光電変換層の主たる吸収波長の光を入射することを極度に阻害することがなければ、上部若しくは下部からの何れからでもよい。 FIG. 3 shows a typical element structure of the organic photoelectric conversion element of the present invention, but the present invention is not limited to this structure. In the example of the embodiment of FIG. 3, 1 is an insulating layer, 2 is one electrode film, 3 is an electron block layer, 4 is a photoelectric conversion layer, 5 is a hole block layer, 6 is the other electrode film, and 7 is an insulating group. Represents a material or other organic photoelectric conversion element, respectively. Although the transistor for reading is not shown in the figure, it suffices if it is connected to the electrode film of 2 or 6, and if the photoelectric conversion layer 4 is transparent, the side opposite to the side on which the light is incident is opposite. It may be formed on the outside of the electrode film of. Light is incident on the photoelectric conversion element from either the upper part or the lower part unless the components other than the photoelectric conversion layer 4 extremely prevent the light of the main absorption wavelength of the photoelectric conversion layer from being incident. But it may be.
 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。実施例中、「部」は特に指定しない限り「質量部」を、また「%」は「質量%」をそれぞれ表す。「M」はモル濃度を表す。また、反応温度は特に断りのない限り、反応系内の内温を記載した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, "parts" represents "parts by mass" and "%" represents "% by mass" unless otherwise specified. "M" represents the molar concentration. In addition, the reaction temperature is the internal temperature in the reaction system unless otherwise specified.
 実施例において、EI-MSはサーモサイエンティック社製のISQ7000を、熱分析測定はメトラートレド社製のTGA/DSC1を、核磁気共鳴(NMR)は日本電子製のJNM-EC400を用いて測定した。
 電界効果トランジスタの移動度はAgilent製の移動度評価半導体パラメータであるB1500または4155Cを用いて評価した。有機薄膜の表面は日立ハイテクノロジー社製の原子間力顕微鏡顕微鏡(以下、AFM)AFM5400Lを用いて観察した。
 実施例中の有機光電変換素子の電流電圧の印加測定は、半導体パラメータアナライザ4200-SCS(ケースレーインスツルメンツ社製)を用いて行った。入射光の照射はPVL-3300(朝日分光社製)により、照射光半値幅20nmにて行った。実施例中の明暗比は、光照射を行った場合の電流を暗所での電流で割ったものを意味する。
In the examples, EI-MS was measured using ISQ7000 manufactured by Thermo Scientific, thermal analysis measurement was performed using TGA / DSC1 manufactured by Metertredo, and nuclear magnetic resonance (NMR) was measured using JNM-EC400 manufactured by JEOL Ltd. ..
The mobility of the field effect transistor was evaluated using B1500 or 4155C, which is a mobility evaluation semiconductor parameter manufactured by Agilent. The surface of the organic thin film was observed using an atomic force microscope (AFM) AFM5400L manufactured by Hitachi High-Technology.
The current and voltage application measurement of the organic photoelectric conversion element in the examples was performed using a semiconductor parameter analyzer 4200-SCS (manufactured by Keithley Instruments). Irradiation of the incident light was performed by PVL-3300 (manufactured by Asahi Spectroscopy Co., Ltd.) with a half-value width of 20 nm of the irradiation light. The light-dark ratio in the examples means a current obtained by dividing the current when light irradiation is performed by the current in a dark place.
実施例1(具体例のNo.5で表される縮合多環芳香族化合物の合成)
(工程1)2-(ベンゾ[1,2-b:5,4-b’]ジチオフェン-2-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランの合成
 THF(140部)に公知の方法により合成したベンゾ[1,2-b:5,4-b’]ジチオフェン(5.0部)を混合し、窒素雰囲気下、-75℃で2.8Mノルマルブチルリチウム(10.4部)を加え、1時間攪拌した。その後、-75℃でイソプロポキシボロン酸ピナコール(5.8部)を加え、30分間攪拌し、20℃まで昇温した後さらに2時間攪拌した。得られた反応液を、水(100部)を用いてクエンチし、クロロホルムを用いて分液抽出した。得られた有機層を、硫酸ナトリウムを用いて乾燥し、溶媒を減圧留去した。得られた固体を、シリカゲルカラム(展開溶媒:トルエン)で精製し、さらにトルエン中で再結晶することで、2-(ベンゾ[1,2-b:5,4-b’]ジチオフェン-2-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(3.6部、収率45%)を得た。
Example 1 (Synthesis of condensed polycyclic aromatic compound represented by No. 5 of Specific Example)
(Step 1) Synthesis of 2- (benzo [1,2-b: 5,4-b'] dithiophene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane THF (140 parts) was mixed with benzo [1,2-b: 5,4-b'] dithiophene (5.0 parts) synthesized by a known method, and 2.8 M normal butyl at −75 ° C. under a nitrogen atmosphere. Lithium (10.4 parts) was added and the mixture was stirred for 1 hour. Then, pinacol isopropoxyboronic acid (5.8 parts) was added at −75 ° C., and the mixture was stirred for 30 minutes, heated to 20 ° C., and then stirred for another 2 hours. The obtained reaction solution was quenched with water (100 parts) and separated and extracted with chloroform. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: toluene) and recrystallized in toluene to obtain 2- (benzo [1,2-b: 5,4-b'] dithiophene-2-. Il) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.6 parts, yield 45%) was obtained.
(工程2)2,7-ビス(ベンゾ[1,2-b:5,4-b’]ジチオフェン-2-イル)[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンの合成
 DMF(300部)に、水(12部)、特許第4945757号に記載の方法で合成した2,7-ジヨード[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(1.9部)、工程1で得られた2-(ベンゾ[1,2-b:5,4-b’]ジチオフェン-2-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(3.6部)、リン酸三カリウム(3.2部)、ビス(ジベンジリデンアセトン)パラジウム(0)(0.13部)及びジシクロヘキシル(2’,4’,6’-トリイソプロピル-[1,1’-ビフェニル]-2-イル)ホスフィン(XPhos)(0.22部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(300部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.5で表される化合物(0.6部、収率26%)を得た。
(Step 2) 2,7-Bis (benzo [1,2-b: 5,4-b'] dithiophen-2-yl) [1] benzothioeno [3,2-b] [1] synthesis of benzothiophene DMF (300 parts), water (12 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (1.9 parts) synthesized by the method described in Patent No. 4945757. , 2- (Benzo [1,2-b: 5,4-b'] dithiophene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane obtained in step 1. (3.6 parts), tripotassium phosphate (3.2 parts), bis (dibenzylideneacetone) palladium (0) (0.13 parts) and dicyclohexyl (2', 4', 6'-triisopropyl- [ 1,1′-biphenyl] -2-yl) phosphine (XPhos) (0.22 part) was mixed, and the mixture was stirred at 80 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (300 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 5 (0.6 parts, yield 26%) was obtained.
 前記で得られた具体例のNo.5で表される化合物のEI-MS及び熱分析測定の結果は以下の通りであった。
EI-MS  m/z : Calcd for C3416 [M]: 615.96. Found: 616.10
熱分析(吸熱ピーク):550℃までに吸熱ピークなし(窒素雰囲気条件)
No. of the specific example obtained above. The results of EI-MS and thermal analysis measurement of the compound represented by 5 were as follows.
EI-MS m / z: Calcd for C 34 H 16 S 6 [M + ]: 615.96. Found: 616.10
Thermal analysis (endothermic peak): No endothermic peak by 550 ° C (nitrogen atmosphere condition)
実施例2(具体例のNo.14で表される縮合多環芳香族化合物の合成)
(工程3)2-(ベンゾ[1,2-b:4,5-b’]ジチオフェン-2-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランの合成
 THF(140部)に公知の方法により合成したベンゾ[1,2-b:4,5-b’]ジチオフェン(5.0部)を混合し、窒素雰囲気下、-75℃で2.8Mノルマルブチルリチウム(10.4部)を加え、1時間攪拌した。その後、-75℃でイソプロポキシボロン酸ピナコール(5.8部)を加え、30分間攪拌し、20℃まで昇温した後さらに2時間攪拌した。得られた反応液を、水(100部)を用いてクエンチし、クロロホルムを用いて分液抽出した。得られた有機層を、硫酸ナトリウムを用いて乾燥し、溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:トルエン)で精製し、さらにトルエン中で再結晶することで、2-(ベンゾ[1,2-b:4,5-b’]ジチオフェン-2-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(3.6部、収率45%)を得た。
Example 2 (Synthesis of condensed polycyclic aromatic compound represented by No. 14 of Specific Example)
(Step 3) Synthesis of 2- (benzo [1,2-b: 4,5-b'] dithiophene-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane THF (140 parts) was mixed with benzo [1,2-b: 4,5-b'] dithiophene (5.0 parts) synthesized by a known method, and 2.8 M normal butyl at −75 ° C. under a nitrogen atmosphere. Lithium (10.4 parts) was added and the mixture was stirred for 1 hour. Then, pinacol isopropoxyboronic acid (5.8 parts) was added at −75 ° C., and the mixture was stirred for 30 minutes, heated to 20 ° C., and then stirred for another 2 hours. The obtained reaction solution was quenched with water (100 parts) and separated and extracted with chloroform. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: toluene) and recrystallized in toluene to obtain 2- (benzo [1,2-b: 4,5-b'] dithiophene-2-yl. ) -4,4,5,5-Tetramethyl-1,3,2-dioxaborolane (3.6 parts, yield 45%) was obtained.
(工程4)2,7-ビス(ベンゾ[1,2-b:4,5-b’]ジチオフェン-2-イル)[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンの合成
 DMF(300部)に、水(12部)、特許第4945757号に記載の方法で合成した
2,7-ジヨード[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(1.9部)、工程3で得られた2-(ベンゾ[1,2-b:4,5-b’]ジチオフェン-2-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(3.6部)、リン酸三カリウム(3.2部)、ビス(ジベンジリデンアセトン)パラジウム(0)(0.13部)及びジシクロヘキシル(2’,4’,6’-トリイソプロピル-[1,1’-ビフェニル]-2-イル)ホスフィン(XPhos)(0.22部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(300部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.14で表される化合物(0.9部、収率40%)を得た。
(Step 4) 2,7-Bis (benzo [1,2-b: 4,5-b'] dithiophen-2-yl) [1] benzothioenoe [3,2-b] [1] synthesis of benzothiophene DMF (300 parts), water (12 parts), 2,7-diiodo [1] benzothiophene [3,2-b] [1] benzothiophene (1.9 parts) synthesized by the method described in Patent No. 4945757. , 2- (Benzo [1,2-b: 4,5-b'] dithiophen-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane obtained in step 3 (3.6 parts), tripotassium phosphate (3.2 parts), bis (dibenzylideneacetone) palladium (0) (0.13 parts) and dicyclohexyl (2', 4', 6'-triisopropyl- [ 1,1′-biphenyl] -2-yl) phosphin (XPhos) (0.22 part) was mixed, and the mixture was stirred at 80 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (300 parts) was added, and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by No. 14 (0.9 parts, yield 40%) was obtained.
 前記で得られた具体例のNo.14で表される化合物のEI-MS及び熱分析測定の結果は以下の通りであった。
EI-MS  m/z : Calcd for C3416 [M]: 615.96. Found: 616.20
熱分析(吸熱ピーク):550℃までに吸熱ピークなし(窒素雰囲気条件)
No. of the specific example obtained above. The results of EI-MS and thermal analysis measurement of the compound represented by No. 14 were as follows.
EI-MS m / z: Calcd for C 34 H 16 S 6 [M + ]: 615.96. Found: 616.20
Thermal analysis (endothermic peak): No endothermic peak by 550 ° C (nitrogen atmosphere condition)
実施例3(本発明の電界効果トランジスタの作製)
 1,1,1,3,3,3-ヘキサメチルジシラザンにより表面処理を施したSi熱酸化膜付きのnドープシリコンウェハー上に、実施例1で得られた具体例のNo.5で表される縮合多環芳香族化合物を抵抗加熱真空蒸着により100nm製膜した。次に、前記で得られた有機薄膜上にシャドウマスクを用いてAuを真空蒸着し、チャネル長20乃至200μm、チャネル幅は2000μmのソース電極及びドレイン電極をそれぞれ作製し、本発明のトップコンタクト型電界効果トランジスタ(FET)素子1(構成は図1Bに示される)を作製した。なお、電界効果トランジスタ素子1においては、熱酸化膜付きのnドープシリコンウェハーにおける熱酸化膜が絶縁層の機能を有し、nドープシリコンウェハーが基板及びゲート電極の機能を兼ね備えている。
Example 3 (Preparation of Field Effect Transistor of the Present Invention)
No. 1 of the specific example obtained in Example 1 was placed on an n-doped silicon wafer with a Si thermal oxide film surface-treated with 1,1,1,3,3,3-hexamethyldisilazane. The condensed polycyclic aromatic compound represented by 5 was formed into a 100 nm film by resistance heating vacuum deposition. Next, Au was vacuum-deposited on the organic thin film obtained above using a shadow mask to prepare a source electrode and a drain electrode having a channel length of 20 to 200 μm and a channel width of 2000 μm, respectively, to prepare the top contact type of the present invention. A field effect transistor (FET) element 1 (configuration shown in FIG. 1B) was made. In the field effect transistor element 1, the thermal oxide film in the n-doped silicon wafer with the thermal oxide film has the function of an insulating layer, and the n-doped silicon wafer also has the functions of the substrate and the gate electrode.
実施例4(本発明の電界効果トランジスタの作製)
 実施例1で得られた具体例のNo.5で表される縮合芳香族化合物を実施例2で得られた具体例のNo.14で表される化合物に変更した以外は実施例3に準じた方法で、本発明の電界効果トランジスタ(FET)素子2を作製した。
Example 4 (Preparation of Field Effect Transistor of the Present Invention)
No. of the specific example obtained in Example 1. The condensed aromatic compound represented by No. 5 was used in Example No. 2 obtained in Example 2. The field effect transistor (FET) element 2 of the present invention was produced by a method according to Example 3 except that the compound was changed to the compound represented by 14.
比較例1(比較用の電界効果トランジスタの作製)
 実施例1で得られた具体例のNo.5で表される縮合多環芳香族化合物を特開2018-014474号公報に記載の方法で合成した下記式(x)で表される化合物に変更した以外は実施例3に準じた方法で、比較用の電界効果トランジスタ(FET)素子3を作製した。
Comparative Example 1 (Manufacturing of Field Effect Transistor for Comparison)
No. of the specific example obtained in Example 1. The method according to Example 3 was used except that the condensed polycyclic aromatic compound represented by 5 was changed to the compound represented by the following formula (x) synthesized by the method described in JP-A-2018-014474. A field effect transistor (FET) element 3 for comparison was manufactured.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(電界効果トランジスタ素子の耐熱性試験)
 電界効果トランジスタ素子の性能は、ゲートに電位をかけた状態でソース電極とドレイン電極の間に電位をかけた時に流れる電流量に依存する。この電流値の測定結果を、半導体層に生じるキャリア種の電気特性を表現する下記式(a)に用いることにより、移動度を算出することができる。
     Id=ZμCi(Vg-Vt)/2L・・・(a)
 式(a)中、Idは飽和したソース・ドレイン電流値、Zはチャネル幅、Ciは絶縁体の電気容量、Vgはゲート電位、Vtはしきい電位、Lはチャネル長であり、μは決定する移動度(cm/Vs)である。Ciは用いたSiO絶縁膜の誘電率、Z、Lは有機トランジスタデバイスのデバイス構造よりに決まり、Id、Vgは電界効果トランジスタデバイスの電流値の測定時に決まり、VtはId、Vgから求めることができる。式(a)に各値を代入することで、それぞれのゲート電位での移動度を算出することができる。
(Heat resistance test of field effect transistor element)
The performance of the field effect transistor element depends on the amount of current that flows when a potential is applied between the source electrode and the drain electrode while the potential is applied to the gate. The mobility can be calculated by using the measurement result of this current value in the following formula (a) expressing the electrical characteristics of the carrier species generated in the semiconductor layer.
Id = ZμCi (Vg-Vt) 2 / 2L ... (a)
In formula (a), Id is the saturated source / drain current value, Z is the channel width, Ci is the capacitance of the insulator, Vg is the gate potential, Vt is the threshold potential, L is the channel length, and μ is determined. Mobility mobility (cm 2 / Vs). Ci is determined by the dielectric constant of the SiO 2 insulating film used, Z and L are determined by the device structure of the organic transistor device, Id and Vg are determined when measuring the current value of the field effect transistor device, and Vt is determined by Id and Vg. Can be done. By substituting each value into the equation (a), the mobility at each gate potential can be calculated.
 実施例3、4及び比較例1に準じた方法で1枚の基板上に3つの電界効果トランジスタ素子をそれぞれ作製し、大気圧下、120℃で30分間の加熱を施した後、上記の方法でキャリア移動度μを測定した。次いで、前記120℃の加熱後のキャリア移動度μの測定に供した電界効果トランジスタ素子1乃至3に、大気圧下、更に150℃で30分間の加熱を施した後、上記の方法でキャリア移動度μを測定した。最後に、前記150℃の加熱後のキャリア移動度μの測定に供した電界効果トランジスタ素子1乃至3に、大気圧下、更に180℃で30分間の加熱を施した後、上記の方法でキャリア移動度μを測定した。尚、耐熱性の判断基準は以下の通りである。結果を表1に示した。
 尚、表1中、加熱に供する前に電界効果トランジスタが壊れており、試験を実施できなかった箇所は「-」とした。
・判断基準
 A:電界効果トランジスタ作製直後の移動度を基準とした加熱後の移動度の変化率が30%未満
 B:電界効果トランジスタ作製直後の移動度を基準とした加熱後の移動度の変化率が30%以上
 C:加熱により電界効果トランジスタ素子が壊れ、評価不可能
Three field-effect transistor elements are respectively produced on one substrate by the method according to Examples 3 and 4 and Comparative Example 1, and after heating at 120 ° C. for 30 minutes under atmospheric pressure, the above method The carrier mobility μ was measured in. Next, the field-effect transistor elements 1 to 3 used for measuring the carrier mobility μ after heating at 120 ° C. are heated under atmospheric pressure at 150 ° C. for 30 minutes, and then carrier transfer is performed by the above method. The mobility μ was measured. Finally, the field-effect transistor elements 1 to 3 subjected to the measurement of the carrier mobility μ after heating at 150 ° C. are heated under atmospheric pressure at 180 ° C. for 30 minutes, and then the carriers are subjected to the above method. The mobility μ was measured. The criteria for determining heat resistance are as follows. The results are shown in Table 1.
In Table 1, the places where the field effect transistor was broken before being heated and the test could not be performed were marked with "-".
-Judgment criteria A: The rate of change in mobility after heating based on the mobility immediately after manufacturing the field effect transistor is less than 30% B: Change in mobility after heating based on the mobility immediately after manufacturing the field effect transistor Rate is 30% or more C: Field effect transistor element is broken by heating and cannot be evaluated.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(有機薄膜の耐熱性試験)
 実施例1で得られた具体例のNo.5で表される縮合多環芳香族化合物、実施例2で得られた具体例のNo.14で表される縮合多環芳香族化合物、及び式(x)で表される化合物を用いて、実施例3に記載の蒸着法で1,1,1,3,3,3-ヘキサメチルジシラザンにより表面処理を施したSi熱酸化膜付きのnドープシリコンウェハー上に100nmの有機薄膜をそれぞれ作製した。前記で得られた有機薄膜に、大気圧下、120℃で30分間の加熱を施した後に一旦室温まで冷却し、次いで大気圧下、150℃で30分間の加熱を施した後に一旦室温まで冷却し、更に大気圧下、180℃で30分間の加熱を施した後に室温まで冷却し、有機薄膜作製直後の平均粗さ(Ra)、及び120℃、150℃並びに180℃で加熱した後の有機薄膜の平均粗さ(Ra)をAFMの解析プログラムを用いて算出した。結果を表2に示した。
 また、前記で用いた平均粗さ算出用の有機薄膜の表面状態をAFMで観察(走査範囲:1μm)した。具体例のNo.5で表される縮合多環芳香族化合物を含む有機薄膜のAFMを図4に、具体例のNo.14で表される縮合多環芳香族化合物を含む有機薄膜のAFMを図5に、式(x)で表される化合物を含む有機薄膜のAFMを図6にそれぞれ示した。
(Heat resistance test of organic thin film)
No. of the specific example obtained in Example 1. The condensed polycyclic aromatic compound represented by No. 5 and No. 2 of the specific example obtained in Example 2. Using the condensed polycyclic aromatic compound represented by 14 and the compound represented by the formula (x), 1,1,1,3,3,3-hexamethyldi by the vapor deposition method described in Example 3 Organic thin films of 100 nm were prepared on n-doped silicon wafers with Si thermal oxide films surface-treated with silazanes. The organic thin film obtained above is heated at 120 ° C. for 30 minutes under atmospheric pressure and then cooled to room temperature, then heated at 150 ° C. for 30 minutes under atmospheric pressure and then cooled to room temperature. Then, after further heating at 180 ° C. for 30 minutes under atmospheric pressure, the mixture was cooled to room temperature, and the average roughness (Ra) immediately after the formation of the organic thin film, and the organic after heating at 120 ° C., 150 ° C. and 180 ° C. The average roughness (Ra) of the thin film was calculated using an AFM analysis program. The results are shown in Table 2.
Further, the surface state of the organic thin film for calculating the average roughness used above was observed by AFM (scanning range: 1 μm). Specific example No. The AFM of the organic thin film containing the condensed polycyclic aromatic compound represented by No. 5 is shown in FIG. The AFM of the organic thin film containing the condensed polycyclic aromatic compound represented by 14 is shown in FIG. 5, and the AFM of the organic thin film containing the compound represented by the formula (x) is shown in FIG.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1の結果から、本発明の電界効果トランジスタが比較用の電界効果トランジスタよりも耐熱性に優れていることは明らかである。
 また、表2の結果からは、具体例のNo.5とNo.14表される本発明の縮合多環芳香族化合物を含む有機薄膜は、比較用の式(x)で表される化合物を含む有機薄膜よりも加熱試験前後の平均粗さの変化が小さいことがわかる。これは、図4、5に示した本発明の縮合多環芳香族化合物を含む有機薄膜のAFMで観察した像と、図6に示した比較用の式(x)で表される化合物を含む有機薄膜のAFMで観察した像との比較から明らかである。
From the results in Table 1, it is clear that the field-effect transistor of the present invention has better heat resistance than the comparative field-effect transistor.
In addition, from the results in Table 2, No. 5 and No. The organic thin film containing the condensed polycyclic aromatic compound of the present invention represented by 14 has a smaller change in average roughness before and after the heating test than the organic thin film containing the compound represented by the comparative formula (x). Recognize. This includes the image observed by the AFM of the organic thin film containing the condensed polycyclic aromatic compound of the present invention shown in FIGS. 4 and 5 and the compound represented by the comparative formula (x) shown in FIG. It is clear from the comparison with the image observed by AFM of the organic thin film.
実施例5(実施例1で得られた具体例のNo.5で表される化合物の有機光電変換素子の作製と評価)
 ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、実施例1で得られた具体例のNo.5で表される縮合多環芳香族化合物を抵抗加熱真空蒸着により90nmの膜厚に成膜した。次に、電極としてアルミニウムを100nm真空成膜し、本発明の有機光電変換素子を作製した。ITOとアルミニウムを電極として、5Vの電圧を印加し、照射光波長が460nmの光照射を行った場合の明暗比は4.4×10であった。
Example 5 (Preparation and evaluation of an organic photoelectric conversion element of the compound represented by No. 5 of the specific example obtained in Example 1)
No. of Specific Example obtained in Example 1 was applied to ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm). The condensed polycyclic aromatic compound represented by 5 was formed into a film having a film thickness of 90 nm by resistance heating vacuum deposition. Next, aluminum was vacuum-deposited at 100 nm as an electrode to produce the organic photoelectric conversion element of the present invention. As an electrode of ITO and aluminum, by applying a voltage of 5V, contrast ratio when an emission light wavelength was 460nm of light irradiation was 4.4 × 10 5.
比較例2(比較用の有機光電変換素子の作製と評価)
 実施例1で得られた具体例のNo.5で表される縮合多環芳香族化合物を特開2018-014474号公報に記載の方法で合成した式(x)で表される化合物に変更した以外は実施例4に準じた方法で、比較用の有機光電変換素子を作製し評価した。明暗比は3.8×10であった。
Comparative Example 2 (Preparation and evaluation of organic photoelectric conversion element for comparison)
No. of the specific example obtained in Example 1. Comparison was performed by a method according to Example 4 except that the condensed polycyclic aromatic compound represented by 5 was changed to a compound represented by the formula (x) synthesized by the method described in JP-A-2018-014474. An organic photoelectric conversion element for use was prepared and evaluated. Contrast ratio was 3.8 × 10 4.
実施例6(具体例のNo.13で表される縮合多環芳香族化合物の合成)
(工程5)下記式aで表される中間体化合物の合成
 THF(30部)に公知の方法により合成したベンゾ[1,2-b:5,4-b’]ジフラン(0.84部)を混合し、窒素雰囲気下、-75℃で1.6Mノルマルブチルリチウム(2.5部)を加え、1時間攪拌した。その後、-75℃で四臭化炭素(1.9部)を加え、10分間攪拌し、20℃まで昇温した後さらに30分攪拌した。得られた反応液を水(30部)を用いてクエンチし、酢酸エチルを用いて分液抽出した。得られた有機層を硫酸ナトリウムを用いて乾燥し、溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:ヘキサン)で精製することで、下記式aで表される中間体化合物(1.1部、収率87%)を得た。
Example 6 (Synthesis of condensed polycyclic aromatic compound represented by No. 13 of Specific Example)
(Step 5) Synthesis of intermediate compound represented by the following formula a Benzo [1,2-b: 5,4-b'] difuran (0.84 part) synthesized in THF (30 parts) by a known method. Was mixed, 1.6 M normal butyllithium (2.5 parts) was added at −75 ° C. under a nitrogen atmosphere, and the mixture was stirred for 1 hour. Then, carbon tetrabromide (1.9 parts) was added at −75 ° C., and the mixture was stirred for 10 minutes, heated to 20 ° C., and then stirred for another 30 minutes. The obtained reaction solution was quenched with water (30 parts) and separated and extracted with ethyl acetate. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: hexane) to obtain an intermediate compound represented by the following formula a (1.1 parts, yield 87%).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(工程6)具体例のNo.13で表される縮合多環芳香族化合物の合成
 DMF(48部)に、水(2部)、公知の方法により合成した下記式bで表される化合物(0.66部)、工程5で得られた式aで表される中間体化合物(0.96部)、リン酸三カリウム(1.1部)、及びテトラキス(トリフェニルホスフィン)パラジウム(0.09部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(50部)を加えて固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.13で表される化合物(0.24部、収率32%)を得た。
(Step 6) No. of a specific example. Synthesis of condensed polycyclic aromatic compound represented by 13 Water (2 parts) in DMF (48 parts), compound represented by the following formula b synthesized by a known method (0.66 parts), in step 5. The obtained intermediate compound represented by the formula a (0.96 parts), tripotassium phosphate (1.1 parts), and tetrakis (triphenylphosphine) palladium (0.09 parts) are mixed to create a nitrogen atmosphere. Below, it was stirred at 80 ° C. for 6 hours. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by No. 13 (0.24 part, yield 32%) was obtained.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 前記で得られた具体例のNo.13で表される化合物のEI-MSの結果は以下の通りであった。
EI-MS  m/z : Calcd for C3416[M+]: 552.05. Found: 552.10
No. of the specific example obtained above. The results of EI-MS of the compound represented by 13 were as follows.
EI-MS m / z: Calcd for C 34 H 16 O 4 S 2 [M +]: 552.05. Found: 552.10
実施例7(具体例のNo.13の両末端フラン環にフェニル基が置換した縮合多環芳香族化合物の合成)
(工程7)下記式cで表される中間体化合物の合成
 THF(40部)に、工程5で得られた式aで表される中間体化合物(1.5部)、フェニルボロン酸(0.94部)、及び2Mの炭酸カリウム水溶液(20部)を混合し、窒素雰囲気下で攪拌した。そこへテトラキス(トリフェニルホスフィン)パラジウム(0.37部)を加え、還流温度まで昇温し、3時間攪拌した。反応終了後、反応液に酢酸エチル(30部)と水(30部)を加えて分液し、水層を酢酸エチル(50部)により2回抽出した。得られた有機層を硫酸ナトリウムを用いて乾燥し、固体を濾別した後、有機溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:クロロホルム)で精製することで、下記式cで表される中間体化合物(1.2部、収率78%)を得た。
Example 7 (Synthesis of condensed polycyclic aromatic compound in which a phenyl group is substituted on both terminal furan rings of No. 13 of Specific Example)
(Step 7) Synthesis of intermediate compound represented by the following formula c In THF (40 parts), the intermediate compound (1.5 parts) represented by the formula a obtained in step 5 and phenylboronic acid (0 parts) are added. .94 parts) and 2M aqueous potassium carbonate solution (20 parts) were mixed and stirred under a nitrogen atmosphere. Tetrakis (triphenylphosphine) palladium (0.37 part) was added thereto, the temperature was raised to the reflux temperature, and the mixture was stirred for 3 hours. After completion of the reaction, ethyl acetate (30 parts) and water (30 parts) were added to the reaction solution to separate the liquids, and the aqueous layer was extracted twice with ethyl acetate (50 parts). The obtained organic layer was dried over sodium sulfate, the solid was filtered off, and then the organic solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: chloroform) to obtain an intermediate compound represented by the following formula c (1.2 parts, yield 78%).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(工程8)下記式dで表される中間体化合物の合成
 THF(24部)に工程7で得られた式cで表される中間体化合物(1.1部)を混合し、窒素雰囲気下、-75℃で1.6Mノルマルブチルリチウム(2.1部)を加え、1時間攪拌した。その後、-75℃で四臭化炭素(1.7部)を加えて10分間攪拌し、20℃まで昇温した後さらに30分攪拌した。得られた反応液を水(30部)を用いてクエンチし、酢酸エチル(30部)を用いて二回抽出した。得られた有機層を硫酸ナトリウムを用いて乾燥し、溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:クロロホルム)で精製することで、下記式dで表される中間体化合物(0.99部、収率64%)を得た。
(Step 8) Synthesis of Intermediate Compound Represented by Formula D below The intermediate compound represented by Formula c (1.1 parts) obtained in Step 7 is mixed with THF (24 parts) under a nitrogen atmosphere. , 1.6 M normal butyllithium (2.1 parts) was added at −75 ° C., and the mixture was stirred for 1 hour. Then, carbon tetrabromide (1.7 parts) was added at −75 ° C. and stirred for 10 minutes, the temperature was raised to 20 ° C., and the mixture was further stirred for 30 minutes. The resulting reaction was quenched with water (30 parts) and extracted twice with ethyl acetate (30 parts). The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: chloroform) to obtain an intermediate compound represented by the following formula d (0.99 parts, yield 64%).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(工程9)下記式No.13-Phで表される縮合多環芳香族化合物の合成
 DMF(54部)に、水(2部)、公知の方法により合成した下記式bで表される化合物(0.53部)、工程8で得られた式dで表される中間体化合物(0.85部)、リン酸三カリウム(1.7部)、及びテトラキス(トリフェニルホスフィン)パラジウム(0.16部)を混合し、窒素雰囲気下、80℃で5時間撹拌した。得られた反応液を室温まで冷却した後、水(50部)を加えて固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより下記式No.13-Phで表される化合物(0.33部、収率44%)を得た。
(Step 9) The following formula No. Synthesis of condensed polycyclic aromatic compound represented by 13-Ph Water (2 parts) in DMF (54 parts), compound represented by the following formula b synthesized by a known method (0.53 parts), step. The intermediate compound (0.85 part), tripotassium phosphate (1.7 part), and tetrakis (triphenylphosphine) palladium (0.16 part) obtained by the formula d obtained in 8 were mixed and mixed. The mixture was stirred at 80 ° C. for 5 hours in a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain the following formula No. A compound represented by 13-Ph (0.33 parts, yield 44%) was obtained.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 前記で得られた式No.13-Phで表される化合物のEI-MSの結果は以下の通りであった。
EI-MS  m/z : Calcd for C4624[M+]: 704.11. Found: 704.18
Formula No. obtained above. The results of EI-MS of the compound represented by 13-Ph were as follows.
EI-MS m / z: Calcd for C 46 H 24 O 4 S 2 [M +]: 704.11. Found: 704.18
実施例8(具体例のNo.14の両末端チオフェン環にフェニル基が置換した縮合多環芳香族化合物の合成)
(工程10)下記式fで表される中間体化合物の合成
 THF(40部)に、工程3と同じ方法で得られた式eで表される中間体化合物(2.0部)、ヨードベンゼン(1.6部)、及び2Mの炭酸カリウム水溶液(20部)を混合し、窒素雰囲気下で攪拌した。そこへテトラキス(トリフェニルホスフィン)パラジウム(0.37部)を加え、還流温度まで昇温して3時間攪拌した。反応終了後、反応液に酢酸エチル(30部)と水(30部)を加えて分液し、水層を酢酸エチルにより2回抽出した。得られた有機層を硫酸ナトリウムを用いて乾燥し、固体を濾別した後、有機溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:クロロホルム)で精製することで、下記式fで表される化合物(1.3部、収率80%)を得た。
Example 8 (Synthesis of a condensed polycyclic aromatic compound in which a phenyl group is substituted on both terminal thiophene rings of No. 14 of Specific Example)
(Step 10) Synthesis of intermediate compound represented by the following formula f In THF (40 parts), the intermediate compound (2.0 parts) represented by the formula e obtained by the same method as in step 3 and iodobenzene. (1.6 parts) and 2M aqueous potassium carbonate solution (20 parts) were mixed and stirred under a nitrogen atmosphere. Tetrakis (triphenylphosphine) palladium (0.37 part) was added thereto, the temperature was raised to the reflux temperature, and the mixture was stirred for 3 hours. After completion of the reaction, ethyl acetate (30 parts) and water (30 parts) were added to the reaction solution to separate the layers, and the aqueous layer was extracted twice with ethyl acetate. The obtained organic layer was dried over sodium sulfate, the solid was filtered off, and then the organic solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: chloroform) to obtain a compound represented by the following formula f (1.3 parts, yield 80%).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(工程11)下記式gで表される中間体化合物の合成
 THF(45部)に工程10で得られた式fで表される中間体化合物(1.2部、4.51mmol)を混合し、窒素雰囲気下、-75℃で1.6Mノルマルブチルリチウム(2.0部)を加え、1時間攪拌した。その後、-75℃でイソプロポキシボロン酸ピナコール(0.92部)を加えて30分間攪拌し、20℃まで昇温した後さらに2時間攪拌した。得られた反応液を飽和塩化アンモニウム水溶液(50部)を用いてクエンチし、酢酸エチルを用いて分液抽出した。得られた有機層を硫酸ナトリウムを用いて乾燥し、溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:クロロホルム)で精製することで、下記式gで表される化合物(0.97部、収率55%)を得た。
(Step 11) Synthesis of Intermediate Compound Represented by Formula g below An intermediate compound represented by Formula f (1.2 parts, 4.51 mmol) obtained in Step 10 was mixed with THF (45 parts). , 1.6 M normal butyllithium (2.0 parts) was added at −75 ° C. under a nitrogen atmosphere, and the mixture was stirred for 1 hour. Then, pinacol isopropoxyboronic acid (0.92 part) was added at −75 ° C. and the mixture was stirred for 30 minutes, the temperature was raised to 20 ° C., and the mixture was further stirred for 2 hours. The obtained reaction solution was quenched with a saturated aqueous solution of ammonium chloride (50 parts), and separated and extracted with ethyl acetate. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: chloroform) to obtain a compound represented by the following formula g (0.97 part, yield 55%).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(工程12)下記式No.14-Phで表される縮合多環芳香族化合物の合成
 DMF(43部)に、水(1.6部)、公知の方法により合成した下記式hで表される化合物(0.43部)、工程11で得られた式gで表される中間体化合物(0.85部、2.17mmol)、リン酸三カリウム(1.4部)、及びテトラキス(トリフェニルホスフィン)パラジウム(0.12部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(50部)を加えて固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより下記式No.14-Phで表される化合物(0.19部、収率29%)を得た。
(Step 12) The following formula No. Synthesis of condensed polycyclic aromatic compound represented by 14-Ph Water (1.6 parts) was added to DMF (43 parts), and the compound represented by the following formula h (0.43 parts) synthesized by a known method. , The intermediate compound (0.85 parts, 2.17 mmol) of the formula g obtained in step 11, tripotassium phosphate (1.4 parts), and tetrakis (triphenylphosphine) palladium (0.12). Part) was mixed, and the mixture was stirred at 90 ° C. for 6 hours under a nitrogen atmosphere. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain the following formula No. A compound represented by 14-Ph (0.19 part, yield 29%) was obtained.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記で得られた式No.14-Phで表される化合物のEI-MSの結果は以下の通りであった。
EI-MS  m/z : Calcd for C4624[M+]: 768.02. Found: 768.10
Formula No. obtained above. The results of EI-MS of the compound represented by 14-Ph were as follows.
EI-MS m / z: Calcd for C 46 H 24 S 6 [M +]: 768.02. Found: 768.10
実施例9(具体例のNo.16で表される縮合多環芳香族化合物の合成)
(工程13)下記式iで表される中間体化合物の合成
 THF(50部)に公知の方法により合成したナフト[2,3-b:6,7-b’]ジフラン(1.0部)を混合し、窒素雰囲気下、-75℃で1.6Mノルマルブチルリチウム(2.2部)を加えて1時間攪拌した。その後、-75℃で四臭化炭素(1.8部)を加えて10分間攪拌し、20℃まで昇温した後さらに30分攪拌した。得られた反応液を水(30部)を用いてクエンチし、酢酸エチルを用いて分液抽出した。得られた有機層を硫酸ナトリウムを用いて乾燥し、溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:ヘキサン)で精製することで、下記式iで表される化合物(1.0部、収率73%)を得た。
Example 9 (Synthesis of condensed polycyclic aromatic compound represented by No. 16 of Specific Example)
(Step 13) Synthesis of intermediate compound represented by the following formula i Naft [2,3-b: 6,7-b'] difuran (1.0 part) synthesized in THF (50 parts) by a known method. Was mixed, 1.6 M normal butyllithium (2.2 parts) was added at −75 ° C. under a nitrogen atmosphere, and the mixture was stirred for 1 hour. Then, carbon tetrabromide (1.8 parts) was added at −75 ° C. and the mixture was stirred for 10 minutes, the temperature was raised to 20 ° C., and the mixture was further stirred for 30 minutes. The obtained reaction solution was quenched with water (30 parts) and separated and extracted with ethyl acetate. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: hexane) to obtain a compound represented by the following formula i (1.0 part, yield 73%).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(工程14)具体例のNo.16で表される縮合多環芳香族化合物の合成
 DMF(48部)に、水(2部)、公知の方法により合成した下記式bで表される化合物(0.57部)、工程13で得られた式iで表される中間体化合物(1.0部)、リン酸三カリウム(1.0部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.09部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(50部)を加えて固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより上記具体例のNo.16で表される化合物(0.27部、収率34%)を得た。
(Step 14) No. of a specific example. Synthesis of condensed polycyclic aromatic compound represented by 16 Water (2 parts) in DMF (48 parts), compound represented by the following formula b synthesized by a known method (0.57 parts), in step 13. The obtained intermediate compound represented by the formula i (1.0 part), tripotassium phosphate (1.0 part) and tetrakis (triphenylphosphine) palladium (0.09 part) are mixed and subjected to a nitrogen atmosphere. , 80 ° C. for 6 hours. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. A compound represented by 16 (0.27 part, yield 34%) was obtained.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記で得られた具体例のNo.16で表される化合物のEI-MSの結果は以下の通りであった。
EI-MS  m/z : Calcd for C4220[M+]: 652.08. Found: 652.27
No. of the specific example obtained above. The results of EI-MS of the compound represented by 16 were as follows.
EI-MS m / z: Calcd for C 42 H 20 O 4 S 2 [M +]: 652.08. Found: 652.27
実施例10(具体例のNo.17で表される縮合多環芳香族化合物の合成)
(工程15)下記式jで表される中間体化合物の合成
 THF(50部)に公知の方法により合成したナフト[2,3-b:6,7-b’]ジフラン(1.5部)を混合し、窒素雰囲気下、-75℃で1.6Mノルマルブチルリチウム(2.9部)を加えて1時間攪拌した。その後、-75℃で四臭化炭素(2.3部)を加えて10分間攪拌し、20℃まで昇温した後さらに30分攪拌した。得られた反応液を水(30部)を用いてクエンチし、酢酸エチルを用いて分液抽出した。得られた有機層を硫酸ナトリウムを用いて乾燥し、溶媒を減圧留去した。得られた固体をシリカゲルカラム(展開溶媒:ヘキサン)で精製することで、下記式jで表される中間体化合物(1.3部、収率64%)を得た。
Example 10 (Synthesis of condensed polycyclic aromatic compound represented by No. 17 of Specific Example)
(Step 15) Synthesis of intermediate compound represented by the following formula j Naft [2,3-b: 6,7-b'] difuran (1.5 parts) synthesized by a method known to THF (50 parts). Was mixed, 1.6 M normal butyllithium (2.9 parts) was added at −75 ° C. under a nitrogen atmosphere, and the mixture was stirred for 1 hour. Then, carbon tetrabromide (2.3 parts) was added at −75 ° C. and stirred for 10 minutes, the temperature was raised to 20 ° C., and the mixture was further stirred for 30 minutes. The obtained reaction solution was quenched with water (30 parts) and separated and extracted with ethyl acetate. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was purified by a silica gel column (developing solvent: hexane) to obtain an intermediate compound represented by the following formula j (1.3 parts, yield 64%).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(工程16)具体例のNo.17で表される縮合多環芳香族化合物の合成
 DMF(48部)に、水(2部)、公知の方法により合成した下記式bで表される化合物(0.37部)、工程15で得られた式jで表される中間体化合物(0.7部)、リン酸三カリウム(0.6部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.05部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(50部)を加えて固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより上記具体例のNo.17で表される化合物(0.13部、収率24%)を得た。
(Step 16) No. of a specific example. Synthesis of condensed polycyclic aromatic compound represented by 17 In DMF (48 parts), water (2 parts), a compound represented by the following formula b synthesized by a known method (0.37 parts), in step 15. The obtained intermediate compound represented by the formula j (0.7 parts), tripotassium phosphate (0.6 parts) and tetrakis (triphenylphosphine) palladium (0.05 parts) are mixed and subjected to a nitrogen atmosphere. , 80 ° C. for 6 hours. After cooling the obtained reaction solution to room temperature, water (50 parts) was added and the solid content was filtered and separated. The obtained solid content was washed with acetone, dried, and then sublimated and purified to obtain No. 1 of the above specific example. The compound represented by 17 (0.13 part, yield 24%) was obtained.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 前記で得られた具体例のNo.17で表される化合物のEI-MSの結果は以下の通りであった。
EI-MS  m/z : Calcd for C4220[M+]:715.99. Found: 716.14
No. of the specific example obtained above. The results of EI-MS of the compound represented by 17 were as follows.
EI-MS m / z: Calcd for C 42 H 20 S 6 [M +]: 715.99. Found: 716.14
実施例11(本発明の電界効果トランジスタの作製)
 実施例1で得られた具体例のNo.5で表される縮合芳香族化合物を実施例6で得られた具体例のNo.13で表される化合物に変更した以外は実施例3に準じた方法で、本発明の電界効果トランジスタ(FET)素子4を作製した。
Example 11 (Preparation of Field Effect Transistor of the Present Invention)
No. of the specific example obtained in Example 1. The condensed aromatic compound represented by No. 5 was used in Example No. 6 obtained in Example 6. The field effect transistor (FET) element 4 of the present invention was produced by a method according to Example 3 except that the compound was changed to the compound represented by 13.
実施例12(本発明の電界効果トランジスタの作製)
 実施例1で得られた具体例のNo.5で表される縮合芳香族化合物を実施例7で得られたNo.13-Phで表される化合物に変更した以外は実施例3に準じた方法で、本発明の電界効果トランジスタ(FET)素子5を作製した。
Example 12 (Preparation of Field Effect Transistor of the Present Invention)
No. of the specific example obtained in Example 1. The condensed aromatic compound represented by No. 5 was obtained in Example 7. The field effect transistor (FET) element 5 of the present invention was produced by a method according to Example 3 except that the compound was changed to the compound represented by 13-Ph.
(電界効果トランジスタ素子の耐熱性試験)
 電界効果トランジスタ素子1乃至3と同じ方法及び判断基準で、電界効果トランジスタ素子4及び5の耐熱性試験を行った。結果を表3に示した。
(Heat resistance test of field effect transistor element)
The heat resistance test of the field- effect transistor elements 4 and 5 was performed by the same method and criteria as those of the field-effect transistor elements 1 to 3. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
(有機薄膜の耐熱性試験)
 実施例6で得られた具体例のNo.13で表される縮合多環芳香族化合物、及び実施例7で得られたNo.13-Phで表される縮合多環芳香族化合物を用いて、実施例3に記載の蒸着法で1,1,1,3,3,3-ヘキサメチルジシラザンにより表面処理を施したSi熱酸化膜付きのnドープシリコンウェハー上に100nmの有機薄膜をそれぞれ作製した。前記で得られた有機薄膜に、大気圧下、120℃で30分間の加熱を施した後に一旦室温まで冷却し、次いで大気圧下、150℃で30分間の加熱を施した後に一旦室温まで冷却し、更に大気圧下、180℃で30分間の加熱を施した後に室温まで冷却し、有機薄膜作製直後の平均粗さ(Ra)、及び120℃、150℃並びに180℃で加熱した後の有機薄膜の平均粗さ(Ra)をAFMの解析プログラムを用いて算出した。結果を表4に示した。
 また、前記で用いた平均粗さ算出用の有機薄膜の表面状態をAFMで観察(走査範囲:1μm)した。具体例のNo.13で表される縮合多環芳香族化合物を含む有機薄膜のAFMを図7に、No.13-Phで表される縮合多環芳香族化合物を含む有機薄膜のAFMを図8にそれぞれ示した。
(Heat resistance test of organic thin film)
No. of the specific example obtained in Example 6. The condensed polycyclic aromatic compound represented by No. 13 and No. 1 obtained in Example 7. Si thermal surface-treated with 1,1,1,3,3,3-hexamethyldisilazane by the vapor deposition method described in Example 3 using a condensed polycyclic aromatic compound represented by 13-Ph. 100 nm organic thin films were prepared on n-doped silicon wafers with oxide films. The organic thin film obtained above is heated at 120 ° C. for 30 minutes under atmospheric pressure and then cooled to room temperature, then heated at 150 ° C. for 30 minutes under atmospheric pressure and then cooled to room temperature. Then, after further heating at 180 ° C. for 30 minutes under atmospheric pressure, the mixture was cooled to room temperature, and the average roughness (Ra) immediately after the formation of the organic thin film, and the organic after heating at 120 ° C., 150 ° C. and 180 ° C. The average roughness (Ra) of the thin film was calculated using an AFM analysis program. The results are shown in Table 4.
Further, the surface state of the organic thin film for calculating the average roughness used above was observed by AFM (scanning range: 1 μm). Specific example No. The AFM of the organic thin film containing the condensed polycyclic aromatic compound represented by No. 13 is shown in FIG. The AFMs of organic thin films containing condensed polycyclic aromatic compounds represented by 13-Ph are shown in FIG. 8, respectively.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表3の結果から、本発明の電界効果トランジスタが比較用の電界効果トランジスタ(表1参照)よりも耐熱性に優れていることは明らかである。
 また、表4の結果からは、具体例のNo.13とNo.13-Phで表される本発明の縮合多環芳香族化合物を含む有機薄膜は、比較用の式(x)で表される化合物を含む有機薄膜(表2参照)よりも加熱試験前後の平均粗さの変化が小さいことがわかる。これは、図7及び8に示した本発明の縮合多環芳香族化合物を含む有機薄膜のAFMで観察した像と、図6に示した比較用の式(x)で表される化合物を含む有機薄膜のAFMで観察した像との比較から明らかである。
From the results in Table 3, it is clear that the field-effect transistor of the present invention has better heat resistance than the comparative field-effect transistor (see Table 1).
In addition, from the results in Table 4, No. 13 and No. The organic thin film containing the condensed polycyclic aromatic compound of the present invention represented by 13-Ph is averaged before and after the heating test as compared with the organic thin film containing the compound represented by the comparative formula (x) (see Table 2). It can be seen that the change in roughness is small. This includes the image observed by AFM of the organic thin film containing the condensed polycyclic aromatic compound of the present invention shown in FIGS. 7 and 8 and the compound represented by the comparative formula (x) shown in FIG. It is clear from the comparison with the image observed by AFM of the organic thin film.
実施例13(実施例6で得られた具体例のNo.13で表される化合物の有機光電変換素子の作製と評価)
 実施例1で得られた具体例のNo.5で表される縮合多環芳香族化合物を実施例6で得られた具体例のNo.13で表される化合物に変更した以外は実施例5に準じた方法で、本発明の有機光電変換素子を作製し評価した。明暗比は5.4×10であった。
Example 13 (Preparation and evaluation of an organic photoelectric conversion element of the compound represented by No. 13 of the specific example obtained in Example 6)
No. of the specific example obtained in Example 1. The condensed polycyclic aromatic compound represented by No. 5 of the specific example obtained in Example 6 No. The organic photoelectric conversion element of the present invention was prepared and evaluated by a method according to Example 5 except that the compound was changed to the compound represented by 13. Contrast ratio was 5.4 × 10 4.
実施例14(実施例7で得られたNo.13-Phで表される化合物の有機光電変換素子の作製と評価)
 実施例1で得られた具体例のNo.5で表される縮合多環芳香族化合物を実施例7で得られたNo.13-Phで表される化合物に変更した以外は実施例5に準じた方法で、本発明の有機光電変換素子を作製し評価した。明暗比は5.0×10であった。
Example 14 (Preparation and evaluation of an organic photoelectric conversion element of the compound represented by No. 13-Ph obtained in Example 7)
No. of the specific example obtained in Example 1. The condensed polycyclic aromatic compound represented by No. 5 was obtained in Example 7. The organic photoelectric conversion element of the present invention was prepared and evaluated by the method according to Example 5 except that the compound was changed to the compound represented by 13-Ph. Contrast ratio was 5.0 × 10 4.
 本発明によれば、実用的なプロセス温度領域での耐熱性に優れた縮合多環芳香族化合物、該化合物を含む有機薄膜及び該有機薄膜を有する有機半導体デバイス(電界効果トランジスタ、有機光電変換素子)を提供することができる。
 

 
According to the present invention, a condensed polycyclic aromatic compound having excellent heat resistance in a practical process temperature range, an organic thin film containing the compound, and an organic semiconductor device having the organic thin film (field effect transistor, organic photoelectric conversion element). ) Can be provided.


Claims (12)

  1. 一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRの一方は一般式(2)または(3)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)及び(3)中、nは0乃至2の整数を表す。Xは酸素原子、硫黄原子またはセレン原子を表す。Rは水素原子、又は置換若しくは無置換の芳香族炭化水素基を表す。)
    で表される置換基を、他方は水素原子を表す。)
    で表される縮合多環芳香族化合物。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), one of R 1 and R 2 is the general formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000002
    (In formulas (2) and (3), n represents an integer of 0 to 2. X represents an oxygen atom, a sulfur atom or a selenium atom. R 3 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon. Represents a group.)
    The substituent is represented by, and the other represents a hydrogen atom. )
    Condensed polycyclic aromatic compound represented by.
  2. が水素原子である請求項1に記載の縮合多環芳香族化合物。 The condensed polycyclic aromatic compound according to claim 1, wherein R 3 is a hydrogen atom.
  3. がフェニル基、ビフェニル基又はナフチル基である請求項1に記載の縮合多環芳香族化合物。 The condensed polycyclic aromatic compound according to claim 1, wherein R 3 is a phenyl group, a biphenyl group or a naphthyl group.
  4. がフェニル基である請求項3に記載の縮合多環芳香族化合物。 The condensed polycyclic aromatic compound according to claim 3, wherein R 3 is a phenyl group.
  5. 及びRの一方が一般式(2)で表される置換基である請求項1乃至4のいずれか一項に記載の縮合多環芳香族化合物。 The condensed polycyclic aromatic compound according to any one of claims 1 to 4, wherein one of R 1 and R 2 is a substituent represented by the general formula (2).
  6. 及びRの一方が一般式(3)で表される置換基である請求項1乃至4のいずれか一項に記載の縮合多環芳香族化合物。 The condensed polycyclic aromatic compound according to any one of claims 1 to 4, wherein one of R 1 and R 2 is a substituent represented by the general formula (3).
  7. nが1である請求項1乃至6のいずれか一項に記載の縮合多環芳香族化合物。 The condensed polycyclic aromatic compound according to any one of claims 1 to 6, wherein n is 1.
  8. Xが酸素原子または硫黄原子である請求項1乃至7のいずれか一項に記載の縮合多環芳香族化合物。 The condensed polycyclic aromatic compound according to any one of claims 1 to 7, wherein X is an oxygen atom or a sulfur atom.
  9. 請求項1乃至8のいずれか一項に記載の縮合多環芳香族化合物を含む有機光電変換素子用材料。
     
    A material for an organic photoelectric conversion element containing the condensed polycyclic aromatic compound according to any one of claims 1 to 8.
  10. 請求項1乃至8のいずれか一項に記載の縮合多環芳香族化合物を含む有機薄膜。 An organic thin film containing the condensed polycyclic aromatic compound according to any one of claims 1 to 8.
  11. 請求項10に記載の有機薄膜を有する電界効果トランジスタ。 The field effect transistor having the organic thin film according to claim 10.
  12. 請求項10に記載の有機薄膜を有する有機光電変換素子。

     
     
    The organic photoelectric conversion element having the organic thin film according to claim 10.


PCT/JP2021/006291 2020-02-28 2021-02-19 Fused polycyclic aromatic compound WO2021172185A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227029062A KR20220149666A (en) 2020-02-28 2021-02-19 Condensed Polycyclic Aromatic Compounds
JP2022503325A JPWO2021172185A1 (en) 2020-02-28 2021-02-19
CN202180016971.3A CN115151552A (en) 2020-02-28 2021-02-19 Condensed polycyclic aromatic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020032715 2020-02-28
JP2020-032715 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172185A1 true WO2021172185A1 (en) 2021-09-02

Family

ID=77491299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006291 WO2021172185A1 (en) 2020-02-28 2021-02-19 Fused polycyclic aromatic compound

Country Status (4)

Country Link
JP (1) JPWO2021172185A1 (en)
KR (1) KR20220149666A (en)
CN (1) CN115151552A (en)
WO (1) WO2021172185A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028460A1 (en) * 2007-08-31 2009-03-05 Idemitsu Kosan Co., Ltd. Benzodithiophene derivative, and organic thin film transistor and organic thin film light-emitting transistor each using the derivative
WO2012121393A1 (en) * 2011-03-10 2012-09-13 国立大学法人東京工業大学 Organic semiconductor material
JP2018014474A (en) * 2016-07-07 2018-01-25 日本化薬株式会社 Photoelectric conversion element material for imaging element and photoelectric conversion element including the same
JP2018056546A (en) * 2016-09-26 2018-04-05 日本化薬株式会社 Material for photoelectric conversion element for image pickup element, and photoelectric conversion element including the same
JP2018170487A (en) * 2016-09-13 2018-11-01 日本化薬株式会社 Photoelectric conversion element for imaging element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022573B1 (en) 1970-07-13 1975-07-31
JPS4945146B1 (en) 1970-09-10 1974-12-02
US4116714A (en) 1977-08-15 1978-09-26 International Business Machines Corporation Post-polishing semiconductor surface cleaning process
JP4972288B2 (en) 2004-08-30 2012-07-11 富士フイルム株式会社 Image sensor
KR100958520B1 (en) 2004-12-31 2010-05-17 주식회사 효성 Polyester complex yarn with deep and level dyeing property and its manufacturing method
JP5187737B2 (en) 2007-03-09 2013-04-24 国立大学法人広島大学 FIELD EFFECT TRANSISTOR, PROCESS FOR PRODUCING THE SAME, COMPOUND USED FOR THE SAME, AND INK FOR SEMICONDUCTOR DEVICE
JP2008290963A (en) 2007-05-24 2008-12-04 Nippon Kayaku Co Ltd Method for producing aromatic compound
JP6433488B2 (en) * 2014-04-25 2018-12-05 日本化薬株式会社 Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP6619806B2 (en) * 2015-05-20 2019-12-11 日本化薬株式会社 Fused polycyclic aromatic compounds
WO2019053967A1 (en) * 2017-09-13 2019-03-21 富士フイルム株式会社 Production method for photoelectric conversion element and production method for solar cell
CN107936038A (en) * 2017-11-22 2018-04-20 北京大学深圳研究生院 A kind of OLED electron transport layer materials and its preparation method and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028460A1 (en) * 2007-08-31 2009-03-05 Idemitsu Kosan Co., Ltd. Benzodithiophene derivative, and organic thin film transistor and organic thin film light-emitting transistor each using the derivative
WO2012121393A1 (en) * 2011-03-10 2012-09-13 国立大学法人東京工業大学 Organic semiconductor material
JP2018014474A (en) * 2016-07-07 2018-01-25 日本化薬株式会社 Photoelectric conversion element material for imaging element and photoelectric conversion element including the same
JP2018170487A (en) * 2016-09-13 2018-11-01 日本化薬株式会社 Photoelectric conversion element for imaging element
JP2018056546A (en) * 2016-09-26 2018-04-05 日本化薬株式会社 Material for photoelectric conversion element for image pickup element, and photoelectric conversion element including the same

Also Published As

Publication number Publication date
CN115151552A (en) 2022-10-04
JPWO2021172185A1 (en) 2021-09-02
KR20220149666A (en) 2022-11-08

Similar Documents

Publication Publication Date Title
JP6170488B2 (en) Novel condensed polycyclic aromatic compounds and uses thereof
TWI674266B (en) Organic compound and its use
JP6592758B2 (en) Novel condensed polycyclic aromatic compounds and uses thereof
JP6425646B2 (en) Novel condensed polycyclic aromatic compound and use thereof
JP2015199716A (en) Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor
JP6572473B2 (en) Organic compounds and their uses
WO2021117622A1 (en) Condensed polycyclic aromatic compound
JP6917106B2 (en) Condensed polycyclic aromatic compounds and their uses
WO2021172185A1 (en) Fused polycyclic aromatic compound
JP6497560B2 (en) Novel condensed polycyclic aromatic compounds and uses thereof
WO2021054161A1 (en) Fused polycyclic aromatic compound
JP6592863B2 (en) Organic compounds and their uses
JP7317301B2 (en) Organic semiconductor compound and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759566

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022503325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759566

Country of ref document: EP

Kind code of ref document: A1