WO2016186158A1 - Lighting device and display device - Google Patents

Lighting device and display device Download PDF

Info

Publication number
WO2016186158A1
WO2016186158A1 PCT/JP2016/064843 JP2016064843W WO2016186158A1 WO 2016186158 A1 WO2016186158 A1 WO 2016186158A1 JP 2016064843 W JP2016064843 W JP 2016064843W WO 2016186158 A1 WO2016186158 A1 WO 2016186158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
conversion sheet
wavelength conversion
selection filter
Prior art date
Application number
PCT/JP2016/064843
Other languages
French (fr)
Japanese (ja)
Inventor
田中 正太郎
隆一 若原
裕介 塚村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201680024009.3A priority Critical patent/CN107533257B/en
Priority to KR1020177031309A priority patent/KR102538377B1/en
Priority to JP2016542784A priority patent/JP6787127B2/en
Publication of WO2016186158A1 publication Critical patent/WO2016186158A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides

Definitions

  • the present invention relates to an illumination device used for, for example, a liquid crystal display and a display device using the same.
  • a lighting device used for a liquid crystal display or the like is a lighting device for expressing a high-efficiency and pure color.
  • a light emitting element such as a blue LED or a blue laser is used as a light source, and a film containing quantum dots or phosphors is further used.
  • An illuminating device that performs color adjustment using it is used (Patent Document 1).
  • blue light is emitted from a light emitting element such as a blue LED or a blue laser toward a film containing quantum dots and phosphors, and the emitted blue light is converted into green light and red light with quantum dots and phosphors. Change the color. Then, the blue light of the light emitting element is combined with the green light and the red light that are color-converted with the quantum dots and the phosphor to obtain white light.
  • a light emitting element such as a blue LED or a blue laser toward a film containing quantum dots and phosphors
  • the emitted blue light is converted into green light and red light with quantum dots and phosphors. Change the color.
  • the blue light of the light emitting element is combined with the green light and the red light that are color-converted with the quantum dots and the phosphor to obtain white light.
  • the central portion of the illumination device In the illumination device used for the liquid crystal display as described above, that is, the illumination device that obtains white light using a light emitting element such as a blue LED or a blue laser, and a film containing quantum dots or phosphors, the central portion of the illumination device
  • the color near the edge of the lighting device (display color near the edge of the screen in the case of a liquid crystal display) is lighter than the color near it (display color near the center of the screen if it is a liquid crystal display)
  • the influence of the luminescent color of the light becomes strong (if the light emitting element is a blue LED or a blue laser, the color becomes bluish).
  • An object of the present invention is to improve the problem that the color near the center of the lighting device is different from the color near the end, and to provide a lighting device with little color unevenness and a display device using the same.
  • a light wavelength conversion sheet [1] a light wavelength conversion sheet; An optical wavelength selection filter; A light emitting element; A lighting device comprising: A light emitting element, a light wavelength conversion sheet, and a light wavelength selection filter are provided in this order, The area of the light wavelength selection filter is smaller than the area of the light wavelength conversion sheet, The illuminating device, wherein the light emitting element is separated from the light wavelength conversion sheet.
  • a light wavelength conversion sheet comprising: A light emitting element, an optical wavelength selection filter, and an optical wavelength conversion sheet are provided in this order.
  • the area of the light wavelength selection filter is smaller than the area of the light wavelength conversion sheet, The illuminating device, wherein the light emitting element is separated from the light wavelength conversion sheet.
  • a first light wavelength conversion sheet; A second light wavelength conversion sheet; A light emitting element; A lighting device comprising: The first light wavelength conversion sheet, the light emitting element, and the second light wavelength conversion sheet are provided in this order, The area of the first light wavelength conversion sheet is smaller than the area of the second light wavelength conversion sheet, The illuminating device, wherein the light emitting element is provided apart from the second light wavelength conversion sheet.
  • ⁇ 1 Light emission wavelength of light emitting element (nm)
  • ⁇ 2 wavelength at which the transmittance of the optical wavelength selection filter becomes 70%
  • ⁇ 3 wavelength (nm) at which the transmittance of the optical wavelength selection filter is 30%.
  • the illumination device according to [3], further comprising a light guide plate disposed in an optical path from the light emitting element to the second light wavelength conversion sheet for light emitted from the light emitting element.
  • a brightness enhancement film is further included, and the brightness enhancement film is provided on the emission side of any member of the light emitting element, the light wavelength sheet, and the light wavelength selection filter.
  • the illumination device according to any one of [3].
  • the angle between the direction in which the transmittance at the wavelength ⁇ 3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength ⁇ 3 of the brightness enhancement film is maximized is 10 ° or less.
  • the angle between the direction in which the transmittance at the wavelength ⁇ 3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength ⁇ 3 of the brightness enhancement film is maximized is 80 ° or more.
  • a specular reflective film is further included, and the specular reflective film is provided on the opposite side of the light-emitting element, light wavelength sheet, and light wavelength selection filter from the emission side.
  • the illumination device according to any one of [1] to [3].
  • a display device comprising a display panel and a lighting device provided adjacent to the display panel, The lighting device is [1] A display device comprising the illumination device according to any one of [14].
  • an illumination device with little color unevenness can be obtained, and if it is used for a display device, a display device with excellent display performance with little color unevenness can be obtained.
  • FIG. 1A is a schematic cross-sectional view of an example of the illumination device of the present invention
  • FIG. 1B is a schematic plan view of a substrate, an LED, and a reflector.
  • FIG. 2 is a schematic cross-sectional view when a liquid crystal display is used as a display device, for example.
  • the liquid crystal display include, but are not limited to, a TV, a monitor, a notebook personal computer, a tablet portable terminal, and a smartphone.
  • the lighting device can be used for display devices such as signboards and vending machines, and can also be suitably used as various lighting devices such as household lighting devices and facility lighting devices. It is not limited to these.
  • As the optical film of FIGS. 1 and 2 a diffusion film, a prism film, a retroreflective film, or the like is used.
  • the light wavelength conversion sheet is a sheet that converts light of a specific wavelength into light of another wavelength.
  • a light wavelength conversion sheet that converts light having a specific wavelength (light having a first wavelength) into light having another wavelength (light having a second wavelength) is preferably used.
  • converting light of a specific wavelength into light of another wavelength means that light having a peak at a specific wavelength (light of the first wavelength) has light at a wavelength other than the specific wavelength (first 2).
  • the light having the second wavelength may be light having a peak at one wavelength, or light having a peak at each of the two wavelengths. That is, the light of the first wavelength is converted by the light wavelength conversion sheet into light of the second wavelength having a peak at one wavelength (second wavelength) different from the peak wavelength of the light of the first wavelength.
  • the light may be converted into two lights, light having a peak at the second wavelength ⁇ and light having a peak at the second wavelength ⁇ .
  • the light of the first wavelength is preferably light having a wavelength having a peak at 200 nm to less than 380 nm (near ultraviolet) and / or light having a wavelength having a peak at 380 nm to less than 495 nm (blue). More preferably, it is light having a wavelength having a peak at 220 nm or more and 350 nm or less and / or light having a wavelength having a peak at 400 nm or more and 470 nm or less, more preferably light having a wavelength having a peak at 240 nm or more and 320 nm or less and / or 410 nm or more. It is light having a wavelength having a peak at 460 nm or less.
  • Examples of light emitting elements that emit light of these wavelengths include near ultraviolet LEDs and blue LEDs.
  • light having the second wavelength light having a wavelength having a peak at 495 nm to less than 570 nm (green), light having a wavelength having a peak at 570 nm to less than 590 nm (yellow), and a peak having a peak at 590 nm to 750 nm (red) It is preferable that the light is at least one wavelength selected from the group consisting of light having a wavelength.
  • the optical wavelength selection filter is a filter that transmits or reflects light of a specific wavelength.
  • the area of the light wavelength selection filter is preferably smaller than the area of the light wavelength conversion sheet. If the area of the light wavelength selection filter is made smaller than the area of the light wavelength conversion sheet and is partially disposed in the illumination device, it is preferable because the color of the emitted light of the illumination device can be partially adjusted.
  • a light-emitting element refers to a semiconductor element that emits light.
  • the light emitting element may be provided in any way in the lighting device.
  • a plurality of light emitting elements are provided corresponding to the entire surface of the light wavelength conversion sheet from the viewpoint of efficiently emitting light.
  • a plurality of light guide plates are provided along the end of the light guide plate from the viewpoint of light emission efficiency.
  • FIG. 3 is a schematic diagram in the first embodiment of the illumination device of the present invention.
  • a light wavelength conversion sheet 31 and a light wavelength selection filter 32 are provided, and a blue LED 33 is provided on the substrate 34 as a light emitting element.
  • a reflecting plate 37 and a diffusing plate 38 are provided to reflect and diffuse light from the light emitting element.
  • Blue LED 33, light wavelength conversion sheet 31, and light wavelength selection filter 32 are provided in this order.
  • the blue LED 33 is provided apart from the light wavelength conversion sheet 31 and emits light toward the light wavelength conversion sheet 31.
  • the area of the light wavelength selection filter 32 is preferably smaller than the area of the light wavelength conversion sheet 31. If the area of the light wavelength selection filter 32 is made smaller than the area of the light wavelength conversion sheet 31 and is partially disposed in the illumination device, it is preferable because the color of the emitted light of the illumination device can be partially adjusted efficiently.
  • the optical wavelength selection filter 32 reflects the first wavelength light emitted from the blue LED 33, and the second wavelength generated by the light wavelength conversion sheet 31 converting the first wavelength light. It transmits light of a wavelength.
  • the light wavelength selection filter 32 in the first embodiment has a peak wavelength (hereinafter sometimes referred to as a peak wavelength of the second wavelength) for the light of the second wavelength converted by the light wavelength conversion sheet 31.
  • a peak wavelength of the second wavelength for the light of the second wavelength converted by the light wavelength conversion sheet 31.
  • the filter has a transmittance of 85% or more at the peak wavelength of the second wavelength and a reflectance of 20% or more at the peak wavelength of the first wavelength.
  • it when there are two or more light beams having the second wavelength, it means a filter having a transmittance of 85% or more for all the light beams having the second wavelength.
  • the light of the first wavelength is light having a peak at a specific wavelength
  • the light of the second wavelength is light having a peak at a wavelength different from the light of the first wavelength
  • FIG. 4 is an example of the first wavelength and the second wavelength.
  • the light emitting element is a blue LED
  • the light wavelength conversion sheet converts the blue light of the blue wavelength, which is the first wavelength emitted from the blue LED, to the green that is the second wavelength.
  • Two types of quantum dots are included: a green quantum dot that emits green light of a wavelength, and a red quantum dot that emits red light that is red wavelength, which is the second wavelength, by converting blue light.
  • the blue LED has a blue light peak of 450 nm, a green light peak of 550 nm, and a red light peak of 610 nm. By combining these lights, white light can be obtained.
  • 5 and 6 are diagrams showing optical paths when there is no optical wavelength selection filter 32 and when there is no optical wavelength selection filter 32, respectively.
  • the light wavelength selection filter 32 transmits green light and red light converted by the light wavelength conversion sheet, and reflects a part or all of the blue light emitted by the blue LED.
  • reflecting part of the blue light emitted by the blue LED means that the reflectance at the peak wavelength of the blue light emitted by the blue LED is 20% or more, and the blue light emitted by the blue LED is emitted.
  • the reflection of all of the above means that the reflectance at the peak wavelength of the blue light emitted by the blue LED is 100% or more.
  • the bluishness of the light emitted to the emission surface side of the light wavelength selection filter 32 is reduced as compared with the light emitted to the emission surface side in the case of FIG. 5, that is, when there is no light wavelength selection filter 32.
  • the light wavelength selection filter 32 is partially disposed in a portion with strong bluishness (a portion where the influence of the light emission color of the light emitting element is strong) such as near the end of the lighting device, so that the color unevenness of the lighting device can be obtained. Can be improved.
  • the blue light reflected by the light wavelength selection filter 32 is reused in the lighting device by being reflected by a reflector or the like, so that there is little light loss. Accordingly, color adjustment can be performed with less light loss compared to other color adjustment methods that reduce blueness by the principle of absorbing blue light.
  • the optical wavelength selection filter 32 preferably has a reflectance of 20% or more at the peak wavelength of the first wavelength.
  • the reflectance at the peak wavelength of the first wavelength is more preferably 25 to 90%. More preferably 30 to 80%.
  • the light wavelength selection filter 32 preferably has a transmittance of the peak wavelength of the second wavelength of 85% or more, more preferably 87% or more, and further preferably 90% or more.
  • the light wavelength selection filter 32 may be laminated on the light wavelength conversion sheet 31, for example, as shown in FIG.
  • the optical wavelength selection filter 32 satisfies the following formula (1).
  • the following formula (1) indicates that the change in transmittance between the wavelength band that reflects light and the wavelength band that transmits light is steep, and as
  • ⁇ 1 Light emission wavelength of light emitting element (nm)
  • ⁇ 2 wavelength at which the transmittance of the optical wavelength selection filter becomes 70%
  • ⁇ 3 wavelength (nm) at which the transmittance of the optical wavelength selection filter is 30%.
  • the optical wavelength selection filter is preferably a laminate of two types of films having different refractive indexes that are transparent in the visible light region.
  • the optical wavelength selection filter is preferably a laminate of two types of films having different refractive indexes that are transparent in the visible light region.
  • the two types of films may be organic resin materials or inorganic materials, and the organic resin may be either a thermoplastic resin or a curable resin. Further, it may be a homo resin, a copolymer resin or a blend of two or more kinds of resins. More preferably, it is a thermoplastic resin because of good moldability.
  • various additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, thermal stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, A dopant for adjusting the refractive index may be added.
  • a fluorescent whitening agent is included in the light wavelength selection filter.
  • the fluorescent whitening agent is one that emits blue light when excited by light having a wavelength shorter than the emission wavelength of the blue LED.
  • the fluorescent whitening agent is emitted from the LED by including the fluorescent whitening agent. Light of a short wavelength that cannot be converted can be converted into blue light that can be converted into green light or red light by a light wavelength conversion sheet, and brightness can be improved when the lighting device is formed.
  • thermoplastic resins examples include polyolefin resins such as polyethylene, polypropylene, polystyrene and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyethylene terephthalate, polybutylene terephthalate and polypropylene terephthalate.
  • Polyester resin such as polybutyl succinate, polyethylene-2,6-naphthalate, polycarbonate resin, polyarylate resin, polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluorinated ethylene resin, trifluorinated ethylene chloride resin
  • Fluorine resin such as ethylene tetrafluoride-6-propylene copolymer, vinylidene fluoride resin, acrylic resin such as PMMA, methacrylic resin, poly Acetal resin, polyglycolic acid resin, polylactic acid resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-ethylene - propylene rubber, or the like can be used styrene copolymer.
  • a polyester resin is particularly preferable from the viewpoint of strength, heat resistance, and transparency.
  • polyester resins polyethylene terephthalate and copolymers thereof, polyethylene naphthalate and copolymers thereof, polybutylene terephthalate and copolymers thereof, polybutylene naphthalate and copolymers thereof, and polyhexamethylene terephthalate and copolymers thereof. It is preferable to use a polymer, polyhexamethylene naphthalate, and a copolymer thereof.
  • an optical wavelength selective filter that satisfies the above formula (1)
  • the number of layers tends to increase, by controlling the thickness of a large number of layers, it becomes easy to sharpen the change from the wavelength band, in particular from the reflected wavelength band to the transmitted wavelength band.
  • the shape of the optical wavelength selection filter may be a planar shape, a shape having a large number of holes in the surface, a mesh shape, a circle, an ellipse, a shape surrounded by other curves, a triangle, a rectangle, other Various shapes such as a polygon may be used.
  • the optical wavelength selection filter in which two kinds of films having different refractive indexes as described above are stacked can be used by stacking on another sheet.
  • the shape of the optical wavelength selection filter when laminating to another sheet may be a planar shape, a shape having a large number of holes on the surface, a mesh shape, or a layered state such as a dot shape.
  • Various shapes such as a circle, an ellipse, a shape surrounded by other curves, a triangle, a quadrangle, and other polygons may be used.
  • the surface of the light wavelength selection filter and / or the light wavelength conversion sheet has an uneven shape. Having an uneven shape here means that Rz in JIS B0601 (2001) is 1 ⁇ m or more when the surface roughness of the light wavelength selection filter and / or the light wavelength conversion sheet is measured. More preferably, Rz is 10 ⁇ m or more, and the following effects can be easily obtained.
  • the first effect of the surface of the light wavelength selection filter and / or the light wavelength conversion sheet having an uneven shape is easy slipping. Since the surface has a concavo-convex shape, the slipperiness is expressed, so that it is possible to suppress the occurrence of scratches when the light wavelength selection filter and / or the light wavelength conversion sheet is incorporated into the lighting device.
  • the second effect is light extraction.
  • the inventors of the present invention have found a phenomenon that in the light wavelength conversion sheet, a phenomenon that light is reflected in the light wavelength conversion sheet causes a phenomenon that the light is confined in the sheet like an optical fiber and the luminance is lowered.
  • the surface of the light wavelength selection filter and / or the light wavelength conversion sheet has a concavo-convex shape, light is extracted from the concavo-convex interface, thereby reducing the light taken into the light wavelength conversion sheet and improving the brightness. The effect of is obtained.
  • the third effect is the adjustment of the optical path of light.
  • the light from the light emitting element particularly the light emitting diode, travels with a relatively high directivity to the display side, whereas the light from the light wavelength conversion sheet emits isotropically. It will cause a drop.
  • the surface of the light wavelength selection filter and / or the light wavelength conversion sheet has a concavo-convex shape, it is easy to adjust the direction of light at the concavo-convex interface, and in particular, to improve brightness by condensing in the front direction.
  • other optical members can be omitted when forming the lighting device and the display device, which contributes to cost reduction.
  • the uneven shape is preferably a microlens shape, a prism shape, a substantially triangular shape, or a substantially semicircular shape.
  • the microlens shape indicates a substantially hemispherical unevenness
  • the prism shape indicates a substantially triangular unevenness.
  • a light-emitting element is a semiconductor element that emits light, and any suitable light-emitting element such as an LED or a laser having a blue or near-ultraviolet wavelength can be used as the light-emitting element.
  • the light wavelength conversion sheet is a sheet that converts light of a specific wavelength into light of another wavelength as described above.
  • the light wavelength conversion sheet is a sheet containing quantum dots or phosphors having a function of converting a light wavelength.
  • a resin sheet containing quantum dots or phosphors may be used, or a film containing quantum dots or phosphors may be laminated on a sheet serving as a substrate.
  • the area of the light wavelength selection filter is the area of the film containing quantum dots or phosphors. It is preferable to make it smaller. If the area of the light wavelength selection filter is made smaller than the area of the film containing quantum dots and phosphors and is partially disposed in the illumination device, the color of the emitted light of the illumination device can be partially adjusted efficiently. Therefore, it is preferable.
  • a blue LED blue light having a blue wavelength, which is the first wavelength emitted from the blue LED, is converted to the second light.
  • red quantum dots that emit light of a red wavelength that is a second wavelength by converting light of a near-ultraviolet wavelength that is the first wavelength emitted from the near-ultraviolet LED; Green quantum dots that emit green light having a green wavelength, which is a second wavelength by converting light having a near ultraviolet wavelength, and blue light having a blue wavelength, which is a second wavelength, by converting light having a near ultraviolet wavelength You may use what contains the quantum dot for blue to light-emit.
  • quantum dots examples include CdSe having a ZnS shell.
  • a core / shell luminescent nanocrystal containing CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, or CdTe / ZnS may be used.
  • Examples of the phosphor include SrGa 2 S 4 : Eu 2+ as a green phosphor and (Ca, Sr, Ba) S: Eu 2+ as a red phosphor.
  • SrGa 2 S 4 Eu 2+ as a green phosphor
  • Ca, Sr, Ba Ce 2+ as a red phosphor.
  • white light is obtained in the present embodiment, it is possible to appropriately select the type of light emitting element or phosphor in order to obtain light of a desired color as light emitted from the illumination device.
  • an optical sheet is provided on the light exit side of the optical wavelength selection filter, as in FIGS. It is preferable to be provided.
  • Prism sheets, microlenses, and polarizing / reflecting films have traditionally been beneficially used to improve frontal brightness, but when used in combination with a light wavelength conversion sheet, the light once transmitted through the light wavelength conversion sheet is used. It can be reflected on the optical film and reflected / re-wavelength converted to the light wavelength conversion sheet side, and the cost can be reduced by reducing the amount of expensive quantum dots used.
  • the angle between the direction in which the transmittance at the wavelength ⁇ 3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength ⁇ 3 of the brightness enhancement film is maximized is arranged to be 80 ° or more.
  • the direction in which the transmittance is maximum is a direction in which polarized light having a wavelength ⁇ 3 is incident perpendicularly to the film surface and the polarization surface is rotated by 5 ° to maximize the transmittance.
  • the direction in which the transmittance of the light wavelength selection filter and the brightness enhancement film becomes maximum is orthogonal, the polarization that could not be reflected by the light wavelength selection filter can be efficiently reflected by the brightness enhancement film. It is possible to further improve the effect.
  • the reflection plate 37 a light diffusive reflection film such as a white film may be used, but a regular reflection film is more preferable.
  • the specular reflectivity means that the glossiness measured at an incident angle of 60 ° and an outgoing angle of 60 ° is 100 or more as per JIS Z8741 (1997).
  • FIG. 8 is a schematic diagram of the lighting apparatus according to the second embodiment of the present invention.
  • a light wavelength conversion sheet 81 and a light wavelength selection filter 82 are provided, and a blue LED 83 is provided as a light emitting element at an end of the light guide plate 85.
  • Blue LED 83, light wavelength conversion sheet 81, and light wavelength selection filter 82 are provided in this order.
  • Blue LED 83 is provided apart from light wavelength conversion sheet 81.
  • the light of the blue LED 83 enters from the end of the light guide plate 85 and is emitted while being guided by the light guide plate. Based on this principle, light is emitted toward the light wavelength conversion sheet 81.
  • the area of the light wavelength selection filter 82 is preferably smaller than the area of the light wavelength conversion sheet 81. If the area of the light wavelength selection filter 82 is made smaller than the area of the light wavelength conversion sheet 81 and is partially disposed in the illumination device, it is preferable because the color of the emitted light from the illumination device can be partially adjusted efficiently.
  • FIG. 9 is a schematic diagram in the third embodiment of the illumination device of the present invention.
  • a light wavelength conversion sheet 91 and a light wavelength selection filter 92 are provided, and a blue LED 93 is provided on the substrate 94 as a light emitting element. Further, a reflecting plate 97 and a diffusing plate 98 are provided in order to reflect and diffuse light from the light emitting element.
  • Blue LED 93, light wavelength selection filter 92, and light wavelength conversion sheet 91 are provided in this order.
  • the blue LED 93 is spaced apart from the light wavelength conversion sheet 91 and emits light toward the light wavelength conversion sheet 91.
  • the area of the light wavelength selection filter 92 is preferably smaller than the area of the light wavelength conversion sheet 91. If the area of the light wavelength selection filter 92 is made smaller than the area of the light wavelength conversion sheet 91 and is partially disposed in the illumination device, it is preferable because the color of the emitted light from the illumination device can be partially adjusted efficiently.
  • the light wavelength selection filter 92 transmits the first wavelength light emitted from the blue LED 93, and the second wavelength generated by the light wavelength conversion sheet 91 converting the first wavelength light. It reflects light of a wavelength.
  • the optical wavelength selection filter 92 transmits 85% or more of the peak wavelength of light emitted from the blue LED 93 (hereinafter sometimes referred to as the peak wavelength of the first wavelength). And a filter that reflects 20% or more of light having a peak wavelength (hereinafter sometimes referred to as a peak wavelength of the second wavelength) with respect to the light having the second wavelength generated by being converted by the light wavelength conversion sheet 91. That means. That is, the filter has a transmittance of 85% or more at the peak wavelength of the first wavelength and a reflectance of 20% or more at the peak wavelength of the second wavelength. In addition, when there are two or more light beams having the second wavelength, it means a filter having a reflectance of 20% or more for all the light beams having the second wavelength.
  • FIGS. 10 and 11 are diagrams showing optical paths when there is no optical wavelength selection filter 92 and when there is no optical wavelength selection filter 92, respectively.
  • the light emitted to the opposite side of the emission surface among the green light and red light emitted from the light wavelength conversion sheet diffuses in the illumination device. To do.
  • the light wavelength selection filter 92 transmits the blue light emitted from the blue LED, and is emitted to the opposite side of the emission surface side among the green light and red light emitted from the light wavelength conversion sheet. A part or all of the light is reflected, and the green light and the red light are emitted to the vicinity of the light exit surface provided with the light wavelength selection filter. Therefore, the bluishness of the light emitted toward the emission surface in the vicinity of the light wavelength selection filter 92 is reduced as compared with the light emitted toward the emission surface in the case of FIG. 10, that is, when there is no light wavelength selection filter 92.
  • the light wavelength selection filter 92 transmits the blue light emitted from the blue LED, and is emitted to the opposite side of the emission surface side among the green light and red light emitted from the light wavelength conversion sheet. A part or all of the light is reflected, and the green light and the red light are emitted to the vicinity of the light exit surface provided with the light wavelength selection filter. Therefore, the bluishness of
  • the light wavelength selection filter 92 is partially disposed in a portion with a strong bluish color (a portion where the influence of the light emission color of the light emitting element is strong) such as near the end of the lighting device, so that the color unevenness of the lighting device can be obtained. Can be improved.
  • color adjustment can be performed with less light loss compared to other color adjustment methods that reduce blueness by the principle of absorbing blue light.
  • the light wavelength selection filter 92 preferably has a transmittance at the peak wavelength of the first wavelength of 85% or more, more preferably 87% or more, and further preferably 90% or more.
  • the optical wavelength selection filter 92 preferably has a reflectance at the peak wavelength of the second wavelength of 20% or more, more preferably 30% or more, further preferably 70% or more, and 90% or more. It is particularly preferred that
  • the optical wavelength selection filter 92 satisfies the following formula (1).
  • the following formula (1) indicates that the change in transmittance between the wavelength band that reflects light and the wavelength band that transmits light is steep, and as
  • blue light is converted by the light wavelength conversion sheet from the wavelength band that transmits from the reflected wavelength band, that is, the wavelength band that transmits the blue light emitted by the blue LED in the third embodiment.
  • the wavelength band that reflects green light of the green wavelength that is the emission wavelength it is possible to reflect green light and red light while selectively and efficiently transmitting only blue light, This makes it easier to obtain the effect of the optical wavelength selection filter to the maximum extent.
  • ⁇ 1 Light emission wavelength of light emitting element (nm)
  • ⁇ 2 wavelength at which the transmittance of the optical wavelength selection filter becomes 70%
  • ⁇ 3 wavelength (nm) at which the transmittance of the optical wavelength selection filter is 30%.
  • the light wavelength selection filter 92 may be laminated on a light wavelength conversion sheet 91 as shown in FIG.
  • an optical sheet is provided on the light exit side of the optical wavelength selection filter as in FIGS. 1 and 2, but in particular, a brightness enhancement film such as a prism sheet, a microlens sheet, or a polarizing reflection film is used.
  • a brightness enhancement film such as a prism sheet, a microlens sheet, or a polarizing reflection film is used.
  • the angle between the direction in which the transmittance at the wavelength ⁇ 3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength ⁇ 3 of the brightness enhancement film is maximized is 10 ° or less.
  • the light wavelength selection filter and the brightness enhancement film are parallel to each other in the direction in which the transmittance is maximum, so that the light reflected from the brightness enhancement film to the light wavelength conversion sheet and the light wavelength selection filter can be efficiently reflected. It is possible to suppress the reflection and reflection to the light emitting element, and the effect of suppressing the color unevenness of the lighting device can be obtained.
  • FIG. 13 is a schematic diagram of the illumination device according to the fourth embodiment of the present invention.
  • a light wavelength conversion sheet 131 and a light wavelength selection filter 132 are provided, and a blue LED 133 is provided as a light emitting element at an end of the light guide plate 135.
  • Blue LED 133 light wavelength selection filter 132, and light wavelength conversion sheet 131 are provided in this order.
  • the blue LED 133 is provided apart from the light wavelength conversion sheet 131.
  • the light of the blue LED 133 enters from the end of the light guide plate 135 and is emitted while being guided by the light guide plate. Based on this principle, light is emitted toward the light wavelength conversion sheet 131.
  • the area of the light wavelength selection filter 132 is preferably smaller than the area of the light wavelength conversion sheet 131. If the area of the light wavelength selection filter 132 is made smaller than the area of the light wavelength conversion sheet 131 and is partially disposed in the illumination device, it is preferable because the color of the emitted light from the illumination device can be partially adjusted efficiently.
  • FIG. 14 is a schematic diagram in the fifth embodiment of the illumination device of the present invention.
  • a first light wavelength conversion sheet 146 and a second light wavelength conversion sheet 141 are provided, and a blue LED 143 is provided on the substrate 144 as a light emitting element.
  • a reflection plate 147 and a diffusion plate 148 are provided to reflect and diffuse light from the light emitting element.
  • the first light wavelength conversion sheet 146, the blue LED 143, and the second light wavelength conversion sheet 141 are provided in this order.
  • the blue LED 143 is provided apart from the second light wavelength conversion sheet 141 and emits light toward the second light wavelength conversion sheet 141.
  • the area of the first light wavelength conversion sheet 146 is preferably smaller than the area of the second light wavelength conversion sheet 141. If the area of the first light wavelength conversion sheet 146 is made smaller than the area of the second light wavelength conversion sheet 141 and is partially disposed in the lighting device, the color of the emitted light of the lighting device is partially adjusted efficiently. This is preferable because it is possible.
  • FIGS. 15 and 16 are diagrams showing optical paths when there is no first optical wavelength selection filter 146 and when there is no first optical wavelength selection filter 146, respectively.
  • a part of the blue light emitted from the blue LED toward the second light wavelength conversion sheet 141 is reflected by the surface of the diffusion plate 148 and emitted to the side opposite to the emission surface side.
  • a part is reflected also on the surface of another optical sheet and the surface of the 2nd light wavelength conversion sheet, and it radiate
  • the light emitted to the opposite side to the emission surface side is reflected by the reflecting plate and directed to the emission surface side, and a part of the light is reflected again by the surface of the diffusion plate 148 and the like and emitted to the opposite side to the emission surface side. Repeat that.
  • the blue light emitted to the side opposite to the emission surface side peaks at a wavelength different from the peak wavelength of the blue wavelength, such as green light and red light. Then, the light is output to the output surface side by the reflector.
  • the blue light emitted to the side opposite to the emission surface side is emitted to the emission surface side by the reflector without being wavelength-converted. Therefore, when there is the first light wavelength conversion sheet 146, the bluishness of the light emitted toward the emission surface in the vicinity of the first light wavelength conversion sheet 146 is the case of FIG. 15, that is, the first light wavelength conversion sheet 146 is When there is no light, it is reduced compared to the light emitted to the emission surface side.
  • the light wavelength conversion sheet 146 is partially disposed in a portion with strong bluishness (a portion where the influence of the light emission color of the light emitting element is strong) such as near the end of the lighting device, so that the color unevenness of the lighting device can be obtained. Can be improved.
  • color adjustment can be performed with less light loss compared to other color adjustment methods that reduce blueness by the principle of absorbing blue light.
  • the first light wavelength conversion sheet 146 may be laminated on a reflector as shown in FIG.
  • the first light wavelength conversion sheet 146 may contain a quantum dot or a phosphor in a reflection plate.
  • a sheet containing quantum dots or phosphors in a reflector plate has a wavelength conversion function and a reflection function.
  • the shape of the first light wavelength conversion sheet may be a planar shape, a shape having a large number of holes in the surface, a mesh shape, a circle, an ellipse, a shape surrounded by other curves, a triangle, a quadrangle, Various shapes such as other polygons may be used.
  • the first light wavelength conversion sheet is a sheet that converts light of a specific wavelength into light of another wavelength as described above, and contains, for example, quantum dots and phosphors having a function of converting light wavelength. It is a sheet.
  • a resin sheet containing quantum dots or phosphors may be used, or a film containing quantum dots or phosphors may be laminated on a sheet serving as a substrate.
  • the shape of the film containing quantum dots and phosphors to be laminated on the base sheet may be a shape with a large number of holes on the surface, a mesh shape, or a layered state such as a dot shape.
  • Various shapes such as a circle, an ellipse, a shape surrounded by other curves, a triangle, a quadrangle, and other polygons may be used.
  • the area of the film containing the quantum dot or phosphor of the first light wavelength conversion sheet is: It is preferable to make it smaller than the area of the film
  • the area of the film containing the quantum dots and the phosphor of the first light wavelength conversion sheet is made smaller than the area of the film containing the quantum dots and the phosphor of the second light wavelength conversion sheet and partially arranged in the lighting device. This is preferable because the color of the light emitted from the illumination device can be partially adjusted efficiently.
  • FIG. 18 is a schematic diagram of the sixth embodiment of the illumination device of the present invention.
  • a first light wavelength conversion sheet 186 and a second light wavelength conversion sheet 181 are provided, and a blue LED 183 is provided as a light emitting element at an end of the light guide plate 185.
  • the first light wavelength conversion sheet 186, the blue LED 183, and the second light wavelength conversion sheet 181 are provided in this order.
  • the blue LED 183 is provided apart from the second light wavelength conversion sheet 181.
  • the light of the blue LED 183 enters from the end of the light guide plate 185 and is emitted while being guided by the light guide plate. Based on this principle, light is emitted toward the second light wavelength conversion sheet 181.
  • the area of the first light wavelength conversion sheet 186 is preferably smaller than the area of the second light wavelength conversion sheet 181. If the area of the first light wavelength conversion sheet 186 is made smaller than the area of the second light wavelength conversion sheet 181 and is partially disposed in the lighting device, the color of the emitted light of the lighting device is partially adjusted efficiently. This is preferable because it is possible.
  • the attached Grandeira polarizer is installed, the sample is fixed in a certain direction, and the transmittance is measured by rotating the polarizer by 5 °. The angle at which was the maximum was measured.
  • Color coordinates / luminance of illumination device The illumination device A is configured as described in Examples 1 to 10, and the color coordinates (x value, y value) at the center thereof are set as follows using the following spectral radiance meter. The measurement was performed in a dark room under the conditions. In determining the central portion, the central portion of the prism film (155 mm ⁇ 98 mm) installed on the uppermost surface of the lighting device A was defined as the central portion. The distance between the spectral radiance meter used in the illumination device and the display was 500 mm.
  • Spectral radiance meter CS-1000A Konica Minolta Sensing Co., Ltd.
  • Objective lens Macro objective lens
  • Lighting device used for evaluation A Kindle Fire HDX 7 backlight was used as the illumination device A in which the light source is a blue LED and the light wavelength conversion sheet is mounted.
  • the size of the light wavelength conversion sheet was 158 mm ⁇ 98 mm.
  • the light wavelength conversion sheet mounted on the lighting device A was used as the second light wavelength conversion sheet.
  • FIG. 19 is a simplified diagram of the lighting device A.
  • the configuration was a blue LED 193, a light guide plate 195, a reflective film 197 having a gloss level of 930 (excluding Example 6), a light wavelength conversion sheet 191, and a prism sheet 199 (two sheets).
  • the blue wavelength of the blue light emitted from the blue LED has a peak at 450 nm
  • the green wavelength of the green light converted by the light wavelength conversion sheet and the red wavelength of the red light are There were peaks at 550 nm and 610 nm, respectively.
  • optical wavelength selection filter A was obtained by the method shown below.
  • polyester A polyethylene terephthalate having an intrinsic viscosity of 0.8 was used.
  • polyester B a blend chip in which 62% by mass of a copolymerized polyester obtained by copolymerizing 30 mol% of cyclohexanedimethanol and 38% by mass of polyethylene terephthalate was used. These polyester A and polyester B were each dried and then fed to an extruder.
  • the combined polyester A and polyester B are supplied to a static mixer, combined in a 501 layer feed block, and alternately laminated in the thickness direction with A / B / A... B / A and 501 layers laminated. did.
  • the laminate composed of the total of 501 layers thus obtained was supplied to a T die and formed into a sheet shape, and then rapidly cooled and solidified on a casting drum maintained at a surface temperature of 25 ° C. while applying electrostatic force.
  • the obtained cast film was heated by a roll group set at 85 ° C. to 100 ° C., stretched 3.3 times in the longitudinal direction, and then the uniaxially stretched film was led to a tenter, preheated with hot air at 100 ° C., and then heated at 110 ° C.
  • the film was stretched 3.8 times in the width direction at temperature.
  • the stretched film was heat-treated with hot air at a relaxation rate of 3% and 150 ° C. in a tenter, gradually cooled to room temperature, and wound up.
  • An optical wavelength selective filter A having a thickness of 40 ⁇ m and a thickness of each layer gradually changing from 43 to 83 nm was obtained.
  • the reflectance at 450 nm was 69%
  • the transmittance at 550 nm was 88%
  • the transmittance at 610 nm was 90%.
  • the light wavelength selection filter A was cut out to 60 mm ⁇ 98 mm and placed between the light wavelength conversion sheet and the prism sheet of the illumination device A.
  • the 60 mm side was arranged in parallel with the long side of the illuminating device, and the central portion of the light wavelength selection filter A was arranged so as to be the central portion of the illuminating device A.
  • the central portion of the prism film (155 mm ⁇ 98 mm) installed in the illumination device A was defined as the central portion.
  • Example 2 Except that the arrangement location of the optical wavelength selection filter A is between the two prism sheets of the illumination device A, the color coordinates (x value, (y value), luminance, and color coordinates (x value, y value) and luminance when not arranged were measured.
  • the evaluation results are shown in Table 1.
  • Example 3 A polarizing reflection film having a degree of polarization of 90% is provided on the prism sheet of Example 1, and the direction in which the transmittance of the light selective wavelength filter A is maximized and the direction in which the transmittance of the polarization reflecting film is maximized are 90 °.
  • the color coordinates (x value, y value) when the optical wavelength selection filter A is arranged, the luminance, and the color coordinates when the optical wavelength selection filter A is not arranged (except for the arrangement so as to be orthogonal to each other) x value, y value) and luminance were measured. The evaluation results are shown in Table 1.
  • the optical wavelength selection filter B was implemented except that polyester B was a copolyester obtained by copolymerizing 25 mol% of spiroglycol and 30 mol% of cyclohexanedicarboxylic acid, the thickness was changed to 70 ⁇ m, and the thickness of each layer was changed stepwise from 76 to 145 nm. In the same manner as in Example 1, an optical wavelength selection filter B was obtained.
  • the transmittance at 450 nm was 90%
  • the reflectance at 550 nm was 34%
  • the reflectance at 610 nm was 90%.
  • the light wavelength selection filter B is used as the light wavelength selection filter, and the light wavelength selection filter B is disposed between the light guide plate and the light wavelength conversion sheet of the illuminating device A in the same manner as in Example 1 except that the light wavelength selection filter B is disposed.
  • the color coordinates (x value, y value) and luminance when the selection filter B was arranged, and the color coordinates (x value, y value) and luminance when the selection filter B was not arranged were measured. The evaluation results are shown in Table 1.
  • Example 5 A polarizing reflection film having a polarization degree of 90% is provided on the prism sheet of Example 4, and the direction in which the transmittance of the light selective wavelength filter B is maximized and the direction in which the transmittance of the polarization reflecting film is maximized are parallel.
  • the color coordinates (x value, y value) and luminance when the optical wavelength selection filter B is arranged, the luminance, and the color coordinates (x value when not arranged) are the same as in Example 4 except that the arrangement is made as follows. , Y value) and luminance.
  • the evaluation results are shown in Table 1.
  • Example 6 Except that the reflective film of Example 4 is a white film having a glossiness of 32, the color coordinates (x value, y value), luminance, and arrangement when the optical wavelength selection filter B is arranged are the same as in Example 4. The color coordinates (x value, y value) and luminance when not performed were measured. The evaluation results are shown in Table 1.
  • the light wavelength selection filter B was coated with the coating agent 1 to form a coating film having a thickness of 5 ⁇ m.
  • Adeka optomer KRM-2199 Adeka optomer KRM-2199 (Asahi Denka Kogyo Co., Ltd.) 10 parts by mass Aron Oxetane OXT-221 (Toagosei Co., Ltd.) 1 part by mass Adeka optomer SP170 (Asahi Denka Kogyo Co., Ltd.) 0.25 Part by mass Pressing a mold in which a plurality of concave grooves whose cross-sectional shape is perpendicular to the longitudinal direction is pressed against the surface coated with the coating agent 1, ultraviolet rays are emitted from the back surface of the coated surface by an ultrahigh pressure mercury lamp at 300 mJ / cm The coating was cured by two irradiations, and the mold was released to obtain a lens shape.
  • the lens shape obtained here had a prism shape with a pitch of 2 ⁇ m and a height of 1 ⁇ m.
  • Example 8 Color coordinates when the optical wavelength selection filter B is arranged in the same manner as in Example 4 except that 0.1% by mass of “OB-1” manufactured by Eastman, which is a fluorescent whitening agent, is added to the polyester B. (X value, y value), luminance, and color coordinates (x value, y value) and luminance when not arranged were measured. The evaluation results are shown in Table 1.
  • a composite film forming apparatus having an extruder B, 100 parts by mass of polyethylene terephthalate pellets are vacuum dried and then supplied to an extruder A heated to 250 ° C. to 300 ° C. to form a polyester layer (first layer).
  • an extruder A heated to 250 ° C. to 300 ° C. to form a polyester layer (first layer).
  • second layer 77.5 parts by mass of a dried polyethylene terephthalate raw material and 20 parts by mass of a dried polymethylpentene resin (hereinafter sometimes abbreviated as PMP) manufactured by Mitsui Chemicals, Inc.
  • PMP dried polymethylpentene resin
  • a polyethylene terephthalate raw material is mixed with 2.5 parts by mass of a master pellet obtained by adding a phosphor to polyethylene terephthalate (“Lumogen” F Yellow 083: 400 ⁇ g / g manufactured by BASF as a phosphor with respect to the total amount of the master pellet). PMP content in the total amount of 100% by mass of 20% by mass, phosphor was adjusted to 0 Pg / g, the polyethylene terephthalate raw material was vacuum dried and fed to an extruder B heated to 250 ⁇ 300 ° C., and introduced into a T-die three-layer composite in the die to melt.
  • Three layers of these polymers were laminated through a three-layer laminating apparatus so as to be A layer (first layer) / B layer (second layer) / A layer (first layer), and formed into a sheet form from a T-die. Further, the unstretched film obtained by cooling and solidifying this sheet-like film with a cooling drum having a surface temperature of 10 ° C. to 40 ° C. is led to a group of rolls heated to 70 to 98 ° C. Then, the film was stretched 3.6 times in the direction perpendicular to the longitudinal direction in an atmosphere heated to 120 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, the film was heat-fixed at 180 to 240 ° C. in a tenter to obtain a film having a thickness of 150 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Example 10 Master pellets obtained by adding phosphor to polyethylene terephthalate to 79.75 parts by weight of dried polyethylene terephthalate raw material and 20 parts by weight of dried polymethylpentene resin manufactured by Mitsui Chemicals to form a polyester layer (second layer) (Plum content of 100% by mass of polyethylene terephthalate raw material by mixing 0.25 parts by mass of “Lumogen” F Yellow 083: 400 ⁇ g / g made by BASF as phosphor with respect to the total amount of master pellets) A film was prepared in the same manner as in Example 4 except that the amount was adjusted to 20 mass% and the phosphor was 1 ⁇ g / g, and the first light wavelength conversion sheet B was obtained.
  • second layer Plum content of 100% by mass of polyethylene terephthalate raw material by mixing 0.25 parts by mass of “Lumogen” F Yellow 083: 400 ⁇ g / g made by BASF as phosphor with respect to the total amount of master pellets
  • the evaluation results are shown in Table 1.
  • FIG. 20 shows an xy chromaticity diagram.
  • Example 2 As described in Table 1, when the light wavelength selection filters A and B and the first light wavelength conversion sheets A and B are arranged, either the x value or the y value is compared with the case where they are not arranged. Either is larger at the same value, or both are larger. The largest change in the x and y values was in Example 2, followed by Example 1.
  • the coordinate position of the strong blue color is the direction in which the x value and the y value become smaller, and on the contrary, the blue color is reduced. , X value and y value become larger.
  • either the x value or the y value is the same value and either is greater than when the light wavelength selection filters A and B are not disposed. Or both are large, that is, the bluish color is reduced, and the light wavelength selection filters A and B and the first light wavelength conversion sheets A and B are partially arranged in the vicinity of the strong bluish color in the lighting device. If it arrange

Abstract

A lighting device which is provided with a light wavelength conversion sheet, a light wavelength selection filter and a light emitting element, and which is characterized in that: the light emitting element, the light wavelength conversion sheet and the light wavelength selection filter are arranged therein in this order; the area of the light wavelength selection filter is smaller than the area of the light wavelength conversion sheet; and the light emitting element is arranged at a distance from the light wavelength conversion sheet. Provided are: a lighting device which is suppressed in color unevenness by improving the problem of color difference between the color near the central part and the color near the edge part of the lighting device; and a display device which uses this lighting device.

Description

照明装置、及び表示装置Lighting device and display device
 本発明は、例えば液晶ディスプレイ等に用いられる照明装置、及びそれを用いる表示装置に関する。 The present invention relates to an illumination device used for, for example, a liquid crystal display and a display device using the same.
 液晶ディスプレイ等に用いられる照明装置において、高効率で、純粋な色を発現させるための照明装置として、青色LEDや青色レーザー等の発光素子を光源として用い、さらに量子ドットや蛍光体を含むフィルムを用いて色調整を行う照明装置が利用されている(特許文献1)。 A lighting device used for a liquid crystal display or the like is a lighting device for expressing a high-efficiency and pure color. A light emitting element such as a blue LED or a blue laser is used as a light source, and a film containing quantum dots or phosphors is further used. An illuminating device that performs color adjustment using it is used (Patent Document 1).
 この照明装置では、青色LEDや青色レーザー等の発光素子から、量子ドットや蛍光体を含むフィルムに向かって青色光を発光し、発光した青色光を量子ドットや蛍光体で緑色光や赤色光に色変換させる。そして、発光素子の青色光と、量子ドットや蛍光体で色変換した緑色光、赤色光を合成し、白色光を得る。 In this illumination device, blue light is emitted from a light emitting element such as a blue LED or a blue laser toward a film containing quantum dots and phosphors, and the emitted blue light is converted into green light and red light with quantum dots and phosphors. Change the color. Then, the blue light of the light emitting element is combined with the green light and the red light that are color-converted with the quantum dots and the phosphor to obtain white light.
特表2013-544018号公報Special table 2013-544018 gazette
 上述したような、液晶ディスプレイ等に用いられる照明装置、すなわち青色LEDや青色レーザー等の発光素子と、量子ドットや蛍光体を含むフィルムを用いて白色光を得る照明装置において、照明装置の中央部付近の色(液晶ディスプレイであれば画面の中央部付近の表示色)よりも、照明装置の端部付近の色(液晶ディスプレイであれば画面の端部付近の表示色)の方が、発光素子の発光色の影響が強くなる(発光素子が青色LEDや青色レーザーであれば青味がかった色になる)課題があった。 In the illumination device used for the liquid crystal display as described above, that is, the illumination device that obtains white light using a light emitting element such as a blue LED or a blue laser, and a film containing quantum dots or phosphors, the central portion of the illumination device The color near the edge of the lighting device (display color near the edge of the screen in the case of a liquid crystal display) is lighter than the color near it (display color near the center of the screen if it is a liquid crystal display) There is a problem that the influence of the luminescent color of the light becomes strong (if the light emitting element is a blue LED or a blue laser, the color becomes bluish).
 本発明の目的は、照明装置の中央部付近の色と端部付近の色が異なるという課題を改善し、色ムラの少ない照明装置、およびそれを用いた表示装置を提供することにある。 An object of the present invention is to improve the problem that the color near the center of the lighting device is different from the color near the end, and to provide a lighting device with little color unevenness and a display device using the same.
 本発明の上記目的は、以下の発明によって基本的に達成された。 The above object of the present invention has been basically achieved by the following invention.
 [1]光波長変換シートと、
光波長選択フィルタと、
発光素子と、
を具備する照明装置であって、
発光素子、光波長変換シート、光波長選択フィルタが、この順で具備されており、
前記光波長選択フィルタの面積が、前記光波長変換シートの面積よりも小さく、
前記発光素子が、前記光波長変換シートと離間して具備されていることを特徴とする照明装置。
[1] a light wavelength conversion sheet;
An optical wavelength selection filter;
A light emitting element;
A lighting device comprising:
A light emitting element, a light wavelength conversion sheet, and a light wavelength selection filter are provided in this order,
The area of the light wavelength selection filter is smaller than the area of the light wavelength conversion sheet,
The illuminating device, wherein the light emitting element is separated from the light wavelength conversion sheet.
 [2]光波長変換シートと、
光波長選択フィルタと、
発光素子と、
を具備する照明装置であって、
発光素子、光波長選択フィルタ、光波長変換シートが、この順で具備されており、
前記光波長選択フィルタの面積が、前記光波長変換シートの面積よりも小さく、
前記発光素子が、前記光波長変換シートと離間して具備されていることを特徴とする照明装置。
[2] a light wavelength conversion sheet;
An optical wavelength selection filter;
A light emitting element;
A lighting device comprising:
A light emitting element, an optical wavelength selection filter, and an optical wavelength conversion sheet are provided in this order.
The area of the light wavelength selection filter is smaller than the area of the light wavelength conversion sheet,
The illuminating device, wherein the light emitting element is separated from the light wavelength conversion sheet.
 [3]第1光波長変換シートと、
第2光波長変換シートと、
発光素子と、
を具備する照明装置であって、
第1光波長変換シート、発光素子、第2光波長変換シートが、この順で具備されており、
第1光波長変換シートの面積が、第2光波長変換シートの面積よりも小さく、
前記発光素子が、前記第2光波長変換シートと離間して具備されていることを特徴とする照明装置。
[3] a first light wavelength conversion sheet;
A second light wavelength conversion sheet;
A light emitting element;
A lighting device comprising:
The first light wavelength conversion sheet, the light emitting element, and the second light wavelength conversion sheet are provided in this order,
The area of the first light wavelength conversion sheet is smaller than the area of the second light wavelength conversion sheet,
The illuminating device, wherein the light emitting element is provided apart from the second light wavelength conversion sheet.
 [4]前記光波長選択フィルタが、下記式(1)を満足することを特徴とする[1]または[2]に記載の照明装置。 [4] The illumination device according to [1] or [2], wherein the optical wavelength selection filter satisfies the following formula (1).
  |λ2-λ3| ≦ 50  (ただし、λ1<λ2、λ1<λ3) (1)
    λ1:発光素子の発光波長(nm)
    λ2:光波長選択フィルタの透過率が70%となる波長(nm)
    λ3:光波長選択フィルタの透過率が30%となる波長(nm)。
| λ2-λ3 | ≦ 50 (where λ1 <λ2, λ1 <λ3) (1)
λ1: Light emission wavelength of light emitting element (nm)
λ2: wavelength at which the transmittance of the optical wavelength selection filter becomes 70% (nm)
λ3: wavelength (nm) at which the transmittance of the optical wavelength selection filter is 30%.
 [5]前記光波長選択フィルタおよび/または前記光波長変換シートの表面が凹凸形状を有することを特徴とする[1]~[3]のいずれかに記載の照明装置。 [5] The illumination device according to any one of [1] to [3], wherein a surface of the light wavelength selection filter and / or the light wavelength conversion sheet has an uneven shape.
 [6]前記発光素子が、前記光波長変換シートの面全面に対応して複数設けられていることを特徴とする[1]または[2]に記載の照明装置。 [6] The illumination device according to [1] or [2], wherein a plurality of the light emitting elements are provided corresponding to the entire surface of the light wavelength conversion sheet.
 [7]前記発光素子が、前記第2光波長変換シートの面全面に対応して複数設けられていることを特徴とする[3]に記載の照明装置。 [7] The illumination device according to [3], wherein a plurality of the light emitting elements are provided corresponding to the entire surface of the second light wavelength conversion sheet.
 [8]前記発光素子から発光される光の前記発光素子から前記光波長変換シートまでの光路中に配置された導光板を更に具備することを特徴とする[1]または[2]に記載の照明装置。 [8] The method according to [1] or [2], further comprising a light guide plate disposed in an optical path from the light emitting element to the light wavelength conversion sheet for light emitted from the light emitting element. Lighting device.
 [9]前記発光素子から発光される光の前記発光素子から前記第2光波長変換シートまでの光路中に配置された導光板を更に具備することを特徴とする[3]に記載の照明装置。 [9] The illumination device according to [3], further comprising a light guide plate disposed in an optical path from the light emitting element to the second light wavelength conversion sheet for light emitted from the light emitting element. .
 [10]前記発光素子は前記導光板の端部に沿って複数設けられていることを特徴とする[8]または[9]に記載の照明装置。 [10] The illumination device according to [8] or [9], wherein a plurality of the light emitting elements are provided along an end portion of the light guide plate.
 [11]さらに輝度向上フィルムを含んでなり、かつ発光素子、光波長シート、光波長選択フィルタのいずれの部材よりも出射側に前記輝度向上フィルムを設けてなることを特徴とする[1]~[3]のいずれかに記載の照明装置。 [11] A brightness enhancement film is further included, and the brightness enhancement film is provided on the emission side of any member of the light emitting element, the light wavelength sheet, and the light wavelength selection filter. [3] The illumination device according to any one of [3].
 [12]前記光波長選択フィルタの波長λ3における透過率が最大になる方向と、前記輝度向上フィルムの波長λ3における透過率が最大になる方向との為す角度が10°以下であることを特徴とする[11]に記載の照明装置。 [12] The angle between the direction in which the transmittance at the wavelength λ3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength λ3 of the brightness enhancement film is maximized is 10 ° or less. The lighting device according to [11].
 [13]前記光波長選択フィルタの波長λ3における透過率が最大になる方向と、前記輝度向上フィルムの波長λ3における透過率が最大になる方向との為す角度が80°以上であることを特徴とする[11]に記載の照明装置。 [13] The angle between the direction in which the transmittance at the wavelength λ3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength λ3 of the brightness enhancement film is maximized is 80 ° or more. The lighting device according to [11].
 [14]さらに正反射性の反射フィルムを含んでなり、かつ発光素子、光波長シート、光波長選択フィルタのいずれの部材よりも出射側と反対に前記正反射性の反射フィルムを設けてなることを特徴とする[1]~[3]のいずれかに記載の照明装置。 [14] A specular reflective film is further included, and the specular reflective film is provided on the opposite side of the light-emitting element, light wavelength sheet, and light wavelength selection filter from the emission side. The illumination device according to any one of [1] to [3].
 [15]表示パネルと、該表示パネルと隣接して設けられる照明装置とを具備する表示装置であって、
前記照明装置が、
[1]~[14]のいずれかに記載の照明装置であることを特徴とする表示装置。
[15] A display device comprising a display panel and a lighting device provided adjacent to the display panel,
The lighting device is
[1] A display device comprising the illumination device according to any one of [14].
 本発明によれば、色ムラの少ない照明装置を得ることができ、それを表示装置に用いれば、色ムラの少ない表示性能に優れた表示装置を得ることができる。 According to the present invention, an illumination device with little color unevenness can be obtained, and if it is used for a display device, a display device with excellent display performance with little color unevenness can be obtained.
照明装置の一例の概略図である。It is the schematic of an example of an illuminating device. 表示装置の一例の概略図である。It is the schematic of an example of a display apparatus. 本発明の照明装置の第1実施形態における模式図である。It is a schematic diagram in 1st Embodiment of the illuminating device of this invention. 第1の波長および第2の波長の一例である。It is an example of the 1st wavelength and the 2nd wavelength. 第1実施形態における光波長選択フィルタがない場合の光路である。It is an optical path when there is no optical wavelength selection filter in the first embodiment. 第1実施形態における光波長選択フィルタがある場合の光路である。It is an optical path in case there exists an optical wavelength selection filter in 1st Embodiment. 第1実施形態における光波長選択フィルタと光波長変換シートの一例である。It is an example of the optical wavelength selection filter and optical wavelength conversion sheet | seat in 1st Embodiment. 本発明の照明装置の第2実施形態における模式図である。It is a schematic diagram in 2nd Embodiment of the illuminating device of this invention. 本発明の照明装置の第3実施形態における模式図である。It is a schematic diagram in 3rd Embodiment of the illuminating device of this invention. 第3実施形態における光波長選択フィルタがない場合の光路である。It is an optical path in case there is no optical wavelength selection filter in 3rd Embodiment. 第3実施形態における光波長選択フィルタがある場合の光路である。It is an optical path in case there exists an optical wavelength selection filter in 3rd Embodiment. 第3実施形態における光波長選択フィルタと光波長変換シートの一例である。It is an example of the optical wavelength selection filter and optical wavelength conversion sheet in 3rd Embodiment. 本発明の照明装置の第4実施形態における模式図である。It is a schematic diagram in 4th Embodiment of the illuminating device of this invention. 本発明の照明装置の第5実施形態における模式図である。It is a schematic diagram in 5th Embodiment of the illuminating device of this invention. 第5実施形態における第1光波長変換シートがない場合の光路である。It is an optical path when there is no 1st light wavelength conversion sheet in 5th Embodiment. 第5実施形態における第1光波長変換シートがある場合の光路である。It is an optical path in case there exists the 1st light wavelength conversion sheet in 5th Embodiment. 第5実施形態における第1光波長変換シートと反射板の一例である。It is an example of the 1st light wavelength conversion sheet and reflector in 5th Embodiment. 本発明の照明装置の第6実施形態における模式図である。It is a schematic diagram in 6th Embodiment of the illuminating device of this invention. 照明装置Aの簡易図である。It is a simplified diagram of the lighting device A. xy色度図である。It is an xy chromaticity diagram.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 図1(a)は本発明の照明装置の一例の概略断面図であり、図1(b)は基板とLEDと反射板の概略平面図である。図2は例えば表示装置として液晶ディスプレイを用いる場合の概略断面図である。液晶ディスプレイとしては、TV、モニター、ノート型パーソナルコンピューター、タブレット型携帯端末、スマートフォン等があるが、これらに限定されるものではない。また、照明装置は、液晶ディスプレイの他、看板、自動販売機等の表示装置に用いることができる他、家庭用照明機器、施設用照明機器などの各種照明装置として好適に用いることができるが、これらに限定されるものではない。図1、および図2の光学フィルムとしては、拡散フィルム、プリズムフィルム、再帰反射フィルム等が使用される。 FIG. 1A is a schematic cross-sectional view of an example of the illumination device of the present invention, and FIG. 1B is a schematic plan view of a substrate, an LED, and a reflector. FIG. 2 is a schematic cross-sectional view when a liquid crystal display is used as a display device, for example. Examples of the liquid crystal display include, but are not limited to, a TV, a monitor, a notebook personal computer, a tablet portable terminal, and a smartphone. In addition to the liquid crystal display, the lighting device can be used for display devices such as signboards and vending machines, and can also be suitably used as various lighting devices such as household lighting devices and facility lighting devices. It is not limited to these. As the optical film of FIGS. 1 and 2, a diffusion film, a prism film, a retroreflective film, or the like is used.
 光波長変換シートとは、特定の波長の光を他の波長の光に変換するシートのことである。本発明においては、特定の波長の光(第1の波長の光)を他の波長の光(第2の波長の光)に変換する光波長変換シートが好ましく用いられる。 The light wavelength conversion sheet is a sheet that converts light of a specific wavelength into light of another wavelength. In the present invention, a light wavelength conversion sheet that converts light having a specific wavelength (light having a first wavelength) into light having another wavelength (light having a second wavelength) is preferably used.
 ここで、特定の波長の光を他の波長の光に変換するとは、特定の波長にピークを有する光(第1の波長の光)が当該特定の波長以外の波長にピークを有する光(第2の波長の光)に変換されることをいう。また、第2の波長の光は1つの波長にピークを有する光でもよいし、2つの波長それぞれにピークを有する光でもよい。すなわち、第1の波長の光は光波長変換シートにより、第1の波長の光とはピークの波長が異なる1つの波長(第2の波長)にピークを有する第2の波長の光に変換されてもよいし、第2の波長αにピークを有する光および第2の波長βにピークを有する光の2つの光に変換されてもよい。 Here, converting light of a specific wavelength into light of another wavelength means that light having a peak at a specific wavelength (light of the first wavelength) has light at a wavelength other than the specific wavelength (first 2). The light having the second wavelength may be light having a peak at one wavelength, or light having a peak at each of the two wavelengths. That is, the light of the first wavelength is converted by the light wavelength conversion sheet into light of the second wavelength having a peak at one wavelength (second wavelength) different from the peak wavelength of the light of the first wavelength. Alternatively, the light may be converted into two lights, light having a peak at the second wavelength α and light having a peak at the second wavelength β.
 第1の波長の光は200nm以上380nm未満(近紫外)にピークを持つ波長の光および/または380nm以上495nm未満(青)にピークを持つ波長の光であることが好ましい。より好ましくは220nm以上350nm以下にピークを持つ波長の光および/または400nm以上470nm以下にピークを持つ波長の光であり、さらに好ましくは240nm以上320nm以下にピークを持つ波長の光および/または410nm以上460nm以下にピークを持つ波長の光である。これらの波長の光を発光する発光素子として、例えば近紫外LEDや青色LEDが挙げられる。また、第2の波長の光として、495nm以上570nm未満(緑)にピークを持つ波長の光、570nm以上590nm未満(黄)にピークを持つ波長の光および590nm以上750nm以下(赤)にピークを持つ波長の光からなる群より選択される少なくとも1つの波長の光であることが好ましい。より好ましくは510nm以上565nm以下にピークを持つ波長の光、575nm以上590nm以下にピークを持つ波長の光および600nm以上700nm以下にピークを持つ波長の光からなる群より選択される少なくとも1つの波長の光であり、さらに好ましくは、520nm以上555nm以下にピークを持つ波長の光、580nm以上590nm以下にピークを持つ波長の光および610nm以上680nm以下にピークを持つ波長の光からなる群より選択される少なくとも1つの波長の光である。 The light of the first wavelength is preferably light having a wavelength having a peak at 200 nm to less than 380 nm (near ultraviolet) and / or light having a wavelength having a peak at 380 nm to less than 495 nm (blue). More preferably, it is light having a wavelength having a peak at 220 nm or more and 350 nm or less and / or light having a wavelength having a peak at 400 nm or more and 470 nm or less, more preferably light having a wavelength having a peak at 240 nm or more and 320 nm or less and / or 410 nm or more. It is light having a wavelength having a peak at 460 nm or less. Examples of light emitting elements that emit light of these wavelengths include near ultraviolet LEDs and blue LEDs. In addition, as light having the second wavelength, light having a wavelength having a peak at 495 nm to less than 570 nm (green), light having a wavelength having a peak at 570 nm to less than 590 nm (yellow), and a peak having a peak at 590 nm to 750 nm (red) It is preferable that the light is at least one wavelength selected from the group consisting of light having a wavelength. More preferably, at least one wavelength selected from the group consisting of light with a wavelength having a peak at 510 nm to 565 nm and below, light having a wavelength at 575 nm to 590 nm and light having a peak at 600 nm to 700 nm. More preferably, the light is selected from the group consisting of light having a wavelength having a peak at 520 nm to 555 nm and light having a wavelength having a peak at 580 nm to 590 nm and light having a peak at 610 nm to 680 nm. Light of at least one wavelength.
 また、光波長選択フィルタとは、特定の波長の光を透過したり反射したりするフィルタのことである。 Also, the optical wavelength selection filter is a filter that transmits or reflects light of a specific wavelength.
 ここで、光波長選択フィルタの面積は、光波長変換シートの面積よりも小さいことが好ましい。光波長選択フィルタの面積を光波長変換シートの面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 Here, the area of the light wavelength selection filter is preferably smaller than the area of the light wavelength conversion sheet. If the area of the light wavelength selection filter is made smaller than the area of the light wavelength conversion sheet and is partially disposed in the illumination device, it is preferable because the color of the emitted light of the illumination device can be partially adjusted.
 なお、発光素子とは、光を発する半導体素子のことをいう。発光素子は照明装置においてどのように設けられていてもよいが、例えば基板上に設けられる場合は光波長変換シートの面全面に対応して複数設けられていることが効率良く発光させる点から好ましく、後述する導光板を用いる場合は、導光板の端部に沿って複数設けられていることが発光効率の点から好ましい。 Note that a light-emitting element refers to a semiconductor element that emits light. The light emitting element may be provided in any way in the lighting device. For example, when the light emitting element is provided on the substrate, it is preferable that a plurality of light emitting elements are provided corresponding to the entire surface of the light wavelength conversion sheet from the viewpoint of efficiently emitting light. When using a light guide plate described later, it is preferable that a plurality of light guide plates are provided along the end of the light guide plate from the viewpoint of light emission efficiency.
 (第1実施形態)
 図3~図7を用いて、本発明の照明装置の一例である、第1実施形態について説明する。
(First embodiment)
The first embodiment, which is an example of the illumination device of the present invention, will be described with reference to FIGS.
 図3は、本発明の照明装置の第1実施形態における模式図である。光波長変換シート31と光波長選択フィルタ32が具備されており、発光素子として青色LED33が基板34に設けられている。また、発光素子からの光を反射・拡散するために、反射板37および拡散板38が設けられている。 FIG. 3 is a schematic diagram in the first embodiment of the illumination device of the present invention. A light wavelength conversion sheet 31 and a light wavelength selection filter 32 are provided, and a blue LED 33 is provided on the substrate 34 as a light emitting element. In addition, a reflecting plate 37 and a diffusing plate 38 are provided to reflect and diffuse light from the light emitting element.
 青色LED33、光波長変換シート31、光波長選択フィルタ32は、この順で具備されている。 Blue LED 33, light wavelength conversion sheet 31, and light wavelength selection filter 32 are provided in this order.
 青色LED33は、光波長変換シート31と離間して具備されており、光波長変換シート31に向かって光を発光する。 The blue LED 33 is provided apart from the light wavelength conversion sheet 31 and emits light toward the light wavelength conversion sheet 31.
 光波長選択フィルタ32の面積は、光波長変換シート31の面積よりも小さいことが好ましい。光波長選択フィルタ32の面積を光波長変換シート31の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 The area of the light wavelength selection filter 32 is preferably smaller than the area of the light wavelength conversion sheet 31. If the area of the light wavelength selection filter 32 is made smaller than the area of the light wavelength conversion sheet 31 and is partially disposed in the illumination device, it is preferable because the color of the emitted light of the illumination device can be partially adjusted efficiently.
 第1実施形態において、光波長選択フィルタ32は、青色LED33から発光される第1の波長の光を反射し、該第1の波長の光が光波長変換シート31で変換されて生じる第2の波長の光を透過するものである。 In the first embodiment, the optical wavelength selection filter 32 reflects the first wavelength light emitted from the blue LED 33, and the second wavelength generated by the light wavelength conversion sheet 31 converting the first wavelength light. It transmits light of a wavelength.
 第1実施形態における光波長選択フィルタ32は、光波長変換シート31により変換された第2の波長の光について、ピークとなる波長(以下、第2の波長のピーク波長ということもある)の光を85%以上透過し、かつ第1の波長の光について、ピークとなる波長(以下、第1の波長のピーク波長ということもある)の光を20%以上反射するフィルタのことをいう。すなわち、第2の波長のピーク波長における透過率が85%以上であり、かつ第1の波長のピーク波長における反射率が20%以上であるフィルタのことをいう。なお、第2の波長の光が2つ以上あるときは、すべての第2の波長の光について透過率が85%以上であるフィルタのことをいう。 The light wavelength selection filter 32 in the first embodiment has a peak wavelength (hereinafter sometimes referred to as a peak wavelength of the second wavelength) for the light of the second wavelength converted by the light wavelength conversion sheet 31. Is a filter that reflects at least 85% of light having a peak wavelength (hereinafter also referred to as peak wavelength of the first wavelength) with respect to light having the first wavelength. That is, the filter has a transmittance of 85% or more at the peak wavelength of the second wavelength and a reflectance of 20% or more at the peak wavelength of the first wavelength. In addition, when there are two or more light beams having the second wavelength, it means a filter having a transmittance of 85% or more for all the light beams having the second wavelength.
 第1の波長の光は特定の波長にピークを持つ光であり、第2の波長の光は第1の波長の光とは異なる波長にピークを持つ光である。 The light of the first wavelength is light having a peak at a specific wavelength, and the light of the second wavelength is light having a peak at a wavelength different from the light of the first wavelength.
 図4は、第1の波長および第2の波長の一例である。図2の波長の例は、発光素子が青色LEDであり、光波長変換シートが、青色LEDから発光された第1の波長である青色波長の青色光が変換されて第2の波長である緑色波長の緑色光を発光する緑用量子ドットと、青色光が変換されて第2の波長である赤色波長である赤色光を発光する赤用量子ドットとの2種類の量子ドットが含有されている場合の例である。青色LEDの青色光のピークは450nmであり、緑色光のピークが550nmであり、赤色光のピークが610nmである。これらの光を合成することで白色光が得られる。 FIG. 4 is an example of the first wavelength and the second wavelength. In the example of the wavelength in FIG. 2, the light emitting element is a blue LED, and the light wavelength conversion sheet converts the blue light of the blue wavelength, which is the first wavelength emitted from the blue LED, to the green that is the second wavelength. Two types of quantum dots are included: a green quantum dot that emits green light of a wavelength, and a red quantum dot that emits red light that is red wavelength, which is the second wavelength, by converting blue light. This is an example. The blue LED has a blue light peak of 450 nm, a green light peak of 550 nm, and a red light peak of 610 nm. By combining these lights, white light can be obtained.
 図5及び図6は、それぞれ光波長選択フィルタ32がない場合とある場合の光路を示す図である。 5 and 6 are diagrams showing optical paths when there is no optical wavelength selection filter 32 and when there is no optical wavelength selection filter 32, respectively.
 図6に示した通り、光波長選択フィルタ32は、光波長変換シートで変換した緑色光と赤色光を透過し、青色LEDが発光した青色光の一部、または全部を反射する。ここで、青色LEDが発光した青色光の一部を反射するとは、青色LEDが発光した青色光が有するピークの波長における反射率が20%以上であることをいい、青色LEDが発光した青色光の全部を反射するとは、青色LEDが発光した青色光が有するピークの波長における反射率が100%以上であることをいう。 As shown in FIG. 6, the light wavelength selection filter 32 transmits green light and red light converted by the light wavelength conversion sheet, and reflects a part or all of the blue light emitted by the blue LED. Here, reflecting part of the blue light emitted by the blue LED means that the reflectance at the peak wavelength of the blue light emitted by the blue LED is 20% or more, and the blue light emitted by the blue LED is emitted. The reflection of all of the above means that the reflectance at the peak wavelength of the blue light emitted by the blue LED is 100% or more.
 従って、光波長選択フィルタ32の出射面側に出射される光の青味は、図5の場合、すなわち光波長選択フィルタ32がない場合に出射面側に出射される光よりも低減される。 Therefore, the bluishness of the light emitted to the emission surface side of the light wavelength selection filter 32 is reduced as compared with the light emitted to the emission surface side in the case of FIG. 5, that is, when there is no light wavelength selection filter 32.
 この原理によって、照明装置の端部付近など、青味が強い部分(発光素子の発光色の影響が強い部分)に、部分的に光波長選択フィルタ32を配置することで、照明装置の色ムラを改善することができる。 In accordance with this principle, the light wavelength selection filter 32 is partially disposed in a portion with strong bluishness (a portion where the influence of the light emission color of the light emitting element is strong) such as near the end of the lighting device, so that the color unevenness of the lighting device can be obtained. Can be improved.
 なお、光波長選択フィルタ32で反射された青色光は、反射板等で反射されることにより照明装置内で再利用されるため、光の損失が少ない。従って、青色光を吸収させる原理で青味を低減させる他の色調整方法と比べて、少ない光損失で色調整することができる。 Note that the blue light reflected by the light wavelength selection filter 32 is reused in the lighting device by being reflected by a reflector or the like, so that there is little light loss. Accordingly, color adjustment can be performed with less light loss compared to other color adjustment methods that reduce blueness by the principle of absorbing blue light.
 光波長選択フィルタ32は、第1の波長のピーク波長の反射率が20%以上であることが好ましい。一方、反射率が高すぎると、青味の低減効果が大きくなりすぎることによる色ムラが発生する場合があるため、第1の波長のピーク波長の反射率は、より好ましくは25~90%であり、さらに好ましくは30~80%である。 The optical wavelength selection filter 32 preferably has a reflectance of 20% or more at the peak wavelength of the first wavelength. On the other hand, if the reflectance is too high, color unevenness may occur due to an excessive blue reduction effect. Therefore, the reflectance at the peak wavelength of the first wavelength is more preferably 25 to 90%. More preferably 30 to 80%.
 光波長選択フィルタ32は、第2の波長のピーク波長の透過率が85%以上であることが好ましく、87%以上であることがより好ましく、90%以上であることがさらに好ましい。 The light wavelength selection filter 32 preferably has a transmittance of the peak wavelength of the second wavelength of 85% or more, more preferably 87% or more, and further preferably 90% or more.
 光波長選択フィルタ32は、例えば図7に示すように、光波長変換シート31に積層してもよい。 The light wavelength selection filter 32 may be laminated on the light wavelength conversion sheet 31, for example, as shown in FIG.
 光波長選択フィルタ32は下記式(1)を満足することも好ましい。下記式(1)は、光を反射する波長帯と透過する波長帯との間での透過率の変化が急峻であることを示しており、|λ2-λ3|が小さくなるにつれて、より急峻に反射する波長帯から透過する波長帯へと変化する。このように反射する波長帯から透過する波長帯、すなわち、第1実施形態でいうところの青色LEDが発光した青色光を反射する波長帯から光波長変換シートにて青色光が変換され第2の発光波長である緑色波長の緑色光を透過する波長帯への変化が急峻に行われることによって、青色光のみを選択的・効率的に反射しつつ緑色光を透過することができ、光波長選択フィルタの効果を最大限得やすくなるものである。 It is also preferable that the optical wavelength selection filter 32 satisfies the following formula (1). The following formula (1) indicates that the change in transmittance between the wavelength band that reflects light and the wavelength band that transmits light is steep, and as | λ2−λ3 | It changes from a reflected wavelength band to a transmitted wavelength band. Blue light is converted by the light wavelength conversion sheet from the wavelength band that is transmitted from the reflected wavelength band, that is, the wavelength band that reflects the blue light emitted by the blue LED in the first embodiment. By changing sharply to the wavelength band that transmits green light of the green wavelength that is the emission wavelength, it is possible to transmit green light while selectively reflecting only blue light selectively and efficiently, and light wavelength selection This makes it easier to obtain the maximum filter effect.
  |λ2-λ3| ≦ 50  (ただし、λ1<λ2、λ1<λ3) (1)
    λ1:発光素子の発光波長(nm)
    λ2:光波長選択フィルタの透過率が70%となる波長(nm)
    λ3:光波長選択フィルタの透過率が30%となる波長(nm)。
| λ2-λ3 | ≦ 50 (where λ1 <λ2, λ1 <λ3) (1)
λ1: Light emission wavelength of light emitting element (nm)
λ2: wavelength at which the transmittance of the optical wavelength selection filter becomes 70% (nm)
λ3: wavelength (nm) at which the transmittance of the optical wavelength selection filter is 30%.
 光波長選択フィルタは、可視光領域で透明な屈折率の異なる2種類の膜を積層したものが好ましく用いられる。屈折率の異なる2種類の膜を積層することで、膜の界面において光を反射するようになり、2種類の膜の屈折率差と各膜の厚みを調整することによって、反射する光の波長を選択することができる。また、交互に積層する2種類の膜の積層数を調整することによって、反射率を調整することができる。 The optical wavelength selection filter is preferably a laminate of two types of films having different refractive indexes that are transparent in the visible light region. By laminating two types of films having different refractive indexes, light is reflected at the interface between the films, and the wavelength of the reflected light is adjusted by adjusting the difference in refractive index between the two types of films and the thickness of each film. Can be selected. Further, the reflectance can be adjusted by adjusting the number of the two types of films stacked alternately.
 2種類の膜は、有機樹脂材料でもよく、無機系材料でもよく、有機樹脂としては、熱可塑性樹脂、硬化性樹脂のいずれでもよい。また、ホモ樹脂、共重合樹脂または2種類以上の樹脂のブレンドであってもよい。より好ましくは、成形性が良好であるため、熱可塑性樹脂である。また、各樹脂中には、各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤、屈折率調整のためのドープ剤などが添加されていてもよい。 The two types of films may be organic resin materials or inorganic materials, and the organic resin may be either a thermoplastic resin or a curable resin. Further, it may be a homo resin, a copolymer resin or a blend of two or more kinds of resins. More preferably, it is a thermoplastic resin because of good moldability. In each resin, various additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, thermal stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, A dopant for adjusting the refractive index may be added.
 青色LEDを用いる場合には、光波長選択フィルタ中に蛍光増白剤を含んでなることも好ましい。蛍光増白剤とは、青色LEDの発光波長よりも短波長の光によって励起されて青色光を発光するものであり、蛍光増白剤を含むことでLEDから発せられるが光波長変換シートでは波長変換できない短波長の光を光波長変換シートで緑色光や赤色光に変換可能な青色光へと変換することができ、照明装置とした際に輝度を向上させることが可能となる。 When a blue LED is used, it is also preferable that a fluorescent whitening agent is included in the light wavelength selection filter. The fluorescent whitening agent is one that emits blue light when excited by light having a wavelength shorter than the emission wavelength of the blue LED. The fluorescent whitening agent is emitted from the LED by including the fluorescent whitening agent. Light of a short wavelength that cannot be converted can be converted into blue light that can be converted into green light or red light by a light wavelength conversion sheet, and brightness can be improved when the lighting device is formed.
 熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルペンテンなどのポリオレフィン樹脂、脂環族ポリオレフィン樹脂、ナイロン6、ナイロン66などのポリアミド樹脂、アラミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチルサクシネート、ポリエチレン-2,6-ナフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、フッ化ビニリデン樹脂などのフッ素樹脂、PMMAなどのアクリル樹脂、メタクリル樹脂、ポリアセタール樹脂、ポリグリコール酸樹脂、ポリ乳酸樹脂、アクリロニトリル・ブタジエンスチレン共重合体、アクリロニトリル・エチレン-プロピレンゴム、スチレン共重合体などを用いることができる。この中で、強度・耐熱性・透明性の観点から、特にポリエステル樹脂であることがより好ましい。 Examples of thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polystyrene and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyethylene terephthalate, polybutylene terephthalate and polypropylene terephthalate. Polyester resin such as polybutyl succinate, polyethylene-2,6-naphthalate, polycarbonate resin, polyarylate resin, polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluorinated ethylene resin, trifluorinated ethylene chloride resin Fluorine resin such as ethylene tetrafluoride-6-propylene copolymer, vinylidene fluoride resin, acrylic resin such as PMMA, methacrylic resin, poly Acetal resin, polyglycolic acid resin, polylactic acid resin, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-ethylene - propylene rubber, or the like can be used styrene copolymer. Among these, a polyester resin is particularly preferable from the viewpoint of strength, heat resistance, and transparency.
 ポリエステル樹脂のうち、ポリエチレンテレフタレートおよびその共重合体、ポリエチレンナフタレートおよびその共重合体、ポリブチレンテレフタレートおよびその共重合体、ポリブチレンナフタレートおよびその共重合体、さらにはポリヘキサメチレンテレフタレートおよびその共重合体、ポリヘキサメチレンナフタレートおよびその共重合体などを用いることが好ましい。 Among polyester resins, polyethylene terephthalate and copolymers thereof, polyethylene naphthalate and copolymers thereof, polybutylene terephthalate and copolymers thereof, polybutylene naphthalate and copolymers thereof, and polyhexamethylene terephthalate and copolymers thereof. It is preferable to use a polymer, polyhexamethylene naphthalate, and a copolymer thereof.
 前述の式(1)を満足するような光波長選択フィルタを得るためには、熱可塑性樹脂からなる積層フィルムを用いることも好ましい。この場合、層数は増加する傾向があるものの、多数の層厚みを制御することで波長帯域や特に反射する波長帯から透過する波長帯への変化の急峻化も容易となる。 In order to obtain an optical wavelength selective filter that satisfies the above formula (1), it is also preferable to use a laminated film made of a thermoplastic resin. In this case, although the number of layers tends to increase, by controlling the thickness of a large number of layers, it becomes easy to sharpen the change from the wavelength band, in particular from the reflected wavelength band to the transmitted wavelength band.
 光波長選択フィルタの形状は、面状でもよく、面に多数の穴が開いた形状でもよく、網目状でもよく、円形、楕円形、その他の曲線で囲まれた形状、三角形、四角形、その他の多角形等、様々な形状としてよい。 The shape of the optical wavelength selection filter may be a planar shape, a shape having a large number of holes in the surface, a mesh shape, a circle, an ellipse, a shape surrounded by other curves, a triangle, a rectangle, other Various shapes such as a polygon may be used.
 上述したような屈折率の異なる2種類の膜を積層した光波長選択フィルタを、さらに別のシートに積層して用いることもできる。別のシートに積層する際の光波長選択フィルタの形状は、面状でもよく、面に多数の穴が開いた形状でもよく、網目状でもよく、ドット状に積層するなど離間した状態で積層してもよく、円形、楕円形、その他の曲線で囲まれた形状、三角形、四角形、その他の多角形等、様々な形状としてよい。 The optical wavelength selection filter in which two kinds of films having different refractive indexes as described above are stacked can be used by stacking on another sheet. The shape of the optical wavelength selection filter when laminating to another sheet may be a planar shape, a shape having a large number of holes on the surface, a mesh shape, or a layered state such as a dot shape. Various shapes such as a circle, an ellipse, a shape surrounded by other curves, a triangle, a quadrangle, and other polygons may be used.
 光波長選択フィルタおよび/または光波長変換シートの表面が凹凸形状を有することも好ましい。ここでいう凹凸形状を有するとは、光波長選択フィルタおよび/または光波長変換シートの表面の粗さを測定した際に、JIS B0601(2001年)におけるRzが1μm以上であることを示す。より好ましくはRzが10μm以上であり、下記のような効果を得ることが容易となる。 It is also preferable that the surface of the light wavelength selection filter and / or the light wavelength conversion sheet has an uneven shape. Having an uneven shape here means that Rz in JIS B0601 (2001) is 1 μm or more when the surface roughness of the light wavelength selection filter and / or the light wavelength conversion sheet is measured. More preferably, Rz is 10 μm or more, and the following effects can be easily obtained.
 光波長選択フィルタおよび/または光波長変換シートの表面が凹凸形状を有することでの第1の効果は易滑性である。表面に凹凸形状を有することにより易滑性が発現するため、光波長選択フィルタおよび/または光波長変換シートを照明装置に組み込む際の傷の発生を抑制することが可能となる。 The first effect of the surface of the light wavelength selection filter and / or the light wavelength conversion sheet having an uneven shape is easy slipping. Since the surface has a concavo-convex shape, the slipperiness is expressed, so that it is possible to suppress the occurrence of scratches when the light wavelength selection filter and / or the light wavelength conversion sheet is incorporated into the lighting device.
 第2の効果は光の取り出しである。本発明者らは、光波長変換シートにおいては、光が光波長変換シート内にて反射することで光ファイバーのごとくシート内に閉じ込められる現象が発生し輝度が低下するという現象を見出した。その対策として、光波長選択フィルタおよび/または光波長変換シートの表面が凹凸形状を有することで、その凹凸界面から光が取り出されるため、光波長変換シート内に取り込まれる光を減少させ、輝度向上の効果が得られるものである。 The second effect is light extraction. The inventors of the present invention have found a phenomenon that in the light wavelength conversion sheet, a phenomenon that light is reflected in the light wavelength conversion sheet causes a phenomenon that the light is confined in the sheet like an optical fiber and the luminance is lowered. As a countermeasure, because the surface of the light wavelength selection filter and / or the light wavelength conversion sheet has a concavo-convex shape, light is extracted from the concavo-convex interface, thereby reducing the light taken into the light wavelength conversion sheet and improving the brightness. The effect of is obtained.
 第3の効果は、光の光路の調整である。発光素子、特に発光ダイオードから光は表示側へと比較的高い指向性を持って進むのに対して、光波長変換シートからの光は等方的に発光するために、光源正面での輝度が低下する原因となる。光波長選択フィルタおよび/または光波長変換シートの表面が凹凸形状を有することで、凹凸界面にて光の方向を調整し、特に正面方向に集光することで輝度向上を達成することが容易になるほか、照明装置、表示装置を形成する際に他の光学部材を省くこともできるため低コスト化にも寄与する。 The third effect is the adjustment of the optical path of light. The light from the light emitting element, particularly the light emitting diode, travels with a relatively high directivity to the display side, whereas the light from the light wavelength conversion sheet emits isotropically. It will cause a drop. Since the surface of the light wavelength selection filter and / or the light wavelength conversion sheet has a concavo-convex shape, it is easy to adjust the direction of light at the concavo-convex interface, and in particular, to improve brightness by condensing in the front direction. In addition, other optical members can be omitted when forming the lighting device and the display device, which contributes to cost reduction.
 上記第2、第3の効果をより効率的に得るために、前記凹凸形状がマイクロレンズ形状、プリズム形状、略三角形状または略半円形状であることが好ましい。マイクロレンズ形状とは略半球状の凹凸を、プリズム形状とは略三角状の凹凸を指す。このような形状を備える場合、光は表示側へ光路が集光されるため照明装置、表示装置とした場合の正面輝度がより顕著に向上するようになる。 In order to obtain the second and third effects more efficiently, the uneven shape is preferably a microlens shape, a prism shape, a substantially triangular shape, or a substantially semicircular shape. The microlens shape indicates a substantially hemispherical unevenness, and the prism shape indicates a substantially triangular unevenness. In the case of having such a shape, since the light path is focused on the display side, the front luminance in the case of the illumination device and the display device is more significantly improved.
 前述のとおり発光素子とは、光を発する半導体素子のことであり、発光素子は、青色や近紫外波長のLEDやレーザー等、任意の好適な発光素子を用いることができる。 As described above, a light-emitting element is a semiconductor element that emits light, and any suitable light-emitting element such as an LED or a laser having a blue or near-ultraviolet wavelength can be used as the light-emitting element.
 光波長変換シートは、前述のとおり特定の波長の光を他の波長の光に変換するシートのことであり、例えば光波長を変換する機能を有する量子ドットや蛍光体を含有したシートである。量子ドットや蛍光体を樹脂シートに含有したものでもよく、基材となるシートに、量子ドットや蛍光体を含有した膜を積層したものでもよい。 The light wavelength conversion sheet is a sheet that converts light of a specific wavelength into light of another wavelength as described above. For example, the light wavelength conversion sheet is a sheet containing quantum dots or phosphors having a function of converting a light wavelength. A resin sheet containing quantum dots or phosphors may be used, or a film containing quantum dots or phosphors may be laminated on a sheet serving as a substrate.
 光波長変換シートとして、基材となるシートに、量子ドットや蛍光体を含有した膜を積層したものを用いる場合は、光波長選択フィルタの面積は、量子ドットや蛍光体を含有した膜の面積よりも小さくすることが好ましい。光波長選択フィルタの面積を量子ドットや蛍光体を含有した膜の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 When using a light wavelength conversion sheet in which a film containing quantum dots or phosphors is laminated on a sheet serving as a base material, the area of the light wavelength selection filter is the area of the film containing quantum dots or phosphors. It is preferable to make it smaller. If the area of the light wavelength selection filter is made smaller than the area of the film containing quantum dots and phosphors and is partially disposed in the illumination device, the color of the emitted light of the illumination device can be partially adjusted efficiently. Therefore, it is preferable.
 発光素子と光波長変換シートを用いて白色光を得る組み合わせとしては、例えば、青色LEDを用いる場合は、青色LEDから発光された第1の波長である青色波長の青色光が変換されて第2の波長である黄色波長の黄色光を発光する黄色用量子ドットを含有した光波長変換シートを用いてもよい。近紫外LEDを用いる場合は、近紫外LEDから発光された第1の波長である近紫外波長の光が変換されて第2の波長である赤色波長の赤色光を発光する赤用量子ドットと、近紫外波長の光が変換されて第2の波長である緑色波長の緑色光を発光する緑用量子ドットと、近紫外波長の光が変換されて第2の波長である青色波長の青色光を発光する青用量子ドットが含有されるものを用いてもよい。 As a combination for obtaining white light using a light emitting element and a light wavelength conversion sheet, for example, when a blue LED is used, blue light having a blue wavelength, which is the first wavelength emitted from the blue LED, is converted to the second light. You may use the light wavelength conversion sheet containing the quantum dot for yellow which light-emits the yellow light of the yellow wavelength which is this wavelength. When using a near-ultraviolet LED, red quantum dots that emit light of a red wavelength that is a second wavelength by converting light of a near-ultraviolet wavelength that is the first wavelength emitted from the near-ultraviolet LED; Green quantum dots that emit green light having a green wavelength, which is a second wavelength by converting light having a near ultraviolet wavelength, and blue light having a blue wavelength, which is a second wavelength, by converting light having a near ultraviolet wavelength You may use what contains the quantum dot for blue to light-emit.
 量子ドットとしては、ZnSシェルを有するCdSeが例として挙げられる。また、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、又はCdTe/ZnSを含むコア/シェル発光ナノ結晶を用いてもよい。 Examples of quantum dots include CdSe having a ZnS shell. Alternatively, a core / shell luminescent nanocrystal containing CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, or CdTe / ZnS may be used.
 蛍光体としては、緑色用蛍光体としてSrGa:Eu2+、赤色用蛍光体として(Ca,Sr,Ba)S:Eu2+が例として挙げられる。蛍光体材料の記載において、:の前は母体を示し、後は付活剤を示す。 Examples of the phosphor include SrGa 2 S 4 : Eu 2+ as a green phosphor and (Ca, Sr, Ba) S: Eu 2+ as a red phosphor. In the description of the phosphor material, a parenthesis is shown before: and an activator is shown after.
 また、本実施形態では白色光を得ているが、照明装置から出射される光として所望の色の光を得るために、発光素子や蛍光体の種類を適宜選択することも可能である。 Further, although white light is obtained in the present embodiment, it is possible to appropriately select the type of light emitting element or phosphor in order to obtain light of a desired color as light emitted from the illumination device.
 第1実施形態においても図1や図2と同様に光波長選択フィルタの出射側に光学シートが設けられることも好ましいが、特にプリズムシートやマイクロレンズシート、偏光反射フィルムのような輝度向上フィルムが設けられることが好ましい。プリズムシートやマイクロレンズ、偏光反射フィルムは、従来からも正面輝度向上のために有益に用いられるものであるが、特に光波長変換シートと組み合わせて用いる場合、いったん光波長変換シートを透過した光を光学フィルム上で反射させ光波長変換シート側へ反射・再波長変換することができ、高価な量子ドットなどの使用量削減による低コスト化の効果も得られる。 In the first embodiment as well, it is preferable that an optical sheet is provided on the light exit side of the optical wavelength selection filter, as in FIGS. It is preferable to be provided. Prism sheets, microlenses, and polarizing / reflecting films have traditionally been beneficially used to improve frontal brightness, but when used in combination with a light wavelength conversion sheet, the light once transmitted through the light wavelength conversion sheet is used. It can be reflected on the optical film and reflected / re-wavelength converted to the light wavelength conversion sheet side, and the cost can be reduced by reducing the amount of expensive quantum dots used.
 さらに好ましい組み合わせとして、光波長選択フィルタの波長λ3における透過率が最大になる方向と、輝度向上フィルムの波長λ3における透過率が最大になる方向との為す角度が80°以上となるように配置されることが挙げられる。ここでいう透過率が最大となる方向とは、フィルム面に垂直に波長λ3の偏光を入射し、偏光面を5°ずつ回転させて透過率が最大となる方向である。光波長選択フィルタと輝度向上フィルムの透過率が最大となる方向が直交するに従い、光波長選択フィルタで反射できなかった偏光を輝度向上フィルムにて効率的に反射することができ、光波長選択フィルタの効果をさらに向上させることが可能となる。 As a more preferable combination, the angle between the direction in which the transmittance at the wavelength λ3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength λ3 of the brightness enhancement film is maximized is arranged to be 80 ° or more. Can be mentioned. The direction in which the transmittance is maximum here is a direction in which polarized light having a wavelength λ3 is incident perpendicularly to the film surface and the polarization surface is rotated by 5 ° to maximize the transmittance. As the direction in which the transmittance of the light wavelength selection filter and the brightness enhancement film becomes maximum is orthogonal, the polarization that could not be reflected by the light wavelength selection filter can be efficiently reflected by the brightness enhancement film. It is possible to further improve the effect.
 反射板37としては、白色フィルムのような光拡散性の反射フィルムを用いてもよいが、より好ましくは、正反射性の反射フィルムである。ここでいう正反射性とは、JIS Z8741(1997年)のとおり入射角度60°、出射角度60°にて測定した光沢度が100以上であることである。正反射性の反射フィルムを用いることにより、光選択波長フィルタで反射された光や光波長変換シートで波長変換・発光する光の散乱を抑制しつつ高効率で光を反射できるようになるため、照明装置の色ムラを抑制する効果が得られる。 As the reflection plate 37, a light diffusive reflection film such as a white film may be used, but a regular reflection film is more preferable. Here, the specular reflectivity means that the glossiness measured at an incident angle of 60 ° and an outgoing angle of 60 ° is 100 or more as per JIS Z8741 (1997). By using a specular reflective film, it becomes possible to reflect light with high efficiency while suppressing scattering of light reflected by the light selective wavelength filter and light that is converted and emitted by the light wavelength conversion sheet. An effect of suppressing color unevenness of the lighting device can be obtained.
 (第2実施形態)
 図8は、本発明の照明装置の第2実施形態における模式図である。光波長変換シート81と光波長選択フィルタ82が具備されており、導光板85の端部に、発光素子として青色LED83が具備されている。
(Second Embodiment)
FIG. 8 is a schematic diagram of the lighting apparatus according to the second embodiment of the present invention. A light wavelength conversion sheet 81 and a light wavelength selection filter 82 are provided, and a blue LED 83 is provided as a light emitting element at an end of the light guide plate 85.
 青色LED83、光波長変換シート81、光波長選択フィルタ82は、この順で具備されている。 Blue LED 83, light wavelength conversion sheet 81, and light wavelength selection filter 82 are provided in this order.
 青色LED83は、光波長変換シート81と離間して具備されている。青色LED83の光は、導光板85の端部から入光して導光板で導光されながら出射される。この原理によって、光波長変換シート81に向かって光を発光する。 Blue LED 83 is provided apart from light wavelength conversion sheet 81. The light of the blue LED 83 enters from the end of the light guide plate 85 and is emitted while being guided by the light guide plate. Based on this principle, light is emitted toward the light wavelength conversion sheet 81.
 光波長選択フィルタ82の面積は、光波長変換シート81の面積よりも小さいことが好ましい。光波長選択フィルタ82の面積を光波長変換シート81の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 The area of the light wavelength selection filter 82 is preferably smaller than the area of the light wavelength conversion sheet 81. If the area of the light wavelength selection filter 82 is made smaller than the area of the light wavelength conversion sheet 81 and is partially disposed in the illumination device, it is preferable because the color of the emitted light from the illumination device can be partially adjusted efficiently.
 第2実施形態における他の態様は、第1実施形態と同様である。 Other aspects in the second embodiment are the same as those in the first embodiment.
 (第3実施形態)
 図9~図12を用いて、本発明の照明装置の一例である、第3実施形態について説明する。
(Third embodiment)
A third embodiment, which is an example of the illumination device of the present invention, will be described with reference to FIGS.
 図9は、本発明の照明装置の第3実施形態における模式図である。光波長変換シート91と光波長選択フィルタ92が具備されており、発光素子として青色LED93が基板94に設けられている。また、発光素子からの光を反射・拡散するために、反射板97および拡散板98が設けられている。 FIG. 9 is a schematic diagram in the third embodiment of the illumination device of the present invention. A light wavelength conversion sheet 91 and a light wavelength selection filter 92 are provided, and a blue LED 93 is provided on the substrate 94 as a light emitting element. Further, a reflecting plate 97 and a diffusing plate 98 are provided in order to reflect and diffuse light from the light emitting element.
 青色LED93、光波長選択フィルタ92、光波長変換シート91は、この順で具備されている。 Blue LED 93, light wavelength selection filter 92, and light wavelength conversion sheet 91 are provided in this order.
 青色LED93は、光波長変換シート91と離間して具備されており、光波長変換シート91に向かって光を発光する。 The blue LED 93 is spaced apart from the light wavelength conversion sheet 91 and emits light toward the light wavelength conversion sheet 91.
 光波長選択フィルタ92の面積は、光波長変換シート91の面積よりも小さいことが好ましい。光波長選択フィルタ92の面積を光波長変換シート91の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 The area of the light wavelength selection filter 92 is preferably smaller than the area of the light wavelength conversion sheet 91. If the area of the light wavelength selection filter 92 is made smaller than the area of the light wavelength conversion sheet 91 and is partially disposed in the illumination device, it is preferable because the color of the emitted light from the illumination device can be partially adjusted efficiently.
 第3実施形態において、光波長選択フィルタ92は、青色LED93から発光される第1の波長の光を透過し、該第1の波長の光が光波長変換シート91で変換されて生じる第2の波長の光を反射するものである。 In the third embodiment, the light wavelength selection filter 92 transmits the first wavelength light emitted from the blue LED 93, and the second wavelength generated by the light wavelength conversion sheet 91 converting the first wavelength light. It reflects light of a wavelength.
 第3実施形態における光波長選択フィルタ92は、青色LED93から発光される第1の波長の光について、ピークとなる波長(以下、第1の波長のピーク波長ということもある)を85%以上透過し、かつ光波長変換シート91で変換されて生じる第2の波長の光について、ピークとなる波長(以下、第2の波長のピーク波長ということもある)の光を20%以上反射するフィルタのことをいう。すなわち、第1の波長のピーク波長における透過率が85%以上であり、かつ第2の波長のピーク波長における反射率が20%以上であるフィルタのことをいう。なお、第2の波長の光が2つ以上あるときは、すべての第2の波長の光について反射率が20%以上であるフィルタのことをいう。 The optical wavelength selection filter 92 according to the third embodiment transmits 85% or more of the peak wavelength of light emitted from the blue LED 93 (hereinafter sometimes referred to as the peak wavelength of the first wavelength). And a filter that reflects 20% or more of light having a peak wavelength (hereinafter sometimes referred to as a peak wavelength of the second wavelength) with respect to the light having the second wavelength generated by being converted by the light wavelength conversion sheet 91. That means. That is, the filter has a transmittance of 85% or more at the peak wavelength of the first wavelength and a reflectance of 20% or more at the peak wavelength of the second wavelength. In addition, when there are two or more light beams having the second wavelength, it means a filter having a reflectance of 20% or more for all the light beams having the second wavelength.
 図10及び図11は、それぞれ光波長選択フィルタ92がない場合とある場合の光路を示す図である。 FIGS. 10 and 11 are diagrams showing optical paths when there is no optical wavelength selection filter 92 and when there is no optical wavelength selection filter 92, respectively.
 図10に示した通り、光波長選択フィルタ92がない場合は、光波長変換シートで発光した緑色光と赤色光のうち、出射面側の反対側に出射される光は、照明装置内を拡散する。 As shown in FIG. 10, when there is no light wavelength selection filter 92, the light emitted to the opposite side of the emission surface among the green light and red light emitted from the light wavelength conversion sheet diffuses in the illumination device. To do.
 図11に示した通り、光波長選択フィルタ92は、青色LEDが発光した青色光を透過し、光波長変換シートで発光した緑色光と赤色光のうち、出射面側の反対側に出射される光の一部、または全部を反射し、光波長選択フィルタを具備した近辺の出射面側に緑色光と赤色光を出射する。従って、光波長選択フィルタ92の近辺で出射面側に出射される光の青味は、図10の場合、すなわち光波長選択フィルタ92がない場合に出射面側に出射される光よりも低減される。 As shown in FIG. 11, the light wavelength selection filter 92 transmits the blue light emitted from the blue LED, and is emitted to the opposite side of the emission surface side among the green light and red light emitted from the light wavelength conversion sheet. A part or all of the light is reflected, and the green light and the red light are emitted to the vicinity of the light exit surface provided with the light wavelength selection filter. Therefore, the bluishness of the light emitted toward the emission surface in the vicinity of the light wavelength selection filter 92 is reduced as compared with the light emitted toward the emission surface in the case of FIG. 10, that is, when there is no light wavelength selection filter 92. The
 この原理によって、照明装置の端部付近など、青味が強い部分(発光素子の発光色の影響が強い部分)に、部分的に光波長選択フィルタ92を配置することで、照明装置の色ムラを改善することができる。 Based on this principle, the light wavelength selection filter 92 is partially disposed in a portion with a strong bluish color (a portion where the influence of the light emission color of the light emitting element is strong) such as near the end of the lighting device, so that the color unevenness of the lighting device can be obtained. Can be improved.
 光波長選択フィルタ92を使えば、青色光を吸収させる原理で青味を低減させる他の色調整方法と比べて、少ない光損失で色調整することができる。 If the light wavelength selection filter 92 is used, color adjustment can be performed with less light loss compared to other color adjustment methods that reduce blueness by the principle of absorbing blue light.
 光波長選択フィルタ92は、第1の波長のピーク波長の透過率が85%以上であることが好ましく、87%以上であることがより好ましく、90%以上であることがさらに好ましい。 The light wavelength selection filter 92 preferably has a transmittance at the peak wavelength of the first wavelength of 85% or more, more preferably 87% or more, and further preferably 90% or more.
 光波長選択フィルタ92は、第2の波長のピーク波長の反射率が20%以上であることが好ましく、30%以上であることがより好ましく、70%以上であることがさらに好ましく、90%以上であることが特に好ましい。 The optical wavelength selection filter 92 preferably has a reflectance at the peak wavelength of the second wavelength of 20% or more, more preferably 30% or more, further preferably 70% or more, and 90% or more. It is particularly preferred that
 光波長選択フィルタ92は下記式(1)を満足することも好ましい。下記式(1)は、光を反射する波長帯と透過する波長帯との間での透過率の変化が急峻であることを示しており、|λ2-λ3|が小さくなるにつれて、より急峻に反射する波長帯から透過する波長帯へと変化する。このように反射する波長帯から透過する波長帯、すなわち、第3実施形態でいうところの青色LEDが発光した青色光を透過する波長帯から光波長変換シートにて青色光が変換され第2の発光波長である緑色波長の緑色光を反射する波長帯への変化が急峻に行われることによって、青色光のみを選択的・効率的に透過しつつ緑色光や赤色光を反射することができ、光波長選択フィルタの効果を最大限得やすくなるものである。 It is also preferable that the optical wavelength selection filter 92 satisfies the following formula (1). The following formula (1) indicates that the change in transmittance between the wavelength band that reflects light and the wavelength band that transmits light is steep, and as | λ2−λ3 | It changes from a reflected wavelength band to a transmitted wavelength band. In this way, blue light is converted by the light wavelength conversion sheet from the wavelength band that transmits from the reflected wavelength band, that is, the wavelength band that transmits the blue light emitted by the blue LED in the third embodiment. By changing sharply to the wavelength band that reflects green light of the green wavelength that is the emission wavelength, it is possible to reflect green light and red light while selectively and efficiently transmitting only blue light, This makes it easier to obtain the effect of the optical wavelength selection filter to the maximum extent.
  |λ2-λ3| ≦ 50  (ただし、λ1<λ2、λ1<λ3) (1)
    λ1:発光素子の発光波長(nm)
    λ2:光波長選択フィルタの透過率が70%となる波長(nm)
    λ3:光波長選択フィルタの透過率が30%となる波長(nm)。
| λ2-λ3 | ≦ 50 (where λ1 <λ2, λ1 <λ3) (1)
λ1: Light emission wavelength of light emitting element (nm)
λ2: wavelength at which the transmittance of the optical wavelength selection filter becomes 70% (nm)
λ3: wavelength (nm) at which the transmittance of the optical wavelength selection filter is 30%.
 光波長選択フィルタ92は、例えば図12に示すように、光波長変換シート91に積層してもよい。 The light wavelength selection filter 92 may be laminated on a light wavelength conversion sheet 91 as shown in FIG.
 第3実施形態においても図1や図2と同様に光波長選択フィルタの出射側に光学シートが設けられることも好ましいが、特にプリズムシートやマイクロレンズシート、偏光反射フィルムのような輝度向上フィルムが設けられる際には、光波長選択フィルタの波長λ3における透過率が最大になる方向と、輝度向上フィルムの波長λ3における透過率が最大になる方向との為す角度が10°以下となるように配置されることが好ましい。光波長選択フィルタと輝度向上フィルムの透過率が最大となる方向が平行となることで、輝度向上フィルムから光波長変換シート、光波長選択フィルタへと反射された光を効率的に光波長選択フィルタで反射し発光素子へ反射することを抑制でき、照明装置の色ムラを抑制する効果が得られる。 Also in the third embodiment, it is preferable that an optical sheet is provided on the light exit side of the optical wavelength selection filter as in FIGS. 1 and 2, but in particular, a brightness enhancement film such as a prism sheet, a microlens sheet, or a polarizing reflection film is used. When provided, the angle between the direction in which the transmittance at the wavelength λ3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength λ3 of the brightness enhancement film is maximized is 10 ° or less. It is preferred that The light wavelength selection filter and the brightness enhancement film are parallel to each other in the direction in which the transmittance is maximum, so that the light reflected from the brightness enhancement film to the light wavelength conversion sheet and the light wavelength selection filter can be efficiently reflected. It is possible to suppress the reflection and reflection to the light emitting element, and the effect of suppressing the color unevenness of the lighting device can be obtained.
 第3実施形態における他の態様は、第1実施形態と同様である。 Other aspects in the third embodiment are the same as in the first embodiment.
 (第4実施形態)
 図13は、本発明の照明装置の第4実施形態における模式図である。光波長変換シート131と光波長選択フィルタ132が具備されており、導光板135の端部に、発光素子として青色LED133が具備されている。
(Fourth embodiment)
FIG. 13 is a schematic diagram of the illumination device according to the fourth embodiment of the present invention. A light wavelength conversion sheet 131 and a light wavelength selection filter 132 are provided, and a blue LED 133 is provided as a light emitting element at an end of the light guide plate 135.
 青色LED133、光波長選択フィルタ132、光波長変換シート131は、この順で具備されている。 Blue LED 133, light wavelength selection filter 132, and light wavelength conversion sheet 131 are provided in this order.
 青色LED133は、光波長変換シート131と離間して具備されている。青色LED133の光は、導光板135の端部から入光して導光板で導光されながら出射される。この原理によって、光波長変換シート131に向かって光を発光する。 The blue LED 133 is provided apart from the light wavelength conversion sheet 131. The light of the blue LED 133 enters from the end of the light guide plate 135 and is emitted while being guided by the light guide plate. Based on this principle, light is emitted toward the light wavelength conversion sheet 131.
 光波長選択フィルタ132の面積は、光波長変換シート131の面積よりも小さいことが好ましい。光波長選択フィルタ132の面積を光波長変換シート131の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 The area of the light wavelength selection filter 132 is preferably smaller than the area of the light wavelength conversion sheet 131. If the area of the light wavelength selection filter 132 is made smaller than the area of the light wavelength conversion sheet 131 and is partially disposed in the illumination device, it is preferable because the color of the emitted light from the illumination device can be partially adjusted efficiently.
 第4実施形態における他の態様は、第3実施形態と同様である。 Other aspects in the fourth embodiment are the same as those in the third embodiment.
 (第5実施形態)
 図14~図17を用いて、本発明の照明装置の一例である、第5実施形態について説明する。
(Fifth embodiment)
A fifth embodiment, which is an example of the illumination device of the present invention, will be described with reference to FIGS.
 図14は、本発明の照明装置の第5実施形態における模式図である。第1光波長変換シート146と第2光波長変換シート141が具備されており、発光素子として青色LED143が基板144に設けられている。また、発光素子からの光を反射・拡散するために、反射板147および拡散板148が設けられている。 FIG. 14 is a schematic diagram in the fifth embodiment of the illumination device of the present invention. A first light wavelength conversion sheet 146 and a second light wavelength conversion sheet 141 are provided, and a blue LED 143 is provided on the substrate 144 as a light emitting element. In addition, a reflection plate 147 and a diffusion plate 148 are provided to reflect and diffuse light from the light emitting element.
 第1光波長変換シート146、青色LED143、第2光波長変換シート141は、この順で具備されている。 The first light wavelength conversion sheet 146, the blue LED 143, and the second light wavelength conversion sheet 141 are provided in this order.
 青色LED143は、第2光波長変換シート141と離間して具備されており、第2光波長変換シート141に向かって光を発光する。 The blue LED 143 is provided apart from the second light wavelength conversion sheet 141 and emits light toward the second light wavelength conversion sheet 141.
 第1光波長変換シート146の面積は、第2光波長変換シート141の面積よりも小さいことが好ましい。第1光波長変換シート146の面積を第2光波長変換シート141の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 The area of the first light wavelength conversion sheet 146 is preferably smaller than the area of the second light wavelength conversion sheet 141. If the area of the first light wavelength conversion sheet 146 is made smaller than the area of the second light wavelength conversion sheet 141 and is partially disposed in the lighting device, the color of the emitted light of the lighting device is partially adjusted efficiently. This is preferable because it is possible.
 図15及び図16は、それぞれ第1光波長選択フィルタ146がない場合とある場合の光路を示す図である。 FIGS. 15 and 16 are diagrams showing optical paths when there is no first optical wavelength selection filter 146 and when there is no first optical wavelength selection filter 146, respectively.
 図15、図16に示す通り、青色LEDから第2光波長変換シート141に向かって発光された青色光の一部は、拡散板148の表面で反射されて出射面側と反対側に出射される。また、他の光学シートの表面や、第2光波長変換シートの表面でも一部が反射され、出射面側と反対側に出射される。出射面側と反対側に出射された光は、反射板で反射されて出射面側に向かい、その一部は、再び拡散板148等の表面で反射されて出射面側と反対側に出射されるということを繰り返す。 As shown in FIGS. 15 and 16, a part of the blue light emitted from the blue LED toward the second light wavelength conversion sheet 141 is reflected by the surface of the diffusion plate 148 and emitted to the side opposite to the emission surface side. The Moreover, a part is reflected also on the surface of another optical sheet and the surface of the 2nd light wavelength conversion sheet, and it radiate | emits on the opposite side to the output surface side. The light emitted to the opposite side to the emission surface side is reflected by the reflecting plate and directed to the emission surface side, and a part of the light is reflected again by the surface of the diffusion plate 148 and the like and emitted to the opposite side to the emission surface side. Repeat that.
 図16に示す通り、第1光波長変換シート146がある場合は、出射面側と反対側に出射された青色光は、緑色光や赤色光など、青色波長のピーク波長とは異なる波長にピークを持つ光に変換された後、反射板によって出射面側に出射される。一方、図15に示す通り、第1光波長変換シート146がない場合は、出射面側と反対側に出射された青色光は波長変換されずに反射板によって出射面側に出射される。従って、第1光波長変換シート146がある場合、第1光波長変換シート146の近辺で出射面側に出射される光の青味は、図15の場合、すなわち第1光波長変換シート146がない場合に出射面側に出射される光よりも低減される。 As shown in FIG. 16, when there is the first light wavelength conversion sheet 146, the blue light emitted to the side opposite to the emission surface side peaks at a wavelength different from the peak wavelength of the blue wavelength, such as green light and red light. Then, the light is output to the output surface side by the reflector. On the other hand, as shown in FIG. 15, when there is no first light wavelength conversion sheet 146, the blue light emitted to the side opposite to the emission surface side is emitted to the emission surface side by the reflector without being wavelength-converted. Therefore, when there is the first light wavelength conversion sheet 146, the bluishness of the light emitted toward the emission surface in the vicinity of the first light wavelength conversion sheet 146 is the case of FIG. 15, that is, the first light wavelength conversion sheet 146 is When there is no light, it is reduced compared to the light emitted to the emission surface side.
 この原理によって、照明装置の端部付近など、青味が強い部分(発光素子の発光色の影響が強い部分)に、部分的に光波長変換シート146を配置することで、照明装置の色ムラを改善することができる。 Based on this principle, the light wavelength conversion sheet 146 is partially disposed in a portion with strong bluishness (a portion where the influence of the light emission color of the light emitting element is strong) such as near the end of the lighting device, so that the color unevenness of the lighting device can be obtained. Can be improved.
 第1光波長変換シート146を使えば、青色光を吸収させる原理で青味を低減させる他の色調整方法と比べて、少ない光損失で色調整することができる。 When the first light wavelength conversion sheet 146 is used, color adjustment can be performed with less light loss compared to other color adjustment methods that reduce blueness by the principle of absorbing blue light.
 第1光波長変換シート146は、例えば図17に示すように、反射板に積層してもよい。 The first light wavelength conversion sheet 146 may be laminated on a reflector as shown in FIG.
 第1光波長変換シート146は、量子ドットや蛍光体を反射板に含有したものでもよい。量子ドットや蛍光体を反射板に含有したシートは、波長変換機能と反射機能を有するシートとなる。 The first light wavelength conversion sheet 146 may contain a quantum dot or a phosphor in a reflection plate. A sheet containing quantum dots or phosphors in a reflector plate has a wavelength conversion function and a reflection function.
 第1光波長変換シートの形状は、面状でもよく、面に多数の穴が開いた形状でもよく、網目状でもよく、円形、楕円形、その他の曲線で囲まれた形状、三角形、四角形、その他の多角形等、様々な形状としてよい。 The shape of the first light wavelength conversion sheet may be a planar shape, a shape having a large number of holes in the surface, a mesh shape, a circle, an ellipse, a shape surrounded by other curves, a triangle, a quadrangle, Various shapes such as other polygons may be used.
 なお、第1光波長変換シートは、前述のとおり特定の波長の光を他の波長の光に変換するシートのことであり、例えば光波長を変換する機能を有する量子ドットや蛍光体を含有したシートである。量子ドットや蛍光体を樹脂シートに含有したものでもよく、基材となるシートに量子ドットや蛍光体を含有した膜を積層したものでもよい。また、基材として反射板を用いてもよい。基材となるシートに積層する量子ドットや蛍光体を含有した膜の形状は、面に多数の穴が開いた形状でもよく、網目状でもよく、ドット状に積層するなど離間した状態で積層してもよく、円形、楕円形、その他の曲線で囲まれた形状、三角形、四角形、その他の多角形等、様々な形状としてよい。 The first light wavelength conversion sheet is a sheet that converts light of a specific wavelength into light of another wavelength as described above, and contains, for example, quantum dots and phosphors having a function of converting light wavelength. It is a sheet. A resin sheet containing quantum dots or phosphors may be used, or a film containing quantum dots or phosphors may be laminated on a sheet serving as a substrate. Moreover, you may use a reflecting plate as a base material. The shape of the film containing quantum dots and phosphors to be laminated on the base sheet may be a shape with a large number of holes on the surface, a mesh shape, or a layered state such as a dot shape. Various shapes such as a circle, an ellipse, a shape surrounded by other curves, a triangle, a quadrangle, and other polygons may be used.
 光波長変換シートとして、基材となるシートに量子ドットや蛍光体を含有した膜を積層したものを用いる場合は、第1光波長変換シートの量子ドットや蛍光体を含有した膜の面積は、第2光波長変換シートの量子ドットや蛍光体を含有した膜の面積よりも小さくすることが好ましい。第1光波長変換シートの量子ドットや蛍光体を含有した膜の面積を第2光波長変換シートの量子ドットや蛍光体を含有した膜の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 As the light wavelength conversion sheet, when using a film that includes a quantum dot or phosphor on a sheet serving as a substrate, the area of the film containing the quantum dot or phosphor of the first light wavelength conversion sheet is: It is preferable to make it smaller than the area of the film | membrane containing the quantum dot and fluorescent substance of a 2nd light wavelength conversion sheet. The area of the film containing the quantum dots and the phosphor of the first light wavelength conversion sheet is made smaller than the area of the film containing the quantum dots and the phosphor of the second light wavelength conversion sheet and partially arranged in the lighting device. This is preferable because the color of the light emitted from the illumination device can be partially adjusted efficiently.
 第5実施形態における他の態様は、第1実施形態と同様である。 Other aspects in the fifth embodiment are the same as those in the first embodiment.
 (第6実施形態)
 図18は、本発明の照明装置の第6実施形態における模式図である。第1光波長変換シート186と第2光波長変換シート181が具備されており、導光板185の端部に、発光素子として青色LED183が具備されている。
(Sixth embodiment)
FIG. 18 is a schematic diagram of the sixth embodiment of the illumination device of the present invention. A first light wavelength conversion sheet 186 and a second light wavelength conversion sheet 181 are provided, and a blue LED 183 is provided as a light emitting element at an end of the light guide plate 185.
 第1光波長変換シート186、青色LED183、第2光波長変換シート181は、この順で具備されている。 The first light wavelength conversion sheet 186, the blue LED 183, and the second light wavelength conversion sheet 181 are provided in this order.
 青色LED183は、第2光波長変換シート181と離間して具備されている。青色LED183の光は、導光板185の端部から入光して導光板で導光されながら出射される。この原理によって、第2光波長変換シート181に向かって光を発光する。 The blue LED 183 is provided apart from the second light wavelength conversion sheet 181. The light of the blue LED 183 enters from the end of the light guide plate 185 and is emitted while being guided by the light guide plate. Based on this principle, light is emitted toward the second light wavelength conversion sheet 181.
 第1光波長変換シート186の面積は、第2光波長変換シート181の面積よりも小さいことが好ましい。第1光波長変換シート186の面積を第2光波長変換シート181の面積よりも小さくして照明装置内に部分的に配置すれば、効率良く、照明装置の出射光の色を部分的に調整できるため好ましい。 The area of the first light wavelength conversion sheet 186 is preferably smaller than the area of the second light wavelength conversion sheet 181. If the area of the first light wavelength conversion sheet 186 is made smaller than the area of the second light wavelength conversion sheet 181 and is partially disposed in the lighting device, the color of the emitted light of the lighting device is partially adjusted efficiently. This is preferable because it is possible.
 第6実施形態における他の態様は、第5実施形態と同様である。 Other aspects of the sixth embodiment are the same as those of the fifth embodiment.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、本実施例における、測定方法、評価方法を以下に示す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In addition, the measuring method and evaluation method in a present Example are shown below.
 [測定方法および評価方法]
 (1)照明装置の分光スペクトル
 下記の分光放射輝度計を用い、下記条件にて、暗室内で、照明装置Aの中央部の分光スペクトルを測定した。中央部を決定するにあたり、照明装置Aの最上面に設置されているプリズムフィルム(155mm×98mm)の中央部を、照明装置Aの中央部とした。また、照明装置に用いられている分光放射輝度計とディスプレイ間の距離は500mmとした。
・分光放射輝度計 CS-1000A(コニカミノルタセンシング株式会社製)
・対物レンズ:マクロ対物レンズ
・測定モード:AUTO。
[Measurement method and evaluation method]
(1) Spectral spectrum of illuminating device The spectral spectrum of the central part of illuminating device A was measured in the dark room under the following conditions using the following spectral radiance meter. In determining the central portion, the central portion of the prism film (155 mm × 98 mm) installed on the uppermost surface of the lighting device A was used as the central portion of the lighting device A. The distance between the spectral radiance meter used in the illumination device and the display was 500 mm.
・ Spectral radiance meter CS-1000A (Konica Minolta Sensing Co., Ltd.)
Objective lens: Macro objective lens Measurement mode: AUTO
 (2)光波長選択フィルタの分光反射率
 サンプルを50mm×50mmで切り出した。次いで、分光光度計((株)日立製作所製、U-4100 Spectrophotometer)を用いて、入射角度Φ=10度における相対反射率を測定した。付属の積分球の内壁は、硫酸バリウムであり、標準板は、酸化アルミニウムである。測定波長は、250nm~1,200nm、スリットは2nm(可視)/自動制御(赤外)とし、ゲイン2と設定し、走査速度600nm/分で測定した。サンプルの裏面を油性インキで黒塗りした。
(2) Spectral reflectance of optical wavelength selection filter A sample was cut out at 50 mm × 50 mm. Next, the relative reflectance at an incident angle Φ = 10 degrees was measured using a spectrophotometer (U-4100 Spectrophotometer, manufactured by Hitachi, Ltd.). The inner wall of the attached integrating sphere is barium sulfate, and the standard plate is aluminum oxide. The measurement wavelength was 250 nm to 1,200 nm, the slit was 2 nm (visible) / automatic control (infrared), the gain was set to 2, and the measurement was performed at a scanning speed of 600 nm / min. The back of the sample was painted black with oil-based ink.
 (3)光波長選択フィルタ、光学シートの分光透過率
 サンプルを50mm×50mmで切り出した。(株)日立製作所製 分光光度計(U-4100 Spectrophotomater)に付属の積分球を用いた基本構成で透過率測定を行った(入射角0°)。測定は装置付属の酸化アルミニウムの副白板を基準とし、測定条件としてスリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/min.で測定した。また、偏光成分を含む透過率測定の際には付属のグランテーラ社製偏光子を設置し、サンプルを一定の方向で固定した後に偏光子を5°ずつ回転させて透過率を測定し、透過率が最大となった角度を計測した。
(3) Optical wavelength selection filter, spectral transmittance of optical sheet A sample was cut out at 50 mm × 50 mm. The transmittance was measured with a basic configuration using an integrating sphere attached to a spectrophotometer (U-4100 Spectrophotometer) manufactured by Hitachi, Ltd. (incident angle 0 °). The measurement is based on the sub-white plate of aluminum oxide attached to the apparatus, the measurement conditions are slit 2 nm (visible) / automatic control (infrared), gain 2 and scanning speed 600 nm / min. Measured with In addition, when measuring the transmittance including the polarization component, the attached Grandeira polarizer is installed, the sample is fixed in a certain direction, and the transmittance is measured by rotating the polarizer by 5 °. The angle at which was the maximum was measured.
 (4)光波長変換シートの分光スペクトル
 サンプルを50mm×50mmに切り出し、サンプルの裏面を油性インキで黒塗りし、以下の分光測色計を用いて測定した。
・分光測色計 CM-2600d(コニカミノルタセンシング株式会社製)
・白色校正板 CM-A145(コニカミノルタセンシング株式会社製)
・ターゲットマスク CM-146(φ8mm用)。
(4) Spectral spectrum of light wavelength conversion sheet A sample was cut into 50 mm x 50 mm, the back surface of the sample was blacked with oil-based ink, and measured using the following spectrocolorimeter.
・ Spectrophotometer CM-2600d (Konica Minolta Sensing Co., Ltd.)
・ White calibration plate CM-A145 (manufactured by Konica Minolta Sensing Co., Ltd.)
・ Target mask CM-146 (for φ8mm).
 (5)照明装置の色座標・輝度
 照明装置Aを実施例1~10に記載の構成とし、その中央部の色座標(x値、y値)を、下記の分光放射輝度計を用い、下記条件にて、暗室内で測定した。中央部を決定するにあたり、照明装置Aの最上面に設置されているプリズムフィルム(155mm×98mm)の中央部を、中央部とした。また、照明装置に用いられている分光放射輝度計とディスプレイ間の距離は500mmとした。
・分光放射輝度計 CS-1000A(コニカミノルタセンシング株式会社製)
・対物レンズ:マクロ対物レンズ
・測定モード:AUTO
 (6)光沢度
 JIS-Z8741(1997年)に規定された方法に従って、スガ試験機製デジタル変角光沢度計UGV-5Dを用いて、60°鏡面光沢度を測定した。測定はn=5で行い、最大値と最小値を除いた平均値を光沢度とした。
(5) Color coordinates / luminance of illumination device The illumination device A is configured as described in Examples 1 to 10, and the color coordinates (x value, y value) at the center thereof are set as follows using the following spectral radiance meter. The measurement was performed in a dark room under the conditions. In determining the central portion, the central portion of the prism film (155 mm × 98 mm) installed on the uppermost surface of the lighting device A was defined as the central portion. The distance between the spectral radiance meter used in the illumination device and the display was 500 mm.
・ Spectral radiance meter CS-1000A (Konica Minolta Sensing Co., Ltd.)
・ Objective lens: Macro objective lens ・ Measurement mode: AUTO
(6) Glossiness According to the method defined in JIS-Z8741 (1997), the 60 ° specular glossiness was measured using a digital variable angle glossiness meter UGV-5D manufactured by Suga Test Instruments. Measurement was performed at n = 5, and an average value excluding the maximum value and the minimum value was defined as the glossiness.
 [評価に使用した照明装置(照明装置A)]
 光源が青色LEDであり、光波長変換シートが搭載されている照明装置Aとして、Kindle Fire HDX 7のバックライトを用いた。光波長変換シートのサイズは158mm×98mmであった。なお、実施例9においては、照明装置Aに搭載されていた光波長変換シートを第2光波長変換シートとして用いた。
[Lighting device used for evaluation (lighting device A)]
A Kindle Fire HDX 7 backlight was used as the illumination device A in which the light source is a blue LED and the light wavelength conversion sheet is mounted. The size of the light wavelength conversion sheet was 158 mm × 98 mm. In Example 9, the light wavelength conversion sheet mounted on the lighting device A was used as the second light wavelength conversion sheet.
 図19は照明装置Aの簡易図である。青色LED193、導光板195、光沢度930の反射フィルム197(実施例6は除く)、光波長変換シート191、プリズムシート199(2枚)という構成であった。 FIG. 19 is a simplified diagram of the lighting device A. The configuration was a blue LED 193, a light guide plate 195, a reflective film 197 having a gloss level of 930 (excluding Example 6), a light wavelength conversion sheet 191, and a prism sheet 199 (two sheets).
 照明装置Aの分光スペクトルを測定した結果、青色LEDから出光される青色光の青色波長は450nmにピークがあり、光波長変換シートで変換された緑色光の緑色波長、赤色光の赤色波長は、それぞれ550nm、610nmにピークがあった。 As a result of measuring the spectral spectrum of the illumination device A, the blue wavelength of the blue light emitted from the blue LED has a peak at 450 nm, the green wavelength of the green light converted by the light wavelength conversion sheet, and the red wavelength of the red light are There were peaks at 550 nm and 610 nm, respectively.
 [実施例1]
 光波長選択フィルタAを以下に示す方法にて得た。
[Example 1]
The optical wavelength selection filter A was obtained by the method shown below.
 ポリエステルAとして、固有粘度0.8のポリエチレンテレフタレートを用いた。またポリエステルBとしてシクロヘキサンジメタノールが30mol%共重合された共重合ポリエステルを62質量%とポリエチレンテレフタレート38質量%を分散したブレンドチップを用いた。これらポリエステルAおよびポリエステルBは、それぞれ乾燥した後、押出機に供給した。 As polyester A, polyethylene terephthalate having an intrinsic viscosity of 0.8 was used. As the polyester B, a blend chip in which 62% by mass of a copolymerized polyester obtained by copolymerizing 30 mol% of cyclohexanedimethanol and 38% by mass of polyethylene terephthalate was used. These polyester A and polyester B were each dried and then fed to an extruder.
 ポリエステルAおよびポリエステルBは、それぞれ、押出機にて280℃の溶融状態とし、ギヤポンプにて吐出比がポリエステルA組成物/ポリエステルB組成物=1.66/1になるように計量しながら、フィルタを介した後、フィードブロックにて合流させた。合流したポリエステルAおよびポリエステルBは、スタティックミキサーに供給し、501層フィードブロックにて合流させて、厚み方向に交互にA/B/A・・・B/Aと501層積層された積層体とした。 While each of polyester A and polyester B is melted at 280 ° C. with an extruder and measured with a gear pump so that the discharge ratio is polyester A composition / polyester B composition = 1.66 / 1, filter After passing through, it was made to merge in a feed block. The combined polyester A and polyester B are supplied to a static mixer, combined in a 501 layer feed block, and alternately laminated in the thickness direction with A / B / A... B / A and 501 layers laminated. did.
 このようにして得られた計501層からなる積層体をTダイに供給しシート状に成形した後、静電印加しながら、表面温度25℃に保たれたキャスティングドラム上で急冷固化した。 The laminate composed of the total of 501 layers thus obtained was supplied to a T die and formed into a sheet shape, and then rapidly cooled and solidified on a casting drum maintained at a surface temperature of 25 ° C. while applying electrostatic force.
 得られたキャストフィルムは、85℃から100℃に設定したロール群で加熱し、縦方向に3.3倍延伸後、一軸延伸フィルムをテンターに導き、100℃の熱風で予熱後、110℃の温度で幅方向に3.8倍延伸した。延伸したフィルムは、テンター内でリラックス率3%および150℃の熱風にて熱処理を行い、室温まで徐冷後、巻き取った。厚み40μmで、各層の厚みが43~83nmに段階的に変化した光波長選択フィルタAを得た。 The obtained cast film was heated by a roll group set at 85 ° C. to 100 ° C., stretched 3.3 times in the longitudinal direction, and then the uniaxially stretched film was led to a tenter, preheated with hot air at 100 ° C., and then heated at 110 ° C. The film was stretched 3.8 times in the width direction at temperature. The stretched film was heat-treated with hot air at a relaxation rate of 3% and 150 ° C. in a tenter, gradually cooled to room temperature, and wound up. An optical wavelength selective filter A having a thickness of 40 μm and a thickness of each layer gradually changing from 43 to 83 nm was obtained.
 光波長選択フィルタAの分光反射率、分光透過率を測定した結果、450nmの反射率は69%、550nmの透過率は88%、610nmの透過率は90%であった。 As a result of measuring the spectral reflectance and spectral transmittance of the optical wavelength selection filter A, the reflectance at 450 nm was 69%, the transmittance at 550 nm was 88%, and the transmittance at 610 nm was 90%.
 光波長選択フィルタAを60mm×98mmに切り出し、照明装置Aの光波長変換シートとプリズムシートの間に配置した。配置する際は、60mmの辺が照明装置の長辺と並行になるようにし、光波長選択フィルタAの中央部が照明装置Aの中央部になるように配置した。照明装置Aの中央部を決定するにあたり、照明装置Aに設置されているプリズムフィルム(155mm×98mm)の中央部を、中央部とした。 The light wavelength selection filter A was cut out to 60 mm × 98 mm and placed between the light wavelength conversion sheet and the prism sheet of the illumination device A. When arranging, the 60 mm side was arranged in parallel with the long side of the illuminating device, and the central portion of the light wavelength selection filter A was arranged so as to be the central portion of the illuminating device A. In determining the central portion of the illumination device A, the central portion of the prism film (155 mm × 98 mm) installed in the illumination device A was defined as the central portion.
 光波長選択フィルタAを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。 The color coordinates (x value, y value) and luminance when the optical wavelength selection filter A was arranged, and the color coordinates (x value, y value) and luminance when the optical wavelength selection filter A was not arranged were measured. The evaluation results are shown in Table 1.
 [実施例2]
 光波長選択フィルタAの配置場所を、照明装置Aの2枚のプリズムシートの間とした以外は、実施例1と同様にして、光波長選択フィルタAを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。
[Example 2]
Except that the arrangement location of the optical wavelength selection filter A is between the two prism sheets of the illumination device A, the color coordinates (x value, (y value), luminance, and color coordinates (x value, y value) and luminance when not arranged were measured. The evaluation results are shown in Table 1.
 [実施例3]
 実施例1のプリズムシートの上に、偏光度90%の偏光反射フィルムを設け、光選択波長フィルタAの透過率が最大となる方向と偏光反射フィルムの透過率が最大となる方向とが90°で直交するように配置した以外は、実施例1と同様にして、光波長選択フィルタAを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。
[Example 3]
A polarizing reflection film having a degree of polarization of 90% is provided on the prism sheet of Example 1, and the direction in which the transmittance of the light selective wavelength filter A is maximized and the direction in which the transmittance of the polarization reflecting film is maximized are 90 °. The color coordinates (x value, y value) when the optical wavelength selection filter A is arranged, the luminance, and the color coordinates when the optical wavelength selection filter A is not arranged (except for the arrangement so as to be orthogonal to each other) x value, y value) and luminance were measured. The evaluation results are shown in Table 1.
 [実施例4]
 光波長選択フィルタBとして、ポリエステルBをスピログリコール25mol%、シクロヘキサンジカルボン酸30mol%が共重合された共重合ポリエステルとし、厚みを70μm、各層の厚みを76~145nmに段階的に変化した以外は実施例1と同様にして、光波長選択フィルタBを得た。
[Example 4]
The optical wavelength selection filter B was implemented except that polyester B was a copolyester obtained by copolymerizing 25 mol% of spiroglycol and 30 mol% of cyclohexanedicarboxylic acid, the thickness was changed to 70 μm, and the thickness of each layer was changed stepwise from 76 to 145 nm. In the same manner as in Example 1, an optical wavelength selection filter B was obtained.
 光波長選択フィルタBの分光反射率、分光透過率を測定した結果、450nmの透過率は90%、550nmの反射率は34%、610nmの反射率は90%であった。 As a result of measuring the spectral reflectance and the spectral transmittance of the optical wavelength selection filter B, the transmittance at 450 nm was 90%, the reflectance at 550 nm was 34%, and the reflectance at 610 nm was 90%.
 光波長選択フィルタとして、光波長選択フィルタBを用い、光波長選択フィルタの配置場所を、照明装置Aの導光板と光波長変換シートの間にした以外は実施例1と同様にして、光波長選択フィルタBを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。 The light wavelength selection filter B is used as the light wavelength selection filter, and the light wavelength selection filter B is disposed between the light guide plate and the light wavelength conversion sheet of the illuminating device A in the same manner as in Example 1 except that the light wavelength selection filter B is disposed. The color coordinates (x value, y value) and luminance when the selection filter B was arranged, and the color coordinates (x value, y value) and luminance when the selection filter B was not arranged were measured. The evaluation results are shown in Table 1.
 [実施例5]
 実施例4のプリズムシートの上に、偏光度90%の偏光反射フィルムを設け、光選択波長フィルタBの透過率が最大となる方向と偏光反射フィルムの透過率が最大となる方向とが平行となるように配置した以外は、実施例4と同様にして、光波長選択フィルタBを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。
[Example 5]
A polarizing reflection film having a polarization degree of 90% is provided on the prism sheet of Example 4, and the direction in which the transmittance of the light selective wavelength filter B is maximized and the direction in which the transmittance of the polarization reflecting film is maximized are parallel. The color coordinates (x value, y value) and luminance when the optical wavelength selection filter B is arranged, the luminance, and the color coordinates (x value when not arranged) are the same as in Example 4 except that the arrangement is made as follows. , Y value) and luminance. The evaluation results are shown in Table 1.
 [実施例6]
 実施例4の反射フィルムを光沢度32の白色フィルムとした以外は、実施例4と同様にして、光波長選択フィルタBを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。
[Example 6]
Except that the reflective film of Example 4 is a white film having a glossiness of 32, the color coordinates (x value, y value), luminance, and arrangement when the optical wavelength selection filter B is arranged are the same as in Example 4. The color coordinates (x value, y value) and luminance when not performed were measured. The evaluation results are shown in Table 1.
 [実施例7]
 光波長選択フィルタB上に以下の方法で表面凹凸を設けた。
[Example 7]
Surface irregularities were provided on the optical wavelength selection filter B by the following method.
 まず、光波長選択フィルタBに、塗剤1をコーティングし、膜厚5μmの塗膜を形成した。 First, the light wavelength selection filter B was coated with the coating agent 1 to form a coating film having a thickness of 5 μm.
 (塗剤1)
  アデカオプトマー KRM-2199(旭電化工業(株)製) 10質量部
  アロンオキセタン OXT-221(東亞合成(株)製)    1質量部
  アデカオプトマー SP170(旭電化工業(株)製)  0.25質量部
 この塗剤1をコーティングした面に、長手方向に垂直な断面形状が凹型の溝が複数掘り込まれた金型を押しあて、コーティングした面の裏面から超高圧水銀灯により紫外線を300mJ/cm照射して塗剤を硬化させ、金型を離型しレンズ形状を得た。ここで得られたレンズ形状は、ピッチ2μm、高さ1μmのプリズム形状を有するものであった。
(Coating 1)
Adeka optomer KRM-2199 (Asahi Denka Kogyo Co., Ltd.) 10 parts by mass Aron Oxetane OXT-221 (Toagosei Co., Ltd.) 1 part by mass Adeka optomer SP170 (Asahi Denka Kogyo Co., Ltd.) 0.25 Part by mass Pressing a mold in which a plurality of concave grooves whose cross-sectional shape is perpendicular to the longitudinal direction is pressed against the surface coated with the coating agent 1, ultraviolet rays are emitted from the back surface of the coated surface by an ultrahigh pressure mercury lamp at 300 mJ / cm The coating was cured by two irradiations, and the mold was released to obtain a lens shape. The lens shape obtained here had a prism shape with a pitch of 2 μm and a height of 1 μm.
 続いて、形成されたレンズ形状が上面となるように光波長変換シートの下部に設けた
 そのほかの構成は実施例4と同様にして、光波長選択フィルタBを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。
Subsequently, the other configuration provided in the lower part of the light wavelength conversion sheet so that the formed lens shape becomes the upper surface is the same as in Example 4, and the color coordinates (x value) when the light wavelength selection filter B is arranged. , Y value), luminance, and color coordinates (x value, y value) and luminance when not arranged. The evaluation results are shown in Table 1.
 [実施例8]
 ポリエステルB中に蛍光増白剤であるイーストマン社製「OB-1」を0.1質量%添加した以外は、実施例4と同様にして、光波長選択フィルタBを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。
[Example 8]
Color coordinates when the optical wavelength selection filter B is arranged in the same manner as in Example 4 except that 0.1% by mass of “OB-1” manufactured by Eastman, which is a fluorescent whitening agent, is added to the polyester B. (X value, y value), luminance, and color coordinates (x value, y value) and luminance when not arranged were measured. The evaluation results are shown in Table 1.
 [実施例9]
 第1光波長変換シートAを以下に示す方法にて得た。
[Example 9]
The 1st light wavelength conversion sheet A was obtained by the method shown below.
 ポリエチレンテレフタレートのペレット100質量部を真空乾燥した後、250℃~300℃に加熱された押出機Aに供給しポリエステル層(第一層)を形成すると共に、押出機Bを有する複合製膜装置において、ポリエステル層(第二層)を形成するため、乾燥したポリエチレンテレフタレート原料77.5質量部と、乾燥した三井化学社製のポリメチルペンテン樹脂(以降PMPと省略することもある)20質量部に、ポリエチレンテレフタレートに蛍光体を添加したマスターペレット(マスターペレット総量に対して蛍光体として“ルモゲン”F Yellow 083:BASF社製を400μg/g含有)を2.5質量部混合して、ポリエチレンテレフタレート原料の全体量100質量%中のPMP含有量が20質量%、蛍光体10μg/gになるように調整し、このポリエチレンテレフタレート原料を真空乾燥した後、250~300℃に加熱された押出機Bに供給し、溶融してTダイ三層用複合口金内に導入した。 In a composite film forming apparatus having an extruder B, 100 parts by mass of polyethylene terephthalate pellets are vacuum dried and then supplied to an extruder A heated to 250 ° C. to 300 ° C. to form a polyester layer (first layer). In order to form a polyester layer (second layer), 77.5 parts by mass of a dried polyethylene terephthalate raw material and 20 parts by mass of a dried polymethylpentene resin (hereinafter sometimes abbreviated as PMP) manufactured by Mitsui Chemicals, Inc. A polyethylene terephthalate raw material is mixed with 2.5 parts by mass of a master pellet obtained by adding a phosphor to polyethylene terephthalate (“Lumogen” F Yellow 083: 400 μg / g manufactured by BASF as a phosphor with respect to the total amount of the master pellet). PMP content in the total amount of 100% by mass of 20% by mass, phosphor Was adjusted to 0 Pg / g, the polyethylene terephthalate raw material was vacuum dried and fed to an extruder B heated to 250 ~ 300 ° C., and introduced into a T-die three-layer composite in the die to melt.
 これらポリマーをA層(第一層)/B層(第二層)/A層(第一層)となるように三層積層装置を通して三層積層させ、Tダイよりシート状に成形した。さらにこのシート状フィルムを表面温度10℃~40℃の冷却ドラムで冷却固化させた未延伸フィルムを70~98℃に加熱したロール群に導き、長手方向に3.3倍縦延伸した後に冷却ロールに通し、続いて、縦延伸されたフィルムの両端をクリップで把持しながらテンターに導き120℃に加熱された雰囲気中で長手に垂直な方向に3.6倍横延伸した。その後テンター内で180~240℃の熱固定温度処理をし、厚み150μmのフィルムを得た。 Three layers of these polymers were laminated through a three-layer laminating apparatus so as to be A layer (first layer) / B layer (second layer) / A layer (first layer), and formed into a sheet form from a T-die. Further, the unstretched film obtained by cooling and solidifying this sheet-like film with a cooling drum having a surface temperature of 10 ° C. to 40 ° C. is led to a group of rolls heated to 70 to 98 ° C. Then, the film was stretched 3.6 times in the direction perpendicular to the longitudinal direction in an atmosphere heated to 120 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, the film was heat-fixed at 180 to 240 ° C. in a tenter to obtain a film having a thickness of 150 μm.
 第1光波長変換シートAを用い、照明装置Aの反射板と導光板の間に配置した以外は実施例1と同様にして、第1光波長変換シートAを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。 The color coordinates (x value) when the first light wavelength conversion sheet A is disposed in the same manner as in Example 1 except that the first light wavelength conversion sheet A is used and disposed between the reflection plate and the light guide plate of the illumination device A. , Y value), luminance, and color coordinates (x value, y value) and luminance when not arranged. The evaluation results are shown in Table 1.
 [実施例10]
 ポリエステル層(第二層)を形成するため、乾燥したポリエチレンテレフタレート原料79.75質量部と、乾燥した三井化学社製のポリメチルペンテン樹脂20質量部に、ポリエチレンテレフタレートに蛍光体を添加したマスターペレット(マスターペレット総量に対して蛍光体として“ルモゲン”F Yellow 083:BASF社製を400μg/g含有)を0.25質量部混合して、ポリエチレンテレフタレート原料の全体量100質量%中のPMP含有量が20質量%、蛍光体1μg/gになるように調整した以外は、実施例4と同様にして、フィルムを作成し、第1光波長変換シートBとした。
[Example 10]
Master pellets obtained by adding phosphor to polyethylene terephthalate to 79.75 parts by weight of dried polyethylene terephthalate raw material and 20 parts by weight of dried polymethylpentene resin manufactured by Mitsui Chemicals to form a polyester layer (second layer) (Plum content of 100% by mass of polyethylene terephthalate raw material by mixing 0.25 parts by mass of “Lumogen” F Yellow 083: 400 μg / g made by BASF as phosphor with respect to the total amount of master pellets) A film was prepared in the same manner as in Example 4 except that the amount was adjusted to 20 mass% and the phosphor was 1 μg / g, and the first light wavelength conversion sheet B was obtained.
 第1光波長変換シートBを用い、照明装置Aの反射板と導光板の間に配置した以外は実施例1と同様にして、第1光波長変換シートBを配置した場合の色座標(x値、y値)、輝度と、配置しなかった場合の色座標(x値、y値)、輝度を測定した。評価結果を表1に記載する。 The color coordinates (x value) when the first light wavelength conversion sheet B is disposed in the same manner as in Example 1 except that the first light wavelength conversion sheet B is used and disposed between the reflection plate and the light guide plate of the illumination device A. , Y value), luminance, and color coordinates (x value, y value) and luminance when not arranged. The evaluation results are shown in Table 1.
 [評価]
 上記の実施例に従って照明装置の測定および評価を行った。その結果を表1に示す。また、図20にxy色度図を示す。
[Evaluation]
The lighting device was measured and evaluated according to the above-described example. The results are shown in Table 1. FIG. 20 shows an xy chromaticity diagram.
 表1に記載した通り、光波長選択フィルタA、B、第1光波長変換シートA、Bを配置した場合には、配置しなかった場合と比較して、x値、y値のどちらかが同じ値でどちらかが大きくなるか、両方が大きくなった。x値、y値の変化が最も大きかったものは、実施例2であり、次いで、実施例1であった。 As described in Table 1, when the light wavelength selection filters A and B and the first light wavelength conversion sheets A and B are arranged, either the x value or the y value is compared with the case where they are not arranged. Either is larger at the same value, or both are larger. The largest change in the x and y values was in Example 2, followed by Example 1.
 ここで、図20のxy色度図に示す通り、青味が強い色の座標位置は、x値、y値の値が小さくなる方向であり、青味が低減されるということは、反対に、x値、y値の値が大きくなるということである。 Here, as shown in the xy chromaticity diagram of FIG. 20, the coordinate position of the strong blue color is the direction in which the x value and the y value become smaller, and on the contrary, the blue color is reduced. , X value and y value become larger.
 光波長選択フィルタA、B、第1光波長変換シートA、Bを配置した場合は、配置しなかった場合と比較して、x値、y値のどちらかが同じ値でどちらかが大きくなるか、両方が大きくなっており、すなわち青味が低減されており、照明装置の中で青味が強い部分近辺に光波長選択フィルタA、B、第1光波長変換シートA、Bを部分的に配置すれば、照明装置の色ムラを調整することができる。 When the light wavelength selection filters A and B and the first light wavelength conversion sheets A and B are disposed, either the x value or the y value is the same value and either is greater than when the light wavelength selection filters A and B are not disposed. Or both are large, that is, the bluish color is reduced, and the light wavelength selection filters A and B and the first light wavelength conversion sheets A and B are partially arranged in the vicinity of the strong bluish color in the lighting device. If it arrange | positions to, the color nonuniformity of an illuminating device can be adjusted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
11、21、31、81、91、131、191・・・光波長変換シート
141、181・・・第2光波長変換シート
32、82、92、132・・・光波長選択フィルタ
13、23、33、83、93、133、143、183、193・・・青色LED
14、24、34、94、144・・・基板
85、135、185、195・・・導光板
146、186・・・第1光波長変換シート
17、37、97、147、187、197・・・反射板
18、28、38、98、148・・・拡散板
19、29・・・光学シート
199・・・プリズムシート
20・・・液晶パネル(表示パネル)
30・・・照明装置
11, 21, 31, 81, 91, 131, 191 ... light wavelength conversion sheets 141, 181 ... second light wavelength conversion sheets 32, 82, 92, 132 ... light wavelength selection filters 13, 23, 33, 83, 93, 133, 143, 183, 193 ... Blue LED
14, 24, 34, 94, 144 ... substrates 85, 135, 185, 195 ... light guide plates 146, 186 ... first light wavelength conversion sheets 17, 37, 97, 147, 187, 197 ... Reflector 18, 28, 38, 98, 148 ... diffuser 19, 29 ... optical sheet 199 ... prism sheet 20 ... liquid crystal panel (display panel)
30 ... Lighting device

Claims (15)

  1. 光波長変換シートと、
    光波長選択フィルタと、
    発光素子と、
    を具備する照明装置であって、
    発光素子、光波長変換シート、光波長選択フィルタが、この順で具備されており、
    前記光波長選択フィルタの面積が、前記光波長変換シートの面積よりも小さく、
    前記発光素子が、前記光波長変換シートと離間して具備されていることを特徴とする照明装置。
    A light wavelength conversion sheet;
    An optical wavelength selection filter;
    A light emitting element;
    A lighting device comprising:
    A light emitting element, a light wavelength conversion sheet, and a light wavelength selection filter are provided in this order,
    The area of the light wavelength selection filter is smaller than the area of the light wavelength conversion sheet,
    The illuminating device, wherein the light emitting element is separated from the light wavelength conversion sheet.
  2. 光波長変換シートと、
    光波長選択フィルタと、
    発光素子と、
    を具備する照明装置であって、
    発光素子、光波長選択フィルタ、光波長変換シートが、この順で具備されており、
    前記光波長選択フィルタの面積が、前記光波長変換シートの面積よりも小さく、
    前記発光素子が、前記光波長変換シートと離間して具備されていることを特徴とする照明装置。
    A light wavelength conversion sheet;
    An optical wavelength selection filter;
    A light emitting element;
    A lighting device comprising:
    A light emitting element, an optical wavelength selection filter, and an optical wavelength conversion sheet are provided in this order.
    The area of the light wavelength selection filter is smaller than the area of the light wavelength conversion sheet,
    The illuminating device, wherein the light emitting element is separated from the light wavelength conversion sheet.
  3. 第1光波長変換シートと、
    第2光波長変換シートと、
    発光素子と、
    を具備する照明装置であって、
    第1光波長変換シート、発光素子、第2光波長変換シートが、この順で具備されており、
    第1光波長変換シートの面積が、第2光波長変換シートの面積よりも小さく、
    前記発光素子が、前記第2光波長変換シートと離間して具備されていることを特徴とする照明装置。
    A first light wavelength conversion sheet;
    A second light wavelength conversion sheet;
    A light emitting element;
    A lighting device comprising:
    The first light wavelength conversion sheet, the light emitting element, and the second light wavelength conversion sheet are provided in this order,
    The area of the first light wavelength conversion sheet is smaller than the area of the second light wavelength conversion sheet,
    The illuminating device, wherein the light emitting element is provided apart from the second light wavelength conversion sheet.
  4. 前記光波長選択フィルタが、下記式(1)を満足することを特徴とする請求項1または2に記載の照明装置。
      |λ2-λ3| ≦ 50  (ただし、λ1<λ2、λ1<λ3) (1)
        λ1:発光素子の発光波長(nm)
        λ2:光波長選択フィルタの透過率が70%となる波長(nm)
        λ3:光波長選択フィルタの透過率が30%となる波長(nm)
    The lighting device according to claim 1, wherein the optical wavelength selection filter satisfies the following expression (1).
    | λ2-λ3 | ≦ 50 (where λ1 <λ2, λ1 <λ3) (1)
    λ1: Light emission wavelength of light emitting element (nm)
    λ2: wavelength at which the transmittance of the optical wavelength selection filter becomes 70% (nm)
    λ3: wavelength at which the transmittance of the optical wavelength selection filter is 30% (nm)
  5. 前記光波長選択フィルタおよび/または前記光波長変換シートの表面が凹凸形状を有することを特徴とする請求項1~3のいずれかに記載の照明装置。 The illumination device according to any one of claims 1 to 3, wherein a surface of the light wavelength selection filter and / or the light wavelength conversion sheet has an uneven shape.
  6. 前記発光素子が、前記光波長変換シートの面全面に対応して複数設けられていることを特徴とする請求項1または2に記載の照明装置。 The lighting device according to claim 1, wherein a plurality of the light emitting elements are provided corresponding to the entire surface of the light wavelength conversion sheet.
  7. 前記発光素子が、前記第2光波長変換シートの面全面に対応して複数設けられていることを特徴とする請求項3に記載の照明装置。 The lighting device according to claim 3, wherein a plurality of the light emitting elements are provided corresponding to the entire surface of the second light wavelength conversion sheet.
  8. 前記発光素子から発光される光の前記発光素子から前記光波長変換シートまでの光路中に配置された導光板を更に具備することを特徴とする請求項1または2に記載の照明装置。 The illuminating device according to claim 1, further comprising a light guide plate disposed in an optical path from the light emitting element to the light wavelength conversion sheet for light emitted from the light emitting element.
  9. 前記発光素子から発光される光の前記発光素子から前記第2光波長変換シートまでの光路中に配置された導光板を更に具備することを特徴とする請求項3に記載の照明装置。 The lighting device according to claim 3, further comprising a light guide plate disposed in an optical path from the light emitting element to the second light wavelength conversion sheet for light emitted from the light emitting element.
  10. 前記発光素子は前記導光板の端部に沿って複数設けられていることを特徴とする請求項8または9に記載の照明装置。 The lighting device according to claim 8, wherein a plurality of the light emitting elements are provided along an end portion of the light guide plate.
  11. さらに輝度向上フィルムを含んでなり、かつ発光素子、光波長シート、光波長選択フィルタのいずれの部材よりも出射側に前記輝度向上フィルムを設けてなることを特徴とする請求項1~3のいずれかに記載の照明装置。 4. The method according to claim 1, further comprising a brightness enhancement film, wherein the brightness enhancement film is provided on an emission side of any member of the light emitting element, the light wavelength sheet, and the light wavelength selection filter. A lighting device according to claim 1.
  12. 前記光波長選択フィルタの波長λ3における透過率が最大になる方向と、前記輝度向上フィルムの波長λ3における透過率が最大になる方向との為す角度が10°以下であることを特徴とする請求項11に記載の照明装置。 The angle between the direction in which the transmittance at the wavelength λ3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength λ3 of the brightness enhancement film is maximized is 10 ° or less. 11. The illumination device according to 11.
  13. 前記光波長選択フィルタの波長λ3における透過率が最大になる方向と、前記輝度向上フィルムの波長λ3における透過率が最大になる方向との為す角度が80°以上であることを特徴とする請求項11に記載の照明装置。 The angle between the direction in which the transmittance at the wavelength λ3 of the optical wavelength selection filter is maximized and the direction in which the transmittance at the wavelength λ3 of the brightness enhancement film is maximized is 80 ° or more. 11. The illumination device according to 11.
  14. さらに正反射性の反射フィルムを含んでなり、かつ発光素子、光波長シート、光波長選択フィルタのいずれの部材よりも出射側と反対に前記正反射性の反射フィルムを設けてなることを特徴とする請求項1~3のいずれかに記載の照明装置。 Further, it comprises a regular reflective film, and is provided with the regular reflective film opposite to the exit side from any member of the light emitting element, the light wavelength sheet, and the light wavelength selection filter. The lighting device according to any one of claims 1 to 3.
  15. 表示パネルと、該表示パネルと隣接して設けられる照明装置とを具備する表示装置であって、
    前記照明装置が、
    請求項1~14のいずれかに記載の照明装置であることを特徴とする表示装置。
    A display device comprising a display panel and a lighting device provided adjacent to the display panel,
    The lighting device is
    A display device comprising the illumination device according to any one of claims 1 to 14.
PCT/JP2016/064843 2015-05-20 2016-05-19 Lighting device and display device WO2016186158A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680024009.3A CN107533257B (en) 2015-05-20 2016-05-19 Illumination device and display device
KR1020177031309A KR102538377B1 (en) 2015-05-20 2016-05-19 lighting devices and display devices
JP2016542784A JP6787127B2 (en) 2015-05-20 2016-05-19 Lighting device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015102700 2015-05-20
JP2015-102700 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016186158A1 true WO2016186158A1 (en) 2016-11-24

Family

ID=57320289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064843 WO2016186158A1 (en) 2015-05-20 2016-05-19 Lighting device and display device

Country Status (4)

Country Link
JP (1) JP6787127B2 (en)
KR (1) KR102538377B1 (en)
CN (1) CN107533257B (en)
WO (1) WO2016186158A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083953A1 (en) * 2016-11-07 2018-05-11 東レ株式会社 Light source unit
CN108051948A (en) * 2017-10-11 2018-05-18 深圳Tcl新技术有限公司 Backlight module and display device
JP2018098088A (en) * 2016-12-15 2018-06-21 大日本印刷株式会社 Backlight with quantum dot sheet and liquid crystal display device with said backlight
WO2018212070A1 (en) * 2017-05-19 2018-11-22 富士フイルム株式会社 Backlight unit and liquid crystal display device
WO2018212050A1 (en) * 2017-05-17 2018-11-22 シャープ株式会社 Backlight unit, display device, manufacturing method for backlight unit, manufacturing apparatus of backlight unit
WO2019059308A1 (en) * 2017-09-22 2019-03-28 Dic株式会社 Light conversion film and image display element using same
WO2019065188A1 (en) * 2017-09-27 2019-04-04 東レ株式会社 Light source unit
JP2019062116A (en) * 2017-09-27 2019-04-18 日亜化学工業株式会社 Light-emitting device
WO2019225423A1 (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Optical filter, multiplex-optical filter, and light-emitting device and illumination system using such filters
JP2020516015A (en) * 2017-03-28 2020-05-28 ナノシス・インク. Method for increasing light output of micro LED device using quantum dots
WO2020153197A1 (en) * 2019-01-23 2020-07-30 パナソニックIpマネジメント株式会社 Colloidal crystal structure, and light-emitting device and lighting system using same
JP6798655B1 (en) * 2019-06-14 2020-12-09 昭和電工マテリアルズ株式会社 Wavelength conversion member and its use, backlight unit, and image display device
JP2022022964A (en) * 2020-03-31 2022-02-07 大日本印刷株式会社 Surface light source device and display device
JP2022532816A (en) * 2018-11-28 2022-07-20 アイセーフ インコーポレイテッド Modification of luminescence

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253958A (en) * 1997-03-07 1998-09-25 Enplas Corp Side light type surface light source device
JP2005251649A (en) * 2004-03-05 2005-09-15 Sony Corp Lighting system and color liquid crystal display
JP2006291064A (en) * 2005-04-12 2006-10-26 Seiko Instruments Inc Phosphor film, device of illumination and displaying device having the same
JP2009140822A (en) * 2007-12-07 2009-06-25 Sony Corp Lighting system, color converting element, and display device
JP2009192793A (en) * 2008-02-14 2009-08-27 Seiko Instruments Inc Liquid crystal display device
JP2011040313A (en) * 2009-08-14 2011-02-24 Keiji Iimura Hollow light guide unit, surface light source, and liquid crystal display
JP2011119131A (en) * 2009-12-03 2011-06-16 Seiko Instruments Inc Lighting device and display device with the same
JP2012084512A (en) * 2010-09-15 2012-04-26 Seiko Instruments Inc Lighting system and color display device with the same
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method
JP2015065168A (en) * 2013-09-24 2015-04-09 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Backlight assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139940A (en) 2001-11-07 2003-05-14 Dainippon Printing Co Ltd Color filter for liquid crystal display device
KR102019677B1 (en) * 2012-09-27 2019-09-10 삼성디스플레이 주식회사 Display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253958A (en) * 1997-03-07 1998-09-25 Enplas Corp Side light type surface light source device
JP2005251649A (en) * 2004-03-05 2005-09-15 Sony Corp Lighting system and color liquid crystal display
JP2006291064A (en) * 2005-04-12 2006-10-26 Seiko Instruments Inc Phosphor film, device of illumination and displaying device having the same
JP2009140822A (en) * 2007-12-07 2009-06-25 Sony Corp Lighting system, color converting element, and display device
JP2009192793A (en) * 2008-02-14 2009-08-27 Seiko Instruments Inc Liquid crystal display device
JP2011040313A (en) * 2009-08-14 2011-02-24 Keiji Iimura Hollow light guide unit, surface light source, and liquid crystal display
JP2011119131A (en) * 2009-12-03 2011-06-16 Seiko Instruments Inc Lighting device and display device with the same
JP2012084512A (en) * 2010-09-15 2012-04-26 Seiko Instruments Inc Lighting system and color display device with the same
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method
JP2015065168A (en) * 2013-09-24 2015-04-09 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Backlight assembly

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732332B2 (en) 2016-11-07 2020-08-04 Toray Industries, Inc. Light source unit
WO2018083953A1 (en) * 2016-11-07 2018-05-11 東レ株式会社 Light source unit
JPWO2018083953A1 (en) * 2016-11-07 2019-09-19 東レ株式会社 Light source unit
JP2018098088A (en) * 2016-12-15 2018-06-21 大日本印刷株式会社 Backlight with quantum dot sheet and liquid crystal display device with said backlight
JP7191033B2 (en) 2017-03-28 2022-12-16 ナノシス・インク. How to Use Quantum Dots to Increase the Light Output of Micro-LED Devices
JP2020516015A (en) * 2017-03-28 2020-05-28 ナノシス・インク. Method for increasing light output of micro LED device using quantum dots
WO2018212050A1 (en) * 2017-05-17 2018-11-22 シャープ株式会社 Backlight unit, display device, manufacturing method for backlight unit, manufacturing apparatus of backlight unit
US11003018B2 (en) 2017-05-17 2021-05-11 Sharp Kabushiki Kaisha Backlight unit, display device, manufacturing method for backlight unit, manufacturing apparatus of backlight unit
JPWO2018212070A1 (en) * 2017-05-19 2020-03-12 富士フイルム株式会社 Backlight unit and liquid crystal display device
WO2018212070A1 (en) * 2017-05-19 2018-11-22 富士フイルム株式会社 Backlight unit and liquid crystal display device
WO2019059308A1 (en) * 2017-09-22 2019-03-28 Dic株式会社 Light conversion film and image display element using same
JPWO2019059308A1 (en) * 2017-09-22 2019-11-14 Dic株式会社 Light conversion film and image display element using the same
JP2019062116A (en) * 2017-09-27 2019-04-18 日亜化学工業株式会社 Light-emitting device
JP6525111B1 (en) * 2017-09-27 2019-06-05 東レ株式会社 Light source unit
JP7082272B2 (en) 2017-09-27 2022-06-08 日亜化学工業株式会社 Light emitting device
US10955593B2 (en) 2017-09-27 2021-03-23 Toray Industries, Inc. Light source unit
WO2019065188A1 (en) * 2017-09-27 2019-04-04 東レ株式会社 Light source unit
CN108051948A (en) * 2017-10-11 2018-05-18 深圳Tcl新技术有限公司 Backlight module and display device
WO2019071985A1 (en) * 2017-10-11 2019-04-18 深圳Tcl新技术有限公司 Backlight module and display device
WO2019225423A1 (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Optical filter, multiplex-optical filter, and light-emitting device and illumination system using such filters
JPWO2019225423A1 (en) * 2018-05-25 2021-07-08 パナソニックIpマネジメント株式会社 Optical filters and multiple optical filters, as well as light emitting devices and lighting systems using them.
US11353642B2 (en) 2018-05-25 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Optical filter, multiplex optical filter, and light emitting device and illumination system using the same
JP2022532816A (en) * 2018-11-28 2022-07-20 アイセーフ インコーポレイテッド Modification of luminescence
JPWO2020153197A1 (en) * 2019-01-23 2021-12-02 パナソニックIpマネジメント株式会社 Colloidal crystal structure, and light emitting device and lighting system using it
CN113330340A (en) * 2019-01-23 2021-08-31 松下知识产权经营株式会社 Colloidal crystal structure, and light-emitting device and lighting system using same
JP7186384B2 (en) 2019-01-23 2022-12-09 パナソニックIpマネジメント株式会社 Colloidal crystal structure, light emitting device and lighting system using the same
WO2020153197A1 (en) * 2019-01-23 2020-07-30 パナソニックIpマネジメント株式会社 Colloidal crystal structure, and light-emitting device and lighting system using same
CN113330340B (en) * 2019-01-23 2023-10-31 松下知识产权经营株式会社 Colloidal crystal structure, and light-emitting device and lighting system using same
US11892665B2 (en) 2019-01-23 2024-02-06 Panasonic Intellectual Property Management Co., Ltd. Colloidal crystal structure, and light-emitting device and lighting system using same
WO2020250414A1 (en) * 2019-06-14 2020-12-17 昭和電工マテリアルズ株式会社 Wavelength conversion member, use therefor, backlight unit, and image display device
JP6798655B1 (en) * 2019-06-14 2020-12-09 昭和電工マテリアルズ株式会社 Wavelength conversion member and its use, backlight unit, and image display device
JP2022022964A (en) * 2020-03-31 2022-02-07 大日本印刷株式会社 Surface light source device and display device
JP7064722B2 (en) 2020-03-31 2022-05-11 大日本印刷株式会社 Surface light source device and display device

Also Published As

Publication number Publication date
KR20180008436A (en) 2018-01-24
CN107533257B (en) 2020-08-25
KR102538377B1 (en) 2023-06-01
JP6787127B2 (en) 2020-11-18
JPWO2016186158A1 (en) 2018-03-08
CN107533257A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2016186158A1 (en) Lighting device and display device
US8950924B2 (en) Optical constructions incorporating a light guide and low refractive index films
KR101588811B1 (en) Light diffusion sheet, and backlight unit for liquid crystal display device
JP6156143B2 (en) Surface emitter
KR20180049102A (en) Matrix for quantum dot article
TWI790203B (en) Liquid crystal display device
TWI662333B (en) Reflection sheet, reflction unit for plane light source device and plane light source device
JP2007179035A (en) Diffusion sheet and backlight unit using the same
TW201106021A (en) Anisotropic light-diffusing film, anisotropic light-diffusing film laminated sheet and production method thereof
KR20160040172A (en) External-light-utilizing display body
JP5104459B2 (en) Optical member and backlight unit and display using it
JP2010262038A (en) Light deflection element and light diffusion plate
JP2010044270A (en) Light diffusion plate, optical sheet, back light unit and display device
JP5532799B2 (en) White reflective film
JP2010262770A (en) Light emission sheet and lighting apparatus using the same, backlight unit, as well as display device
JP2010044269A (en) Light diffusion plate, optical sheet, back light unit and display device
JP2011033643A (en) Optical path changing sheet, backlight unit and display device
JP2010108824A (en) Direct backlight
JP4610356B2 (en) Optical element manufacturing method
JP2014086387A (en) Light guide plate, backlight unit including the same, and display device
TWI438499B (en) Light diffusing film, its laminating sheet, method for producing the same, lighting device using led source and backlight device
JP5787493B2 (en) Backlight device
JP2015031893A (en) Lens film laminate for lighting equipment
JP2010044268A (en) Light diffusion plate, optical sheet, back light unit and display device
JP2013218092A (en) Light diffusion laminate, surface light source device, and display device and illumination device using surface light source device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016542784

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031309

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796551

Country of ref document: EP

Kind code of ref document: A1