WO2016186062A1 - 液晶表示パネル - Google Patents

液晶表示パネル Download PDF

Info

Publication number
WO2016186062A1
WO2016186062A1 PCT/JP2016/064408 JP2016064408W WO2016186062A1 WO 2016186062 A1 WO2016186062 A1 WO 2016186062A1 JP 2016064408 W JP2016064408 W JP 2016064408W WO 2016186062 A1 WO2016186062 A1 WO 2016186062A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
display panel
crystal display
conductive
Prior art date
Application number
PCT/JP2016/064408
Other languages
English (en)
French (fr)
Inventor
和行 油崎
篤雄 小西
敏昭 藤原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017519200A priority Critical patent/JPWO2016186062A1/ja
Priority to US15/575,966 priority patent/US20180149896A1/en
Priority to CN201680028330.9A priority patent/CN107615153A/zh
Publication of WO2016186062A1 publication Critical patent/WO2016186062A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/22Antistatic materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a liquid crystal display panel. More specifically, the present invention relates to a liquid crystal display panel having a specific structure suitable for a horizontal electric field mode liquid crystal display device such as an IPS (In-Plane Switching) mode or an FFS (Fringe Field Switching) mode.
  • IPS In-Plane Switching
  • FFS Frringe Field Switching
  • a liquid crystal display panel is configured by sandwiching a liquid crystal layer as a display medium between a pair of glass substrates and the like, and is utilized for car navigation, electronic books, photo frames, industrial equipment, televisions, taking advantage of its thin, lightweight, and low power consumption.
  • Personal computers, smartphones, tablet terminals, etc. are indispensable for daily life and business.
  • liquid crystal display panels of various modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied.
  • a vertical electric field method and a horizontal electric field method are known.
  • a pixel electrode formed on one substrate a substrate on which a thin film transistor (TFT) element that supplies a display signal to the pixel electrode [TFT substrate]
  • TFT substrate a substrate on which a thin film transistor (TFT) element that supplies a display signal to the pixel electrode [TFT substrate]
  • TFT substrate an electric field in a generally vertical direction (normal direction of the substrate surface) is applied to the liquid crystal layer using the common electrode formed on the (opposite substrate).
  • a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode using a liquid crystal having negative dielectric anisotropy and a vertical alignment film are known.
  • a horizontal electric field liquid crystal display panel a common electrode is formed on a TFT substrate together with a pixel electrode, and an electric field in a substantially horizontal direction (a direction parallel to the substrate surface) is applied to the liquid crystal layer using the pixel electrode and the common electrode.
  • in-plane switching As a lateral electric field type liquid crystal panel, in-plane switching (IPS: In-Plane) in which liquid crystal molecules having positive or negative dielectric anisotropy are horizontally aligned with respect to a substrate surface and a lateral electric field is applied to the liquid crystal layer.
  • IPS in-plane switching
  • Examples include a switching mode and a fringe field switching (FFS) mode.
  • IZO indium zinc oxide
  • CF substrate horizontal electric field type counter substrate
  • connection with a terminal of a TFT substrate is performed.
  • the structure which uses electrically conductive paste as a member is disclosed (for example, refer patent document 1).
  • a horizontal electric field type liquid crystal display device having a similar connecting member is disclosed (for example, see Patent Documents 2 to 4).
  • an electrode for driving liquid crystal is usually not disposed on the surface (back surface) of the color filter substrate (CF substrate) on the liquid crystal layer side. Therefore, when the surface (surface) opposite to the liquid crystal layer side of the CF substrate is charged, an electric field in the vertical direction (normal direction of the substrate surface) is generated, and the lateral direction (substrate) applied to the liquid crystal layer Affects the electric field in the direction parallel to the surface). As a result, there is a problem of deterioration in display quality, such as liquid crystal molecules are oriented in an unfavorable direction and unevenness occurs.
  • a configuration in which a transparent conductive film is formed on the surface of a CF substrate and static electricity is removed via a terminal portion such as a charge removal terminal portion of the TFT substrate on which a TFT element is formed is conventionally known.
  • Examples of the member that electrically connects the transparent conductive film and the terminal portion include a conductive paste.
  • the electrical resistance increases in environmental tests (also called reliability tests, especially high-temperature and high-humidity tests). Or eventually ceased to conduct.
  • the conductive paste a mixture of a flaky conductive filler or a spherical conductive filler in an epoxy resin or a thermoplastic resin is mainly used.
  • ITO indium tin oxide
  • the surface has a dense concavo-convex shape, so the anchor effect is strong and the conductive paste is difficult to peel off. Therefore, the conductivity is relatively stable.
  • Patent Document 1 uses IZO as a shield electrode on the surface of a lateral electric field type counter substrate (CF substrate), and uses a conductive paste (silver paste) as a connection member with a terminal of the TFT substrate.
  • CF substrate lateral electric field type counter substrate
  • conductive paste silver paste
  • FIG. 1 of Patent Document 1 The configuration is disclosed (FIG. 1 of Patent Document 1).
  • Patent Documents 2 to 4 do not disclose the above-mentioned problem and the above-mentioned improvement measures, and there is room for improvement.
  • the present invention has been made in view of the above-mentioned present situation, and it is possible to stably remove static electricity while maintaining the electrical connection between the transparent conductive film of one substrate of the liquid crystal display panel and the terminal portion of the other substrate.
  • An object of the present invention is to provide a liquid crystal display panel that can be used.
  • the present inventors stably remove static electricity.
  • a conductive paste a flaky conductive filler and a conductive material different from the flaky conductive filler (for example, a conductive material, material, size, etc. having a different shape from a flaky conductive filler such as a spherical conductive filler) A material mixed with different conductive materials) is used.
  • a conductive paste in which only a flaky conductive filler is mixed with a binder, only a conductive material different from the flaky conductive filler is used.
  • the conductive paste mixed in the binder, the flaky conductive filler and the conductive paste mixed with the conductive material different from the flaky conductive filler were each tested, and the results were examined.
  • the electrical resistance value between ITO and the conductive paste was low and stable, and no particular problem was found in the high temperature and high humidity test.
  • the present inventors when automatically applying to the panel surface with a device filled with a conductive paste into a syringe, the thixo ratio becomes high when only the flaky conductive filler is blended, and the conductive paste is difficult to be ejected from the syringe. Since it may decrease, a material with a combination of a flaky conductive filler and a conductive material different from the flaky conductive filler will give an appropriate leveling property and workability (fluidity of the conductive paste itself) I found it better.
  • a conductive member that electrically connects the transparent conductive film and the terminal portion and the conductive member includes a flake-shaped conductive filler and a liquid crystal containing a conductive material different from the flake-shaped conductive filler It may be a display panel.
  • the present invention is described in detail below.
  • the conductive material different from the flaky conductive filler is preferably a spherical conductive filler.
  • the second substrate is preferably a TFT substrate.
  • the first substrate is preferably a counter substrate facing the TFT substrate.
  • at least one of the transparent conductive film of the first substrate and the terminal portion of the second substrate preferably has a surface roughness Ra of 3 nm or less, preferably 2 nm or less. More preferably, it is 1 nm or less.
  • the surface roughness Ra can be measured by a method defined in JIS B 0601: 2001.
  • At least one of the transparent conductive film of the first substrate and the surface of the terminal portion of the second substrate is made of indium zinc oxide.
  • the size of the conductive material different from the flaky conductive filler is preferably 1 ⁇ 2 or less of the size of the flaky conductive filler.
  • the volume-based content ratio between the flaky conductive filler and the conductive material different from the flaky conductive filler is preferably 10/90 to 90/10.
  • the transparent conductive film of the first substrate is preferably a touch panel sensor electrode.
  • the conductive member is a sealing material that adheres the first substrate and the second substrate and seals the liquid crystal layer.
  • the transparent conductive film is provided on the surface opposite to the liquid crystal layer side of the first substrate.
  • the transparent conductive film is provided on the surface of the first substrate on the liquid crystal layer side.
  • the second substrate includes a plurality of thin film transistor elements, a plurality of pixel electrodes respectively connected to the plurality of thin film transistor elements, and a common electrode.
  • a lateral electric field type liquid crystal panel that controls the alignment direction of liquid crystal molecules by an electric field in a direction parallel to the second substrate surface generated between the electrode and the common electrode. That is, the second substrate in the liquid crystal display panel of the present invention includes a plurality of thin film transistor elements, a plurality of pixel electrodes respectively connected to the plurality of thin film transistor elements, and a common electrode, and is parallel to the second substrate surface.
  • the liquid crystal panel be a horizontal electric field type in which a potential difference is generated between the plurality of pixel electrodes and the common electrode when display is performed by controlling the alignment direction of the liquid crystal molecules by an electric field in the direction.
  • the electric field in the parallel direction may be what is called a horizontal electric field in the technical field of a horizontal electric field type liquid crystal panel, and may be an electric field in a substantially parallel direction.
  • the pixel electrode and the common electrode are provided in different layers with an insulating film interposed therebetween, and the surface of the terminal portion is formed of the pixel electrode and the common electrode. It is preferable that the electrode is formed of the same material as the electrode on the side close to the liquid crystal layer.
  • the liquid crystal display panel of the present invention can stably remove static electricity while maintaining the electrical connection between the transparent conductive film of one substrate of the liquid crystal display panel and the discharge terminal portion of the other substrate. is there.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display panel of Embodiment 1.
  • FIG. It is the elements on larger scale of FIG. 1, and shows the mode before and after a high temperature / humidity test. It is a graph of resistance value (ohm) with respect to time (h) at the time of performing a high temperature, high humidity test with respect to the liquid crystal display panel of Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram before the high-temperature, high-humidity test of the liquid crystal display panel of the comparative example 1. It is a cross-sectional schematic diagram after the high-temperature, high-humidity test of the liquid crystal display panel of Comparative Example 1.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display panel of Embodiment 3.
  • FIG. It is the elements on larger scale of FIG. It is a cross-sectional schematic diagram of a liquid crystal display panel in which a transparent conductive film is disposed on a CF substrate and static electricity is removed via a charge removal terminal on the TFT substrate.
  • a conductive paste (also referred to as a conductive adhesive) is cured after electrically connecting a transparent conductive film on one substrate of a liquid crystal display panel and a static elimination terminal portion on the other substrate.
  • the flaky conductive filler has an aspect ratio of 2 or more and 200 or less.
  • the conductive member includes a flaky conductive filler and a conductive material different from the flaky conductive filler.
  • the conductive filler having an aspect ratio of 2 or more and 200 or less, and the conductive filler are materials and sizes. And at least one of the shapes includes different conductive materials.
  • the aspect ratio of the flaky conductive filler is preferably 3 or more.
  • the aspect ratio is preferably 150 or less, more preferably 100 or less, and still more preferably 50 or less.
  • the conductive material different from the flaky conductive filler may be a conductive material that is different from the flaky conductive filler in at least one of material, size, and shape, and the flaky conductive filler has a size and / or shape. Different conductive materials are preferred.
  • the flaky conductive filler and the flaky conductive filler contain a different conductive material.
  • the conductive material different from the flaky conductive filler has a size of 1 ⁇ 2 or less of the size of the flaky conductive filler and / or a spherical conductive filler.
  • the size means an average volume per one conductive material or filler.
  • the spherical conductive filler means that the aspect ratio is 1 or more and less than 2.
  • the aspect ratio is more preferably 1.5 or less.
  • the aspect ratio of the conductive filler is a value obtained by dividing the major axis (dimension of the longest part) by the minor axis (dimension of the shortest part).
  • the major axis and minor axis are major axes of 100 or more fillers using an electron microscope. And measuring the minor axis.
  • peaks are observed at two locations of a range of 1 or more and less than 2, and a range of 2 or more and 200 or less, it can be said that spherical conductive fillers and flaky conductive fillers are included. .
  • it is preferable that peaks are observed only in two places, a range of 1 or more and less than 2, and a range of 2 or more and 200 or less.
  • the transparent conductive film on the CF substrate side of the liquid crystal display panel of each embodiment is disposed on the entire front or back surface of the CF substrate, and this is a preferable form from the viewpoint of sufficiently removing static electricity from the CF substrate.
  • the film may be disposed only on a part of the front surface or the back surface of the CF substrate (for example, a portion corresponding to the display area).
  • the neutralization terminal portion on the TFT substrate side of the liquid crystal display panel of each embodiment is disposed on the back surface (observation surface side main surface) of the TFT substrate.
  • the location is not particularly limited, and for example, it may be disposed on the surface of the TFT substrate (backlight side main surface), or may be disposed on the side surface of the TFT substrate.
  • FIG. 1 is a schematic cross-sectional view of the liquid crystal display panel of the first embodiment.
  • the liquid crystal display panel shown in FIG. 1 is a horizontal electric field type liquid crystal display panel, and does not have electrodes for driving liquid crystal on the CF substrate 21.
  • a transparent conductive film 23 (for example, ITO) formed on the surface of the CF substrate 21 and the static elimination terminal portion 13 of the TFT substrate 11 are connected by a conductive paste 40.
  • the static elimination terminal portion 13 includes a gate metal 13a, a gate insulating film 13c, a source metal 13e, a first inorganic insulating film 13g, an organic insulating film 13i, a second inorganic insulating film 13k, and a transparent conductive film 13m having high surface smoothness (for example, IZO). Etc.) are laminated in this order, and the surface connected to the conductive paste 40 is made of a transparent conductive film 13m (for example, IZO) having high surface smoothness.
  • a transparent conductive film 13m for example, IZO
  • the gate metal 13a is a wiring material formed in the same layer as the gate electrode of the TFT on the TFT substrate 11, for example, Cu (copper), Mo (molybdenum), Al (aluminum), Ti (titanium). TiN (titanium nitride), an alloy thereof, or a laminated film of these metals.
  • the source metal 13e is a wiring material formed in the same layer as the source / drain electrodes of the TFT, and is formed of, for example, Cu, Mo, Al, Ti, TiN, an alloy thereof, or a laminated film of these metals. .
  • the organic insulating film 13i is an insulating layer formed in the same layer as the organic insulating layer disposed between the TFT and the common electrode
  • the second inorganic insulating film 13k is an insulating film between the common electrode and the pixel electrode. It is an insulating layer formed in the same layer.
  • the transparent conductive film 13m having high surface smoothness is an electrode material formed in the same layer as the pixel electrode, and is formed of a transparent conductive film such as IZO, for example.
  • fine (for example, about 2 to 4 ⁇ m) slits may be formed in a pixel electrode at a narrow pitch (for example, about 2 to 4 ⁇ m).
  • the pixel electrode including the slit and the transparent conductive film 13m having high surface smoothness of the static elimination terminal portion 13 are formed by forming the IZO film by sputtering, and then performing the same process using a known photolithography method and wet etching. Can be used for patterning.
  • an opaque metal electrode such as Mo or Ti can be used, but using a transparent conductive film such as IZO has a higher transmittance of the liquid crystal panel.
  • the configuration in which the pixel electrode, the second inorganic insulating film 13k, and the common electrode are formed in this order from the side close to the liquid crystal layer side is shown.
  • the positions of the pixel electrode and the common electrode can be reversed. It is.
  • the fine slit is formed in the common electrode
  • the transparent conductive film 13m having high surface smoothness is an electrode material formed in the same layer as the common electrode.
  • FIG. 1 there are conductive paths in the order of a transparent conductive film 23, a conductive paste 40, a transparent conductive film 13m with high surface smoothness, a source metal 13e, and a gate metal 13a.
  • the gate metal 13a is, for example, an end of the TFT substrate 11 It is grounded via an FPC (Flexible Printed Circuit) connected to.
  • FPC Flexible Printed Circuit
  • the transparent conductive film 23 may be made of IZO and have high surface smoothness
  • the transparent conductive film 13m may be made of ITO and have low surface smoothness, and the effects of the present invention can be exhibited similarly.
  • the transparent conductive film 23 and the transparent conductive film 13m may each be comprised from IZO, and the effect of this invention will become more remarkable by this.
  • the transparent conductive film 23 and the transparent conductive film 13m may each be made of ITO.
  • High surface smoothness means that the surface roughness Ra is preferably 3 nm or less, more preferably 2 nm or less, and even more preferably 1 nm or less. Thereby, the effect of this invention can be exhibited notably.
  • the surface roughness Ra refers to the arithmetic average roughness measured based on the standard of JIS B 0601: 2001.
  • SiN x silicon nitride
  • the gate insulating film 13c the first inorganic insulating film 13g, and the second inorganic insulating film 13k.
  • an acrylic photosensitive resin can be suitably used as the organic insulating film 13i.
  • FIG. 2 is a partially enlarged view of FIG. 1 and shows a state before and after the high temperature and high humidity test.
  • FIG. 2 shows a part of each of the transparent conductive film 13m with high surface smoothness and the conductive paste 40 shown in FIG.
  • the conductive paste 40 is composed of a conductive material different from the flaky conductive filler such as the flaky conductive filler 40f and the spherical conductive filler 40s, and a binder 40r (resin).
  • the surface of the static elimination terminal portion 13 is composed of a conductive film having high surface smoothness (for example, IZO or the like), which is a preferred form, but it may be composed of other conductive materials. good.
  • the conductive paste 40 applied to the conductive film by using a material obtained by mixing a flaky conductive filler 40f and a conductive material different from the flaky conductive filler such as the spherical conductive filler 40s in the binder 40r, The effect of sustaining a stable and stable electric resistance value can be exhibited.
  • the conductive film is a conductive film having high surface smoothness such as IZO, the electrical resistance value sustainability can be greatly improved.
  • the conductive paste is a mixture of a flaky conductive filler and a conductive material different from the flaky conductive filler, such as a spherical conductive filler, in a binder.
  • a flaky conductive filler and a spherical conductive filler are mixed in a binder.
  • the conductive paste include a paste composed of a flaky conductive filler having a large surface area and a spherical conductive filler having a small surface area.
  • the size of the conductive material different from the flaky conductive filler is preferably 1/2 or less, more preferably 1/3 or less of the size of the flaky conductive filler.
  • the size means an average volume per one conductive material or filler.
  • the conductive filler material examples include silver, gold, iron, and carbon.
  • Suitable materials for the flaky conductive filler 40f include silver, gold, and the like.
  • carbon is preferable.
  • the volume-based content ratio between the flaky conductive filler and the conductive material different from the flaky conductive filler is preferably 10/90 to 90/10, and preferably 20/80 to 80/20. More preferably, it is more preferably 30/70 to 70/30, and particularly preferably 40/60 to 60/40.
  • the binder used for the conductive paste conventionally known various resins can be used.
  • an epoxy resin, a phenol resin, and a silicon resin are preferable.
  • the liquid crystal panel of Embodiment 1 has, as a basic configuration, a TFT substrate 11, a liquid crystal layer 30 containing liquid crystal molecules having positive dielectric anisotropy or negative dielectric anisotropy, and a CF substrate 21.
  • the TFT substrate 11 and the CF substrate 21 are bonded together with a sealing material 35 interposed therebetween.
  • Polarizing plates are respectively provided on the outer surface sides of the TFT substrate 11 and the CF substrate 21.
  • An alignment film may be provided on the liquid crystal layer side of each of the TFT substrate 11 and the CF substrate 21. Description of the polarizing plate and the alignment film is omitted in FIG.
  • the CF substrate is provided with a CF (color filter), the CF substrate does not have to be provided as long as it is a counter substrate of the TFT substrate, and the TFT substrate is provided with CF. It does not matter.
  • FIG. 3 is a graph of resistance value ( ⁇ ) with respect to time (h) when the high-temperature and high-humidity test is performed on the liquid crystal display panel of Embodiment 1.
  • the horizontal electric field type liquid crystal display panel of FIG. 1 was put into an environmental test of high temperature and high humidity (conditions: 60 ° C., 95% RH [relative humidity]), and the transparent conductive film 23 (ITO) of FIG. 1 was used. ) To the gate metal 13a (between the arrows), the electrical resistance value was measured.
  • FIG. 1 The horizontal electric field type liquid crystal display panel of FIG. 1 was put into an environmental test of high temperature and high humidity (conditions: 60 ° C., 95% RH [relative humidity]), and the transparent conductive film 23 (ITO) of FIG. 1 was used.
  • ITO transparent conductive film 23
  • FIG. 3 is a graph in the case of using a conductive paste in which a flaky conductive filler (flaky silver particles are used) and a spherical conductive filler (carbon particles are used) are mixed with a binder.
  • a flaky conductive filler flaky silver particles are used
  • a spherical conductive filler carbon particles are used
  • FIG. 3 shows the respective results. The same applies to FIG. 6 (Comparative Example 1) and FIG. 9 (Comparative Example 2) described later.
  • the liquid crystal display panel of Comparative Example 1 is the same as the liquid crystal display panel of Embodiment 1 except that a conductive paste in which only a spherical conductive filler (spherical silver particles) is mixed in a binder is used as the conductive filler.
  • FIG. 4 is a schematic cross-sectional view of the liquid crystal display panel of Comparative Example 1 before the high-temperature and high-humidity test.
  • FIG. 5 is a schematic cross-sectional view of the liquid crystal display panel of Comparative Example 1 after a high-temperature and high-humidity test. In the liquid crystal display panel of Comparative Example 1, as shown in FIGS.
  • the spherical conductive fillers 140s that are only in point contact with each other move with the deformation of the binder 140r as time passes, Therefore, it is considered that the point contact between the spherical conductive fillers 140s is deviated and conduction is impaired.
  • FIG. 6 is a graph of resistance value ( ⁇ ) with respect to time (h) when the high-temperature and high-humidity test is performed on the liquid crystal display panel of Comparative Example 1.
  • the liquid crystal display panel of Comparative Example 1 was put into an environmental test of high temperature and high humidity (conditions: 60 ° C., 95% RH [relative humidity]), and the electrical resistance value between the transparent conductive film on the CF substrate and the gate metal was measured. It was measured.
  • FIG. 6 shows that the electrical resistance value increases with time.
  • the liquid crystal display panel of Comparative Example 2 is the same as the liquid crystal display panel of Embodiment 1 except that a conductive paste in which only a flaky conductive filler (flaky silver particles) is mixed in a binder is used as the conductive filler.
  • FIG. 7 is a schematic cross-sectional view of the liquid crystal display panel of Comparative Example 2 before the high-temperature and high-humidity test.
  • FIG. 8 is a schematic cross-sectional view of the liquid crystal display panel of Comparative Example 2 after a high-temperature and high-humidity test. In the liquid crystal display panel of Comparative Example 2, as shown in FIGS.
  • the flaky conductive fillers 240 f that are in surface contact with each other move with the deformation of the binder 240 r as time passes, and the conductive paste 240. It is considered that the surface contact between the flaky conductive fillers 240f is deviated and the conduction is impaired.
  • FIG. 9 is a graph of resistance value ( ⁇ ) with respect to time (h) when the high-temperature and high-humidity test is performed on the liquid crystal display panel of Comparative Example 2.
  • the liquid crystal display panel of Comparative Example 2 was put into an environmental test of high temperature and high humidity (conditions: 60 ° C., 95% RH [relative humidity]), and the electrical resistance value between the transparent conductive film on the CF substrate and the gate metal was measured. It was measured.
  • FIG. 9 shows that the electrical resistance value increases with time.
  • FIG. 10 is a schematic cross-sectional view of the liquid crystal display panel of the second embodiment.
  • FIG. 10 shows an embodiment of a horizontal electric field mode liquid crystal display panel of an in-cell touch panel in which a part of electrodes for a touch panel is mounted on a CF substrate.
  • the liquid crystal display panel of Embodiment 2 includes a TFT substrate 311; a TFT substrate side sensor electrode 315; a liquid crystal layer 330; a layer composed of a red color filter R, a green color filter G, a blue color filter B, and a black mask BM; 321; CF substrate side sensor electrode 325 (transparent conductive film) is laminated in this order.
  • the CF substrate side sensor electrode 325 is formed on the surface (surface) of the CF substrate 321 opposite to the liquid crystal layer side.
  • a static elimination terminal portion 313 is disposed on the TFT substrate 311, and the conductive paste 340 is electrically connected between the static elimination terminal portion 313 and the CF substrate side sensor electrode 325.
  • a sealant 335 is disposed between the pair of substrates.
  • the TFT substrate side sensor electrode 315 for example, a common electrode for aligning (driving) liquid crystal molecules can be used.
  • the CF substrate side sensor electrode 325 is for a touch panel, and the static elimination terminal portion 313 is provided between the TFT substrate side sensor electrode 315 and the CF substrate side sensor electrode 325 via, for example, an FPC connected to the end of the TFT substrate 311. Is connected to a circuit for detecting the touch position.
  • the touch position is detected using the capacitance of the portion between the TFT substrate side sensor electrode 315 and the CF substrate side sensor electrode 325.
  • the sensor electrode is formed on the TFT substrate 311.
  • the sensor electrode may be formed on the surface (back surface) of the CF substrate 321 on the liquid crystal layer side.
  • the touch position is detected by using the capacitance between the sensor electrodes formed on the front surface and the back surface, respectively.
  • FIG. 11 is a partially enlarged view (two places) of FIG.
  • a conductive paste 340 in which a flaky conductive filler 340f similar to the conductive paste of the first embodiment and a conductive material different from the flaky conductive filler such as a spherical conductive filler 340s are mixed in a binder 340r is used.
  • a good electrical connection can be obtained.
  • a transparent conductive film with high surface smoothness such as IZO is used for the conductive film 313m and / or the CF substrate side sensor electrode 325 on the surface of the static elimination terminal portion, the electrical connection can be greatly improved. .
  • liquid crystal display panel of the second embodiment a stable electrical resistance value of 5 k ⁇ or less can be achieved as in the case shown in FIG. 3, and good contact performance can be obtained.
  • Other configurations of the liquid crystal display panel of the second embodiment are the same as those of the liquid crystal display panel of the first embodiment described above.
  • FIG. 12 is a schematic cross-sectional view of the liquid crystal display panel of the third embodiment.
  • FIG. 12 shows a transparent liquid crystal display panel in an IPS mode or FFS mode in which a transparent conductive film 422 (ITO, IZO, etc.) is provided on the back surface of the CF substrate 421, and a conductive paste 440 is used as a part of the sealing material.
  • a transparent conductive film 422 ITO, IZO, etc.
  • a conductive paste 440 is used as a part of the sealing material.
  • Embodiment which electrically connects the conductive layer 422 and the static elimination terminal part 413 is shown.
  • the transparent conductive film is provided on the surface of the CF substrate to remove static electricity.
  • the third embodiment is transparent on the back surface (surface on the liquid crystal layer side) of the CF substrate.
  • a conductive film 422 is provided to remove static electricity. Note that since the transparent conductive film 422 is not an electrode for driving the liquid crystal connected to the TFT, the transparent conductive film 422 and the charge removal terminal portion 413 are electrically connected using the conductive paste 440 in order to prevent charging. Will be connected.
  • a conductive filler (as a material, silver particles, gold particles, carbon particles, etc.) is mixed into a part of a sealing material that bonds a pair of substrates and seals the liquid crystal layer 430, so that CF
  • the transparent conductive film 422 of the substrate 421 and the static elimination terminal portion 413 of the TFT substrate 411 are electrically connected.
  • the flaky conductive filler 440f and the spherical conductive filler 440s that are the same as the conductive paste of the first embodiment are used.
  • a conductive paste 440 in which a conductive material different from the flaky conductive filler is mixed in a binder 440r is used. Note that spacers 431b and 431s are arranged between the pair of substrates.
  • the liquid crystal display panel of Embodiment 3 includes a TFT substrate 411, a liquid crystal layer 430, a red color filter R, a green color filter G, a blue color filter B, and a colored layer including a black mask BM, a transparent conductive film 422, and a CF substrate 421.
  • a neutralization terminal portion 413 is disposed on the TFT substrate 411, and the conductive paste 440 is electrically connected between the neutralization terminal portion 413 and the transparent conductive film 422.
  • the conductive paste 440 also has a function as a sealing material. Further, a seal member 435 having no electrical conductivity is disposed at a location where the static elimination terminal portion 413 is not disposed.
  • FIG. 13 is a partially enlarged view of FIG. Also in Embodiment 3, it is possible to exert the effect of the present invention by applying the conductive paste according to the present invention.
  • a material having high surface smoothness such as IZO is used on the surface of the transparent conductive film 422 on the CF substrate 421 side or the static elimination terminal portion 413 (transparent conductive film)
  • the effect of the present invention is remarkably exhibited. it can.
  • a stable electrical resistance value of 5 k ⁇ or less can be achieved as in the case shown in FIG. 3, and good contact performance can be obtained.
  • Other configurations of the liquid crystal display panel of the third embodiment are the same as those of the liquid crystal display panel of the first embodiment described above.
  • the third embodiment can also be applied to the configuration shown in the second embodiment in which the sensor electrode for the in-cell touch panel is formed on the liquid crystal layer side surface (back surface) of the CF substrate.
  • the transparent conductive film 422 corresponds to a sensor electrode
  • the conductive paste 440 is electrically connected between the static elimination terminal portion 313 and the sensor electrode.
  • the static elimination terminal part 313 is connected with the circuit which detects a touch position, for example via FPC connected to the TFT substrate 411 edge part.
  • the conductive paste 440 may be arranged at a position different from the sealing material.
  • the binder of the conductive paste may be a material different from the sealing material.
  • the liquid crystal display panel of the present invention is suitably used for in-vehicle devices such as car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers, smartphones, tablet terminals and the like. Further, the present invention is suitable for a horizontal electric field type liquid crystal display panel in which an electrode for controlling the alignment of liquid crystal is provided only on the second substrate and is not provided on the first substrate. Thereby, it is possible to stably remove the charge on the first substrate, which is likely to occur in a liquid crystal display panel in which the liquid crystal alignment control electrode is not provided on the first substrate.
  • the present invention is preferably applied to an IPS mode liquid crystal display panel and an FFS mode liquid crystal display panel.
  • the second substrate includes a plurality of thin film transistor elements, a plurality of pixel electrodes respectively connected to the plurality of thin film transistor elements, and a common electrode. It is preferable to control the alignment direction of the liquid crystal molecules by an electric field generated between the electrode and the common electrode in a direction parallel to the second substrate surface.
  • the surface of the static elimination terminal portion is formed of the same material as the electrode closer to the liquid crystal layer among the pixel electrode and the common electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、液晶表示パネルの一方の基板の透明導電膜と他方の基板の端子部との間の電気的接続を持続して安定的に静電気除去を行うことができる液晶表示パネルを提供する。本発明の液晶表示パネルは、透明導電膜を有する第1基板と、表面が導電性である端子部を有する第2基板と、該第1基板及び該第2基板に挟持された液晶層と、該透明導電膜と該端子部とを電気的に接続する導電性部材とを有し、該導電性部材は、フレーク状導電フィラー及び該フレーク状導電フィラーとは異なる導電性材料を含むものである。

Description

液晶表示パネル
本発明は、液晶表示パネルに関する。より詳しくは、IPS(In-Plane Switching)モードやFFS(Fringe Field Switching)モード等の横電界方式の液晶表示装置に適した特定の構造を備える液晶表示パネルに関する。
液晶表示パネルは、一対のガラス基板等に表示媒体としての液晶層を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、カーナビゲーション、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等、日常生活やビジネスに欠かすことのできないものとなっている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示パネルが検討されている。
液晶表示パネルの液晶層に電界を印加する方式として、縦電界方式と横電界方式が知られている。縦電界方式の液晶表示パネルでは、一方の基板(画素電極に表示信号を供給する薄膜トランジスタ(Thin Film Transistor;TFT)素子が形成された基板〔TFT基板〕)に形成した画素電極と、他方の基板(対向基板)に形成した共通電極とを用いて、液晶層に概ね縦方向(基板面の法線方向)の電界が印加される。縦電界方式の液晶表示パネルとしては、TN(Twisted Nematic)モードや、負の誘電率異方性を有する液晶と垂直配向膜とを用いたVA(Vertical Alignment)モード等が知られている。
横電界方式の液晶表示パネルでは、共通電極は画素電極と共にTFT基板に形成され、画素電極と共通電極とを用いて液晶層に概ね横方向(基板面に平行方向)の電界が印加される。横電界方式の液晶パネルとしては、正又は負の誘電率異方性を有する液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching)モード、フリンジ電界スイッチング(FFS:Fringe Field Switching)モード等が挙げられる。
従来の横電界方式の液晶表示装置としては、例えば、横電界方式の対向基板(CF基板)表面のシールド電極として酸化インジウム亜鉛(IZO:Indium Zinc Oxide)を使用し、TFT基板の端子との接続部材として、導電ペーストを使用する構成が開示されている(例えば、特許文献1参照)。また、同様の接続部材を備える横電界方式の液晶表示装置が開示されている(例えば、特許文献2~4参照)。
国際公開第2013/183505号 特開2010-169791号公報 特開2012-247542号公報 特開平9-105918号公報
IPS方式やFFS方式等の横電界方式の液晶表示装置においては、通常、カラーフィルタ基板(CF基板)の液晶層側の面(裏面)に、液晶を駆動するための電極が配置されていない。そのため、CF基板の液晶層側と反対側の面(表面)が帯電した場合、縦方向(基板面の法線方向)の電界が発生することになり、液晶層に印加される横方向(基板面に平行方向)の電界に影響を及ぼす。その結果、液晶分子が好ましくない方向に配向し、ムラが発生する等、表示品位の低下が問題となっている。この対策として、CF基板の表面に透明導電膜を形成し、TFT素子が形成されたTFT基板の除電端子部等の端子部を介して、静電気除去を行う構成が従来より知られている。透明導電膜と端子部とを電気的に接続する部材としては、例えば導電ペーストが挙げられる。しかし、導電ペーストの種類や、接続部分の表面状態(導電ペーストを塗布する箇所の表面状態)によっては、環境試験(信頼性試験ともいう。特に、高温高湿試験)等で電気抵抗が上昇したり、最終的には導通しなくなったりする場合があった。
導電ペーストとしては、主にフレーク状導電フィラーや球状導電フィラーを、エポキシ樹脂や熱可塑性樹脂等に混合したものが用いられている。ここで、導電ペーストを塗布する箇所の表面状態によって、導電ペーストの該表面からの剥離のしやすさが異なることが判った。例えば、酸化インジウム錫(ITO:Indium Tin Oxide)を、透明導電膜や端子部表面の材料として用いた場合は、その表面が緻密な凹凸形状の為、アンカー効果が強く、導電ペーストが剥離しにくいため、導電性が比較的安定する。しかし、IZOの場合は、ITOと比べて、表面が平滑である為、アンカー効果が弱く、導電ペーストが剥離し易い。そのため、環境試験(特に、高温高湿試験)等において電気抵抗値が上昇したり、導通しなくなったりする不具合が発生する場合がある(例えば、図14において、ITOから構成されている透明導電膜23は、その表面が緻密な凹凸形状の為、破線で囲んで示した箇所のアンカー効果が強く、導電ペースト40が比較的剥離しにくいが、IZOから構成されている除電端子部13は、表面が平滑である為、一点鎖線で囲んで示した箇所のアンカー効果が弱く、導電ペースト40が比較的剥離し易い。)。
また上記特許文献1に記載の発明は、横電界方式の対向基板(CF基板)表面のシールド電極としてIZOを使用し、TFT基板の端子との接続部材として、導電ペースト(銀ペースト)を使用する構成が開示されている(特許文献1の図1)。しかしながら、環境試験下において、導電膜(特にIZO)と導電ペーストとが剥離しやすいという課題及び該課題に対する改善策が開示されていなかった。特許文献2~4にも、上記課題及び上記改善策が開示されておらず、工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、液晶表示パネルの一方の基板の透明導電膜と他方の基板の端子部との間の電気的接続を持続して安定的に静電気除去を行うことができる液晶表示パネルを提供することを目的とするものである。
本発明者らは、静電気除去を行うために液晶表示パネルの一方の基板の透明導電膜と他方の基板の端子部との間を電気的に接続した液晶表示パネルにおいて、安定的な静電気除去を行うための手段について種々検討し、導電性接着剤(導電ペースト)の材料に着目した。そして、導電ペーストとして、フレーク状導電フィラーと、該フレーク状導電フィラーとは異なる導電性材料(例えば、球状導電フィラー等のフレーク状導電フィラーとは形状が異なる導電性材料や、材料、大きさ等が異なる導電性材料)とを混合した材料を用いることとした。ITOを、CF基板の表面に形成する透明電極膜に使用し、導電ペーストと接続した場合、フレーク状導電フィラーのみをバインダーに混合した導電ペースト、該フレーク状導電フィラーとは異なる導電性材料のみをバインダーに混合した導電ペースト、フレーク状導電フィラーと該フレーク状導電フィラーとは異なる導電性材料とをバインダーに混合した導電ペーストをそれぞれ試し、その結果を検討したが、いずれも高温高湿試験において、ITOと導電ペースト間の電気抵抗値は低く安定しており、該高温高湿試験では特に問題は見出されなかった。また、IZOを、端子部の表層に成膜し、導電ペーストと接続した場合、IZO表面のアンカー効果が弱い影響より、フレーク状導電フィラーのみ、又は、該フレーク状導電フィラーとは異なる導電性材料のみをバインダーに混合した導電ペーストでは、高温高湿試験にて、IZOと導電ペースト間の電気抵抗値が上昇した。一方で、フレーク状導電フィラーと該フレーク状導電フィラーとは異なる導電性材料とをバインダーに混合した導電ペーストは、比較的低く安定した電気抵抗値を持続し、耐環境性にも優れていることが確認された。このように、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。なお、ITO等の表面平滑性の低い材料と導電ペーストとを接続した場合にも電気抵抗値が上昇したり、導通しなくなったりする不具合が発生する場合もあると考えられるため、本発明の作用効果は、CF基板の透明電極膜やTFT基板の端子部の表層にITO等の表面平滑性の低い材料を使用した場合にも発揮されると考えられる。また、本発明者らは、導電ペーストをシリンジに充填した装置でパネル面へ自動塗布する際にフレーク状導電フィラーのみの配合ではチクソ比が高くなり、シリンジから導電ペーストが出難くなり作業性が低下する場合がある為、フレーク状導電フィラーと共に該フレーク状導電フィラーとは異なる導電性材料を併用した配合の材料では、適度なレベリング性が出て、作業性(導電ペースト自体の流動性)も良くなることを見出した。
すなわち、本発明の一つの態様は、透明導電膜を有する第1基板と、表面が導電性である端子部を有する第2基板と、該第1基板及び該第2基板に挟持された液晶層と、該透明導電膜と該端子部とを電気的に接続する導電性部材とを有し、該導電性部材は、フレーク状導電フィラー及び該フレーク状導電フィラーとは異なる導電性材料を含む液晶表示パネルであってもよい。
以下に、本発明を詳述する。
本発明の液晶パネルにおいて、上記フレーク状導電フィラーとは異なる導電性材料は、球状導電フィラーであることが好ましい。
上記第2基板は、TFT基板であることが好ましい。また、上記第1基板は、TFT基板に対向する対向基板であることが好ましい。
本発明の液晶表示パネルにおいて、上記第1基板の透明導電膜、及び、上記第2基板の端子部の少なくとも一方は、表面粗さRaが3nm以下であることが好ましく、2nm以下であることがより好ましく、1nm以下であることが更に好ましい。
表面粗さRaは、JIS B 0601:2001に規定される方法により測定することができる。
本発明の液晶表示パネルにおいて、上記第1基板の透明導電膜、及び、上記第2基板の端子部の表面の少なくとも一方は、酸化インジウム亜鉛から構成されていることが好ましい。
本発明の液晶表示パネルにおいて、上記フレーク状導電フィラーとは異なる導電性材料の大きさは、上記フレーク状導電フィラーの大きさの1/2以下であることが好ましい。
本発明の液晶表示パネルにおいて、上記フレーク状導電フィラーと上記フレーク状導電フィラーとは異なる導電性材料との体積基準の含有比は、10/90~90/10であることが好ましい。
本発明の液晶表示パネルにおいて、上記第1基板の透明導電膜は、タッチパネル用センサー電極であることが好ましい。
本発明の液晶表示パネルにおいて、上記導電性部材は、上記第1基板と上記第2基板とを接着し、かつ上記液晶層を封止するシール材であることが好ましい。
上記透明導電膜は、上記第1基板の液晶層側と反対側の面に設けられていることが本発明の液晶表示パネルにおける好ましい形態の1つである。
上記透明導電膜は、上記第1基板の液晶層側の面に設けられていることもまた本発明の液晶表示パネルにおける好ましい形態の1つである。
本発明の液晶表示パネルにおいて、上記第2基板には、複数の薄膜トランジスタ素子と、該複数の薄膜トランジスタ素子にそれぞれ接続された複数の画素電極と、共通電極が備えられており、該複数の画素電極と該共通電極との間に生じる、第2基板面に対して平行方向の電界によって、液晶分子の配列方向を制御する横電界方式の液晶パネルであることが好ましい。
すなわち、本発明の液晶表示パネルにおける上記第2基板は、複数の薄膜トランジスタ素子と、該複数の薄膜トランジスタ素子にそれぞれ接続された複数の画素電極と、共通電極を備え、第2基板面に対して平行方向の電界によって液晶分子の配列方向を制御して表示を行うときに、該複数の画素電極と該共通電極との間に電位差を生じさせる横電界方式の液晶パネルであることが好ましい。
上記平行方向の電界は、横電界方式の液晶パネルの技術分野において横電界と呼ばれるものであればよく、概ね平行方向の電界であればよい。
本発明の液晶表示パネルにおいて、上記画素電極、及び、上記共通電極は、絶縁膜を介して異なる層に設けられており、上記端子部の表面は、上記画素電極、及び、上記共通電極のうちで液晶層に近い側の電極と同じ材料で形成されていることが好ましい。
本発明の液晶表示パネルは、液晶表示パネルの一方の基板の透明導電膜と他方の基板の除電端子部との間の電気的接続を持続して安定的に静電気除去を行うことができるものである。
実施形態1の液晶表示パネルの断面模式図である。 図1の部分拡大図であり、高温高湿試験前後の様子を示す。 実施形態1の液晶表示パネルに対して高温高湿試験を行った際の時間(h)に対する抵抗値(Ω)のグラフである。 比較例1の液晶表示パネルの高温高湿試験前の断面模式図である。 比較例1の液晶表示パネルの高温高湿試験後の断面模式図である。 比較例1の液晶表示パネルに対して高温高湿試験を行った際の時間(h)に対する抵抗値(Ω)のグラフである。 比較例2の液晶表示パネルの高温高湿試験前の断面模式図である。 比較例2の液晶表示パネルの高温高湿試験後の断面模式図である。 比較例2の液晶表示パネルに対して高温高湿試験を行った際の時間(h)に対する抵抗値(Ω)のグラフである。 実施形態2の液晶表示パネルの断面模式図である。 図10の部分拡大図(2箇所)である。 実施形態3の液晶表示パネルの断面模式図である。 図12の部分拡大図である。 CF基板上に透明導電膜を配置し、TFT基板上の除電端子を介して、静電気を除去する液晶表示パネルの断面模式図である。
以下に実施形態を掲げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
本明細書中、導電ペースト(導電性接着剤とも言う)は、液晶表示パネルの一方の基板の透明導電膜と他方の基板の除電端子部との間を電気的に接続した後に硬化されたものも含む。
本明細書中、フレーク状導電フィラーは、アスペクト比が2以上、200以下であることを言う。なお、導電性部材がフレーク状導電フィラー及び該フレーク状導電フィラーとは異なる導電性材料を含むとは、アスペクト比が2以上、200以下である導電フィラーと、該導電フィラーとは材料、大きさ、形状の少なくとも1つが異なる導電性材料とを含むことを言う。
フレーク状導電フィラーのアスペクト比は、3以上であることが好ましい。また、該アスペクト比は、150以下であることが好ましく、100以下であることがより好ましく、50以下であることが更に好ましい。
フレーク状導電フィラーとは異なる導電性材料は、フレーク状導電フィラーとは材料、大きさ、形状の少なくとも1つが異なる導電性材料であればよく、フレーク状導電フィラーとは大きさ及び/又は形状が異なる導電性材料であることが好ましい。
「フレーク状導電フィラーとは大きさ及び/又は形状が異なる」に関し、大きさを示す指標(例えば、平均体積)や形状を示す指標(例えば、アスペクト比)の分布図において、フレーク状導電フィラーに対応するピークと、該ピークとは異なるピークとの2種類のピークが観測されれば、フレーク状導電フィラーとフレーク状導電フィラーとは異なる導電性材料とを含んでいると言える。
例えば、フレーク状導電フィラーとは異なる導電性材料は、その大きさがフレーク状導電フィラーの大きさの1/2以下であるか、及び/又は、球状導電フィラーであることがより好ましい。ここで、大きさとは、導電性材料又はフィラー1個当たりの平均体積を意味する。
球状導電フィラーは、アスペクト比が1以上、2未満であることを言う。該アスペクト比は、1.5以下であることがより好ましい。
導電フィラーのアスペクト比は、長径(最も長い部分の寸法)を短径(最も短い部分の寸法)で割った値であり、長径及び短径は、電子顕微鏡を用いて100個以上のフィラーの長径と短径を測定することで求められる。
アスペクト比の分布図において、1以上、2未満の範囲と、2以上、200以下の範囲との2箇所にピークが観測されれば、球状導電フィラーとフレーク状導電フィラーとを含んでいると言える。アスペクト比の分布図において、1以上、2未満の範囲と、2以上、200以下の範囲との2箇所だけにピークが観測されることが好ましい。
各実施形態の液晶表示パネルのCF基板側の透明導電膜は、CF基板表面又は裏面の全体に配置されており、CF基板の静電気を充分に除去する観点からこれが好ましい形態であるが、透明導電膜がCF基板表面又は裏面の一部(例えば表示領域に相当する部分)のみに配置される形態であっても構わない。
各実施形態の液晶表示パネルのTFT基板側の除電端子部は、TFT基板の裏面(観察面側主面)に配置されているが、接地されることにより除電する機能を発揮出来る限り、その配置箇所は特に限定されず、例えば、TFT基板の表面(バックライト側主面)に配置されるものであってもよく、TFT基板の側面に配置されるものであっても構わない。
(実施形態1)
図1は、実施形態1の液晶表示パネルの断面模式図である。図1で示す液晶表示パネルは、横電界方式の液晶表示パネルであり、CF基板21に液晶を駆動するための電極を有さない。
CF基板21の表面に形成された透明導電膜23(例えばITO等)と、TFT基板11の除電端子部13とが導電ペースト40で接続されている。除電端子部13は、ゲートメタル13a、ゲート絶縁膜13c、ソースメタル13e、第1無機絶縁膜13g、有機絶縁膜13i、第2無機絶縁膜13k、表面平滑性の高い透明導電膜13m(例えばIZO等)がこの順で積層されて構成され、導電ペースト40と接続される表面は表面平滑性の高い透明導電膜13m(例えばIZO等)から構成されている。ここで、ゲートメタル13aとはTFT基板11上のTFTのゲート電極と同じ層に形成される配線材料であり、例えば、Cu(銅)、Mo(モリブデン)、Al(アルミニウム)、Ti(チタン)、TiN(窒化チタン)、これらの合金、あるいは、これら金属の積層膜で形成される。ソースメタル13eとはTFTのソース・ドレイン電極と同じ層に形成される配線材料であり、例えば、Cu、Mo、Al、Ti、TiN、これらの合金、あるいは、これら金属の積層膜で形成される。有機絶縁膜13iは、TFTと共通電極の間に配置される有機絶縁層と同じ層に形成される絶縁層であり、第2無機絶縁膜13kは、共通電極と画素電極の間の絶縁膜と同じ層に形成される絶縁層である。
また、表面平滑性の高い透明導電膜13mは、画素電極と同じ層に形成される電極材料であり、例えばIZOなどの透明導電膜で形成される。横電界方式の液晶パネルでは、画素電極に微細な(例えば2~4μm程度)のスリットを、狭いピッチ(例えば2~4μm程度)で形成する場合がある。このスリットを含む画素電極と、除電端子部13の表面平滑性の高い透明導電膜13mは、スパッタリング法によってIZO膜を製膜した後、公知のフォトリソグラフィ法とウエットエッチングを用いて、同じ工程を用いてパターニングすることができる。なお、横電界方式の液晶パネルの画素電極としては、MoやTiなどの不透明な金属電極を用いることもできるが、IZOのような透明導電膜を用いたほうが、液晶パネルの透過率が高いというメリットがある。
このように、除電端子部13を、TFTや画素電極と同じ層、同じ工程で形成すると、除電端子部13を形成するための追加の工程が不要である。
本実施形態1では、液晶層側に近い側から、画素電極、第2無機絶縁膜13k、共通電極の順に形成される構成を示したが、画素電極と共通電極の位置は逆の構成も可能である。この場合、微細なスリットは共通電極に形成され、表面平滑性の高い透明導電膜13mは、共通電極と同じ層に形成される電極材料となる。
図1中、透明導電膜23、導電ペースト40、表面平滑性の高い透明導電膜13m、ソースメタル13e、ゲートメタル13aの順で導電経路があり、ゲートメタル13aは、例えば、TFT基板11端部に接続されたFPC(Flexible Printed Circuit)を介して接地されている。
実施形態1の液晶表示パネルの構造において、ITOとIZOとは逆にしてもよい。すなわち、透明導電膜23がIZOから構成されていて表面平滑性が高く、透明導電膜13mがITOから構成されていて表面平滑性が低くてもよく、同様に本発明の効果を発揮できる。また、透明導電膜23及び透明導電膜13mがそれぞれIZOから構成されていてもよく、これにより本発明の効果がより顕著なものとなる。更に、透明導電膜23及び透明導電膜13mがそれぞれITOから構成されていても構わない。
表面平滑性が高いとは、表面粗さRaが3nm以下であることが好ましく、2nm以下であることがより好ましく、1nm以下であることが更に好ましい。これにより、本発明の効果を顕著に発揮できる。
表面粗さRaとは、JIS  B  0601:2001の規格に基づいて測定された算術平均粗さをいう。
ゲート絶縁膜13c、第1無機絶縁膜13g、及び、第2無機絶縁膜13kとしては、例えばSiN(窒化ケイ素)を好適に使用できる。有機絶縁膜13iとしては、例えばアクリル系の感光性樹脂を好適に使用できる。
図2は、図1の部分拡大図であり、高温高湿試験前後の様子を示す。図2では、図1で示した表面平滑性の高い透明導電膜13m及び導電ペースト40それぞれの一部を示す。
導電ペースト40は、フレーク状導電フィラー40f、球状導電フィラー40s等のフレーク状導電フィラーとは異なる導電性材料、及び、バインダー40r(樹脂)から構成されている。実施形態1では、除電端子部13の表面は、表面平滑性の高い導電膜(例えば、IZO等)で構成されており、これが好ましい形態であるが、その他の導電性材料で構成されていても良い。
本発明では、導電膜に塗布する導電ペースト40として、フレーク状導電フィラー40fと、球状導電フィラー40s等のフレーク状導電フィラーとは異なる導電性材料とをバインダー40rに混合した材料を用いることにより、耐環境性に強く安定した電気抵抗値を持続する効果を発揮できる。特に、導電膜がIZO等の表面平滑性の高い導電膜である場合に、電気抵抗値の持続性能を大きく改善することができる。
導電ペーストは、フレーク状導電フィラーと、球状導電フィラー等のフレーク状導電フィラーとは異なる導電性材料とをバインダーに混合したものであり、中でも、フレーク状導電フィラーと球状導電フィラーとをバインダーに混合したものであることが好ましい。導電ペーストは、例えば、表面積の大きいフレーク状導電フィラーと表面積の小さい球状導電フィラーとで構成されているものが挙げられる。
またフレーク状導電フィラーとは異なる導電性材料の大きさは、フレーク状導電フィラーの大きさの1/2以下であることが好ましく、1/3以下であることがより好ましい。
ここで、大きさとは、導電性材料又はフィラー1個当たりの平均体積を意味する。
これにより、フレーク状導電フィラー40fの間を球状導電フィラー40s等のフレーク状導電フィラーとは異なる導電性材料でより好適に埋めることができるので、環境試験においてバインダー40r(樹脂)が変形した場合でも、フレーク状導電フィラー40f、球状導電フィラー40s等のフレーク状導電フィラーとは異なる導電性材料が動き難くなる。そのため、導電ペースト内でフレーク状導電フィラー40f、球状導電フィラー40s等のフレーク状導電フィラーとは異なる導電性材料間の導通が保持される。また、特にIZO等の表面平滑性の高い材料から構成される導電膜上において、導電ペースト40の、表面平滑性の高い導電膜13mからの剥離が抑制され、導電ペースト40と表面平滑性の高い導電膜13mとの導通が保持される。
導電フィラーの材料としては、銀、金、鉄、カーボン等が挙げられる。フレーク状導電フィラー40fの材料としては、銀、金等が好適なものとして挙げられる。球状導電フィラー40s等のフレーク状導電フィラーとは異なる導電性材料としては、カーボンが好適なものとして挙げられる。
上記フレーク状導電フィラーと上記フレーク状導電フィラーとは異なる導電性材料との体積基準の含有比は、10/90~90/10であることが好ましく、20/80~80/20であることがより好ましく、30/70~70/30であることが更に好ましく、40/60~60/40であることが特に好ましい。
導電ペーストに使用するバインダーとしては、従来公知の種々の樹脂を使用できるが、例えばエポキシ樹脂、フェノール樹脂、シリコン樹脂が好適なものとして挙げられる。
なお、実施形態1の液晶パネルは、基本構成として、TFT基板11と、正の誘電率異方性又は負の誘電率異方性を有する液晶分子を含有する液晶層30と、CF基板21とがこの順に並んで構成される。TFT基板11とCF基板21は、シール材35を介して貼り合わされている。TFT基板11及びCF基板21それぞれの外面側には、それぞれ、偏光板が設けられている。TFT基板11及びCF基板21それぞれの液晶層側には、配向膜が設けられていてもよい。偏光板、及び、配向膜は、図1では記載を省略している。また、CF基板は、CF(カラーフィルタ)が設けられていることからこのように言うが、TFT基板の対向基板である限り、CFが設けられていなくてもよく、TFT基板にCFが設けられていても構わない。
図3は、実施形態1の液晶表示パネルに対して高温高湿試験を行った際の時間(h)に対する抵抗値(Ω)のグラフである。
図1の横電界方式の液晶表示パネルを、高温高湿(条件:60℃、95%RH〔相対湿度〕)の環境試験に投入して、図1の透明導電膜23(ITOを使用した。)からゲートメタル13aまでの間(両矢印で示した間)の電気抵抗値を測定した。
図3は、フレーク状導電フィラー(フレーク状銀粒子を使用した。)と、球状の導電フィラー(カーボン粒子を使用した。)とをバインダーと混合した導電ペーストを用いた場合のグラフである。後述する比較例1、比較例2とは異なり、時間が経過しても、電気抵抗値の上昇は見られなかった(高温高湿試験を通じて5kΩ以下の電気抵抗値が維持された。)。このように電気抵抗値が2MΩ以下であれば、良好なコンタクト性能(電気的接続性能)が得られる。
なお、環境試験は同一の高温高湿条件で複数回行い、図3ではそれぞれの結果を示している。後述する図6(比較例1)、図9(比較例2)においても同様である。
(比較例1)
比較例1の液晶表示パネルは、導電フィラーとして球状導電フィラー(球状銀粒子)のみをバインダーに混入した導電ペーストを使用した以外は実施形態1の液晶表示パネルと同様である。
図4は、比較例1の液晶表示パネルの高温高湿試験前の断面模式図である。図5は、比較例1の液晶表示パネルの高温高湿試験後の断面模式図である。比較例1の液晶表示パネルでは、図4及び図5に示されるように、時間経過につれ、バインダー140rの変形に伴って、互いに点接触のみしている球状導電フィラー140sが動き、導電ペースト140内で球状導電フィラー140s間の点接触が乖離して導通が損なわれると考えられる。
図6は、比較例1の液晶表示パネルに対して高温高湿試験を行った際の時間(h)に対する抵抗値(Ω)のグラフである。比較例1の液晶表示パネルを、高温高湿(条件:60℃、95%RH〔相対湿度〕)の環境試験に投入して、CF基板上の透明導電膜からゲートメタル間の電気抵抗値を測定した。図6は、時間経過につれ、電気抵抗値が上昇することを示している。
(比較例2)
比較例2の液晶表示パネルは、導電フィラーとしてフレーク状導電フィラー(フレーク状銀粒子)のみをバインダーに混入した導電ペーストを使用した以外は実施形態1の液晶表示パネルと同様である。
図7は、比較例2の液晶表示パネルの高温高湿試験前の断面模式図である。図8は、比較例2の液晶表示パネルの高温高湿試験後の断面模式図である。比較例2の液晶表示パネルでは、図7及び図8に示されるように、時間経過につれ、バインダー240rの変形に伴って、互いに面接触のみしているフレーク状導電フィラー240fが動き、導電ペースト240内でフレーク状導電フィラー240f間の面接触が乖離して導通が損なわれると考えられる。
図9は、比較例2の液晶表示パネルに対して高温高湿試験を行った際の時間(h)に対する抵抗値(Ω)のグラフである。比較例2の液晶表示パネルを、高温高湿(条件:60℃、95%RH〔相対湿度〕)の環境試験に投入して、CF基板上の透明導電膜からゲートメタル間の電気抵抗値を測定した。図9は、時間経過につれ、電気抵抗値が上昇することを示している。
(実施形態2)
図10は、実施形態2の液晶表示パネルの断面模式図である。図10は、タッチパネル用の電極の一部を、CF基板に搭載したインセルタッチパネルの横電界方式液晶表示パネルの実施形態を示す。
実施形態2の液晶表示パネルは、TFT基板311;TFT基板側センサー電極315;液晶層330;赤色カラーフィルタR、緑色カラーフィルタG、青色カラーフィルタB、及び、ブラックマスクBMからなる層;CF基板321;CF基板側センサー電極325(透明導電膜)がこの順で積層されて構成されている。すなわちCF基板側センサー電極325は、CF基板321の液晶層側と反対側の面(表面)に形成されている。TFT基板311上には除電端子部313が配置されており、除電端子部313とCF基板側センサー電極325との間を導電ペースト340が電気的に接続している。一対の基板間にシール材335が配置されている。TFT基板側センサー電極315としては、例えば、液晶分子を配向(駆動)するための共通電極を使用することができる。なお、CF基板側センサー電極325は、タッチパネル用であり、除電端子部313は、例えばTFT基板311端部に接続されたFPCを介して、TFT基板側センサー電極315-CF基板側センサー電極325間のタッチ位置を検出する回路と接続される。TFT基板側センサー電極315とCF基板側センサー電極325との間の部分の容量を利用してタッチ位置を検出する。
なお、本実施形態2では、センサー電極をTFT基板311に形成する構成を示したが、センサー電極をCF基板321の液晶層側の面(裏面)に形成してもよく、この場合、CF基板の表面と裏面とにそれぞれ形成されたセンサー電極の間の容量を利用してタッチ位置を検出する。
図11は、図10の部分拡大図(2箇所)である。実施形態2において、実施形態1の導電ペーストと同様のフレーク状導電フィラー340fと球状導電フィラー340s等のフレーク状導電フィラーとは異なる導電性材料とをバインダー340rに混合した導電ペースト340を使用することで、良好な電気的接続が得られる。特に、除電端子部表面の導電膜313m及び/又はCF基板側センサー電極325に、IZO等の表面平滑性の高い透明導電膜が使用されている場合に、電気的接続を大きく改善することができる。
実施形態2の液晶表示パネルでは、図3で示したのと同様に、5kΩ以下の安定した電気抵抗値を達成でき、良好なコンタクト性能が得られる。 
実施形態2の液晶表示パネルのその他の構成は、上述した実施形態1の液晶表示パネルの構成と同様である。
(実施形態3)
図12は、実施形態3の液晶表示パネルの断面模式図である。図12は、IPSモード又はFFSモードの液晶表示パネルにおいてCF基板421の裏面に透明導電膜422(ITO、IZO等)を設け、シール材の一部に導電ペースト440を使用し、CF基板の透明導電層422と除電端子部413とを電気的に接続する実施形態を示す。上述した実施形態1、実施形態2は、CF基板の表面に透明導電膜を設けて静電気を除去する構成であったが、実施形態3は、CF基板の裏面(液晶層側の面)に透明導電膜422を設けて静電気を除去する構成である。なお、透明導電膜422は、TFTと接続された液晶を駆動するための電極ではないことから、帯電を防止するためには透明導電膜422と除電端子部413とを導電ペースト440を用いて電気的に接続することとなる。この構成においては、一対の基板を接着し、かつ液晶層430を封止するシール材の一部に導電フィラー(材質としては、銀粒子、金粒子、カーボン粒子等)を混入することで、CF基板421の透明導電膜422とTFT基板411の除電端子部413とを電気的に接続する。実施形態3では、透明導電膜422と除電端子部413とを電気的に接続する部分(導電ペースト440)において、実施形態1の導電ペーストと同様のフレーク状導電フィラー440fと球状導電フィラー440s等のフレーク状導電フィラーとは異なる導電性材料とをバインダー440rに混合した導電ペースト440を使用する。なお、一対の基板間には、スペーサー431b、431sが配置されている。
実施形態3の液晶表示パネルは、TFT基板411、液晶層430、赤色カラーフィルタR、緑色カラーフィルタG、青色カラーフィルタB、及び、ブラックマスクBMからなる着色層、透明導電膜422、CF基板421がこの順で積層されて構成されている。TFT基板411上には除電端子部413が配置されており、除電端子部413と透明導電膜422との間を導電ペースト440が電気的に接続している。導電ペースト440は、シール材としての機能を兼ね備えている。また、除電端子部413が配置されていない箇所には導電性を有さないシール材435が配置されている。
図13は、図12の部分拡大図である。実施形態3においても、本発明に係る導電ペーストを適用して本発明の効果を発揮することが可能である。特に、CF基板421側の透明導電膜422、又は、除電端子部413(透明導電膜)の表面にIZO等の表面平滑性の高い材料が用いられた場合に、本発明の効果を顕著に発揮できる。
実施形態3の液晶表示パネルでは、図3に示したのと同様に、5kΩ以下の安定した電気抵抗値を達成でき、良好なコンタクト性能が得られる。
実施形態3の液晶表示パネルのその他の構成は、上述した実施形態1の液晶表示パネルの構成と同様である。
なお、本実施形態3は、本実施形態2で示した、インセルタッチパネル用のセンサー電極をCF基板の液晶層側の面(裏面)に形成する構成に対しても適用可能である。この場合、透明導電膜422はセンサー電極に相当し、除電端子部313とセンサー電極との間を導電ペースト440が電気的に接続している。除電端子部313は、例えばTFT基板411端部に接続されたFPCを介して、タッチ位置を検出する回路と接続される。
また、本実施形態3では、シール材の一部に導電ペースト440を使用する例を示したが、シール材とは異なる位置に、導電ペースト440を配置しても良い。この場合、導電性ペーストのバインダーは、シール材とは異なる材料であっても良い。
本発明の液晶表示パネルは、カーナビゲーション等の車載用の機器、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等に好適に用いられる。
また本発明は、液晶の配向制御用の電極が第2基板のみに設けられ、第1基板に設けられない形態の横電界方式の液晶表示パネルに好適である。これにより、液晶の配向制御用の電極が第1基板に設けられていない液晶表示パネルにおいて発生しやすい第1基板における帯電を安定的に除去することができる。例えば、本発明は、IPSモードの液晶表示パネル、FFSモードの液晶表示パネルに適用されることが好ましい。例えば、本発明の液晶表示パネルにおいて、第2基板には、複数の薄膜トランジスタ素子と、該複数の薄膜トランジスタ素子にそれぞれ接続された複数の画素電極と、共通電極が備えられており、該複数の画素電極と該共通電極との間に生じる、第2基板面に対して平行方向の電界によって、液晶分子の配列方向を制御することが好ましい。
また、本発明の液晶表示パネルにおいて、除電端子部の表面が、画素電極、及び、共通電極のうちで液晶層に近い側の電極と同じ材料で形成されていることがより好ましい。
11、311、411:TFT基板
13、313、413:除電端子部
13a:ゲートメタル
13c:ゲート絶縁膜
13e:ソースメタル
13g:第1無機絶縁膜
13i:有機絶縁膜
13k:第2無機絶縁膜
13m、113m、213m、313m:表面平滑性の高い透明導電膜
21、321、421:CF基板
23、422:透明導電膜
30、330、430:液晶層
35、335、435:シール材
40、140、240、340、440:導電ペースト
40f、240f、340f、440f:フレーク状導電フィラー
40r、140r、240r、340r:バインダー
40s、140s、340s、440s:球状導電フィラー
315:TFT基板側センサー電極
325:CF基板側センサー電極
431b、431s:スペーサー
R:赤色カラーフィルタ
G:緑色カラーフィルタ
B:青色カラーフィルタ
BM:ブラックマスク

Claims (12)

  1. 透明導電膜を有する第1基板と、
    表面が導電性である端子部を有する第2基板と、
    該第1基板及び該第2基板に挟持された液晶層と、
    該透明導電膜と該端子部とを電気的に接続する導電性部材とを有し、
    該導電性部材は、フレーク状導電フィラー及び該フレーク状導電フィラーとは異なる導電性材料を含むことを特徴とする液晶表示パネル。
  2. 前記フレーク状導電フィラーとは異なる導電性材料は、球状導電フィラーである
    ことを特徴とする請求項1に記載の液晶表示パネル。
  3. 前記第1基板の透明導電膜、及び、前記第2基板の端子部の少なくとも一方は、表面粗さRaが3nm以下である
    ことを特徴とする請求項1又は2に記載の液晶表示パネル。
  4. 前記第1基板の透明導電膜、及び、前記第2基板の端子部の表面の少なくとも一方は、酸化インジウム亜鉛から構成されている
    ことを特徴とする請求項1~3のいずれかに記載の液晶表示パネル。
  5. 前記フレーク状導電フィラーとは異なる導電性材料の大きさは、前記フレーク状導電フィラーの大きさの1/2以下である
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示パネル。
  6. 前記フレーク状導電フィラーと前記フレーク状導電フィラーとは異なる導電性材料との体積基準の含有比は、10/90~90/10である
    ことを特徴とする請求項1~5のいずれかに記載の液晶表示パネル。
  7. 前記第1基板の透明導電膜は、タッチパネル用センサー電極である
    ことを特徴とする請求項1~6のいずれかに記載の液晶表示パネル。
  8. 前記導電性部材は、前記第1基板と前記第2基板とを接着し、かつ前記液晶層を封止するシール材である
    ことを特徴とする請求項1~7のいずれかに記載の液晶表示パネル。
  9. 前記透明導電膜は、前記第1基板の液晶層側と反対側の面に設けられている
    ことを特徴とする請求項1~8のいずれかに記載の液晶表示パネル。
  10. 前記透明導電膜は、前記第1基板の液晶層側の面に設けられている
    ことを特徴とする請求項1~8のいずれかに記載の液晶表示パネル。
  11. 前記第2基板には、
    複数の薄膜トランジスタ素子と、
    該複数の薄膜トランジスタ素子にそれぞれ接続された複数の画素電極と、
    共通電極が備えられており、
    該複数の画素電極と該共通電極との間に生じる、第2基板面に対して平行方向の電界によって、液晶分子の配列方向を制御する横電界方式の液晶パネルである
    ことを特徴とする請求項1~10のいずれかに記載の液晶表示パネル。
  12. 前記画素電極、及び、前記共通電極は、絶縁膜を介して異なる層に設けられており、
    前記端子部の表面は、前記画素電極、及び、前記共通電極のうちで液晶層に近い側の電極と同じ材料で形成されている
    ことを特徴とする請求項11に記載の液晶表示パネル。
PCT/JP2016/064408 2015-05-21 2016-05-16 液晶表示パネル WO2016186062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017519200A JPWO2016186062A1 (ja) 2015-05-21 2016-05-16 液晶表示パネル
US15/575,966 US20180149896A1 (en) 2015-05-21 2016-05-16 Liquid crystal display panel
CN201680028330.9A CN107615153A (zh) 2015-05-21 2016-05-16 液晶显示面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015103811 2015-05-21
JP2015-103811 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016186062A1 true WO2016186062A1 (ja) 2016-11-24

Family

ID=57319997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064408 WO2016186062A1 (ja) 2015-05-21 2016-05-16 液晶表示パネル

Country Status (4)

Country Link
US (1) US20180149896A1 (ja)
JP (1) JPWO2016186062A1 (ja)
CN (1) CN107615153A (ja)
WO (1) WO2016186062A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168659A (ja) * 2018-03-26 2019-10-03 株式会社ジャパンディスプレイ 表示装置
JP2020148818A (ja) * 2019-03-11 2020-09-17 株式会社ジャパンディスプレイ 表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646982B (zh) * 2017-03-21 2019-09-17 京东方科技集团股份有限公司 显示面板及其制造方法和显示装置
CN108614379A (zh) * 2018-05-15 2018-10-02 业成科技(成都)有限公司 液晶显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526489A (ja) * 2003-06-05 2007-09-13 イーストマン コダック カンパニー ディスプレイにおけるuv硬化性導電性材料
WO2010109541A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 導電性ペースト及びそれを用いた電極配線を具備する電子部品
JP2014102499A (ja) * 2012-10-26 2014-06-05 Japan Display Inc 表示装置及び電子機器
US20150124186A1 (en) * 2013-11-06 2015-05-07 Lg Display Co., Ltd. Liquid crystal display device and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150227A (ja) * 1985-12-25 1987-07-04 Hitachi Ltd 液晶表示素子
JP2001060142A (ja) * 1999-06-17 2001-03-06 Nissha Printing Co Ltd 高信頼性タッチパネル
JP3384397B2 (ja) * 2000-05-25 2003-03-10 セイコーエプソン株式会社 液晶装置、その製造方法および電子機器
JP2002311449A (ja) * 2001-02-06 2002-10-23 Seiko Epson Corp 液晶装置、液晶装置の製造方法及び電子機器
JP2008275908A (ja) * 2007-04-27 2008-11-13 Nec Lcd Technologies Ltd 液晶パネル及びそれを用いた液晶表示装置
JP5099893B2 (ja) * 2007-10-22 2012-12-19 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル
WO2010095189A1 (ja) * 2009-02-20 2010-08-26 シャープ株式会社 タッチパネル付き表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526489A (ja) * 2003-06-05 2007-09-13 イーストマン コダック カンパニー ディスプレイにおけるuv硬化性導電性材料
WO2010109541A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 導電性ペースト及びそれを用いた電極配線を具備する電子部品
JP2014102499A (ja) * 2012-10-26 2014-06-05 Japan Display Inc 表示装置及び電子機器
US20150124186A1 (en) * 2013-11-06 2015-05-07 Lg Display Co., Ltd. Liquid crystal display device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168659A (ja) * 2018-03-26 2019-10-03 株式会社ジャパンディスプレイ 表示装置
WO2019187566A1 (ja) * 2018-03-26 2019-10-03 株式会社ジャパンディスプレイ 表示装置
JP2020148818A (ja) * 2019-03-11 2020-09-17 株式会社ジャパンディスプレイ 表示装置
JP7237665B2 (ja) 2019-03-11 2023-03-13 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
JPWO2016186062A1 (ja) 2018-03-01
CN107615153A (zh) 2018-01-19
US20180149896A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
US9971210B2 (en) Liquid crystal display device
WO2010095189A1 (ja) タッチパネル付き表示装置
KR101477348B1 (ko) 입력 표시 장치
EP3168719B1 (en) Black electrode substrate, production method for black electrode substrate, and display device
TWI233570B (en) Touch panel display apparatus and method of fabricating the same
US8345207B2 (en) Thin film transistor array substrate and liquid crystal display device
TWI628491B (zh) 防靜電顯示裝置
JP2014032437A (ja) 入力装置付き表示装置およびその製造方法並びに電子機器
WO2016186062A1 (ja) 液晶表示パネル
CN102830564B (zh) 显示面板以及显示装置
US9703156B2 (en) Liquid crystal display device
WO2010140393A1 (ja) 液晶表示装置
TWI636305B (zh) 內嵌式觸控液晶顯示面板
US20160195745A1 (en) Array Substrate and Manufacturing Method Thereof and Liquid Crystal Display Panel Using the Array Substrate
TW201007260A (en) Touch panel and electronic device including touch panel
SG183948A1 (en) Touch panel-equipped display device
US9041870B2 (en) Opposed substrate, manufacturing method thereof and LCD touch panel
WO2014084092A1 (ja) 液晶表示装置
US20120249912A1 (en) Thin film transistor liquid crystal display panel and color filter substrate
WO2011155351A1 (ja) 表示装置一体型タッチパネルおよびその製造方法
US20190293847A1 (en) Color Filter Substrate, Manufacturing Method Therefor, and Display Device
TWI439776B (zh) 液晶顯示裝置
KR20110105977A (ko) 전기영동 표시장치 및 이의 제조방법
CN102346334B (zh) 液晶显示装置
US20100302614A1 (en) Mems and electrophoretic display devices integrated with organic light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519200

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796455

Country of ref document: EP

Kind code of ref document: A1