WO2016185908A1 - Organic el element and method for manufacturing substrate - Google Patents

Organic el element and method for manufacturing substrate Download PDF

Info

Publication number
WO2016185908A1
WO2016185908A1 PCT/JP2016/063601 JP2016063601W WO2016185908A1 WO 2016185908 A1 WO2016185908 A1 WO 2016185908A1 JP 2016063601 W JP2016063601 W JP 2016063601W WO 2016185908 A1 WO2016185908 A1 WO 2016185908A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
transparent resin
metal wiring
filler
transparent
Prior art date
Application number
PCT/JP2016/063601
Other languages
French (fr)
Japanese (ja)
Inventor
祥司 美馬
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2017519109A priority Critical patent/JPWO2016185908A1/en
Publication of WO2016185908A1 publication Critical patent/WO2016185908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to a substrate manufacturing method and an organic EL element.
  • Patent Document 1 There is a technique described in Patent Document 1 as a conventional technique in this technical field.
  • a transparent resin film such as a plastic film has a conductive metal pattern (metal wiring), and a translucent portion (opening) where no conductive metal pattern exists is filled with a transparent resin.
  • a method for producing a transparent conductive film (base material) is disclosed. Specifically, after forming a conductive metal pattern on a transparent resin film, a negative ultraviolet curable resin is applied so that the conductive metal pattern is buried.
  • uncrosslinked ultraviolet rays on the conductive metal pattern Resin is provided in the translucent part by removing the cured resin.
  • the resin film generally has ultraviolet light absorption. Therefore, when the UV curable resin applied on the resin film is photocured from the opposite side of the surface of the substrate on which the UV curable resin has been applied, the ultraviolet light passes through the substrate. In this case, the UV curable resin is not sufficiently cured by light because it is absorbed by the substrate. And since light irradiation is needed for a long time in order to raise an integrated exposure amount, productivity falls. Therefore, for example, when manufacturing an organic electroluminescence element (hereinafter, referred to as “organic EL element” in some cases) using such a base material, the productivity of the organic EL element is likely to decrease.
  • organic EL element organic electroluminescence element
  • an object of the present invention is to provide a substrate manufacturing method and an organic EL element capable of improving productivity.
  • the manufacturing method of the base material which concerns on 1 side of this invention is a manufacturing method of a base material provided with the transparent resin film, the metal wiring of the predetermined pattern which has a several opening part, and a transparent resin filler, Comprising: The wiring is formed on the surface of the transparent resin film, the transparent resin filler is disposed in at least one opening of the plurality of openings, and the base material manufacturing method includes forming the metal wiring On the surface of the transparent resin film, a resin film containing a transparent resin material that becomes a transparent resin filler is formed so as to embed a metal wiring, and after the resin film forming process, from the back side of the transparent resin film A photo-curing process for irradiating visible light to photo-curing the resin film in the opening, a developing process for removing the resin film on the metal wiring by developing the resin film after the photo-curing process, and on the metal wiring Resin film And a thermosetting step of forming a transparent resin filler by heat-treating and thermosetting the resin film remaining on the transparent
  • a resin film containing the transparent resin material is formed on the surface of a transparent resin film on which a predetermined pattern of metal wiring having a plurality of openings is formed so as to embed the metal wiring.
  • the resin film is photocured by irradiating the resin film with visible light from the back side of the transparent resin film. That is, the resin film is back exposed.
  • the metal wiring functions as a mask, so that the resin film on the metal wiring is unexposed to visible light. Therefore, after the photocuring step, the unexposed resin film can be developed to remove the resin film on the metal wiring and selectively leave the resin film in the opening.
  • the resin film is heat-treated and thermally cured, so that the resin film selectively remaining in the opening is thermally cured to become a transparent resin filler.
  • positioned in at least one opening part of the several opening part in the predetermined pattern of metal wiring can be manufactured.
  • the transparent resin material contained in the resin film as the transparent resin material that becomes the transparent resin filler is photocured by visible light. Even if the resin film is irradiated with visible light through the transparent resin film, the visible light is hardly absorbed by the transparent resin film and is applied to the resin film. Therefore, in the photocuring step, the resin film can be reliably and efficiently photocured with visible light. As a result, it is possible to improve the productivity of the base material.
  • (T1 / T2) when the average thickness of the transparent resin filler is T1 and the average thickness of the metal wiring is T2, (T1 / T2) is not less than 0.5 and not more than 1.5, and transparent When the thickness of the transparent resin filler is T3 and the thickness of the metal wiring is T4 at the boundary between the resin filler and the metal wiring, (T3 / T4) is larger than 0.8 and smaller than 1.2. Also good.
  • the unevenness of the surface constituted by the surface of the metal wiring and the surface of the transparent resin filler is reduced. That is, a base material with good surface smoothness can be obtained.
  • the width of the metal wiring may be 10 ⁇ m or more.
  • the metal wiring functions as a mask.
  • part of the visible light is also irradiated to the resin film on the metal wiring by light diffraction.
  • the width of the metal wiring is smaller than 10 ⁇ m, the resin film on the metal wiring is relatively hardened by the influence of such diffraction, so that the resin film remains on the metal wiring after the development process. easy.
  • the width of the metal wiring is 10 ⁇ m or more, relatively more resin film on the metal wiring can be removed.
  • the angle formed between the side surface of the metal wiring and the surface of the transparent resin film may be 60 ° or more and 100 ° or less.
  • the resin film on the metal wiring is hardly irradiated with visible light, and the resin film on the metal wiring can be more reliably removed by development processing.
  • visible light is irradiated onto the transparent resin film as parallel light, and the angle formed between the irradiation direction of the parallel light on the back surface and the normal direction of the back surface is 20 ° or less. Good.
  • the resin film on the metal wiring is hardly irradiated with visible light, and the resin film on the metal wiring can be more reliably removed by development processing.
  • the transparent resin material forms a test resin film having the same composition as the resin film, and when the test resin film is photocured with visible light and then developed, A transparent resin material in which (t2 / t1) is 0.6 or more, where t1 is the thickness of the test resin film before development processing and t2 is the thickness of the test resin film after development processing It may be.
  • the above-mentioned transparent resin material having (t2 / t1) of 0.6 or more is a material that has high sensitivity to visible light and is easily solidified.
  • a transparent resin material that tends to harden By using such a transparent resin material that tends to harden, the difference between the thickness of the transparent resin filler and the thickness of the metal wiring can be reduced at the boundary between the transparent resin filler and the metal wiring.
  • the resin film absorbs more near infrared light than the transparent resin film, and in the thermosetting process, the resin film is irradiated with near infrared light from the surface side of the transparent resin film. You may heat-process. In this case, since the near infrared light is irradiated to the resin film from the surface side of the transparent resin film, the near infrared light is mainly absorbed by the resin film. Therefore, the transparent resin film is hardly affected by near infrared light.
  • At least one of a resin film forming step, a photocuring step, a developing step, and a thermosetting step may be performed by a roll-to-roll method.
  • a roll-to-roll method by adopting the roll-to-roll method, it is possible to efficiently perform the process in the process performed by the roll-to-roll method.
  • An organic EL device includes a substrate having a transparent resin film, a predetermined pattern of metal wiring having a plurality of openings, and a transparent resin filler, on the metal wiring of the substrate.
  • a first electrode disposed; a second electrode disposed on the first electrode; and a light emitting layer disposed between the first electrode and the second electrode, wherein the metal wiring is made of a transparent resin film.
  • a transparent resin material that is formed on the surface, the transparent resin filler is disposed in at least one of the plurality of openings, and the transparent resin filler has thermosetting properties and is photocured by visible light. Or the hardened
  • the first and second electrodes are provided on the base material, and the light emitting layer is provided between them. Therefore, power can be supplied to the first and second electrodes to emit light from the light emitting layer.
  • the base material has a metal wiring on the transparent resin film, and the first electrode is provided on the metal wiring. Therefore, power can be supplied to the first electrode via the metal wiring. Since the metal wiring exhibits a predetermined pattern having a plurality of openings, for example, a voltage drop in the vicinity of the center portion in a plane orthogonal to the thickness direction of the organic EL element is more than that when power is directly supplied to the first electrode. Reduced. Therefore, in-plane luminance uniformity can be improved in the organic EL element.
  • the transparent resin filler is disposed in at least one of the plurality of openings, the interface between the base material and the first electrode is smoothed.
  • each of the first electrode, the light emitting layer, and the second electrode can be formed with a uniform thickness. Thereby, there is no part which becomes thin locally in the light emitting layer formed on the flat 1st electrode, and an organic EL element with high luminous efficiency can be produced.
  • the transparent resin filler contains a transparent resin material that is thermosetting and photocured by visible light or a cured product thereof, visible light is irradiated from the back side of the base material during manufacture of the base material. Thereby, the transparent resin material used as a transparent resin filler can be photocured. Since the transparent resin film can use visible light that has substantially no absorption for photocuring the transparent resin material, the transparent resin material can be efficiently photocured. As a result, since the productivity of the base material is improved, the productivity of the organic EL element is also improved.
  • (T1 / T2) when the average thickness of the transparent resin filler is T1 and the average thickness of the metal wiring is T2, (T1 / T2) is larger than 0.5 and smaller than 1.5, and transparent When the thickness of the transparent resin filler is T3 and the thickness of the metal wiring is T4 at the boundary between the resin filler and the metal wiring, (T3 / T4) is larger than 0.8 and smaller than 1.2. Also good.
  • the unevenness of the surface constituted by the surface of the metal wiring and the surface of the transparent resin filler is reduced. That is, the surface of the base material is flatter. For this reason, current leakage is unlikely to occur, and the light emission efficiency can be further improved.
  • a substrate manufacturing method and an organic EL element capable of improving productivity can be provided.
  • FIG. 1 (a) is a schematic plan view of a base material manufactured by the base material manufacturing method according to one embodiment
  • FIG. 1 (b) is a line Ib-Ib in FIG. 1 (a).
  • FIG. FIG. 2 (a) is a schematic plan view of a resin film with wiring, which is a transparent resin film having a metal wiring formed in a predetermined pattern on the surface
  • FIG. 2 (b) is a diagram of IIb in FIG. 2 (a).
  • FIG. 11 is a cross-sectional view taken along the line -IIb.
  • Drawing 3 is a mimetic diagram showing an example of the manufacturing method of the substrate concerning one embodiment.
  • 4A is a schematic plan view of the resin film with wiring after undergoing the resin film formation step
  • FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG. 4A. It is.
  • FIG. 5 is a drawing for explaining the characteristics of the transparent resin material.
  • FIG. 6 is a drawing showing an example of a visible light irradiation method in the photocuring step.
  • FIG. 7 is a schematic plan view of the resin film with wiring after the development process, and
  • FIG. 7B is a cross-sectional view taken along the line VIIb-VIIb in FIG.
  • FIG. 8 is a schematic diagram of a cross-sectional configuration of an organic EL element according to an embodiment.
  • the base material 10 manufactured by the base material manufacturing method according to the first embodiment includes a transparent resin film 12, a metal wiring 14, and a transparent material. And a resin filler 16.
  • the base material 10 functions as a base material (supporting member) of an organic electronic element such as an organic electroluminescence element (organic EL element).
  • the transparent resin film 12 is made of a resin that is transparent to visible light (light having a wavelength of 400 nm to 800 nm).
  • An example of the thickness of the transparent resin film 12 is 30 ⁇ m or more and 500 ⁇ m or less.
  • the transparent resin film 12 may be strip-shaped or sheet-shaped.
  • the transparent resin film 12 is a plastic film, for example.
  • the material of the transparent resin film 12 include polyethersulfone (PES); polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin.
  • Polyamide resin Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin;
  • a polyester resin or a polyolefin resin is preferable because of high heat resistance, a low linear expansion coefficient, and a low manufacturing cost, and polyethylene terephthalate or polyethylene naphthalate is particularly preferable.
  • these resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the metal wiring 14 is formed in a predetermined pattern having a plurality of openings 18 (through holes extending in the thickness direction of the metal wiring 14, for example, window portions) on the surface 12 a of the transparent resin film 12.
  • Such a metal wiring 14 corresponds to a metal layer having a plurality of openings 18.
  • An example of the thickness of the metal wiring 14 is 20 nm or more and 2 ⁇ m or less.
  • An example of the width of the metal wiring 14 is 10 ⁇ m or more. Usually, the width of the metal wiring 14 is 5 mm or less.
  • the width of the metal wiring 14 means the length of the metal wiring 14 on a line connecting between the centers of the adjacent openings 18.
  • the example of the material of the metal wiring 14 may be selected from silver, aluminum, copper, gold, nickel, iron, molybdenum, and chromium, and may be selected from an alloy containing one or more of these metals.
  • An example of the predetermined pattern of the metal wiring 14 is a lattice pattern as shown in FIG. 1A, and in this case, the plurality of openings 18 correspond to a mesh.
  • Examples of mesh shapes include quadrilaterals such as rectangles or squares, triangles, and hexagons.
  • the metal wiring 14 may have a network structure.
  • the mesh-like metal wiring 14 extends in the first direction and crosses the first direction.
  • FIG. 1A illustrates a state where the first and second directions are orthogonal to each other.
  • the width of the metal wiring 14 is a length in a direction orthogonal to the extending direction of the metal wires 141 and 142. .
  • the metal wiring 14 When the base material 10 is applied to, for example, an organic EL element, the metal wiring 14 functions as a grid electrode for supplying power to an electrode that the organic EL element has and is formed in contact with the metal wiring 14. .
  • the size of the opening 18 defining the predetermined pattern of the metal wiring 14 and the width of the metal wiring 14 are set so that light can be extracted from the base material 10 side when the base material 10 is applied to an organic EL element, for example. It only has to be.
  • the area ratio between the metal wiring 14 and the opening 18 (metal wiring: opening) is appropriately selected from the viewpoint of the conductivity of the metal wiring 14 and the ratio of light extraction from the opening 18. 50:50 is preferred.
  • the transparent resin filler 16 is disposed in at least one of the plurality of openings 18.
  • the transparent resin filler 16 is filled in each of the plurality of openings 18 and fills the openings 18, for example.
  • the transparent resin filler 16 functions as a planarization film for planarizing the surface of the substrate 10 including the transparent resin film 12 and the metal wiring 14 when the substrate 10 is applied to, for example, an organic EL element.
  • the thickness of the transparent resin filler 16 is substantially the same as the thickness of the metal wiring 14.
  • the metal wiring 14 and the transparent resin filler 16 may satisfy the following two conditions. ⁇ Condition 1> When the average thickness of the transparent resin filler 16 is T1, and the average thickness of the metal wiring 14 is T2, (T1 / T2) is 0.5 or more and 1.5 or less. (T1 / T2) may be larger than 0.5 and smaller than 1.5.
  • the average thickness T1 of the transparent resin filler 16 and the average thickness T2 of the metal wiring 14 are, for example, lines connecting the centers of the adjacent openings 18 (for example, in the case of FIG. 1A, the longitudinal length of the transparent resin film 12).
  • the average thickness of the transparent resin filler 16 of any (for example, an average value based on the measurement results of five points) when the cross section of the substrate 10 is cut in a direction or a line parallel to the short direction, and the This is the average thickness of the metal wiring 14 adjacent to the transparent resin filler 16.
  • the thickness of the transparent resin filler 16 at the boundary between the transparent resin filler 16 and the metal wiring 14 (contact portion between the transparent resin filler 16 and the metal wiring 14) is T3, and the thickness of the metal wiring 14 is T4. (T3 / T4) is larger than 0.8 and smaller than 1.2.
  • the unevenness of the surface 10a of the substrate 10 constituted by the surface 16a of the transparent resin filler 16 and the surface 14a of the metal wiring 14 is reduced, and a substantially flat surface can be obtained.
  • the transparent resin material used as the transparent resin filler 16 is not particularly limited as long as it has a negative photosensitive property that is photocured by visible light and has a thermosetting property.
  • the transparent resin material that becomes the transparent resin filler 16 will be described in detail later.
  • the surface 14a of the metal wiring 14 formed on the transparent resin film 12 is exposed. Therefore, for example, even if an electrode (anode or cathode) included in an organic electronic element such as an organic EL element is formed on the surface 10 a of the base material 10, power can be supplied to the electrode using the metal wiring 14. . Furthermore, since the opening 18 is filled with the transparent resin filler 16, even if each layer constituting the organic electronic element is formed on the surface 10a of the substrate 10, each of the layers has a uniform thickness. It is easy to form with.
  • the base material 10 In the description of the base material 10 so far, the configuration on the transparent resin film 12 has been described with reference to the metal wiring 14.
  • the transparent resin filler 16 filling the opening 18 is taken as a reference, the base material 10 is formed on the transparent resin film 12 with a transparent resin layer made of a transparent resin material constituting the transparent resin filler 16.
  • a metal wiring having a network structure is provided between the transparent resin layers so that the surface is exposed.
  • the manufacturing method of the base material 10 includes a resin film forming step, a photocuring step, a developing step, and a thermosetting step.
  • a resin film forming step a resin film containing a transparent resin material to be the transparent resin filler 16 is formed on the surface 12a of the transparent resin film 12 on which the metal wiring 14 is formed so as to embed the metal wiring 14.
  • the photocuring step visible light is irradiated from the back surface 12b (surface opposite to the front surface 12a) side of the transparent resin film 12 after the resin film forming step to photocur the resin film in the opening 18.
  • the development process after the photocuring process, the resin film on the metal wiring 14 is removed by developing the resin film.
  • the thermosetting process after the resin film on the metal wiring 14 is removed (after the development process), the resin film remaining on the transparent resin film 12 (resin film remaining in the opening 18) is heated and heated.
  • the transparent resin filler 16 is formed by curing.
  • the transparent resin film 12 on which the metal wiring 14 is formed is referred to as a “resin film with wiring 20”.
  • the method for forming the metal wiring 14 is not particularly limited as long as a predetermined pattern having a plurality of openings 18 can be formed.
  • a metal thin film layer is formed on the transparent resin film 12 using a sputtering method, a vapor deposition method, a CVD method, or the like.
  • a resin film for protecting the surface of the metal thin film layer is formed on the surface of the metal thin film layer by photolithography so as to form a pattern of the metal wiring 14.
  • the metal wiring 14 By immersing this transparent resin film with a metal film in an etching solution in which the metal dissolves, the metal at a location where the metal surface is not protected by the resin film is etched. Thereafter, the desired metal wiring 14 can be obtained by peeling off the protective resin film. Further, the metal wiring 14 may be formed by, for example, printing the ink in which the metal particles are dispersed on the pattern of the metal wiring 14 using various printing methods such as ink jet printing, gravure printing, or screen printing, and then baking the ink. Can be formed.
  • the metal wiring 14 is formed, for example, such that an angle ⁇ 1 formed by the side surface 14b of the metal wiring 14 and the surface 12a of the transparent resin film 12 is substantially 90 °.
  • the angle ⁇ 1 may be not less than 60 ° and not more than 100 °, and may be not less than 80 ° and not more than 100 °.
  • the side surface 14 b of the metal wiring 14 is a surface that defines the opening 18 in the metal wiring 14.
  • the base material 10 can be manufactured, for example, by the base material manufacturing method shown in FIG. FIG. 3 schematically shows an example of a method in the case of manufacturing the substrate 10 by a roll-to-roll method.
  • the resin film 20 with wiring is unwound from the unwinding roll R1 around which the resin film 20 with wiring is wound, and is transported by the transporting roll R2, and then wired to the winding roll R3.
  • the base material 10 is manufactured by forming the transparent resin filler 16 while the attached resin film 20 is wound up.
  • the resin film forming step S10, the photocuring step S12, the developing step S14, and the baking are performed on the resin film with wiring 20 fed from the unwinding roll R1.
  • Process (thermosetting process, filler formation process) S16 is implemented in order.
  • a coating liquid containing a transparent resin material to be the transparent resin filler 16 is applied from the coating device 22 to the surface of the resin film with wiring 20 on which the metal wiring 14 is formed, and the resin film is applied.
  • the solvent for the coating solution is not particularly limited as long as it can dissolve the transparent resin material. Examples of the solvent include diethylene glycol ethyl methyl ether, propylene glycol 1-monomethyl ether 2-acetate, 3-methoxybutyl acetate, 3-methoxy-1-butanol and cyclohexanone.
  • coating methods slot die method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, An offset printing method, an inkjet printing method, etc. can be mentioned.
  • the resin film 24 is formed so as to embed the entire metal wiring 14.
  • a substrate in which the metal wiring 14 is provided on the surface 12a of the transparent resin film 12 and each of the plurality of openings 18 in the predetermined pattern of the metal wiring 14 is filled with the transparent resin filler 16 is used. Can be manufactured.
  • the thickness of the resin film 24 is equal to the thickness of the resin film 24 at the position of the opening 18. The thickness can satisfy ⁇ Condition 1> and ⁇ Condition 2>.
  • the transparent resin material used as the transparent resin filler 16 may be any transparent resin material that can be photocured with visible light and has thermosetting properties as described above.
  • the transparent resin material in one embodiment will be described. First, a test for explaining the characteristics of the transparent resin material will be described with reference to FIG.
  • a test resin film having the same composition as the resin film containing the transparent resin material to be the transparent resin filler 16 is formed, and the test resin film is subjected to a predetermined condition.
  • the thickness of the test resin film after photocuring and before development is t1
  • the thickness of the test resin film after development is When the thickness is t2, a transparent resin material in which (t2 / t1) is a predetermined value or more can be used.
  • a test resin film 24a having the same composition as the resin film 24 is coated on a support substrate 26 such as a glass substrate so that a film having a thickness of 350 nm is formed.
  • the test resin film 24a is exposed to visible light (exposure process).
  • the exposure process (photocuring process) of the test resin film 24a is performed from the side opposite to the surface on which the test resin film 24a is formed.
  • the thickness of the test resin film 24a after the exposure process (photocuring process) is defined as t1.
  • a development process is performed (development process).
  • the thickness of the remaining test resin film 24a is defined as t2.
  • the two-dot chain line indicates the surface of the test resin film 24a after the development process.
  • the conditions in the exposure process (photocuring process) and the development process are, for example, the conditions C1 or C2 that are the predetermined conditions shown in Table 1.
  • the exposure process after performing an exposure process with an exposure amount of 500 mJ / cm 2 using a low-pressure mercury lamp (corresponding to 355 nm), in the development process, the development process is performed using the developer shown in Table 1 in the immersion method shown in Table 1. I do.
  • the method for forming the film in the coating step is not particularly limited, and examples thereof include a spin coating method.
  • the rotation speed may be 2500 rpm, for example, and the rotation holding time may be 30 seconds, for example.
  • An example of the treatment in this pre-baking step is a pre-baking treatment in an oven at a temperature of 100 ° C. for 3 minutes.
  • the transparent resin material in one embodiment is a material in which (t2 / t1) satisfies 0.6 or more in the above test.
  • the transparent resin material for example, a polymerizable resin compound described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-65319) can be suitably used.
  • the transparent resin material having the composition shown in Table 2 is particularly excellent in photocuring characteristics by visible light, development characteristics, and adhesion, and can be suitably used as the transparent resin film of the present embodiment.
  • the resin film 24 is photocured by irradiating visible light from the light source 28 arranged on the back surface 12b side of the resin film 20 with wiring.
  • the light source 28 include, for example, a high-pressure mercury lamp, a gallium lamp, a metal halide lamp, a xenon lamp, and an SSD (Super Small Discharge) lamp configured to cut ultraviolet light. Since the metal wiring 14 does not transmit visible light, the resin film 24 on the metal wiring 14 is in an unexposed state. That is, in the photocuring step S12, the back exposure is performed using the metal wiring 14 as a mask.
  • the visible light is irradiated to the resin film 20 with wiring as parallel light.
  • the irradiation direction of visible light is such that the angle ⁇ 2 formed by the direction of the normal line n (normal direction) of the back surface 12b of the resin film with wiring 20 and the irradiation direction of the visible light back surface 12b is 20 ° or less. It is preferable that the direction is satisfied.
  • the resin film 24 that has been exposed (photocured) in the photocuring step S12 is developed.
  • the resin film with wiring 20 that has undergone the photocuring step S12 is immersed in the developer 30a in the developing container 30 to develop the resin film 24.
  • the unexposed portion for example, the resin film 24 on the metal wiring 14
  • the developing method using the developer 30a is illustrated, but the developing method is not particularly limited as long as the exposed resin film 24 can be developed.
  • the resin film 24 that has undergone the developing step S14 is heated by the heating device 32. Thereby, the resin film 24 is thermoset to form the transparent resin filler 16.
  • the method for heat treatment of the resin film 24 by the heating device 32 is not particularly limited, and for example, a method of irradiating the resin film 24 with near infrared light is exemplified.
  • the heating device 32 includes a light source 32a disposed to face the resin film 24 as illustrated in FIG.
  • the example of the light source 32a should just be what can selectively output near-infrared light.
  • the light source 32a may be a lamp that can output infrared light including near infrared light and a filter that selectively passes near infrared light.
  • the transparent resin film 12 may be heat-treated while being cooled.
  • the cooling method include air cooling.
  • Near-infrared light is, for example, light having a wavelength of 0.7 ⁇ m to 5.0 ⁇ m.
  • the resin film 24 is formed from the surface of the resin film with wiring 20 (surface on which the metal wiring 14 is formed). This corresponds to heat treatment of the resin film 24 by irradiating with a near infrared light.
  • the absorption of near-infrared light in the resin film 24 is more than the absorption of near-infrared light in the transparent resin film 12, the viewpoint of reducing the influence on the transparent resin film 12 by the near-infrared light To preferred.
  • the absorption of near-infrared light in the resin film 24 is more than the absorption of near-infrared light in the transparent resin film 12 means that the resin film 24 in near-infrared light in a predetermined wavelength region (wavelength 0.7 ⁇ m to 2.5 ⁇ m). This means that the integral value of the absorption spectrum is larger than the integral value of the absorption spectrum of the transparent resin film 12 in the near-infrared light in the predetermined wavelength region.
  • PEN hardly absorbs near-infrared light, heat treatment by irradiation with near-infrared light is effective when the transparent resin film 12 is made of PEN.
  • the base material 10 as the resin film with wiring 20 in which the transparent resin filler 16 is disposed (for example, filled) in the opening 18 through the baking step S16 is wound around the winding roll R3 as shown in FIG. .
  • the transparent resin filler 16 is formed using a transparent resin material that can be photocured with visible light. Since the transparent resin film 12 does not substantially absorb visible light, even if the resin film 24 is irradiated with visible light from the back side of the transparent resin film 12, the visible light is not affected by the transparent resin film 12. The resin film 24 is irradiated.
  • the transparent resin film (for example, plastic film) 12 usually has absorption in the wavelength region of ultraviolet light. Therefore, if the resin film is composed of an ultraviolet curable resin and the ultraviolet light is irradiated from the transparent resin film 12 side, a part of the ultraviolet light is absorbed by the transparent resin film 12, and the resin film is insufficiently cured. There is a possibility that the transparent resin filler cannot be formed properly. Alternatively, more time is required for photocuring.
  • the resin film 24 can be photocured with visible light that is not affected by the transparent resin film 12. Therefore, the energy of visible light to be irradiated can be effectively used for photocuring, and therefore, for example, the resin film 24 can be photocured more reliably and in a shorter time than when ultraviolet light is used. Therefore, the productivity of the base material 10 can be improved.
  • the metal film 14 functions as a mask because the resin film 24 is exposed from the transparent resin film 12 side. Therefore, even if the resin film 24 is exposed to visible light, the resin film 24 on the surface 14a of the metal wiring 14 is in an unexposed state. Thereby, the resin film 24 on the surface 14a can be removed in the development step S14.
  • the transparent resin filler 16 and the metal wiring 14 satisfy ⁇ Condition 1> and ⁇ Condition 2> described above, the transparent resin filler 16 and the metal wiring 14 are connected substantially without a step, and the surface 10a of the substrate 10 is more It becomes a flat surface. Therefore, for example, even if a layer such as an electrode or a functional layer constituting the organic EL element is formed on the surface 10a, the thickness of each of the plurality of layers becomes uniform. In this case, the movement of charges is not easily inhibited, and as a result, the light emission efficiency is improved.
  • the width of the metal wiring 14 is 10 ⁇ m or more
  • the resin film 24 on the surface 14a of the metal wiring 14 can be more reliably removed. This point will be described in comparison with the case where the width of the metal wiring 14 is smaller than 10 ⁇ m.
  • the metal wiring 14 When the resin film 24 is photocured by irradiation of visible light, the metal wiring 14 functions as a mask, but in the vicinity of the side surface 14b of the metal wiring 14, a part of visible light is on the surface 14a of the metal wiring 14 due to light diffraction.
  • the resin film 24 may also be irradiated. If the width of the metal wiring 14 is smaller than 10 ⁇ m, the ratio of exposure of the resin film 24 on the surface 14a in the width direction of the metal wiring 14 is relatively increased due to the influence of such diffraction. In this case, the resin film 24 tends to remain on the surface 14a after the development processing.
  • the width of the metal wiring 14 is 10 ⁇ m or more, the influence of diffraction is reduced, and the resin film 24 on the surface 14a is difficult to be exposed. Therefore, the resin film 24 on the surface 14a can be relatively more removed. .
  • the side surface 14b of the metal wiring 14 and the surface 12a of the transparent resin film 12 is 60 ° or more and 100 ° or less. Therefore, when the resin film 24 is irradiated with visible light, the resin film 24 on the surface 14 a of the metal wiring 14 is not easily irradiated with visible light. Therefore, the resin film 24 on the surface 14a can be more reliably removed in the developing step S14. In an embodiment in which the angle ⁇ 1 is not less than 80 ° and not more than 100 °, such an effect can be obtained more suitably.
  • the irradiation direction (traveling direction) of visible light as parallel light and the direction of the normal line n (normal direction) of the back surface 12 b of the transparent resin film 12. Is within 20 °.
  • visible light as parallel light is likely to enter the transparent resin film 12 substantially perpendicularly, and the resin film 24 on the surface 14 a of the metal wiring 14 is not easily irradiated with visible light. Therefore, in the developing step S14, the resin film 24 on the surface 14a is more reliably removed.
  • the visible light irradiation method shown in FIG. 6 is effective.
  • the transparent resin material used as the transparent resin filler 16 is (t2 / t1) described with reference to FIG. 5 being 0.6 or more (when expressed in percentage, (t2 / t1) is 60% or more).
  • the transparent resin material is sensitive to visible light and easily hardens.
  • the resin film 24 (or transparent resin material) in contact with the side surface 14b of the metal wiring 14 may be less likely to be irradiated with visible light than the central portion of the opening 18, that is, the energy absorbed by the resin film may be small. If the transparent resin material is sensitive to visible light, it can be cured with less visible light irradiation energy. Therefore, when the transparent resin material that satisfies the condition regarding (t2 / t1) described with reference to FIG.
  • the thickness ratio (T3 / T4) at the boundary between the resin film 24 remaining in the opening 18 and the metal wiring 14 can be made larger than 0.8 and smaller than 1.2. . As a result, it is easy to manufacture the substrate 10 that satisfies the above ⁇ Condition 1> and ⁇ Condition 2>.
  • the resin film 24 absorbs more near-infrared light than the transparent resin film 12, as described above, for example, near-infrared from the surface side (that is, the resin film 24 side) of the transparent resin film 12 in the baking step S16.
  • the resin film 24 is heated by irradiating the resin film 24 with light.
  • the resin film 24 can be heated while the transparent resin film 12 maintains the temperature below the glass transition temperature more reliably. Therefore, the deformation of the transparent resin film 12 due to the baking process in the baking step S16 can be suppressed, and the manufacturing yield is improved, so that the productivity is further improved.
  • the transparent resin film 12 in which the metal wiring 14 is formed in advance is prepared, and the opening 18 is filled with the transparent resin filler 16.
  • the metal wiring 14 and the transparent resin filler 16 may be sequentially formed on the transparent resin film 12.
  • the resin film 24 is not limited to be formed so as to embed the entire metal wiring 14, and the resin film 24 is disposed in at least one of the plurality of openings 18. It suffices that at least a part of the metal wiring 14 is embedded with the resin film 24.
  • the manufacturing method of the substrate 10 is not limited to the roll-to-roll manufacturing method. For example, you may form the metal wiring 14 and the transparent resin filler 16 with respect to the transparent resin film 12 of a sheet
  • the base material 10 you may perform at least one of resin film formation process S10, photocuring process S12, image development process S14, and baking process S16 by a roll-to-roll system.
  • the resin film forming step S10, the photocuring step S12 and the developing step S14 may be performed by a roll-to-roll method
  • the baking step S16 may be performed again by a roll-to-roll method.
  • the organic EL element 38 schematically shown in FIG. 8 includes a laminate including an anode (first electrode) 40a, a cathode (second electrode) 40b, and a light emitting layer 40c disposed between the anode 40a and the cathode 40b.
  • the laminated body 40 is provided on the base material 10. That is, the organic EL element 38 includes an anode 40a disposed on the metal wiring 14 of the substrate 10, a cathode 40b disposed on the anode 40a, and a light emitting layer disposed between the anode 40a and the cathode 40b. . Since the structure of the base material 10 is the same as the structure of the base material 10 shown in FIG. 1A and FIG.
  • a thin film made of metal oxide, metal sulfide, metal, or the like can be used for the anode 40a.
  • indium oxide, zinc oxide, tin oxide, indium tin oxide Indium Tin Oxide: abbreviated as ITO
  • ITO Indium Tin Oxide
  • IZO indium zinc oxide
  • gold, platinum, silver, and / or copper can be used.
  • an electrode exhibiting light transmittance is used for the anode 40a.
  • the material of the cathode 40b is preferably a material having a small work function, easy electron injection into the light emitting layer 40c, and high electrical conductivity. Further, in the organic EL element configured to extract light from the anode 40a side, the light emitted from the light emitting layer 40c is reflected by the cathode 40b to the anode 40a side. High materials are preferred.
  • an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like can be used as the cathode 40b.
  • the light emitting layer 40c contains an organic material.
  • the light emitting layer 40c is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, to improve the light emission efficiency or to change the light emission wavelength.
  • the organic substance contained in the light emitting layer 40c may be a low molecular compound or a high molecular compound.
  • Examples of the light emitting material constituting the light emitting layer 40c include known dye-based materials, metal complex-based materials, polymer-based materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
  • metal complex materials include rare earth metals (Tb, Eu, Dy, etc.), Al, Zn, Be, Ir, Pt, etc. as the central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzo Examples thereof include metal complexes having an imidazole or quinoline structure as a ligand.
  • polystyrene resins polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above dye materials or metal complex light emitting materials are polymerized. The thing etc. can be mentioned.
  • examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives.
  • examples of materials that emit green light include quinacridone derivatives, coumarin derivatives and polymers thereof, polyparaphenylene vinylene derivatives, and polyfluorene derivatives.
  • examples of the material that emits red light include a coumarin derivative, a thiophene ring compound and a polymer thereof, a polyparaphenylene vinylene derivative, a polythiophene derivative, and a polyfluorene derivative.
  • Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squarylium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, and phenoxazone.
  • the anode 40a, the cathode 40b, and the light emitting layer 40c can be formed by a vapor deposition method or a coating method.
  • a coating method spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method, spray coating method, Examples thereof include a nozzle coating method, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an ink jet printing method.
  • the anode 40a, the cathode 40b, and the light emitting layer 40c are formed by a coating method capable of pattern coating, and particularly preferably formed by an ink jet printing method.
  • the solvent for the ink (coating liquid) used in the coating method is not particularly limited as long as it can dissolve each material.
  • the solvent include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; And ester solvents such as butyl acetate and ethyl cellosolve acetate; and water.
  • the organic EL element 38 can be manufactured by sequentially forming the anode 40a, the light emitting layer 40c, and the cathode 40b on the base material 10.
  • the transparent resin filler 16 included in the substrate 10 when the organic EL element 38 is manufactured includes a transparent resin material that is thermosetting and photocured by visible light or a cured product thereof. Therefore, at the time of manufacturing the base material 10, the transparent resin filler 16 can be formed by photocuring the transparent resin material with visible light and then thermosetting. In the case of photocuring the transparent resin material, visible light that is not substantially absorbed by the transparent resin film 12 can be used, so that the transparent resin material can be efficiently photocured. Thereby, since the productivity of the base material 10 improves, the productivity of the organic EL element 38 can also be improved as a result.
  • the base material 10 which the organic EL element 38 has by the manufacturing method described in the first embodiment the base material 10 can be efficiently manufactured as described in the first embodiment. As a result, the productivity of the organic EL element 38 is also improved.
  • the base material 10 when the base material 10 is manufactured by the roll-to-roll method as exemplified in the first embodiment, the base material 10 has flexibility, for example.
  • the organic EL element 38 can also be manufactured by a roll-to-roll method. As a result, the productivity of the organic EL element 38 is further improved.
  • an anode 40a is provided in contact with the metal wiring 14 of the substrate 10. Therefore, electric power can be supplied to the anode 40a through the metal wiring 14. Since the metal wiring 14 is formed in a predetermined pattern having a plurality of openings 18, the center of the anode 40a is compared with the case where the openings 18 are not provided or when power is directly supplied to the anode 40a. Electric power can be supplied to the anode 40a while reducing a voltage drop with respect to the (center in the plan view shape of the organic EL element 38) portion. As a result, the luminance uniformity of the light emitted from the organic EL element 38 is improved.
  • the transparent resin filler 16 is disposed (filled or the like) in the plurality of openings 18 in the predetermined pattern exhibited by the metal wiring 14, the surface 10a of the base material 10 (interface with the anode 40a) is smoothed. ing. If the transparent resin filler 16 is not disposed (filled or the like) in the plurality of openings 18, unevenness is generated on the surface of the base material. Such irregularities on the surface of the base material may cause current leakage, which may reduce the light emission efficiency. On the other hand, if the surface 10a of the base material 10 is smoothed, each of the anode 40a, the light emitting layer 40c, and the cathode 40b can be formed with a substantially uniform thickness.
  • the light emitting layer 40c formed on the flat anode 40a has no locally thinned portion, current leakage hardly occurs. As a result, the light emission efficiency of the organic EL element 38 can be improved.
  • a flatter surface 10a can be realized, so that the light emission efficiency of the organic EL element 38 is further improved. be able to.
  • the metal wiring 14 provided on the transparent resin film 12 included in the substrate 10 is formed in a predetermined pattern having a plurality of openings 18, and the openings 18 are filled with a transparent resin filler 16. Therefore, it is possible to extract light from the light emitting layer 40c from the anode 40a side.
  • FIG. 8 shows an example in which only the light emitting layer 40c is provided between the anode 40a and the cathode 40b
  • a functional layer other than the light emitting layer 40c may be provided between the anode 40a and the cathode 40b. Good. This will be specifically described below.
  • Examples of layers provided between the cathode 40b and the light emitting layer 40c include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer in contact with the cathode 40b is referred to as an electron injection layer, and the layers other than the electron injection layer are referred to as an electron transport layer. That's it.
  • the electron injection layer has a function of improving the efficiency of electron injection from the cathode 40b.
  • the electron transport layer has a function of improving electron injection from the electron transport layer closer to the cathode, the electron injection layer, or the cathode 40b.
  • the hole blocking layer is a layer having a function of blocking hole transport.
  • these layers may also serve as the hole blocking layer.
  • an organic EL element that allows only the hole current to flow can be produced, and the blocking effect can be confirmed by reducing the current value.
  • Examples of the layer provided between the anode 40a and the light emitting layer 40c include a hole injection layer, a hole transport layer, and an electron block layer.
  • the layer in contact with the anode 40a is referred to as a hole injection layer.
  • the hole injection layer has a function of improving the hole injection efficiency from the anode 40a.
  • the hole transport layer has a function of improving the hole injection from the anode, the hole injection layer, or the hole transport layer closer to the anode 40a.
  • the electron block layer has a function of blocking electron transport.
  • these layers may also serve as an electron blocking layer.
  • an organic EL element that allows only electron current to flow can be produced, and the effect of blocking electron transport can be confirmed by a decrease in the measured current value.
  • an example of a layer configuration provided on the substrate 10 is shown below.
  • a) Anode / light emitting layer / cathode b) Anode / hole injection layer / light emitting layer / cathode c) Anode / hole injection layer / light emitting layer / electron injection layer / cathode d) Anode / hole injection layer / light emitting layer / Electron transport layer / electron injection layer / cathode e) Anode / hole injection layer / hole transport layer / light emitting layer / cathode f) Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode g ) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode h) Anode / light emitting layer / electron injection layer / cathode i) Anode / light emit
  • each material of the hole injection layer As each material of the hole injection layer, the hole mailing layer, the electron transport layer, and the electron injection layer, known materials can be used.
  • Each of the hole injection layer, the hole mailing layer, the electron transport layer, and the electron injection layer can be formed, for example, by a coating method in the same manner as the light emitting layer.
  • the organic EL element 38 of the second embodiment may include a single light emitting layer 40c or may include two or more light emitting layers 40c.
  • any one of the layer configurations of a) to i) above when the stacked structure disposed between the anode 40a and the cathode 40b is “structural unit A”, an organic layer having two light emitting layers 40c is provided.
  • Examples of the configuration of the EL element include the layer configuration shown in j) below.
  • the layer configuration of two (structural unit A) may be the same or different.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer include a thin film made of vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, or the like.
  • (structural unit A) / charge generation layer is “structural unit B”
  • examples of the configuration of the organic EL element having three or more light emitting layers include the layer configuration shown in the following k). Can do. k) Anode / (Structural unit B) x / (Structural unit A) / Cathode
  • (Structural unit B) x represents a stacked body in which (Structural unit B) is stacked in x stages. Further, a plurality of (structural unit B) layer configurations may be the same or different.
  • the organic EL element may be configured by directly laminating a plurality of light emitting layers 40c without providing a charge generation layer.
  • the order of the layers formed on the substrate 10, the number of layers, and the thickness of each layer can be appropriately set in consideration of the light emission efficiency or the lifetime.
  • the organic EL element 38 is usually provided on the substrate 10 with the anode 40a disposed on the substrate 10 side, but may be disposed on the substrate 10 with the cathode 40b disposed on the substrate 10 side.
  • the anode 40a side (each of the layer configurations a to k).
  • each layer is laminated on the base material 10 in order from the left side and the cathode 40b is arranged on the base material 10 side
  • each layer is laminated on the base material 10 in order from the cathode 40b (right side of each layer configuration a to k).
  • the organic EL element 38 may be a bottom emission type that emits light from the substrate 10 side, or may be a top emission type that emits light from the side opposite to the substrate 10.
  • SYMBOLS 10 Base material, 12 ... Transparent resin film, 12a ... Front surface, 12b ... Back surface, 14 ... Metal wiring, 16 ... Transparent resin filler, 18 ... Opening part, 38 ... Organic EL element, 40a ... Anode (1st electrode) 40b ... cathode (second electrode), 40c ... light emitting layer.

Abstract

A method for manufacturing a substrate 10 according to an embodiment is provided with: a resin film formation step in which a resin film containing a transparent resin material to become a transparent resin filler 16 is formed on the obverse surface 12a of a transparent resin film 12 on which metal wiring 14 of a predetermined pattern having a plurality of openings 18 is formed, the resin film being formed so as to embed the metal wiring 14; a photocuring step in which, after the resin film formation step, visible light is irradiated from the reverse surface 12b side of the transparent resin film 12 so as to photocure the resin film in the openings 18; a developing step in which, after the optical curing step, a the resin film is subjected to a development process to remove the resin film on the metal wiring 14; and a thermal curing step in which, after the resin film on the metal wiring 14 is removed, the resin film left on the transparent resin film 12 is subjected to a heat treatment so as to heat-cure the resin film, thereby forming the transparent resin filler 16. Each of the openings 18 is filled with the transparent resin filler 16. The transparent resin material is thermosettable and is photocured by visible light.

Description

基材の製造方法及び有機EL素子SUBSTRATE MANUFACTURING METHOD AND ORGANIC EL ELEMENT
 本発明は、基材の製造方法及び有機EL素子に関する。 The present invention relates to a substrate manufacturing method and an organic EL element.
 本技術分野の従来技術として、特許文献1に記載の技術がある。特許文献1に記載の技術では、プラスチックフィルムといった透明な樹脂フィルム上に導電性金属パターン(金属配線)を有し、導電性金属パターンが存在しない透光部(開口部)が透明樹脂で埋められている透明導電フィルム(基材)の製造方法が開示されている。具体的には、透明な樹脂フィルム上に導電性金属パターンを形成した後に、導電性金属パターンが埋没するようにネガ型の紫外線硬化樹脂を塗布する。ここで、基材の紫外線硬化樹脂が塗布された面の反対側から紫外線を照射して、透光部のみ光反応により紫外線硬化樹脂を硬化させた後に、導電性金属パターン上の未架橋の紫外線硬化樹脂を除去することにより透光部に樹脂を設けている。 There is a technique described in Patent Document 1 as a conventional technique in this technical field. In the technique described in Patent Document 1, a transparent resin film such as a plastic film has a conductive metal pattern (metal wiring), and a translucent portion (opening) where no conductive metal pattern exists is filled with a transparent resin. A method for producing a transparent conductive film (base material) is disclosed. Specifically, after forming a conductive metal pattern on a transparent resin film, a negative ultraviolet curable resin is applied so that the conductive metal pattern is buried. Here, after irradiating ultraviolet rays from the opposite side of the surface on which the ultraviolet curable resin is applied of the base material and curing the ultraviolet curable resin only by light reaction in the light transmitting part, uncrosslinked ultraviolet rays on the conductive metal pattern Resin is provided in the translucent part by removing the cured resin.
特許第5245111号公報Japanese Patent No. 5245111 特開2008-65319号公報JP 2008-65319 A
 しかしながら、一般的に樹脂フィルムは、紫外光の吸収を有する。そのため、基材の紫外線硬化樹脂が塗布された面の反対側から、紫外光の露光により、樹脂フィルム上に塗布された紫外線硬化樹脂を光硬化させようとすると、紫外光が基材を通過する際に基材に吸収されるため、紫外線硬化樹脂の光硬化が不十分となる。そして、積算露光量を上げるために長時間光照射が必要になることから生産性が低下する。よって、例えば、そのような基材を利用して有機エレクトロルミネッセンス素子(以下、場合により「有機EL素子」と称す)を製造する際も、有機EL素子の生産性が低下し易い。 However, the resin film generally has ultraviolet light absorption. Therefore, when the UV curable resin applied on the resin film is photocured from the opposite side of the surface of the substrate on which the UV curable resin has been applied, the ultraviolet light passes through the substrate. In this case, the UV curable resin is not sufficiently cured by light because it is absorbed by the substrate. And since light irradiation is needed for a long time in order to raise an integrated exposure amount, productivity falls. Therefore, for example, when manufacturing an organic electroluminescence element (hereinafter, referred to as “organic EL element” in some cases) using such a base material, the productivity of the organic EL element is likely to decrease.
 したがって、本発明は、生産性を向上可能な基材の製造方法及び有機EL素子を提供することを目的とする。 Therefore, an object of the present invention is to provide a substrate manufacturing method and an organic EL element capable of improving productivity.
 本発明の一側面に係る基材の製造方法は、透明樹脂フィルムと、複数の開口部を有する所定パターンの金属配線と、透明樹脂充填材と、を備える基材の製造方法であって、金属配線が、透明樹脂フィルムの表面に形成されており、透明樹脂充填材が、複数の開口部の少なくとも一つの開口部内に配置されており、上記基材の製造方法が、金属配線が形成された透明樹脂フィルムの表面に、透明樹脂充填材となる透明樹脂材料を含む樹脂膜を、金属配線を埋設するように形成する樹脂膜形成工程と、樹脂膜形成工程後に、透明樹脂フィルムの裏面側から可視光を照射して、開口部内の樹脂膜を光硬化させる光硬化工程と、光硬化工程後に、樹脂膜を現像処理することによって金属配線上の樹脂膜を除去する現像工程と、金属配線上の樹脂膜を除去した後に、透明樹脂フィルム上に残存した樹脂膜を加熱処理して熱硬化させることによって透明樹脂充填材を形成する熱硬化工程と、を備え、透明樹脂材料が、熱硬化性を有すると共に可視光によって光硬化する透明樹脂材料である。 The manufacturing method of the base material which concerns on 1 side of this invention is a manufacturing method of a base material provided with the transparent resin film, the metal wiring of the predetermined pattern which has a several opening part, and a transparent resin filler, Comprising: The wiring is formed on the surface of the transparent resin film, the transparent resin filler is disposed in at least one opening of the plurality of openings, and the base material manufacturing method includes forming the metal wiring On the surface of the transparent resin film, a resin film containing a transparent resin material that becomes a transparent resin filler is formed so as to embed a metal wiring, and after the resin film forming process, from the back side of the transparent resin film A photo-curing process for irradiating visible light to photo-curing the resin film in the opening, a developing process for removing the resin film on the metal wiring by developing the resin film after the photo-curing process, and on the metal wiring Resin film And a thermosetting step of forming a transparent resin filler by heat-treating and thermosetting the resin film remaining on the transparent resin film, and the transparent resin material has thermosetting properties and is visible It is a transparent resin material that is photocured by light.
 上記製造方法では、複数の開口部を有する所定パターンの金属配線が形成された透明樹脂フィルムの表面に、上記透明樹脂材料を含む樹脂膜を、金属配線を埋設するように形成する。その後、透明樹脂フィルムの裏面側から可視光を樹脂膜に照射し樹脂膜を光硬化する。すなわち、樹脂膜を裏面露光する。可視光を透明樹脂フィルムの裏面側から樹脂膜に照射する場合、金属配線がマスクとして機能するため、金属配線上の樹脂膜は可視光に対して未露光となる。よって、光硬化工程後に、未露光である樹脂膜を現像処理することで金属配線上の樹脂膜を除去し、開口部内に選択的に樹脂膜を残存させることができる。上記製造方法では、現像工程後に、樹脂膜を加熱処理して熱硬化させることで、開口部内に選択的に残存された樹脂膜が熱硬化して透明樹脂充填材となる。これにより、透明樹脂フィルムの表面に金属配線が設けられており、且つ、金属配線の所定パターンにおける複数の開口部の少なくとも一つの開口部内に透明樹脂充填材が配置されている基材を製造できる。透明樹脂充填材となる透明樹脂材料として樹脂膜に含まれる透明樹脂材料は、可視光により光硬化する。透明樹脂フィルムを通して樹脂膜に可視光を照射しても、可視光は透明樹脂フィルムにほとんど吸収されずに樹脂膜に照射される。そのため、光硬化工程において、樹脂膜を確実に且つ効率的に可視光で光硬化可能である。その結果、基材の生産性の向上を図ることが可能である。 In the manufacturing method, a resin film containing the transparent resin material is formed on the surface of a transparent resin film on which a predetermined pattern of metal wiring having a plurality of openings is formed so as to embed the metal wiring. Thereafter, the resin film is photocured by irradiating the resin film with visible light from the back side of the transparent resin film. That is, the resin film is back exposed. When the resin film is irradiated with visible light from the back side of the transparent resin film, the metal wiring functions as a mask, so that the resin film on the metal wiring is unexposed to visible light. Therefore, after the photocuring step, the unexposed resin film can be developed to remove the resin film on the metal wiring and selectively leave the resin film in the opening. In the above manufacturing method, after the development step, the resin film is heat-treated and thermally cured, so that the resin film selectively remaining in the opening is thermally cured to become a transparent resin filler. Thereby, the base material by which the metal wiring is provided in the surface of the transparent resin film, and the transparent resin filler is arrange | positioned in at least one opening part of the several opening part in the predetermined pattern of metal wiring can be manufactured. . The transparent resin material contained in the resin film as the transparent resin material that becomes the transparent resin filler is photocured by visible light. Even if the resin film is irradiated with visible light through the transparent resin film, the visible light is hardly absorbed by the transparent resin film and is applied to the resin film. Therefore, in the photocuring step, the resin film can be reliably and efficiently photocured with visible light. As a result, it is possible to improve the productivity of the base material.
 一実施形態において、上記透明樹脂充填材の平均厚さをT1とし、金属配線の平均厚さをT2としたとき、(T1/T2)が0.5以上1.5以下であり、且つ、透明樹脂充填材と金属配線との境界において、透明樹脂充填材の厚さをT3とし、金属配線の厚さをT4としたとき、(T3/T4)が0.8より大きく1.2より小さくてもよい。 In one embodiment, when the average thickness of the transparent resin filler is T1 and the average thickness of the metal wiring is T2, (T1 / T2) is not less than 0.5 and not more than 1.5, and transparent When the thickness of the transparent resin filler is T3 and the thickness of the metal wiring is T4 at the boundary between the resin filler and the metal wiring, (T3 / T4) is larger than 0.8 and smaller than 1.2. Also good.
 この場合、金属配線の表面と透明樹脂充填材の表面とで構成される面の凹凸が低減されている。すなわち、表面の平滑性のよい基材を得ることができる。 In this case, the unevenness of the surface constituted by the surface of the metal wiring and the surface of the transparent resin filler is reduced. That is, a base material with good surface smoothness can be obtained.
 一実施形態において、金属配線の幅が10μm以上であってもよい。可視光の照射により樹脂膜を光硬化させる際、金属配線がマスクとして機能するが、金属配線の側面近傍では、光の回折によって可視光の一部が金属配線上の樹脂膜にも照射される場合がある。金属配線の幅が10μmより小さいと、このような回折による影響で金属配線上の樹脂膜が光硬化される割合が相対的に多くなるので、現像処理後に、金属配線上に樹脂膜が残存し易い。これに対して、金属配線の幅が10μm以上であれば、金属配線上における樹脂膜を相対的により多く除去できる。 In one embodiment, the width of the metal wiring may be 10 μm or more. When the resin film is photocured by irradiation with visible light, the metal wiring functions as a mask. However, in the vicinity of the side surface of the metal wiring, part of the visible light is also irradiated to the resin film on the metal wiring by light diffraction. There is a case. If the width of the metal wiring is smaller than 10 μm, the resin film on the metal wiring is relatively hardened by the influence of such diffraction, so that the resin film remains on the metal wiring after the development process. easy. On the other hand, if the width of the metal wiring is 10 μm or more, relatively more resin film on the metal wiring can be removed.
 一実施形態において、金属配線の側面と、透明樹脂フィルムの表面とのなす角度が60°以上100°以下であってもよい。 In one embodiment, the angle formed between the side surface of the metal wiring and the surface of the transparent resin film may be 60 ° or more and 100 ° or less.
 この場合、可視光の照射により樹脂膜を光硬化させる際、金属配線上の樹脂膜に可視光が照射されにくく、現像処理により、金属配線上の樹脂膜をより確実に除去できる。 In this case, when the resin film is photocured by irradiation with visible light, the resin film on the metal wiring is hardly irradiated with visible light, and the resin film on the metal wiring can be more reliably removed by development processing.
 一実施形態において、光硬化工程では、可視光を平行光として透明樹脂フィルムに照射すると共に、平行光の裏面への照射方向と裏面の法線方向とのなす角度が20°以下であってもよい。 In one embodiment, in the photocuring step, visible light is irradiated onto the transparent resin film as parallel light, and the angle formed between the irradiation direction of the parallel light on the back surface and the normal direction of the back surface is 20 ° or less. Good.
 この場合、可視光の照射により樹脂膜を光硬化させる際、金属配線上の樹脂膜に可視光が照射されにくく、現像処理により、金属配線上の樹脂膜をより確実に除去できる。 In this case, when the resin film is photocured by irradiation with visible light, the resin film on the metal wiring is hardly irradiated with visible light, and the resin film on the metal wiring can be more reliably removed by development processing.
 一実施形態において、透明樹脂材料は、上記樹脂膜と同じ組成の試験用樹脂膜を形成し、試験用樹脂膜を可視光によって光硬化処理した後に現像処理した場合に、光硬化処理した後、且つ、現像処理前の試験用樹脂膜の厚さをt1とし、現像処理した後の試験用樹脂膜の厚さをt2とした場合、(t2/t1)が0.6以上である透明樹脂材料であってもよい。 In one embodiment, the transparent resin material forms a test resin film having the same composition as the resin film, and when the test resin film is photocured with visible light and then developed, A transparent resin material in which (t2 / t1) is 0.6 or more, where t1 is the thickness of the test resin film before development processing and t2 is the thickness of the test resin film after development processing It may be.
 (t2/t1)が0.6以上である上記透明樹脂材料は、可視光に対して感度がよく、固まり易い材料である。このような固まり易い透明樹脂材料を使用することで、透明樹脂充填材と金属配線との境界において、透明樹脂充填材の厚さと金属配線の厚さとの差を小さくできる。 The above-mentioned transparent resin material having (t2 / t1) of 0.6 or more is a material that has high sensitivity to visible light and is easily solidified. By using such a transparent resin material that tends to harden, the difference between the thickness of the transparent resin filler and the thickness of the metal wiring can be reduced at the boundary between the transparent resin filler and the metal wiring.
 一実施形態において、樹脂膜は、透明樹脂フィルムより近赤外光を多く吸収し、熱硬化工程では、樹脂膜に、透明樹脂フィルムの表面側から近赤外光を照射することによって樹脂膜を加熱処理してもよい。この場合、透明樹脂フィルムの表面側から近赤外光を樹脂膜に照射していることから、近赤外光は樹脂膜で主に吸収される。そのため、透明樹脂フィルムは近赤外光の影響をほとんど受けない。 In one embodiment, the resin film absorbs more near infrared light than the transparent resin film, and in the thermosetting process, the resin film is irradiated with near infrared light from the surface side of the transparent resin film. You may heat-process. In this case, since the near infrared light is irradiated to the resin film from the surface side of the transparent resin film, the near infrared light is mainly absorbed by the resin film. Therefore, the transparent resin film is hardly affected by near infrared light.
 一実施形態において、樹脂膜形成工程、光硬化工程、現像工程及び熱硬化工程の少なくとも一つをロールツーロール方式で実施してもよい。この場合、ロールツーロール方式を採用することで、ロールツーロール方式で実施する工程での処理を効率的に行うことが可能である。 In one embodiment, at least one of a resin film forming step, a photocuring step, a developing step, and a thermosetting step may be performed by a roll-to-roll method. In this case, by adopting the roll-to-roll method, it is possible to efficiently perform the process in the process performed by the roll-to-roll method.
 本発明の他の側面に係る有機EL素子は、透明樹脂フィルムと、複数の開口部を有する所定パターンの金属配線と、透明樹脂充填材と、を有する基材と、基材の金属配線上に配置された第1電極と、第1電極上に配置された第2電極と、第1電極と第2電極との間に配置された発光層と、を備え、金属配線が、透明樹脂フィルムの表面に形成されており、透明樹脂充填材が、複数の開口部の少なくとも一つの開口部内に配置されており、透明樹脂充填材が、熱硬化性を有すると共に可視光によって光硬化する透明樹脂材料又はその硬化物を含み、発光層が有機材料を含む。 An organic EL device according to another aspect of the present invention includes a substrate having a transparent resin film, a predetermined pattern of metal wiring having a plurality of openings, and a transparent resin filler, on the metal wiring of the substrate. A first electrode disposed; a second electrode disposed on the first electrode; and a light emitting layer disposed between the first electrode and the second electrode, wherein the metal wiring is made of a transparent resin film. A transparent resin material that is formed on the surface, the transparent resin filler is disposed in at least one of the plurality of openings, and the transparent resin filler has thermosetting properties and is photocured by visible light. Or the hardened | cured material is included, and a light emitting layer contains an organic material.
 上記有機EL素子の構成では、基材上に、第1及び第2電極が設けられ、それらの間に発光層が設けられている。そのため、第1及び第2電極に電力を供給して発光層から光を発することができる。基材は、透明樹脂フィルム上に金属配線を有しており、金属配線上に第1電極が設けられている。そのため、金属配線を介して第1電極に電力を供給できる。金属配線は、複数の開口部を有する所定パターンを呈することから、例えば、第1電極に直接電力を供給する場合より、有機EL素子の厚さ方向に直交する面において中央部近傍における電圧降下が低減される。よって、有機EL素子において面内の輝度均一性の向上が図れる。更に、複数の開口部の少なくとも一つの開口部内に透明樹脂充填材が配置されているので、基材と第1電極との界面の平滑化が図られている。その結果、第1電極、発光層及び第2電極それぞれを均一な厚さで形成することが可能である。これにより、平坦な第1電極上に形成される発光層において局所的に薄くなる箇所が無く、発光効率の良い有機EL素子を作製することができる。 In the configuration of the organic EL element, the first and second electrodes are provided on the base material, and the light emitting layer is provided between them. Therefore, power can be supplied to the first and second electrodes to emit light from the light emitting layer. The base material has a metal wiring on the transparent resin film, and the first electrode is provided on the metal wiring. Therefore, power can be supplied to the first electrode via the metal wiring. Since the metal wiring exhibits a predetermined pattern having a plurality of openings, for example, a voltage drop in the vicinity of the center portion in a plane orthogonal to the thickness direction of the organic EL element is more than that when power is directly supplied to the first electrode. Reduced. Therefore, in-plane luminance uniformity can be improved in the organic EL element. Furthermore, since the transparent resin filler is disposed in at least one of the plurality of openings, the interface between the base material and the first electrode is smoothed. As a result, each of the first electrode, the light emitting layer, and the second electrode can be formed with a uniform thickness. Thereby, there is no part which becomes thin locally in the light emitting layer formed on the flat 1st electrode, and an organic EL element with high luminous efficiency can be produced.
 透明樹脂充填材が、熱硬化性を有すると共に可視光によって光硬化する透明樹脂材料又はその硬化物を含んでいることから、基材の製造時において、基材の裏面側から可視光を照射することにより、透明樹脂充填材となる透明樹脂材料を光硬化させることができる。透明樹脂材料の光硬化に、透明樹脂フィルムが実質的に吸収を有しない可視光を使用することができるので、効率的に透明樹脂材料を光硬化することができる。その結果、基材の生産性が向上するため、有機EL素子の生産性も向上する。 Since the transparent resin filler contains a transparent resin material that is thermosetting and photocured by visible light or a cured product thereof, visible light is irradiated from the back side of the base material during manufacture of the base material. Thereby, the transparent resin material used as a transparent resin filler can be photocured. Since the transparent resin film can use visible light that has substantially no absorption for photocuring the transparent resin material, the transparent resin material can be efficiently photocured. As a result, since the productivity of the base material is improved, the productivity of the organic EL element is also improved.
 一実施形態において、上記透明樹脂充填材の平均厚さをT1とし、金属配線の平均厚さをT2としたとき、(T1/T2)が0.5より大きく1.5より小さく、且つ、透明樹脂充填材と金属配線との境界において、透明樹脂充填材の厚さをT3とし、金属配線の厚さをT4としたとき、(T3/T4)が0.8より大きく1.2より小さくてもよい。 In one embodiment, when the average thickness of the transparent resin filler is T1 and the average thickness of the metal wiring is T2, (T1 / T2) is larger than 0.5 and smaller than 1.5, and transparent When the thickness of the transparent resin filler is T3 and the thickness of the metal wiring is T4 at the boundary between the resin filler and the metal wiring, (T3 / T4) is larger than 0.8 and smaller than 1.2. Also good.
 この場合、金属配線の表面と透明樹脂充填材の表面とで構成される面の凹凸が低減されている。すなわち、基材の表面がより平坦となっている。そのため、電流リークが生じにくいので、発光効率の向上をより一層図れる。 In this case, the unevenness of the surface constituted by the surface of the metal wiring and the surface of the transparent resin filler is reduced. That is, the surface of the base material is flatter. For this reason, current leakage is unlikely to occur, and the light emission efficiency can be further improved.
 本発明によれば、生産性を向上可能な基材の製造方法及び有機EL素子を提供できる。 According to the present invention, a substrate manufacturing method and an organic EL element capable of improving productivity can be provided.
図1(a)は、一実施形態に係る基材の製造方法で製造される基材の模式的な平面図であり、図1(b)は、図1(a)のIb-Ib線に沿った断面図である。FIG. 1 (a) is a schematic plan view of a base material manufactured by the base material manufacturing method according to one embodiment, and FIG. 1 (b) is a line Ib-Ib in FIG. 1 (a). FIG. 図2(a)は、金属配線が表面に所定パターンで形成された透明樹脂フィルムである配線付樹脂フィルムの模式的な平面図であり、図2(b)は、図2(a)のIIb-IIb線に沿った断面図である。FIG. 2 (a) is a schematic plan view of a resin film with wiring, which is a transparent resin film having a metal wiring formed in a predetermined pattern on the surface, and FIG. 2 (b) is a diagram of IIb in FIG. 2 (a). FIG. 11 is a cross-sectional view taken along the line -IIb. 図3は、一実施形態に係る基材の製造方法の一例を示す模式図である。Drawing 3 is a mimetic diagram showing an example of the manufacturing method of the substrate concerning one embodiment. 図4(a)は、樹脂膜形成工程を経た後の配線付樹脂フィルムの模式的な平面図であり、図4(b)は、図4(a)のIVb-IVb線に沿った断面図である。4A is a schematic plan view of the resin film with wiring after undergoing the resin film formation step, and FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG. 4A. It is. 図5は、透明樹脂材料の特性を説明するための図面である。FIG. 5 is a drawing for explaining the characteristics of the transparent resin material. 図6は、光硬化工程における可視光の照射方法の一例を示す図面である。FIG. 6 is a drawing showing an example of a visible light irradiation method in the photocuring step. 図7は、現像工程を経た後の配線付樹脂フィルムの模式的な平面図であり、図7(b)は、図7(a)のVIIb-VIIb線に沿った断面図である。FIG. 7 is a schematic plan view of the resin film with wiring after the development process, and FIG. 7B is a cross-sectional view taken along the line VIIb-VIIb in FIG. 図8は、一実施形態に係る有機EL素子の断面構成の模式図である。FIG. 8 is a schematic diagram of a cross-sectional configuration of an organic EL element according to an embodiment.
 以下、本発明の実施形態について図面を参照しながら説明する。同一の要素には同一符号を付する。重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same symbols are assigned to the same elements. A duplicate description is omitted. The dimensional ratios in the drawings do not necessarily match those described.
(第1の実施形態)
 図1(a)及び図1(b)に示したように、第1の実施形態に係る基材の製造方法で製造される基材10は、透明樹脂フィルム12と、金属配線14と、透明樹脂充填材16とを備える。基材10は、例えば有機エレクトロルミネッセンス素子(有機EL素子)などの有機電子素子の基材(支持部材)として機能する。
(First embodiment)
As shown in FIGS. 1A and 1B, the base material 10 manufactured by the base material manufacturing method according to the first embodiment includes a transparent resin film 12, a metal wiring 14, and a transparent material. And a resin filler 16. The base material 10 functions as a base material (supporting member) of an organic electronic element such as an organic electroluminescence element (organic EL element).
 透明樹脂フィルム12は、可視光(波長400nm~800nmの光)に対して透光性を有する樹脂から構成されている。透明樹脂フィルム12の厚さの例は、30μm以上500μm以下である。透明樹脂フィルム12は、帯状でもよいし、又は、枚葉状でもよい。 The transparent resin film 12 is made of a resin that is transparent to visible light (light having a wavelength of 400 nm to 800 nm). An example of the thickness of the transparent resin film 12 is 30 μm or more and 500 μm or less. The transparent resin film 12 may be strip-shaped or sheet-shaped.
 透明樹脂フィルム12は例えばプラスチックフィルムである。透明樹脂フィルム12の材料の例は、ポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂を含む。 The transparent resin film 12 is a plastic film, for example. Examples of the material of the transparent resin film 12 include polyethersulfone (PES); polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin. Polyamide resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin;
 これらの樹脂のなかでも、耐熱性が高く、線膨張率が低く、且つ、製造コストが低いことから、ポリエステル樹脂又はポリオレフィン樹脂が好ましく、ポリエチレンレテフタレート又はポリエチレンナフタレートが特に好ましい。また、これらの樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among these resins, a polyester resin or a polyolefin resin is preferable because of high heat resistance, a low linear expansion coefficient, and a low manufacturing cost, and polyethylene terephthalate or polyethylene naphthalate is particularly preferable. Moreover, these resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 金属配線14は、透明樹脂フィルム12の表面12aに、複数の開口部18(金属配線14の厚さ方向に延びる貫通孔。例えば窓部)を有する所定のパターンで形成されている。このような金属配線14は、複数の開口部18を有する金属層に対応する。金属配線14の厚さの例は、20nm以上且つ2μm以下である。金属配線14の幅の例は、10μm以上である。通常、金属配線14の幅は、5mm以下である。金属配線14の幅とは、隣接する開口部18の中心間をつなぐ線上における金属配線14の長さを意味している。金属配線14の材料の例は、銀、アルミニウム、銅、金、ニッケル、鉄、モリブデン及びクロムから選択されてもよく、これらの金属のうち1種以上を含む合金から選択されてもよい。 The metal wiring 14 is formed in a predetermined pattern having a plurality of openings 18 (through holes extending in the thickness direction of the metal wiring 14, for example, window portions) on the surface 12 a of the transparent resin film 12. Such a metal wiring 14 corresponds to a metal layer having a plurality of openings 18. An example of the thickness of the metal wiring 14 is 20 nm or more and 2 μm or less. An example of the width of the metal wiring 14 is 10 μm or more. Usually, the width of the metal wiring 14 is 5 mm or less. The width of the metal wiring 14 means the length of the metal wiring 14 on a line connecting between the centers of the adjacent openings 18. The example of the material of the metal wiring 14 may be selected from silver, aluminum, copper, gold, nickel, iron, molybdenum, and chromium, and may be selected from an alloy containing one or more of these metals.
 金属配線14の所定パターンの例は、図1(a)に示すような格子パターンであり、この場合、複数の開口部18は、網目に対応する。網目の形状の例は、長方形又は正方形のような四角形、三角形、及び、六角形を含む。所定パターンは、金属配線14がネットワーク構造を有することができる。 An example of the predetermined pattern of the metal wiring 14 is a lattice pattern as shown in FIG. 1A, and in this case, the plurality of openings 18 correspond to a mesh. Examples of mesh shapes include quadrilaterals such as rectangles or squares, triangles, and hexagons. In the predetermined pattern, the metal wiring 14 may have a network structure.
 図1(a)に示すように、所定パターンにおける網目の形状が四角形である場合、網状の金属配線14は、第1の方向に延在しており且つ第1の方向に交差する第2の方向に並列配置された複数の金属線141と、第2の方向に延在しており且つ第1の方向に並列配置された複数の金属線142とから構成されている。図1(a)では、第1及び第2の方向は直交している状態を例示している。このように、金属配線14の金属線141,142が格子状に設けられている場合、上記金属配線14の幅とは、金属線141,142の延在方向に直交する方向の長さである。 As shown in FIG. 1A, when the shape of the mesh in the predetermined pattern is a square, the mesh-like metal wiring 14 extends in the first direction and crosses the first direction. A plurality of metal wires 141 arranged in parallel in the direction and a plurality of metal wires 142 extending in the second direction and arranged in parallel in the first direction. FIG. 1A illustrates a state where the first and second directions are orthogonal to each other. As described above, when the metal wires 141 and 142 of the metal wiring 14 are provided in a lattice shape, the width of the metal wiring 14 is a length in a direction orthogonal to the extending direction of the metal wires 141 and 142. .
 金属配線14は、基材10が例えば有機EL素子に適用される場合において、有機EL素子が有しており且つ金属配線14に接して形成される電極への電力供給用のグリッド電極として機能する。金属配線14の所定パターンを規定する開口部18の大きさ及び金属配線14の幅は、例えば、基材10を有機EL素子に適用する場合において、基材10側から光を取り出せるように設定されていればよい。金属配線14と開口部18との面積比(金属配線:開口部)は、金属配線14の導電性、及び、開口部18からの光取出し割合の観点で適宜選択されるが、1:99~50:50が好ましい。 When the base material 10 is applied to, for example, an organic EL element, the metal wiring 14 functions as a grid electrode for supplying power to an electrode that the organic EL element has and is formed in contact with the metal wiring 14. . The size of the opening 18 defining the predetermined pattern of the metal wiring 14 and the width of the metal wiring 14 are set so that light can be extracted from the base material 10 side when the base material 10 is applied to an organic EL element, for example. It only has to be. The area ratio between the metal wiring 14 and the opening 18 (metal wiring: opening) is appropriately selected from the viewpoint of the conductivity of the metal wiring 14 and the ratio of light extraction from the opening 18. 50:50 is preferred.
 透明樹脂充填材16は、複数の開口部18の少なくとも一つの開口部内に配置されている。透明樹脂充填材16は、例えば、複数の開口部18のそれぞれに充填されており、開口部18を埋めている。透明樹脂充填材16は、基材10が例えば有機EL素子に適用される場合において、透明樹脂フィルム12及び金属配線14を含む基材10の表面を平坦化するための平坦化膜として機能する。透明樹脂充填材16の厚さは、金属配線14の厚さとほぼ同じである。 The transparent resin filler 16 is disposed in at least one of the plurality of openings 18. The transparent resin filler 16 is filled in each of the plurality of openings 18 and fills the openings 18, for example. The transparent resin filler 16 functions as a planarization film for planarizing the surface of the substrate 10 including the transparent resin film 12 and the metal wiring 14 when the substrate 10 is applied to, for example, an organic EL element. The thickness of the transparent resin filler 16 is substantially the same as the thickness of the metal wiring 14.
 一実施形態において、金属配線14及び透明樹脂充填材16は、次の2つの条件を満たしてもよい。
<条件1>
 透明樹脂充填材16の平均厚さをT1とし、金属配線14の平均厚さをT2としたとき、(T1/T2)が0.5以上1.5以下である。(T1/T2)は、0.5より大きく1.5より小さくてもよい。透明樹脂充填材16の平均厚さT1及び金属配線14の平均厚さT2は、例えば、隣接する開口部18の中心を繋ぐ線(例えば、図1(a)の場合、透明樹脂フィルム12の長手方向又は短手方向に平行な線)で基材10の断面を切った場合における、任意(例えば、5点の測定結果に基づく平均値)の透明樹脂充填材16の平均厚さ、及び、その透明樹脂充填材16に隣接する金属配線14の平均厚さである。
<条件2>
 透明樹脂充填材16と金属配線14との境界(透明樹脂充填材16と金属配線14との接触部分)での透明樹脂充填材16の厚さをT3とし、金属配線14の厚さをT4としたとき、(T3/T4)が0.8より大きく1.2より小さい。
In one embodiment, the metal wiring 14 and the transparent resin filler 16 may satisfy the following two conditions.
<Condition 1>
When the average thickness of the transparent resin filler 16 is T1, and the average thickness of the metal wiring 14 is T2, (T1 / T2) is 0.5 or more and 1.5 or less. (T1 / T2) may be larger than 0.5 and smaller than 1.5. The average thickness T1 of the transparent resin filler 16 and the average thickness T2 of the metal wiring 14 are, for example, lines connecting the centers of the adjacent openings 18 (for example, in the case of FIG. 1A, the longitudinal length of the transparent resin film 12). The average thickness of the transparent resin filler 16 of any (for example, an average value based on the measurement results of five points) when the cross section of the substrate 10 is cut in a direction or a line parallel to the short direction, and the This is the average thickness of the metal wiring 14 adjacent to the transparent resin filler 16.
<Condition 2>
The thickness of the transparent resin filler 16 at the boundary between the transparent resin filler 16 and the metal wiring 14 (contact portion between the transparent resin filler 16 and the metal wiring 14) is T3, and the thickness of the metal wiring 14 is T4. (T3 / T4) is larger than 0.8 and smaller than 1.2.
 条件1,2を満たすことにより、透明樹脂充填材16の表面16a及び金属配線14の表面14aで構成される基材10の表面10aの凹凸が低減され、実質的に平坦な面となり得る。 By satisfying the conditions 1 and 2, the unevenness of the surface 10a of the substrate 10 constituted by the surface 16a of the transparent resin filler 16 and the surface 14a of the metal wiring 14 is reduced, and a substantially flat surface can be obtained.
 透明樹脂充填材16となる透明樹脂材料は、可視光により光硬化するネガ型の感光性を有すると共に、熱硬化性を有する透明樹脂であれば特に限定されない。透明樹脂充填材16となる透明樹脂材料については、後ほど詳述する。 The transparent resin material used as the transparent resin filler 16 is not particularly limited as long as it has a negative photosensitive property that is photocured by visible light and has a thermosetting property. The transparent resin material that becomes the transparent resin filler 16 will be described in detail later.
 図1(a)及び図1(b)に示した基材10の構成では、透明樹脂フィルム12上に形成された金属配線14の表面14aは露出している。そのため、例えば、基材10の表面10a上に、有機EL素子等の有機電子素子に含まれる電極(陽極又は陰極)を形成しても、金属配線14を利用してその電極に電力を供給できる。更に、透明樹脂充填材16で開口部18を埋めていることから、上記有機電子素子を構成する各層を基材10の表面10a上に形成しても、それらの層のそれぞれを均一な厚さで形成し易い。 In the configuration of the base material 10 shown in FIGS. 1A and 1B, the surface 14a of the metal wiring 14 formed on the transparent resin film 12 is exposed. Therefore, for example, even if an electrode (anode or cathode) included in an organic electronic element such as an organic EL element is formed on the surface 10 a of the base material 10, power can be supplied to the electrode using the metal wiring 14. . Furthermore, since the opening 18 is filled with the transparent resin filler 16, even if each layer constituting the organic electronic element is formed on the surface 10a of the substrate 10, each of the layers has a uniform thickness. It is easy to form with.
 これまでの基材10の説明では、透明樹脂フィルム12上の構成を、金属配線14を基準にして説明した。一方、開口部18を埋めている透明樹脂充填材16を基準としてみれば、基材10は、透明樹脂フィルム12上に、透明樹脂充填材16を構成する透明樹脂材料からなる透明樹脂層が形成されており、その透明樹脂層間に、表面が露出するようにネットワーク構造の金属配線が設けられている構成でもある。 In the description of the base material 10 so far, the configuration on the transparent resin film 12 has been described with reference to the metal wiring 14. On the other hand, when the transparent resin filler 16 filling the opening 18 is taken as a reference, the base material 10 is formed on the transparent resin film 12 with a transparent resin layer made of a transparent resin material constituting the transparent resin filler 16. In addition, a metal wiring having a network structure is provided between the transparent resin layers so that the surface is exposed.
 次に、基材10の製造方法について説明する。基材10の製造方法は、樹脂膜形成工程と、光硬化工程と、現像工程と、熱硬化工程と、を備える。樹脂膜形成工程では、金属配線14が形成された透明樹脂フィルム12の表面12aに、透明樹脂充填材16となる透明樹脂材料を含む樹脂膜を、金属配線14を埋設するように形成する。光硬化工程では、樹脂膜形成工程後に、透明樹脂フィルム12の裏面12b(表面12aとは反対側の面)側から可視光を照射して、開口部18内の樹脂膜を光硬化させる。現像工程では、光硬化工程後に、樹脂膜を現像処理することによって金属配線14上の樹脂膜を除去する。熱硬化工程では、金属配線14上の樹脂膜を除去した後(現像工程後)に、透明樹脂フィルム12上に残存した樹脂膜(開口部18内に残存する樹脂膜)を加熱処理して熱硬化させることによって透明樹脂充填材16を形成する。 Next, a method for manufacturing the substrate 10 will be described. The manufacturing method of the base material 10 includes a resin film forming step, a photocuring step, a developing step, and a thermosetting step. In the resin film forming step, a resin film containing a transparent resin material to be the transparent resin filler 16 is formed on the surface 12a of the transparent resin film 12 on which the metal wiring 14 is formed so as to embed the metal wiring 14. In the photocuring step, visible light is irradiated from the back surface 12b (surface opposite to the front surface 12a) side of the transparent resin film 12 after the resin film forming step to photocur the resin film in the opening 18. In the development process, after the photocuring process, the resin film on the metal wiring 14 is removed by developing the resin film. In the thermosetting process, after the resin film on the metal wiring 14 is removed (after the development process), the resin film remaining on the transparent resin film 12 (resin film remaining in the opening 18) is heated and heated. The transparent resin filler 16 is formed by curing.
 ここでは、図2(a)及び図2(b)に示したように、表面12aに金属配線14が予め形成された帯状の透明樹脂フィルム12を用いて基材10を製造する方法について説明する。以下、金属配線14が形成された透明樹脂フィルム12を「配線付樹脂フィルム20」と称す。 Here, as shown in FIGS. 2 (a) and 2 (b), a method of manufacturing the base material 10 using the band-shaped transparent resin film 12 in which the metal wiring 14 is previously formed on the surface 12a will be described. . Hereinafter, the transparent resin film 12 on which the metal wiring 14 is formed is referred to as a “resin film with wiring 20”.
 まず、配線付樹脂フィルム20の作製方法(具体的には、金属配線14の形成方法)について説明する。金属配線14の形成方法は、複数の開口部18を有する所定パターンを形成できれば特に限定されない。例えば、金属配線14を作製するため、まず、スパッタリング法、蒸着法又はCVD法などを用い金属の薄膜層を透明樹脂フィルム12上に形成する。その後、金属配線14のパターンとなるように、金属の薄膜層の表面を保護する樹脂膜を、フォトリソグラフィー法にて金属の薄膜層の表面上に形成する。この金属膜付き透明樹脂フィルムを、金属が溶解するエッチング液に浸けることで、金属表面が樹脂膜で保護されていない箇所の金属がエッチングされる。その後、保護用の樹脂膜を剥離することにより所望の金属配線14を得ることができる。また、金属配線14は、例えば、金属粒子が分散されたインクを、インクジェット印刷、グラビア印刷又はスクリーン印刷などの種々の印刷法を用いて金属配線14のパターンに印刷し、その後、焼成することでも形成し得る。 First, a method for producing the resin film with wiring 20 (specifically, a method for forming the metal wiring 14) will be described. The method for forming the metal wiring 14 is not particularly limited as long as a predetermined pattern having a plurality of openings 18 can be formed. For example, in order to produce the metal wiring 14, first, a metal thin film layer is formed on the transparent resin film 12 using a sputtering method, a vapor deposition method, a CVD method, or the like. Thereafter, a resin film for protecting the surface of the metal thin film layer is formed on the surface of the metal thin film layer by photolithography so as to form a pattern of the metal wiring 14. By immersing this transparent resin film with a metal film in an etching solution in which the metal dissolves, the metal at a location where the metal surface is not protected by the resin film is etched. Thereafter, the desired metal wiring 14 can be obtained by peeling off the protective resin film. Further, the metal wiring 14 may be formed by, for example, printing the ink in which the metal particles are dispersed on the pattern of the metal wiring 14 using various printing methods such as ink jet printing, gravure printing, or screen printing, and then baking the ink. Can be formed.
 金属配線14は、例えば、金属配線14の側面14bと透明樹脂フィルム12の表面12aとのなす角度θ1が実質的に90°となるように形成されている。角度θ1は、60°以上100°以下であってもよく、80°以上100°以下であってもよい。金属配線14の側面14bは、金属配線14において開口部18を規定する面である。 The metal wiring 14 is formed, for example, such that an angle θ1 formed by the side surface 14b of the metal wiring 14 and the surface 12a of the transparent resin film 12 is substantially 90 °. The angle θ1 may be not less than 60 ° and not more than 100 °, and may be not less than 80 ° and not more than 100 °. The side surface 14 b of the metal wiring 14 is a surface that defines the opening 18 in the metal wiring 14.
 次に、配線付樹脂フィルム20を用いた基材10の製造方法について説明する。基材10は、例えば、図3に示した基材の製造方法によって製造され得る。図3は、ロールツーロール方式で基材10を製造する場合の方法の一例を模式的に示している。 Next, the manufacturing method of the base material 10 using the resin film 20 with wiring is demonstrated. The base material 10 can be manufactured, for example, by the base material manufacturing method shown in FIG. FIG. 3 schematically shows an example of a method in the case of manufacturing the substrate 10 by a roll-to-roll method.
 ロールツーロール方式による基材10の製造方法では、配線付樹脂フィルム20が巻かれた巻出しロールR1から配線付樹脂フィルム20を繰り出して、搬送ロールR2で搬送した後、巻取りロールR3に配線付樹脂フィルム20を巻き取る間に、透明樹脂充填材16を形成することによって基材10を製造する。 In the manufacturing method of the base material 10 by the roll-to-roll system, the resin film 20 with wiring is unwound from the unwinding roll R1 around which the resin film 20 with wiring is wound, and is transported by the transporting roll R2, and then wired to the winding roll R3. The base material 10 is manufactured by forming the transparent resin filler 16 while the attached resin film 20 is wound up.
 具体的には、図3に模式的に示しているように、巻出しロールR1から繰り出された配線付樹脂フィルム20に対して、樹脂膜形成工程S10、光硬化工程S12、現像工程S14及びベーク工程(熱硬化工程、充填材形成工程)S16を順に実施する。 Specifically, as schematically shown in FIG. 3, the resin film forming step S10, the photocuring step S12, the developing step S14, and the baking are performed on the resin film with wiring 20 fed from the unwinding roll R1. Process (thermosetting process, filler formation process) S16 is implemented in order.
 樹脂膜形成工程S10では、透明樹脂充填材16となる透明樹脂材料を含む塗布液を、塗布装置22から、配線付樹脂フィルム20における金属配線14が形成されている面に塗布して樹脂膜を形成する。塗布液の溶媒としては、透明樹脂材料を溶解できるものであれば特に限定されない。上記溶媒としては、例えば、ジエチレングリコールエチルメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート、3-メトキシブチルアセテート、3-メトキシ-1-ブタノール及びシクロヘキサノンが挙げられる。 In the resin film forming step S10, a coating liquid containing a transparent resin material to be the transparent resin filler 16 is applied from the coating device 22 to the surface of the resin film with wiring 20 on which the metal wiring 14 is formed, and the resin film is applied. Form. The solvent for the coating solution is not particularly limited as long as it can dissolve the transparent resin material. Examples of the solvent include diethylene glycol ethyl methyl ether, propylene glycol 1-monomethyl ether 2-acetate, 3-methoxybutyl acetate, 3-methoxy-1-butanol and cyclohexanone.
 塗布法としては、スロットダイ法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、及び、インクジェットプリント法などを挙げることができる。 As coating methods, slot die method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, An offset printing method, an inkjet printing method, etc. can be mentioned.
 樹脂膜形成工程S10では、図4(a)及び図4(b)に示したように、金属配線14の全体を埋設するように樹脂膜24を形成する。この場合、透明樹脂フィルム12の表面12aに金属配線14が設けられており、且つ、金属配線14の所定パターンにおける複数の開口部18のそれぞれに透明樹脂充填材16が充填されている基材を製造できる。樹脂膜24の厚さは、光硬化工程S2、現像工程S14及びベーク工程S16での透明樹脂材料の収縮度合いなどを考慮して、開口部18の位置での樹脂膜24の厚さが、上記<条件1>及び<条件2>を満たすような厚さとすることができる。 In the resin film formation step S10, as shown in FIGS. 4A and 4B, the resin film 24 is formed so as to embed the entire metal wiring 14. In this case, a substrate in which the metal wiring 14 is provided on the surface 12a of the transparent resin film 12 and each of the plurality of openings 18 in the predetermined pattern of the metal wiring 14 is filled with the transparent resin filler 16 is used. Can be manufactured. In consideration of the degree of shrinkage of the transparent resin material in the photocuring step S2, the developing step S14, and the baking step S16, the thickness of the resin film 24 is equal to the thickness of the resin film 24 at the position of the opening 18. The thickness can satisfy <Condition 1> and <Condition 2>.
 透明樹脂充填材16となる透明樹脂材料は、前述したように、可視光で光硬化可能であって、熱硬化性を有する透明樹脂材料であればよい。 The transparent resin material used as the transparent resin filler 16 may be any transparent resin material that can be photocured with visible light and has thermosetting properties as described above.
 一実施形態における透明樹脂材料の例を説明する。まず、図5を利用して、透明樹脂材料の特性を説明するための試験について説明する。一実施形態における透明樹脂材料としては、下記のとおり、透明樹脂充填材16となる透明樹脂材料を含む樹脂膜と同じ組成の試験用樹脂膜を形成し、試験用樹脂膜を、所定の条件の下で、可視光によって光硬化処理した後に現像処理した場合に、光硬化処理した後、且つ、現像処理前の試験用樹脂膜の厚さをt1とし、現像処理した後の試験用樹脂膜の厚さをt2とした場合、(t2/t1)が所定値以上である透明樹脂材料を用いることができる。 An example of the transparent resin material in one embodiment will be described. First, a test for explaining the characteristics of the transparent resin material will be described with reference to FIG. As the transparent resin material in one embodiment, as described below, a test resin film having the same composition as the resin film containing the transparent resin material to be the transparent resin filler 16 is formed, and the test resin film is subjected to a predetermined condition. Below, when developing after photocuring with visible light, the thickness of the test resin film after photocuring and before development is t1, and the thickness of the test resin film after development is When the thickness is t2, a transparent resin material in which (t2 / t1) is a predetermined value or more can be used.
 例えば、まず、図5に示したように、樹脂膜24と同じ組成を有する試験用樹脂膜24aを、ガラス基板のような支持基板26上に、厚さ350nmの膜が形成されるようにコートする(コート工程)。次いで、試験用樹脂膜24aを可視光により露光処理する(露光工程)。試験用樹脂膜24aの露光処理(光硬化処理)は、試験用樹脂膜24aが形成された面と逆側より行う。露光工程(光硬化工程)後の試験用樹脂膜24aの厚さをt1とする。露光処理の後、現像処理を施す(現像工程)。現像工程後、残存した試験用樹脂膜24aの厚さをt2とする。図5において二点鎖線は、現像工程後の試験用樹脂膜24aの表面を示している。 For example, as shown in FIG. 5, first, a test resin film 24a having the same composition as the resin film 24 is coated on a support substrate 26 such as a glass substrate so that a film having a thickness of 350 nm is formed. (Coating process) Next, the test resin film 24a is exposed to visible light (exposure process). The exposure process (photocuring process) of the test resin film 24a is performed from the side opposite to the surface on which the test resin film 24a is formed. The thickness of the test resin film 24a after the exposure process (photocuring process) is defined as t1. After the exposure process, a development process is performed (development process). After the development step, the thickness of the remaining test resin film 24a is defined as t2. In FIG. 5, the two-dot chain line indicates the surface of the test resin film 24a after the development process.
 上記露光工程(光硬化工程)及び現像工程における条件は、例えば、表1に示した所定の条件である条件C1又は条件C2の通りである。露光工程において、低圧水銀灯(355nm相当)を用いて露光量500mJ/cmで露光処理を行った後に、現像工程において、表1の現像液を用いて浸漬法で表1の浸漬時間で現像処理を行う。コート工程での膜の形成方法としては、特に限定されないが、例えば、スピンコート法が挙げられる。スピンコート法で行う場合、回転数は例えば2500rpmであり、回転保持時間は例えば30秒とし得る。更に、スピンコート法で行う場合、溶媒除去のためにプリベーク工程を行ってもよい。このプリベーク工程での処理としては、例えば、オーブンにおいて温度100℃で3分のプリベーク処理が例示され得る。 The conditions in the exposure process (photocuring process) and the development process are, for example, the conditions C1 or C2 that are the predetermined conditions shown in Table 1. In the exposure process, after performing an exposure process with an exposure amount of 500 mJ / cm 2 using a low-pressure mercury lamp (corresponding to 355 nm), in the development process, the development process is performed using the developer shown in Table 1 in the immersion method shown in Table 1. I do. The method for forming the film in the coating step is not particularly limited, and examples thereof include a spin coating method. In the case of performing the spin coating method, the rotation speed may be 2500 rpm, for example, and the rotation holding time may be 30 seconds, for example. Furthermore, when performing by a spin coat method, you may perform a prebaking process for solvent removal. An example of the treatment in this pre-baking step is a pre-baking treatment in an oven at a temperature of 100 ° C. for 3 minutes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 一実施形態における透明樹脂材料は、上記試験において、(t2/t1)が0.6以上を満たす材料である。 The transparent resin material in one embodiment is a material in which (t2 / t1) satisfies 0.6 or more in the above test.
 透明樹脂材料は、例えば、特許文献2(特開2008-65319号公報)に記載の重合性樹脂化合物を好適に用いることができる。特に、表2に示した組成の透明樹脂材料は、可視光による光硬化特性、現像特性及び密着性に特に優れ、本実施形態の透明樹脂膜として好適に用いることができる。 As the transparent resin material, for example, a polymerizable resin compound described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-65319) can be suitably used. In particular, the transparent resin material having the composition shown in Table 2 is particularly excellent in photocuring characteristics by visible light, development characteristics, and adhesion, and can be suitably used as the transparent resin film of the present embodiment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 光硬化工程S12では、図3に示したように、配線付樹脂フィルム20の裏面12b側に配置された光源28から可視光を照射して樹脂膜24を光硬化させる。光源28の例は、例えば、紫外光をカットするように構成した高圧水銀灯、ガリウムランプ、メタルハライドランプ、キセノンランプ、及び、SSD(Super Small Discharge)ランプを含む。金属配線14は可視光を透過しないので、金属配線14上の樹脂膜24は未露光状態である。すなわち、光硬化工程S12では、金属配線14をマスクとして裏面露光していることになる。 In the photocuring step S12, as shown in FIG. 3, the resin film 24 is photocured by irradiating visible light from the light source 28 arranged on the back surface 12b side of the resin film 20 with wiring. Examples of the light source 28 include, for example, a high-pressure mercury lamp, a gallium lamp, a metal halide lamp, a xenon lamp, and an SSD (Super Small Discharge) lamp configured to cut ultraviolet light. Since the metal wiring 14 does not transmit visible light, the resin film 24 on the metal wiring 14 is in an unexposed state. That is, in the photocuring step S12, the back exposure is performed using the metal wiring 14 as a mask.
 一実施形態において、図6に示したように、可視光は平行光として配線付樹脂フィルム20に照射する。可視光(平行光)の照射方向は、配線付樹脂フィルム20の裏面12bの法線nの方向(法線方向)と、可視光の裏面12bへの照射方向とのなす角度θ2が20°以下を満たす方向であることが好ましい。 In one embodiment, as shown in FIG. 6, the visible light is irradiated to the resin film 20 with wiring as parallel light. The irradiation direction of visible light (parallel light) is such that the angle θ2 formed by the direction of the normal line n (normal direction) of the back surface 12b of the resin film with wiring 20 and the irradiation direction of the visible light back surface 12b is 20 ° or less. It is preferable that the direction is satisfied.
 現像工程S14では、図3に示したように、光硬化工程S12により露光処理(光硬化処理)された樹脂膜24を現像処理する。具体的には、光硬化工程S12を経た配線付樹脂フィルム20を現像容器30内の現像液30aに浸漬させて、樹脂膜24を現像処理する。これにより、図7(a)及び図7(b)に示したように、樹脂膜24における未露光部分(例えば、金属配線14上の樹脂膜24)を除去する。その結果、金属配線14の表面14aが露出する一方、開口部18には樹脂膜24が残存する。ここでは、現像液30aを利用した現像方法を例示したが、露光処理された樹脂膜24を現像できれば、現像方法は特に限定されない。 In the developing step S14, as shown in FIG. 3, the resin film 24 that has been exposed (photocured) in the photocuring step S12 is developed. Specifically, the resin film with wiring 20 that has undergone the photocuring step S12 is immersed in the developer 30a in the developing container 30 to develop the resin film 24. Thereby, as shown in FIG. 7A and FIG. 7B, the unexposed portion (for example, the resin film 24 on the metal wiring 14) in the resin film 24 is removed. As a result, the surface 14 a of the metal wiring 14 is exposed, while the resin film 24 remains in the opening 18. Here, the developing method using the developer 30a is illustrated, but the developing method is not particularly limited as long as the exposed resin film 24 can be developed.
 ベーク工程S16では、図3に示したように、現像工程S14を経た樹脂膜24を加熱装置32で加熱処理する。これによって、樹脂膜24を熱硬化させて透明樹脂充填材16を形成する。加熱装置32での樹脂膜24の加熱処理の方法としては、特に限定されないが、例えば、近赤外光を樹脂膜24に照射する方法が例示される。 In the baking step S16, as shown in FIG. 3, the resin film 24 that has undergone the developing step S14 is heated by the heating device 32. Thereby, the resin film 24 is thermoset to form the transparent resin filler 16. The method for heat treatment of the resin film 24 by the heating device 32 is not particularly limited, and for example, a method of irradiating the resin film 24 with near infrared light is exemplified.
 近赤外光を利用した加熱処理方法の一実施形態では、加熱装置32は、図3に例示したように、樹脂膜24と対向して配置された光源32aを有する。光源32aの例は、近赤外光を選択的に出力できるものであればよい。例えば、光源32aは、近赤外光を含む赤外光を出力可能なランプに、近赤外光を選択的に通すフィルタを取り付けたものであり得る。透明樹脂フィルム12の熱上昇をより低減させるために、透明樹脂フィルム12を冷却しながら加熱処理してもよい。冷却方法としては、例えば、空冷などが挙げられる。近赤外光は、例えば波長0.7μm~5.0μmの光である。 In one embodiment of the heat treatment method using near-infrared light, the heating device 32 includes a light source 32a disposed to face the resin film 24 as illustrated in FIG. The example of the light source 32a should just be what can selectively output near-infrared light. For example, the light source 32a may be a lamp that can output infrared light including near infrared light and a filter that selectively passes near infrared light. In order to further reduce the heat rise of the transparent resin film 12, the transparent resin film 12 may be heat-treated while being cooled. Examples of the cooling method include air cooling. Near-infrared light is, for example, light having a wavelength of 0.7 μm to 5.0 μm.
 樹脂膜24と対向配置された光源32aから近赤外光を出力して樹脂膜24を加熱する場合、配線付樹脂フィルム20の表面(金属配線14が形成されている面)側から樹脂膜24に近赤外光を照射して樹脂膜24を加熱処理していることに対応する。このような加熱処理方法は、樹脂膜24の近赤外光の吸収が透明樹脂フィルム12における近赤外光の吸収より多い場合、近赤外光による透明樹脂フィルム12への影響を低減する観点から好ましい。 When the near infrared light is output from the light source 32a disposed opposite to the resin film 24 to heat the resin film 24, the resin film 24 is formed from the surface of the resin film with wiring 20 (surface on which the metal wiring 14 is formed). This corresponds to heat treatment of the resin film 24 by irradiating with a near infrared light. In such a heat treatment method, when the absorption of near-infrared light in the resin film 24 is more than the absorption of near-infrared light in the transparent resin film 12, the viewpoint of reducing the influence on the transparent resin film 12 by the near-infrared light To preferred.
 樹脂膜24の近赤外光の吸収が透明樹脂フィルム12における近赤外光の吸収より多いとは、所定の波長領域(波長0.7μm~2.5μm)の近赤外光における樹脂膜24の吸収スペクトルの積分値が、上記所定の波長領域の近赤外光における透明樹脂フィルム12の吸収スペクトルの積分値より大きいことを意味する。 The absorption of near-infrared light in the resin film 24 is more than the absorption of near-infrared light in the transparent resin film 12 means that the resin film 24 in near-infrared light in a predetermined wavelength region (wavelength 0.7 μm to 2.5 μm). This means that the integral value of the absorption spectrum is larger than the integral value of the absorption spectrum of the transparent resin film 12 in the near-infrared light in the predetermined wavelength region.
 PENは、近赤外光に吸収がほとんどないため、透明樹脂フィルム12がPENから構成されている場合は、近赤外光の照射による加熱処理は有効である。 Since PEN hardly absorbs near-infrared light, heat treatment by irradiation with near-infrared light is effective when the transparent resin film 12 is made of PEN.
 ベーク工程S16を経て開口部18に透明樹脂充填材16が配置(例えば充填)された配線付樹脂フィルム20としての基材10は、図3に示したように、巻取りロールR3に巻き取られる。 The base material 10 as the resin film with wiring 20 in which the transparent resin filler 16 is disposed (for example, filled) in the opening 18 through the baking step S16 is wound around the winding roll R3 as shown in FIG. .
 以上説明した基材10の製造方法では、可視光で光硬化可能な透明樹脂材料を用いて透明樹脂充填材16を形成している。透明樹脂フィルム12は、可視光を実質的に吸収しないことから、透明樹脂フィルム12の裏面側から可視光を樹脂膜24に照射しても、可視光は透明樹脂フィルム12の影響を受けずに樹脂膜24に照射される。 In the manufacturing method of the base material 10 described above, the transparent resin filler 16 is formed using a transparent resin material that can be photocured with visible light. Since the transparent resin film 12 does not substantially absorb visible light, even if the resin film 24 is irradiated with visible light from the back side of the transparent resin film 12, the visible light is not affected by the transparent resin film 12. The resin film 24 is irradiated.
 透明樹脂フィルム(例えば、プラスチックフィルム)12は、通常、紫外光の波長領域に吸収を有する。そのため、仮に、樹脂膜を紫外線硬化樹脂で構成し、紫外線を透明樹脂フィルム12側から照射すれば、透明樹脂フィルム12に紫外光の一部が吸収され、樹脂膜の光硬化が不十分となり、透明樹脂充填材を適切に形成できない恐れがある。或いは、より多くの時間を光硬化に要する。 The transparent resin film (for example, plastic film) 12 usually has absorption in the wavelength region of ultraviolet light. Therefore, if the resin film is composed of an ultraviolet curable resin and the ultraviolet light is irradiated from the transparent resin film 12 side, a part of the ultraviolet light is absorbed by the transparent resin film 12, and the resin film is insufficiently cured. There is a possibility that the transparent resin filler cannot be formed properly. Alternatively, more time is required for photocuring.
 これに対して、図3に示した基材10の製造方法では、透明樹脂フィルム12により影響を受けない可視光で樹脂膜24を光硬化可能である。そのため、照射する可視光のエネルギーを光硬化に有効に利用できるので、例えば、紫外光を利用する場合より、樹脂膜24を確実に且つより短い時間で光硬化させることができる。そのため、基材10の生産性の向上を図ることができる。 In contrast, in the method of manufacturing the base material 10 shown in FIG. 3, the resin film 24 can be photocured with visible light that is not affected by the transparent resin film 12. Therefore, the energy of visible light to be irradiated can be effectively used for photocuring, and therefore, for example, the resin film 24 can be photocured more reliably and in a shorter time than when ultraviolet light is used. Therefore, the productivity of the base material 10 can be improved.
 光硬化工程S12では、透明樹脂フィルム12側から樹脂膜24を露光しているので、金属配線14がマスクとして機能する。よって、可視光によって樹脂膜24が露光されても、金属配線14の表面14a上の樹脂膜24は未露光状態である。これにより、現像工程S14において、表面14a上の樹脂膜24を除去できる。 In the photocuring step S12, the metal film 14 functions as a mask because the resin film 24 is exposed from the transparent resin film 12 side. Therefore, even if the resin film 24 is exposed to visible light, the resin film 24 on the surface 14a of the metal wiring 14 is in an unexposed state. Thereby, the resin film 24 on the surface 14a can be removed in the development step S14.
 これにより、基材10上に、例えば、有機EL素子の電極(例えば陽極)を形成したとしても、その電極と金属配線14との間に、絶縁物としての樹脂が介在しないので、金属配線14を介して電極に電力を効率的に供給できる。 Thereby, even if an electrode (for example, an anode) of an organic EL element is formed on the base material 10, no resin as an insulator is interposed between the electrode and the metal wiring 14. Power can be efficiently supplied to the electrode via
 透明樹脂充填材16及び金属配線14が前述した<条件1>及び<条件2>を満たす場合、透明樹脂充填材16及び金属配線14が実質的に段差無く繋がり、基材10の表面10aがより平坦な面になる。そのため、例えば、有機EL素子を構成する電極又は機能層などの層を表面10a上に形成したとしても、複数の層のそれぞれの厚さが均一になる。この場合、電荷の移動が阻害されにくく、結果として、発光効率が向上する。 When the transparent resin filler 16 and the metal wiring 14 satisfy <Condition 1> and <Condition 2> described above, the transparent resin filler 16 and the metal wiring 14 are connected substantially without a step, and the surface 10a of the substrate 10 is more It becomes a flat surface. Therefore, for example, even if a layer such as an electrode or a functional layer constituting the organic EL element is formed on the surface 10a, the thickness of each of the plurality of layers becomes uniform. In this case, the movement of charges is not easily inhibited, and as a result, the light emission efficiency is improved.
 金属配線14の幅が10μm以上である形態では、金属配線14の表面14a上の樹脂膜24をより確実に除去できる。この点を、金属配線14の幅が10μmより小さい場合と比較して説明する。 In the form in which the width of the metal wiring 14 is 10 μm or more, the resin film 24 on the surface 14a of the metal wiring 14 can be more reliably removed. This point will be described in comparison with the case where the width of the metal wiring 14 is smaller than 10 μm.
 可視光の照射により樹脂膜24を光硬化させる際、金属配線14がマスクとして機能するが、金属配線14の側面14b近傍では、光の回折によって可視光の一部が金属配線14の表面14a上の樹脂膜24にも照射される場合がある。金属配線14の幅が10μmより小さいと、このような回折による影響で、金属配線14の幅方向において、表面14a上の樹脂膜24が露光される割合が相対的に多くなる。この場合、現像処理後に、表面14a上に樹脂膜24が残存し易い。これに対して、金属配線14の幅が10μm以上であれば、回折による影響が低減され表面14a上の樹脂膜24が露光されにくいので、表面14a上における樹脂膜24を相対的により多く除去できる。 When the resin film 24 is photocured by irradiation of visible light, the metal wiring 14 functions as a mask, but in the vicinity of the side surface 14b of the metal wiring 14, a part of visible light is on the surface 14a of the metal wiring 14 due to light diffraction. The resin film 24 may also be irradiated. If the width of the metal wiring 14 is smaller than 10 μm, the ratio of exposure of the resin film 24 on the surface 14a in the width direction of the metal wiring 14 is relatively increased due to the influence of such diffraction. In this case, the resin film 24 tends to remain on the surface 14a after the development processing. On the other hand, if the width of the metal wiring 14 is 10 μm or more, the influence of diffraction is reduced, and the resin film 24 on the surface 14a is difficult to be exposed. Therefore, the resin film 24 on the surface 14a can be relatively more removed. .
 金属配線14の側面14bと、透明樹脂フィルム12の表面12aとのなす角度θ1が60°以上100°以下である形態では、側面14bは、実質的に表面12aに対して垂直である。そのため、可視光を樹脂膜24に照射する際、金属配線14の表面14a上の樹脂膜24に可視光が照射されにくい。よって、現像工程S14において、表面14a上の樹脂膜24をより確実に除去できる。角度θ1が80°以上100°以下である形態では、このような効果を更に好適に得ることができる。 In the form in which the angle θ1 formed between the side surface 14b of the metal wiring 14 and the surface 12a of the transparent resin film 12 is 60 ° or more and 100 ° or less, the side surface 14b is substantially perpendicular to the surface 12a. Therefore, when the resin film 24 is irradiated with visible light, the resin film 24 on the surface 14 a of the metal wiring 14 is not easily irradiated with visible light. Therefore, the resin film 24 on the surface 14a can be more reliably removed in the developing step S14. In an embodiment in which the angle θ1 is not less than 80 ° and not more than 100 °, such an effect can be obtained more suitably.
 図6を利用して説明した可視光の照射方法の形態では、平行光としての可視光の照射方向(進行方向)と、透明樹脂フィルム12の裏面12bの法線nの方向(法線方向)とのなす角度θ2が20°以内である。この場合、平行光としての可視光は、透明樹脂フィルム12に実質的に垂直に入射し易く、金属配線14の表面14a上の樹脂膜24に可視光が照射されにくい。よって、現像工程S14において、表面14a上の樹脂膜24がより確実に除去される。特に、金属配線14の側面14bが透明樹脂フィルム12の表面12aに実質的に垂直である場合に、図6に示した可視光の照射方法は有効である。 In the form of the visible light irradiation method described using FIG. 6, the irradiation direction (traveling direction) of visible light as parallel light and the direction of the normal line n (normal direction) of the back surface 12 b of the transparent resin film 12. Is within 20 °. In this case, visible light as parallel light is likely to enter the transparent resin film 12 substantially perpendicularly, and the resin film 24 on the surface 14 a of the metal wiring 14 is not easily irradiated with visible light. Therefore, in the developing step S14, the resin film 24 on the surface 14a is more reliably removed. In particular, when the side surface 14b of the metal wiring 14 is substantially perpendicular to the surface 12a of the transparent resin film 12, the visible light irradiation method shown in FIG. 6 is effective.
 透明樹脂充填材16となる透明樹脂材料が、図5を利用して説明した(t2/t1)が0.6以上(百分率で表した場合、(t2/t1)が60%以上である)という条件を満たす場合、その透明樹脂材料は、可視光に対して感度がよく、固まり易い。金属配線14の側面14bに接する樹脂膜24(又は透明樹脂材料)は、開口部18の中央部分より可視光が照射されにくい、すなわち樹脂膜が吸収するエネルギーが小さい場合がある。透明樹脂材料が可視光に対して感度がよいと、より少ない可視光の照射エネルギーで光硬化可能である。よって、図5を利用して説明した(t2/t1)に関する条件を満たす透明樹脂材料を用いれば、樹脂膜24の厚さをT3とし、金属配線14の厚さをT4としたとき、現像工程S4を経た後に、開口部18に残存した樹脂膜24と金属配線14との境界におけるそれらの厚さの比(T3/T4)が0.8より大きく1.2より小さくすることが可能である。その結果、上記<条件1>及び<条件2>を満たす基材10を製造し易い。 The transparent resin material used as the transparent resin filler 16 is (t2 / t1) described with reference to FIG. 5 being 0.6 or more (when expressed in percentage, (t2 / t1) is 60% or more). When the condition is satisfied, the transparent resin material is sensitive to visible light and easily hardens. The resin film 24 (or transparent resin material) in contact with the side surface 14b of the metal wiring 14 may be less likely to be irradiated with visible light than the central portion of the opening 18, that is, the energy absorbed by the resin film may be small. If the transparent resin material is sensitive to visible light, it can be cured with less visible light irradiation energy. Therefore, when the transparent resin material that satisfies the condition regarding (t2 / t1) described with reference to FIG. 5 is used, when the thickness of the resin film 24 is T3 and the thickness of the metal wiring 14 is T4, the developing process. After passing through S4, the thickness ratio (T3 / T4) at the boundary between the resin film 24 remaining in the opening 18 and the metal wiring 14 can be made larger than 0.8 and smaller than 1.2. . As a result, it is easy to manufacture the substrate 10 that satisfies the above <Condition 1> and <Condition 2>.
 樹脂膜24が透明樹脂フィルム12より近赤外光を多く吸収する形態では、前述したように、例えば、ベーク工程S16において透明樹脂フィルム12の表面側(すなわち、樹脂膜24側)から近赤外光を樹脂膜24に照射することで樹脂膜24を加熱処理する。この場合、近赤外光が主に樹脂膜24で吸収されるので、透明樹脂フィルム12がガラス転移温度以下の温度をより確実に維持しながら樹脂膜24を加熱できる。そのため、ベーク工程S16でのベーク処理による透明樹脂フィルム12の変形を抑制でき、製造歩留まりが向上するため、生産性が更に向上する。 In the form in which the resin film 24 absorbs more near-infrared light than the transparent resin film 12, as described above, for example, near-infrared from the surface side (that is, the resin film 24 side) of the transparent resin film 12 in the baking step S16. The resin film 24 is heated by irradiating the resin film 24 with light. In this case, since near-infrared light is mainly absorbed by the resin film 24, the resin film 24 can be heated while the transparent resin film 12 maintains the temperature below the glass transition temperature more reliably. Therefore, the deformation of the transparent resin film 12 due to the baking process in the baking step S16 can be suppressed, and the manufacturing yield is improved, so that the productivity is further improved.
 上記製造方法の説明では、金属配線14が予め形成された透明樹脂フィルム12を準備し、開口部18を透明樹脂充填材16で埋める形態を説明した。しかしながら、例えば、透明樹脂フィルム12に対して、金属配線14及び透明樹脂充填材16を順に形成してもよい。また、樹脂膜形成工程S10では、金属配線14の全体を埋設するように樹脂膜24を形成することに限られず、複数の開口部18の少なくとも一つの開口部内に樹脂膜24が配置されると共に金属配線14の少なくとも一部が樹脂膜24で埋設されていればよい。基材10の製造方法は、ロールツーロール方式の製造方法に限定されない。例えば、枚葉の透明樹脂フィルム12に対して、金属配線14及び透明樹脂充填材16を形成してもよい。基材10を製造する際、樹脂膜形成工程S10、光硬化工程S12、現像工程S14及びベーク工程S16の少なくとも一つをロールツーロール方式で行ってもよい。例えば、樹脂膜形成工程S10、光硬化工程S12及び現像工程S14をロールツーロール方式で行い、改めて、ベーク工程S16をロールツーロール方式で行ってもよい。 In the above description of the manufacturing method, the transparent resin film 12 in which the metal wiring 14 is formed in advance is prepared, and the opening 18 is filled with the transparent resin filler 16. However, for example, the metal wiring 14 and the transparent resin filler 16 may be sequentially formed on the transparent resin film 12. Further, in the resin film forming step S10, the resin film 24 is not limited to be formed so as to embed the entire metal wiring 14, and the resin film 24 is disposed in at least one of the plurality of openings 18. It suffices that at least a part of the metal wiring 14 is embedded with the resin film 24. The manufacturing method of the substrate 10 is not limited to the roll-to-roll manufacturing method. For example, you may form the metal wiring 14 and the transparent resin filler 16 with respect to the transparent resin film 12 of a sheet | seat. When manufacturing the base material 10, you may perform at least one of resin film formation process S10, photocuring process S12, image development process S14, and baking process S16 by a roll-to-roll system. For example, the resin film forming step S10, the photocuring step S12 and the developing step S14 may be performed by a roll-to-roll method, and the baking step S16 may be performed again by a roll-to-roll method.
(第2の実施形態)
 第2の実施形態として、第1の実施形態の製造方法で製造された基材10を備えた有機EL素子について説明する。
(Second Embodiment)
As the second embodiment, an organic EL element including the base material 10 manufactured by the manufacturing method of the first embodiment will be described.
 図8に模式的に示した有機EL素子38は、陽極(第1電極)40aと、陰極(第2電極)40bと、陽極40a及び陰極40bの間に配置された発光層40cとを含む積層体40を備え、上記積層体40は、基材10上に設けられている。すなわち、有機EL素子38は、基材10の金属配線14上に配置された陽極40aと、陽極40a上に配置された陰極40bと、陽極40aと陰極40bとの間に配置された発光層と、を備える。基材10の構成は、図1(a)及び図1(b)に示した基材10の構成と同じであるため説明を省略する。 The organic EL element 38 schematically shown in FIG. 8 includes a laminate including an anode (first electrode) 40a, a cathode (second electrode) 40b, and a light emitting layer 40c disposed between the anode 40a and the cathode 40b. The laminated body 40 is provided on the base material 10. That is, the organic EL element 38 includes an anode 40a disposed on the metal wiring 14 of the substrate 10, a cathode 40b disposed on the anode 40a, and a light emitting layer disposed between the anode 40a and the cathode 40b. . Since the structure of the base material 10 is the same as the structure of the base material 10 shown in FIG. 1A and FIG.
 陽極40aには、金属酸化物、金属硫化物及び金属などからなる薄膜を用いることができ、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀及び/又は銅などからなる薄膜を用いることができる。発光層40cから放射される光が陽極40aを通って素子外に出射する構成の有機EL素子の場合、陽極40aには、光透過性を示す電極が用いられる。 A thin film made of metal oxide, metal sulfide, metal, or the like can be used for the anode 40a. Specifically, indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium Tin Oxide: abbreviated as ITO) A thin film made of indium zinc oxide (Indium Zinc Oxide: abbreviation IZO), gold, platinum, silver, and / or copper can be used. In the case of an organic EL element configured to emit light emitted from the light emitting layer 40c to the outside of the element through the anode 40a, an electrode exhibiting light transmittance is used for the anode 40a.
 陰極40bの材料としては、仕事関数が小さく、発光層40cへの電子注入が容易であり、且つ、電気伝導度の高い材料が好ましい。また、陽極40a側から光を取出す構成の有機EL素子では、発光層40cから放射される光を陰極40bで陽極40a側に反射するために、陰極40bの材料としては、可視光の反射率の高い材料が好ましい。陰極40bには、例えばアルカリ金属、アルカリ土類金属、遷移金属及び周期表の13族金属などを用いることができる。また、陰極40bとしては、導電性金属酸化物及び導電性有機物などからなる透明導電性電極を用いることができる。 The material of the cathode 40b is preferably a material having a small work function, easy electron injection into the light emitting layer 40c, and high electrical conductivity. Further, in the organic EL element configured to extract light from the anode 40a side, the light emitted from the light emitting layer 40c is reflected by the cathode 40b to the anode 40a side. High materials are preferred. For the cathode 40b, for example, an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used. Further, as the cathode 40b, a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like can be used.
 発光層40cは、有機材料を含む。発光層40cは、通常、主として蛍光及び/又はりん光を発光する有機物、又は、該有機物とこれを補助するドーパントとから形成される。ドーパントは、例えば、発光効率を向上させるため、又は、発光波長を変化させるために加えられる。なお、発光層40cに含まれる有機物は、低分子化合物でもよく、高分子化合物でもよい。発光層40cを構成する発光材料としては、例えば、公知の色素系材料、金属錯体系材料、高分子系材料及びドーパント材料を挙げることができる。 The light emitting layer 40c contains an organic material. The light emitting layer 40c is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance. The dopant is added, for example, to improve the light emission efficiency or to change the light emission wavelength. In addition, the organic substance contained in the light emitting layer 40c may be a low molecular compound or a high molecular compound. Examples of the light emitting material constituting the light emitting layer 40c include known dye-based materials, metal complex-based materials, polymer-based materials, and dopant materials.
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。 Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
 金属錯体系材料としては、例えば、希土類金属(Tb、Eu、Dyなど)、Al、Zn、Be、Ir、Ptなどを中心金属に有し、且つ、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができる。 Examples of metal complex materials include rare earth metals (Tb, Eu, Dy, etc.), Al, Zn, Be, Ir, Pt, etc. as the central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzo Examples thereof include metal complexes having an imidazole or quinoline structure as a ligand.
 高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料又は金属錯体系発光材料を高分子化したものなどを挙げることができる。 As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above dye materials or metal complex light emitting materials are polymerized. The thing etc. can be mentioned.
 上記発光材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体及びそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。 Among the above light emitting materials, examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives.
 また、緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体及びそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。 In addition, examples of materials that emit green light include quinacridone derivatives, coumarin derivatives and polymers thereof, polyparaphenylene vinylene derivatives, and polyfluorene derivatives.
 また、赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物及びそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。 In addition, examples of the material that emits red light include a coumarin derivative, a thiophene ring compound and a polymer thereof, a polyparaphenylene vinylene derivative, a polythiophene derivative, and a polyfluorene derivative.
 ドーパント材料としては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。 Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squarylium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, and phenoxazone.
 陽極40a、陰極40b及び発光層40cは、蒸着法又は塗布法によって形成することができる。塗布法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法などを挙げることができる。パターン塗布が必要な場合には、陽極40a、陰極40b及び発光層40cは、パターン塗布が可能な塗布法によって形成され、特に、インクジェットプリント法によって形成されることが好ましい。 The anode 40a, the cathode 40b, and the light emitting layer 40c can be formed by a vapor deposition method or a coating method. As the coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method, spray coating method, Examples thereof include a nozzle coating method, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an ink jet printing method. When pattern coating is required, the anode 40a, the cathode 40b, and the light emitting layer 40c are formed by a coating method capable of pattern coating, and particularly preferably formed by an ink jet printing method.
 なお、塗布法に用いるインク(塗布液)の溶媒としては、各材料を溶解させるものであれば特に制限はない。上記溶媒としては、例えば、クロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒;テトラヒドロフランなどのエーテル系溶媒;トルエン、キシレンなどの芳香族炭化水素系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒;及び水を挙げることができる。 The solvent for the ink (coating liquid) used in the coating method is not particularly limited as long as it can dissolve each material. Examples of the solvent include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; And ester solvents such as butyl acetate and ethyl cellosolve acetate; and water.
 有機EL素子38は、基材10上に、陽極40a、発光層40c及び陰極40bを順次形成することによって製造され得る。 The organic EL element 38 can be manufactured by sequentially forming the anode 40a, the light emitting layer 40c, and the cathode 40b on the base material 10.
 有機EL素子38を製造する際の基材10が有する透明樹脂充填材16は、熱硬化性を有すると共に、可視光によって光硬化する透明樹脂材料又はその硬化物を含む。そのため、基材10の製造時において、透明樹脂材料を可視光で光硬化させた後に熱硬化させることで透明樹脂充填材16を形成できる。透明樹脂材料の光硬化の際に、透明樹脂フィルム12に実質的に吸収されない可視光を用いることができるので、効率的に透明樹脂材料を光硬化できる。これにより、基材10の生産性が向上するので、結果として、有機EL素子38の生産性も向上できる。 The transparent resin filler 16 included in the substrate 10 when the organic EL element 38 is manufactured includes a transparent resin material that is thermosetting and photocured by visible light or a cured product thereof. Therefore, at the time of manufacturing the base material 10, the transparent resin filler 16 can be formed by photocuring the transparent resin material with visible light and then thermosetting. In the case of photocuring the transparent resin material, visible light that is not substantially absorbed by the transparent resin film 12 can be used, so that the transparent resin material can be efficiently photocured. Thereby, since the productivity of the base material 10 improves, the productivity of the organic EL element 38 can also be improved as a result.
 有機EL素子38が有する基材10を、第1の実施形態で説明した製造方法により製造する場合、第1の実施形態で説明したように、効率的に基材10を製造できる。その結果、有機EL素子38の生産性も向上する。 When manufacturing the base material 10 which the organic EL element 38 has by the manufacturing method described in the first embodiment, the base material 10 can be efficiently manufactured as described in the first embodiment. As a result, the productivity of the organic EL element 38 is also improved.
 また、第1の実施形態で例示したように基材10をロールツーロール方式で製造している場合、基材10は、例えば、可撓性を有する。この場合、有機EL素子38もロールツーロール方式で製造可能である。その結果、有機EL素子38の生産性も更に向上する。 Moreover, when the base material 10 is manufactured by the roll-to-roll method as exemplified in the first embodiment, the base material 10 has flexibility, for example. In this case, the organic EL element 38 can also be manufactured by a roll-to-roll method. As a result, the productivity of the organic EL element 38 is further improved.
 有機EL素子38では、基材10が有する金属配線14に接して陽極40aが設けられている。そのため、金属配線14を介して陽極40aに電力を供給可能である。金属配線14は、複数の開口部18を有する所定パターンで形成されていることから、開口部18を有さない場合、或いは、陽極40aに直接電力を供給する場合に比べて、陽極40aの中央(有機EL素子38の平面視形状における中央)部分に対する電圧降下を低減しながら陽極40aに電力を供給可能である。その結果、有機EL素子38から照射される光の輝度均一性が向上する。 In the organic EL element 38, an anode 40a is provided in contact with the metal wiring 14 of the substrate 10. Therefore, electric power can be supplied to the anode 40a through the metal wiring 14. Since the metal wiring 14 is formed in a predetermined pattern having a plurality of openings 18, the center of the anode 40a is compared with the case where the openings 18 are not provided or when power is directly supplied to the anode 40a. Electric power can be supplied to the anode 40a while reducing a voltage drop with respect to the (center in the plan view shape of the organic EL element 38) portion. As a result, the luminance uniformity of the light emitted from the organic EL element 38 is improved.
 金属配線14が呈する所定パターンにおける複数の開口部18には、透明樹脂充填材16が配置(充填等)されていることから、基材10の表面10a(陽極40aとの界面)は平滑化されている。仮に、複数の開口部18に透明樹脂充填材16が配置(充填等)されていない場合、基材の表面に凹凸が生じることになる。このような基材表面の凹凸は、電流リークの原因となり、発光効率が低下する場合がある。これに対して、基材10の表面10aが平滑化されていれば、陽極40a、発光層40c及び陰極40bのそれぞれをほぼ均一な厚さで形成可能である。平坦な陽極40a上に形成される発光層40cは、局所的に薄くなる箇所が無いので、電流リークが生じにくい。その結果、有機EL素子38の発光効率の向上を図ることができる。特に、第1の実施形態で説明した<条件1>及び<条件2>を満たす基材10では、より平坦な表面10aを実現できているので、有機EL素子38の発光効率の向上を更に図ることができる。 Since the transparent resin filler 16 is disposed (filled or the like) in the plurality of openings 18 in the predetermined pattern exhibited by the metal wiring 14, the surface 10a of the base material 10 (interface with the anode 40a) is smoothed. ing. If the transparent resin filler 16 is not disposed (filled or the like) in the plurality of openings 18, unevenness is generated on the surface of the base material. Such irregularities on the surface of the base material may cause current leakage, which may reduce the light emission efficiency. On the other hand, if the surface 10a of the base material 10 is smoothed, each of the anode 40a, the light emitting layer 40c, and the cathode 40b can be formed with a substantially uniform thickness. Since the light emitting layer 40c formed on the flat anode 40a has no locally thinned portion, current leakage hardly occurs. As a result, the light emission efficiency of the organic EL element 38 can be improved. In particular, in the base material 10 satisfying <Condition 1> and <Condition 2> described in the first embodiment, a flatter surface 10a can be realized, so that the light emission efficiency of the organic EL element 38 is further improved. be able to.
 基材10が有する透明樹脂フィルム12上に設けられる金属配線14は、複数の開口部18を有する所定パターンで形成されており、開口部18には透明樹脂充填材16が埋められている。そのため、陽極40a側から発光層40cの光を取り出すことが可能である。 The metal wiring 14 provided on the transparent resin film 12 included in the substrate 10 is formed in a predetermined pattern having a plurality of openings 18, and the openings 18 are filled with a transparent resin filler 16. Therefore, it is possible to extract light from the light emitting layer 40c from the anode 40a side.
 図8では、陽極40aと陰極40bとの間に発光層40cのみが設けられている例を示したが、陽極40aと陰極40bとの間には発光層40c以外の機能層が設けられてもよい。以下、具体的に説明する。 Although FIG. 8 shows an example in which only the light emitting layer 40c is provided between the anode 40a and the cathode 40b, a functional layer other than the light emitting layer 40c may be provided between the anode 40a and the cathode 40b. Good. This will be specifically described below.
 陰極40bと発光層40cとの間に設けられる層の例としては、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極40bと発光層40cとの間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極40bに接する層を電子注入層といい、この電子注入層を除く層を電子輸送層という。 Examples of layers provided between the cathode 40b and the light emitting layer 40c include an electron injection layer, an electron transport layer, and a hole blocking layer. When both the electron injection layer and the electron transport layer are provided between the cathode 40b and the light emitting layer 40c, the layer in contact with the cathode 40b is referred to as an electron injection layer, and the layers other than the electron injection layer are referred to as an electron transport layer. That's it.
 電子注入層は、陰極40bからの電子注入効率を改善する機能を有する。電子輸送層は、陰極、電子注入層又は陰極40bにより近い電子輸送層からの電子注入を改善する機能を有する。 The electron injection layer has a function of improving the efficiency of electron injection from the cathode 40b. The electron transport layer has a function of improving electron injection from the electron transport layer closer to the cathode, the electron injection layer, or the cathode 40b.
 正孔ブロック層は、正孔の輸送を堰き止める機能を有する層である。電子注入層及び/又は電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。 The hole blocking layer is a layer having a function of blocking hole transport. When the electron injection layer and / or the electron transport layer have a function of blocking hole transport, these layers may also serve as the hole blocking layer.
 正孔ブロック層が正孔の輸送を堰き止める機能について、例えば、正孔電流のみを流す有機EL素子を作製し、その電流値の減少で堰き止める効果を確認することができる。 Regarding the function of blocking the hole transport by the hole blocking layer, for example, an organic EL element that allows only the hole current to flow can be produced, and the blocking effect can be confirmed by reducing the current value.
 陽極40aと発光層40cとの間に設けられる層としては、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。陽極40aに接する層を正孔注入層という。 Examples of the layer provided between the anode 40a and the light emitting layer 40c include a hole injection layer, a hole transport layer, and an electron block layer. The layer in contact with the anode 40a is referred to as a hole injection layer.
 正孔注入層は、陽極40aからの正孔注入効率を改善する機能を有する。正孔輸送層は、陽極、正孔注入層又は陽極40aにより近い正孔輸送層からの正孔注入を改善する機能を有する。 The hole injection layer has a function of improving the hole injection efficiency from the anode 40a. The hole transport layer has a function of improving the hole injection from the anode, the hole injection layer, or the hole transport layer closer to the anode 40a.
 電子ブロック層は、電子の輸送を堰き止める機能を有する。正孔注入層及び/又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層を兼ねることがある。 The electron block layer has a function of blocking electron transport. When the hole injection layer and / or the hole transport layer has a function of blocking electron transport, these layers may also serve as an electron blocking layer.
 電子ブロック層が電子の輸送を堰き止める機能について、例えば、電子電流のみを流す有機EL素子を作製し、測定された電流値の減少で電子の輸送を堰き止める効果を確認することができる。 Regarding the function of the electron blocking layer blocking electron transport, for example, an organic EL element that allows only electron current to flow can be produced, and the effect of blocking electron transport can be confirmed by a decrease in the measured current value.
 有機EL素子38において、基材10上に設けられる層構成の例を以下に示す。
  a)陽極/発光層/陰極
  b)陽極/正孔注入層/発光層/陰極
  c)陽極/正孔注入層/発光層/電子注入層/陰極
  d)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
  e)陽極/正孔注入層/正孔輸送層/発光層/陰極
  f)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
  g)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
  h)陽極/発光層/電子注入層/陰極
  i)陽極/発光層/電子輸送層/電子注入層/陰極
 記号「/」は、記号「/」の両側の層同士が接合していることを意味している。上記a)の層構成が、図8に示した層構成に対応する。
In the organic EL element 38, an example of a layer configuration provided on the substrate 10 is shown below.
a) Anode / light emitting layer / cathode b) Anode / hole injection layer / light emitting layer / cathode c) Anode / hole injection layer / light emitting layer / electron injection layer / cathode d) Anode / hole injection layer / light emitting layer / Electron transport layer / electron injection layer / cathode e) Anode / hole injection layer / hole transport layer / light emitting layer / cathode f) Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode g ) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode h) Anode / light emitting layer / electron injection layer / cathode i) Anode / light emitting layer / electron transport layer / electron injection Layer / Cathode The symbol “/” means that the layers on both sides of the symbol “/” are joined together. The layer configuration of a) corresponds to the layer configuration shown in FIG.
 正孔注入層、正孔郵送層、電子輸送層及び電子注入層のそれぞれの材料としては、公知の材料を用いることができる。正孔注入層、正孔郵送層、電子輸送層及び電子注入層のそれぞれは、例えば、発光層と同様に塗布法により形成できる。 As each material of the hole injection layer, the hole mailing layer, the electron transport layer, and the electron injection layer, known materials can be used. Each of the hole injection layer, the hole mailing layer, the electron transport layer, and the electron injection layer can be formed, for example, by a coating method in the same manner as the light emitting layer.
 第2の実施形態の有機EL素子38は、単層の発光層40cを有していてもよく、2層以上の発光層40cを有していてもよい。上記a)~i)の層構成のうちのいずれか1つにおいて、陽極40aと陰極40bとの間に配置された積層構造を「構造単位A」とすると、2層の発光層40cを有する有機EL素子の構成として、例えば、下記j)に示す層構成を挙げることができる。2個ある(構造単位A)の層構成は、互いに同じであってもよく、異なっていてもよい。
  j)陽極/(構造単位A)/電荷発生層/(構造単位A)/陰極
The organic EL element 38 of the second embodiment may include a single light emitting layer 40c or may include two or more light emitting layers 40c. In any one of the layer configurations of a) to i) above, when the stacked structure disposed between the anode 40a and the cathode 40b is “structural unit A”, an organic layer having two light emitting layers 40c is provided. Examples of the configuration of the EL element include the layer configuration shown in j) below. The layer configuration of two (structural unit A) may be the same or different.
j) Anode / (structural unit A) / charge generation layer / (structural unit A) / cathode
 ここで、電荷発生層とは、電界を印加することにより正孔と電子とを発生する層である。電荷発生層としては、例えば、酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、酸化モリブデンなどからなる薄膜を挙げることができる。 Here, the charge generation layer is a layer that generates holes and electrons by applying an electric field. Examples of the charge generation layer include a thin film made of vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, or the like.
 また、「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、例えば、以下のk)に示す層構成を挙げることができる。
  k)陽極/(構造単位B)x/(構造単位A)/陰極
Further, assuming that “(structural unit A) / charge generation layer” is “structural unit B”, examples of the configuration of the organic EL element having three or more light emitting layers include the layer configuration shown in the following k). Can do.
k) Anode / (Structural unit B) x / (Structural unit A) / Cathode
 記号「x」は、2以上の整数を表し、「(構造単位B)x」は、(構造単位B)がx段積層された積層体を表す。また、複数ある(構造単位B)の層構成は、同じでもよく、異なっていてもよい。 Symbol “x” represents an integer of 2 or more, and “(Structural unit B) x” represents a stacked body in which (Structural unit B) is stacked in x stages. Further, a plurality of (structural unit B) layer configurations may be the same or different.
 電荷発生層を設けずに、複数の発光層40cを直接的に積層させて有機EL素子を構成してもよい。 The organic EL element may be configured by directly laminating a plurality of light emitting layers 40c without providing a charge generation layer.
 基材10上に形成される層の順序、層の数及び各層の厚さは、発光効率又は寿命を勘案して適宜設定することができる。有機EL素子38は、通常、陽極40aを基材10側に配置して基材10上に設けられるが、陰極40bを基材10側に配置して基材10上に設けてもよい。例えば、上記a)~k)の層構成を基材10上に有する各有機EL素子を作製する場合、陽極40aを基材10側に配置する形態では、陽極40a側(各層構成a~kの左側)から順に各層を基材10上に積層し、陰極40bを基材10側に配置する形態では、陰極40b(各層構成a~kの右側)から順に各層を基材10上に積層する。有機EL素子38は、基材10側から光を出射するボトムエミッション型であってもよく、基材10とは反対側から光を出射するトップエミッション型であってもよい。 The order of the layers formed on the substrate 10, the number of layers, and the thickness of each layer can be appropriately set in consideration of the light emission efficiency or the lifetime. The organic EL element 38 is usually provided on the substrate 10 with the anode 40a disposed on the substrate 10 side, but may be disposed on the substrate 10 with the cathode 40b disposed on the substrate 10 side. For example, when producing each organic EL element having the layer configurations of a) to k) on the base material 10, in the form in which the anode 40a is disposed on the base material 10 side, the anode 40a side (each of the layer configurations a to k). In the form in which each layer is laminated on the base material 10 in order from the left side and the cathode 40b is arranged on the base material 10 side, each layer is laminated on the base material 10 in order from the cathode 40b (right side of each layer configuration a to k). The organic EL element 38 may be a bottom emission type that emits light from the substrate 10 side, or may be a top emission type that emits light from the side opposite to the substrate 10.
 以上、本発明の種々の実施形態について説明した。しかしながら、本発明は上述した種々の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。 The various embodiments of the present invention have been described above. However, the present invention is not limited to the various embodiments described above, and various modifications can be made without departing from the spirit of the present invention.
 10…基材、12…透明樹脂フィルム、12a…表面、12b…裏面、14…金属配線、16…透明樹脂充填材、18…開口部、38…有機EL素子、40a…陽極(第1電極)、40b…陰極(第2電極)、40c…発光層。 DESCRIPTION OF SYMBOLS 10 ... Base material, 12 ... Transparent resin film, 12a ... Front surface, 12b ... Back surface, 14 ... Metal wiring, 16 ... Transparent resin filler, 18 ... Opening part, 38 ... Organic EL element, 40a ... Anode (1st electrode) 40b ... cathode (second electrode), 40c ... light emitting layer.

Claims (10)

  1.  透明樹脂フィルムと、複数の開口部を有する所定パターンの金属配線と、透明樹脂充填材と、を備える基材の製造方法であって、
     前記金属配線が、前記透明樹脂フィルムの表面に形成されており、
     前記透明樹脂充填材が、前記複数の開口部の少なくとも一つの開口部内に配置されており、
     前記基材の製造方法が、
     前記金属配線が形成された前記透明樹脂フィルムの前記表面に、前記透明樹脂充填材となる透明樹脂材料を含む樹脂膜を、前記金属配線を埋設するように形成する樹脂膜形成工程と、
     前記樹脂膜形成工程後に、前記透明樹脂フィルムの裏面側から可視光を照射して、前記開口部内の前記樹脂膜を光硬化させる光硬化工程と、
     前記光硬化工程後に、前記樹脂膜を現像処理することによって前記金属配線上の前記樹脂膜を除去する現像工程と、
     前記金属配線上の前記樹脂膜を除去した後に、前記透明樹脂フィルム上に残存した前記樹脂膜を加熱処理して熱硬化させることによって前記透明樹脂充填材を形成する熱硬化工程と、を備え、
     前記透明樹脂材料が、熱硬化性を有すると共に可視光によって光硬化する透明樹脂材料である、基材の製造方法。
    A method of manufacturing a base material comprising a transparent resin film, a predetermined pattern of metal wiring having a plurality of openings, and a transparent resin filler,
    The metal wiring is formed on the surface of the transparent resin film,
    The transparent resin filler is disposed in at least one of the plurality of openings;
    A method for producing the substrate comprises:
    A resin film forming step of forming a resin film containing a transparent resin material serving as the transparent resin filler on the surface of the transparent resin film on which the metal wiring is formed so as to embed the metal wiring;
    After the resin film forming step, a photocuring step of irradiating visible light from the back side of the transparent resin film and photocuring the resin film in the opening,
    A development step of removing the resin film on the metal wiring by developing the resin film after the photocuring step;
    A thermosetting step of forming the transparent resin filler by removing the resin film on the metal wiring and then thermally curing the resin film remaining on the transparent resin film; and
    A method for producing a substrate, wherein the transparent resin material is a transparent resin material that has thermosetting properties and is photocured by visible light.
  2.  前記透明樹脂充填材の平均厚さをT1とし、前記金属配線の平均厚さをT2としたとき、(T1/T2)が0.5以上1.5以下であり、且つ、前記透明樹脂充填材と前記金属配線との境界において、前記透明樹脂充填材の厚さをT3とし、前記金属配線の厚さをT4としたとき、(T3/T4)が0.8より大きく1.2より小さい、請求項1に記載の基材の製造方法。 When the average thickness of the transparent resin filler is T1, and the average thickness of the metal wiring is T2, (T1 / T2) is 0.5 or more and 1.5 or less, and the transparent resin filler When the thickness of the transparent resin filler is T3 and the thickness of the metal wiring is T4, the (T3 / T4) is larger than 0.8 and smaller than 1.2. The manufacturing method of the base material of Claim 1.
  3.  前記金属配線の幅が10μm以上である、請求項1又は2に記載の基材の製造方法。 The method for manufacturing a base material according to claim 1 or 2, wherein the width of the metal wiring is 10 µm or more.
  4.  前記金属配線の側面と、前記透明樹脂フィルムの前記表面とのなす角度が60°以上100°以下である、請求項1~3の何れか一項に記載の基材の製造方法。 The method for producing a base material according to any one of claims 1 to 3, wherein an angle formed between a side surface of the metal wiring and the surface of the transparent resin film is 60 ° or more and 100 ° or less.
  5.  前記光硬化工程では、前記可視光を平行光として前記透明樹脂フィルムに照射すると共に、前記平行光の前記裏面への照射方向と前記裏面の法線方向とのなす角度が20°以下である、請求項1~4の何れか一項に記載の基材の製造方法。 In the photocuring step, the visible light is irradiated to the transparent resin film as parallel light, and an angle formed between the irradiation direction of the parallel light on the back surface and the normal direction of the back surface is 20 ° or less. The method for producing a substrate according to any one of claims 1 to 4.
  6.  前記透明樹脂材料は、前記樹脂膜と同じ組成の試験用樹脂膜を形成し、前記試験用樹脂膜を可視光によって光硬化処理した後に現像処理した場合に、光硬化処理した後、且つ、現像処理前の前記試験用樹脂膜の厚さをt1とし、現像処理した後の前記試験用樹脂膜の厚さをt2とした場合、(t2/t1)が0.6以上である透明樹脂材料である、請求項1~5の何れか一項に記載の基材の製造方法。 The transparent resin material forms a test resin film having the same composition as the resin film, and when the test resin film is photocured with visible light and then developed, the photopolymerized and developed A transparent resin material in which (t2 / t1) is 0.6 or more, where t1 is the thickness of the test resin film before treatment and t2 is the thickness of the test resin film after development. The method for producing a substrate according to any one of claims 1 to 5, wherein:
  7.  前記樹脂膜は、前記透明樹脂フィルムより近赤外光を多く吸収し、
     前記熱硬化工程では、前記樹脂膜に、前記透明樹脂フィルムの前記表面側から前記近赤外光を照射することによって前記樹脂膜を加熱処理する、請求項1~6の何れか一項に記載の基材の製造方法。
    The resin film absorbs more near infrared light than the transparent resin film,
    The heat curing step includes heat-treating the resin film by irradiating the resin film with the near-infrared light from the surface side of the transparent resin film. The manufacturing method of the base material.
  8.  前記樹脂膜形成工程、前記光硬化工程、前記現像工程及び前記熱硬化工程の少なくとも一つをロールツーロール方式で実施する、請求項1~7の何れか一項に記載の基材の製造方法。 The method for producing a substrate according to any one of claims 1 to 7, wherein at least one of the resin film forming step, the photocuring step, the developing step, and the thermosetting step is performed by a roll-to-roll method. .
  9.  透明樹脂フィルムと、複数の開口部を有する所定パターンの金属配線と、透明樹脂充填材と、を有する基材と、
     前記基材の前記金属配線上に配置された第1電極と、
     前記第1電極上に配置された第2電極と、
     前記第1電極と前記第2電極との間に配置された発光層と、を備え、
     前記金属配線が、前記透明樹脂フィルムの表面に形成されており、
     前記透明樹脂充填材が、前記複数の開口部の少なくとも一つの開口部内に配置されており、
     前記透明樹脂充填材が、熱硬化性を有すると共に可視光によって光硬化する透明樹脂材料又はその硬化物を含み、
     前記発光層が有機材料を含む、有機EL素子。
    A base material having a transparent resin film, a predetermined pattern of metal wiring having a plurality of openings, and a transparent resin filler;
    A first electrode disposed on the metal wiring of the substrate;
    A second electrode disposed on the first electrode;
    A light emitting layer disposed between the first electrode and the second electrode,
    The metal wiring is formed on the surface of the transparent resin film,
    The transparent resin filler is disposed in at least one of the plurality of openings;
    The transparent resin filler includes a transparent resin material that is thermosetting and photocured by visible light or a cured product thereof,
    An organic EL element in which the light emitting layer contains an organic material.
  10.  前記透明樹脂充填材の平均厚さをT1とし、前記金属配線の平均厚さをT2としたとき、(T1/T2)が0.5より大きく1.5より小さく、且つ、前記透明樹脂充填材と前記金属配線との境界において、前記透明樹脂充填材の厚さをT3とし、前記金属配線の厚さをT4としたとき、(T3/T4)が0.8より大きく1.2より小さい、請求項9に記載の有機EL素子。 When the average thickness of the transparent resin filler is T1 and the average thickness of the metal wiring is T2, (T1 / T2) is greater than 0.5 and less than 1.5, and the transparent resin filler When the thickness of the transparent resin filler is T3 and the thickness of the metal wiring is T4, the (T3 / T4) is larger than 0.8 and smaller than 1.2. The organic EL device according to claim 9.
PCT/JP2016/063601 2015-05-15 2016-05-02 Organic el element and method for manufacturing substrate WO2016185908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017519109A JPWO2016185908A1 (en) 2015-05-15 2016-05-02 SUBSTRATE MANUFACTURING METHOD AND ORGANIC EL ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015100320 2015-05-15
JP2015-100320 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016185908A1 true WO2016185908A1 (en) 2016-11-24

Family

ID=57320205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063601 WO2016185908A1 (en) 2015-05-15 2016-05-02 Organic el element and method for manufacturing substrate

Country Status (2)

Country Link
JP (1) JPWO2016185908A1 (en)
WO (1) WO2016185908A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076575A (en) * 2000-08-29 2002-03-15 Toppan Printing Co Ltd Method of manufacturing substrate for semiconductor device
JP2002533775A (en) * 1998-12-22 2002-10-08 バンティコ アクチエンゲゼルシャフト Method of manufacturing photoresist coating
JP2004319102A (en) * 2003-04-11 2004-11-11 Rohm Co Ltd Manufacturing method of flat display panel
JP2005122198A (en) * 2004-11-08 2005-05-12 Fuji Photo Film Co Ltd Method for manufacturing light shielding multicolor image sheet
JP2006294484A (en) * 2005-04-13 2006-10-26 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method and organic electroluminescent display device
JP2008288067A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Translucent conductor
JP2009140750A (en) * 2007-12-06 2009-06-25 Konica Minolta Holdings Inc Transparent conductive film
JP2013541804A (en) * 2010-08-23 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ Self-aligned coating of opaque conductive regions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533775A (en) * 1998-12-22 2002-10-08 バンティコ アクチエンゲゼルシャフト Method of manufacturing photoresist coating
JP2002076575A (en) * 2000-08-29 2002-03-15 Toppan Printing Co Ltd Method of manufacturing substrate for semiconductor device
JP2004319102A (en) * 2003-04-11 2004-11-11 Rohm Co Ltd Manufacturing method of flat display panel
JP2005122198A (en) * 2004-11-08 2005-05-12 Fuji Photo Film Co Ltd Method for manufacturing light shielding multicolor image sheet
JP2006294484A (en) * 2005-04-13 2006-10-26 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method and organic electroluminescent display device
JP2008288067A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Translucent conductor
JP2009140750A (en) * 2007-12-06 2009-06-25 Konica Minolta Holdings Inc Transparent conductive film
JP2013541804A (en) * 2010-08-23 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ Self-aligned coating of opaque conductive regions

Also Published As

Publication number Publication date
JPWO2016185908A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5096648B1 (en) Organic EL display panel and manufacturing method thereof
WO2012017495A1 (en) Organic el element and production method for same
US10290687B2 (en) Lighting apparatus using organic light emitting diode and method of fabricating the same
JP5857051B2 (en) Self-aligned coating of opaque conductive regions
WO2012017501A1 (en) Organic electroluminescence element and method of manufacturing thereof
KR20130041771A (en) Method of producing substrate for light-emitting device
JP2012084371A (en) Method of manufacturing organic el device, organic el device, and electronic apparatus
JP4578026B2 (en) Method for manufacturing electroluminescent device
JP4426190B2 (en) Method for manufacturing electroluminescent device
JP2012204202A (en) Organic electroluminescent panel and method for manufacturing the same
WO2016185908A1 (en) Organic el element and method for manufacturing substrate
JP4578032B2 (en) Method for manufacturing electroluminescent device
US8587002B2 (en) Organic EL panel and method of manufacturing the same
JP4485277B2 (en) Method for manufacturing electroluminescent device
JP5543599B2 (en) Method for manufacturing light emitting device
JP5709422B2 (en) Organic electroluminescence lighting device and manufacturing method thereof
JP3781647B2 (en) Method for manufacturing electroluminescent device
JP5056834B2 (en) Method for manufacturing electroluminescent device
JP4743577B2 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP4893839B2 (en) Method for manufacturing light emitting device
KR101335422B1 (en) Fabricating method of electroluminescent device
JP4044362B2 (en) Manufacturing method of organic EL element
JP2011165647A (en) Mask for laser thermal transfer, and method of fabricating organic electroluminescent display device using the same
US20140295085A1 (en) Method for manufacturing donor substrate
WO2011105455A1 (en) Relief printing plate, printing device using same, thin film manufacturing method, and organic el element manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796302

Country of ref document: EP

Kind code of ref document: A1