WO2016185900A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2016185900A1
WO2016185900A1 PCT/JP2016/063425 JP2016063425W WO2016185900A1 WO 2016185900 A1 WO2016185900 A1 WO 2016185900A1 JP 2016063425 W JP2016063425 W JP 2016063425W WO 2016185900 A1 WO2016185900 A1 WO 2016185900A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
elastic body
main surface
piezoelectric element
vibration
Prior art date
Application number
PCT/JP2016/063425
Other languages
French (fr)
Japanese (ja)
Inventor
亨 今井
愛美 大塚
征士朗 後藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017519104A priority Critical patent/JP6406444B2/en
Publication of WO2016185900A1 publication Critical patent/WO2016185900A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to a drive device that moves a moving body by driving a piezoelectric element.
  • Patent Document 1 discloses an ultrasonic motor using bending vibration and other vibrations.
  • the cylindrical moving body is inserted into the through hole of the disk-shaped base.
  • the cylindrical moving body is configured to move in the axial direction thereof.
  • Piezoelectric elements are provided on both sides of the disk-shaped substrate. A combined resonance of the bending vibration and radial vibration of the disk is used.
  • An object of the present invention is to provide a drive device with little variation in displacement.
  • the drive device has an opening having first and second main surfaces facing each other and penetrating a central portion from the first main surface toward the second main surface. And an elastic body having a plurality of sides surrounding the opening, and at least one main surface of the first and second main surfaces of the elastic body joined to the plurality of sides.
  • a drive unit including the piezoelectric element, and the first main surface and the second main surface of the elastic body by being inserted into the opening of the elastic body and driving the drive unit.
  • the drive unit is caused to generate bending vibration and at least one other vibration different from the bending vibration, or the bending vibration.
  • the movable body has a vibration state that realizes a release state in which the moving body is in contact with the inner wall of the opening of the elastic body by an engagement force, and the bending unit and the other vibration of the drive unit or
  • the movable body is moved by the vibration of the coupling mode, and the plurality of piezoelectric elements are sandwiched between the plate-like piezoelectric body, the plurality of excitation electrodes for exciting the piezoelectric body, and the excitation electrode.
  • Active region , And a non-active region not sandwiched between the excitation electrode, the inactive region in the plurality of piezoelectric elements are arranged similarly in all of the plurality of side portions.
  • the first and second piezoelectric elements are provided on the surfaces of the piezoelectric bodies opposite to the surfaces bonded to the elastic bodies.
  • the first terminal electrode in the plurality of piezoelectric elements is adjacent to the second terminal electrode of the plurality of piezoelectric elements in each adjacent side portion.
  • the first terminal electrode and the second terminal electrode adjacent to the first terminal electrode in adjacent side portions are electrically connected.
  • a connecting electrode pad is further provided. In this case, the number of portions that electrically connect the driving device to the outside can be reduced. Therefore, electrical connection is facilitated.
  • the opening of the elastic body has a rectangular planar shape
  • the side portions are first to fourth side portions
  • the plurality of piezoelectric elements These are the first to fourth piezoelectric elements joined to the first to fourth sides.
  • the piezoelectric element is a stacked piezoelectric element having the plurality of excitation electrodes stacked via piezoelectric layer portions in the piezoelectric body. In this case, the displacement of the drive unit can be increased.
  • the piezoelectric element is provided on the surface of the piezoelectric body opposite to the elastic body, and the first excitation electrode provided on the surface of the piezoelectric body on the elastic body side.
  • a single-plate-type piezoelectric element may be used.
  • the moving body has a columnar shape extending in a direction connecting the first main surface and the second main surface of the elastic body.
  • the drive device further includes a spring member extrapolated to the movable body, and the spring member is pressed against the inner wall of the opening of the elastic body of the drive unit. Is done. In this case, the moving body can be moved effectively by the drive unit.
  • the drive device it is possible to reduce the variation in the amount of displacement of the plurality of sides surrounding the opening of the elastic body. Therefore, the moving body can be moved stably.
  • FIG. 1A is a perspective view of a drive unit used in the first embodiment of the present invention
  • FIG. 1B is a front sectional view of a piezoelectric element used in the drive unit. is there.
  • FIG. 2 is a perspective view of the drive unit used in the comparative example.
  • FIG. 3 is a perspective view of the driving apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between each resonance frequency of bending vibration and spread vibration excited by the drive unit used in the first embodiment and the thickness of the elastic body.
  • FIG. 5A is a schematic diagram for explaining an initial state.
  • FIG. 5B is a schematic diagram for explaining the movable state.
  • FIG. 6B are schematic views for explaining a state in which each moving body is moved in the driving apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the amount of displacement of the portion pressed against the moving body on each side of the drive unit in the drive device according to the first embodiment of the present invention, the applied voltage, and time.
  • FIG. 8 is a diagram showing the relationship between the amount of displacement of the portion pressed against the moving body on each side of the drive unit in the drive device of the comparative example, the applied voltage, and time.
  • FIG. 9 is a perspective view of a drive unit according to the second embodiment of the present invention.
  • FIG. 10 is a front sectional view of a piezoelectric element used in Modification 2 of the first embodiment of the present invention.
  • FIG. 11 is a perspective view of a moving body used in Modification 1 of the first embodiment of the present invention.
  • FIG. 12 is a perspective view showing a spring member attached to the movable body shown in FIG.
  • FIG. 1A is a perspective view showing a drive unit used in the first embodiment of the present invention
  • FIG. 1B is a front sectional view of a piezoelectric element used in the drive unit
  • FIG. 3 is a perspective view showing the driving apparatus according to the first embodiment.
  • the drive device 1 includes a drive unit 2 and a moving body 3.
  • the drive unit 2 includes a base member 10 and an elastic body 5 supported by the base member 10.
  • the elastic body 5 has a first main surface 5a and a second main surface 5b that face each other.
  • the elastic body 5 is made of an appropriate rigid material such as metal.
  • the elastic body 5 has a rectangular frame shape and has an opening 5c in the center.
  • a plurality of piezoelectric elements 6 to 9 are bonded on the first main surface 5a.
  • the plurality of piezoelectric elements 6 to 9 may be bonded to the second main surface 5b instead of the first main surface 5a.
  • a plurality of piezoelectric elements may be bonded to both main surfaces.
  • FIG. 1B is a front sectional view of the piezoelectric element 6.
  • the piezoelectric element 6 is a stacked piezoelectric element.
  • the piezoelectric element 6 has a piezoelectric body 11.
  • the piezoelectric body 11 has a strip-like shape having a lateral direction and a longitudinal direction.
  • the piezoelectric body 11 has a first main surface 11a extending in the longitudinal direction, and a second main surface 11b facing the first main surface 11a.
  • the first end face 11c is located on one end side in the longitudinal direction of the piezoelectric body 11, and the second end face 11d is located on the other end side in the longitudinal direction.
  • an excitation electrode 12 is provided on the first main surface 11 a of the piezoelectric body 11.
  • An excitation electrode 13 is provided in the piezoelectric body 11 so as to face the excitation electrode 12 through the piezoelectric layer.
  • excitation electrodes 14 to 16 are provided in the piezoelectric body 11 so as to be adjacent to each other through the piezoelectric layer.
  • An excitation electrode 17 is provided on the second main surface 11b so as to face the excitation electrode 16 with the piezoelectric layer interposed therebetween.
  • the excitation electrodes 12, 14, and 16 are drawn out to the first end face 11c.
  • a connection electrode 18 is provided on the first end face 11c.
  • the excitation electrodes 12, 14, and 16 are electrically connected by the connection electrode 18.
  • the excitation electrodes 13, 15, and 17 reach the second end face 11d.
  • a connection electrode 19 is provided on the second end face 11d.
  • the excitation electrodes 13, 15, and 17 are electrically connected by the connection electrode 19.
  • connection electrode 18 has a terminal portion 18a reaching the second main surface 11b.
  • the terminal portion 18a and the excitation electrode 17 are formed at positions adjacent to each other via a gap.
  • connection electrode 19 has a terminal portion 19a that reaches the first main surface 11a.
  • the terminal portion 19a and the excitation electrode 12 are formed at positions adjacent to each other via a gap.
  • the piezoelectric element 6 is fixed with the excitation electrode 17 side in close contact with the first main surface 5 a of the elastic body 5.
  • the excitation electrode 12 and the terminal portion 19a of the connection electrode 19 it can be electrically connected to the outside.
  • the excitation electrode 12 also serves as the first terminal electrode
  • the terminal portion 19a serves as the second terminal electrode.
  • the piezoelectric layer between the excitation electrodes 12 to 17 is polarized in the thickness direction. Therefore, when an AC voltage is applied between the excitation electrode 12 serving also as a terminal electrode and the terminal portion 19a, the piezoelectric element 6 vibrates due to bending vibration.
  • the piezoelectric elements 7 to 9 also have the same structure as the piezoelectric element 6. Therefore, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the driving unit 2 When the piezoelectric elements 6 and 8 and the piezoelectric elements 7 and 9 are driven by bending vibrations having opposite phases, the driving unit 2 generates bending vibrations and spreading vibrations.
  • the moving body 3 shown in FIG. 3 is moved by utilizing the coupling mode of the bending vibration and the spreading vibration.
  • the moving body 3 has a cylindrical shape in the present embodiment, and the moving body 3 is moved in the axial direction of the cylindrical shape. In other words, the moving body 3 is moved in a direction connecting the first main surface 5a and the second main surface 5b of the elastic body 5 of the drive unit 2. The operation of moving the moving body 3 will be described in detail later.
  • a feature of the present embodiment is that in the piezoelectric elements 6 to 9, inactive regions to be described later are similarly arranged on all of the plurality of sides of the elastic body 5 in the rectangular frame shape. This will be described in more detail.
  • the elastic body 5 has a square opening 5c. That is, the elastic body 5 is a rectangular frame having four sides. Piezoelectric elements 6, 7, 8 or 9 are fixed on the first main surface 5 a in the first to fourth sides of the elastic body 5.
  • the entire piezoelectric body 11 is not displaced. That is, the piezoelectric layer portion sandwiched between the excitation electrodes connected to different potentials is displaced by the piezoelectric effect.
  • the hatched portion of the cross is not sandwiched between the excitation electrodes having different potentials. Accordingly, since the portion is not positively displaced due to the piezoelectric effect, the regions indicated by the cross hatching are defined as inactive regions A1 and A2. The remaining area becomes an active area displaced by the piezoelectric effect.
  • the inactive region A1 extends in the thickness direction, which is a direction connecting the first and second main surfaces 11a and 11b of the piezoelectric element 6, along the first end surface 11c. Yes. And it has reached the opposing area
  • the inactive region A2 extends along the second end face 11d. Further, the inactive region A2 extends from the second end surface 11d toward the tip of the excitation electrode 12 along the terminal portion 19a. Therefore, in the front sectional view, the inactive region A2 has an inverted L-shaped shape.
  • the piezoelectric element 6 passes through the center in the direction connecting the first main surface 11a and the second main surface 11b, is parallel to the first main surface 11a, and is parallel to the longitudinal direction.
  • the top and bottom are asymmetrical. Therefore, the piezoelectric element 6 can be fixed to the elastic body 5 so that the first main surface 11a and the second main surface 11b are reversed.
  • the piezoelectric element 6 is fixed to the elastic body 5 so that the surface on which the excitation electrode 12 is provided is the surface opposite to the joint surface with the elastic body 5. .
  • the remaining piezoelectric elements 7 to 9 are also fixed to the elastic body 5 so that the surface on which the excitation electrode 12 is provided is in the same direction as the piezoelectric element 6.
  • the first terminal electrodes of the plurality of piezoelectric elements 6 to 9 are adjacent to the second terminal electrodes of the plurality of piezoelectric elements on the adjacent sides.
  • the excitation electrode 12 in the piezoelectric element 6 is adjacent to the terminal portion 19 a in the piezoelectric element 9.
  • the excitation electrode 12 in the piezoelectric element 9 is adjacent to the terminal portion 19 a in the piezoelectric element 8.
  • the excitation electrode 12 in the piezoelectric element 8 is adjacent to the terminal portion 19 a in the piezoelectric element 7.
  • the excitation electrode 12 in the piezoelectric element 7 is adjacent to the terminal portion 19 a in the piezoelectric element 6.
  • the excitation electrodes 12 in the piezoelectric elements 6 and 8 are electrically connected to each other.
  • the excitation electrodes 12 in the piezoelectric elements 7 and 9 are electrically connected to each other.
  • the terminal portions 19a of the piezoelectric elements 6 and 8 are electrically connected to each other.
  • the terminal portions 19a of the piezoelectric elements 7 and 9 are electrically connected to each other. Therefore, the position of the inactive region of the piezoelectric element in each side portion of the elastic body 5 is similarly arranged in all the side portions of the elastic body 5 in the rectangular frame shape. Therefore, variation in the amount of displacement at each side portion of the drive unit 2 can be reduced. Therefore, the moving body 3 can be stably moved using the driving device 1. This will be clarified by comparing with the comparative example shown in FIG.
  • the drive unit 101 shown in FIG. 2 is the drive unit of the above embodiment except that the piezoelectric elements 6A and 8A are fixed on the first main surface 5a of the elastic body 5 instead of the piezoelectric elements 6 and 8. It is comprised similarly to 2. That is, the piezoelectric element 6 ⁇ / b> A is fixed to the elastic body 5 so that the excitation electrode 17 and the terminal portion 18 a are on the surface opposite to the joint surface with the elastic body 5. The same applies to the piezoelectric element 8A. Further, the excitation electrode 17 of the piezoelectric element 6A and the excitation electrode 17 of the piezoelectric element 8A are electrically connected.
  • the excitation electrode 12 of the piezoelectric element 7 and the excitation electrode 12 of the piezoelectric element 9 are electrically connected.
  • the terminal portion 18a of the piezoelectric element 6A and the terminal portion 18a of the piezoelectric element 8A are electrically connected.
  • the terminal portion 19a of the piezoelectric element 7 and the terminal portion 19a of the piezoelectric element 9 are electrically connected.
  • the excitation electrodes 12 and 17 are first terminal electrodes, and the terminal portions 18a and 19a are second terminal electrodes.
  • the position of the inactive region is the same at the side of the rectangular frame shape of the elastic body 5, but the piezoelectric elements 6A and 8A and the piezoelectric elements 7 and 9 have the rectangular shape of the elastic body 5.
  • the position of the inactive region is different in the frame-shaped side portion. Therefore, the positions of the inactive regions A1 and A2 described above are not similarly arranged in all the sides of the elastic frame 5 in the rectangular frame shape.
  • a coupling mode of bending vibration and spreading vibration of the elastic body 5 is used.
  • a plurality of coupled modes can be generated by adjusting the resonance frequency of the bending vibration and the spreading vibration.
  • FIG. 4 is a diagram showing the relationship between the resonance frequency of bending vibration and the resonance frequency of spread vibration and the thickness of the elastic body 5. As shown in FIG. 4, by adjusting the thickness of the elastic body 5, the resonance frequency of the bending vibration and the resonance frequency of the spreading vibration can be adjusted, and a coupling mode of both can be generated. As will be described later, two coupling modes of a first coupling mode and a second coupling mode among a plurality of coupling modes are used.
  • the first coupling mode and the second coupling mode are used.
  • the vibration in the first and second coupling modes is caused by the movable state in which the inner wall of the opening 5c of the elastic body 5 is pressed against the moving body 3 and the inner wall of the opening 5c being separated from the moving body 3. Or a vibration state that realizes a released state in contact with the moving body 3 with a frictional engagement force lower than that in the movable state. That is, in any case of the first coupling mode and the second coupling mode, a vibration state that realizes the two states is generated.
  • the movable body 3 is moved to one side in the axial direction of the movable body 3 in the movable state in the first coupling mode. If this is a forward movement, in the second coupling mode, the inner wall of the opening part moves the moving body 3 backward in the movable state. That is, the moving body 3 can be moved forward or backward by switching the driving frequency so that the first coupling mode and the second coupling mode are generated.
  • the first and second coupling modes in which the vibration state realizing the release state and the movable state are generated are used.
  • the resonance frequency of the bending vibration and the resonance frequency of the spreading vibration are matched.
  • the resonance frequencies of both may not be exactly the same, and the absolute value of the difference between the resonance frequency of the bending vibration and the resonance frequency of the spread vibration is the resonance frequency in the first coupling mode and the second coupling mode. What is necessary is just to be in the range within 15% of the average value of resonance frequency.
  • a coupled mode of bending vibration and spreading vibration is used, but bending vibration and coupled mode may be used. Further, bending vibration and vibration modes other than bending vibration such as spreading vibration may be used.
  • FIG. 5 (a) shows an initial state when operating the drive device 1, and as shown in FIG. 5 (b), by driving the drive unit 2 to generate the first coupling mode as described above.
  • the movable state is set. That is, the opening 5 c of the elastic body 5 is pressed against the outer peripheral surface of the moving body 3.
  • the moving body 3 can be advanced in the direction of the arrow, that is, one side in the axial direction, as shown in FIG. And in a 1st coupling
  • the moving body 3 can be pitched forward.
  • the movable body 3 can be retreated by generating the second coupling mode and driving in the second coupling mode.
  • the movable body 3 may be moved forward or backward by bending vibration, and the release state and the movable state may be realized by spreading vibration.
  • the inactive regions of the piezoelectric elements 6 to 9 are similarly arranged in all of the plurality of sides of the elastic body 5 in the rectangular frame shape. Therefore, it will be described with reference to FIG. 7 and FIG. 8 that the variation in the side of the displacement amount of the moving body can be reduced, thereby reducing the variation in the entire displacement amount of the moving body.
  • the 7 represents a driving voltage waveform in the driving device of the first embodiment.
  • the broken line, the alternate long and short dash line, the alternate long and two short dashes line, and the thin line indicate the amount of displacement of the inner wall portion of the central opening 5c of each side where the piezoelectric elements 6 to 9 are provided.
  • the central inner wall portion of each side portion is a portion pressed against the moving body 3.
  • FIG. 8 is a diagram showing a displacement amount of a central inner wall portion of each side portion and a driving voltage waveform in the driving device of the comparative example described above.
  • the amount of displacement is determined by, for example, irradiating the inner wall portion of the central opening of each side of the drive device with a Doppler vibrometer manufactured by Ono Sokki Co., Ltd. under the trade name “LV-1710”, and reflecting the irradiated laser The light was measured by receiving light with a Doppler vibrometer.
  • the drive voltage having the same waveform is applied to the drive device of the first embodiment and the drive device of the comparative example. However, in the drive device of the comparative example, the center of each side portion is applied.
  • the amount of displacement of the inner wall portion of the opening varies greatly.
  • the displacement amount of the inner wall portion of the opening at the center of each side portion is almost the same, and the variation in the displacement amount is effectively reduced. It can be seen that it can be reduced.
  • FIG. 9 is a perspective view showing a drive unit used in the drive apparatus according to the second embodiment of the present invention.
  • the drive unit 22 is the same as the drive unit 2 except that connection pads 23a to 23d are provided. Therefore, the same reference numerals are assigned to the same parts, and the description of the first embodiment is incorporated.
  • connection pads 23a to 23d are made of a conductive material.
  • the electrode pad electrically connects the first terminal electrode and the second terminal electrode adjacent to the first terminal electrode in the adjacent side portion.
  • connection pad 23 a electrically connects the terminal portion 19 a of the piezoelectric element 6 and the excitation electrode 12 as the first terminal portion of the piezoelectric element 7.
  • connection pad 23 b electrically connects the terminal portion 19 a of the piezoelectric element 7 and the excitation electrode 12 of the piezoelectric element 8.
  • the connection pad 23 c electrically connects the terminal portion 19 a of the piezoelectric element 8 and the excitation electrode 12 of the piezoelectric element 9.
  • connection pad 23 d electrically connects the terminal portion 19 a of the piezoelectric element 9 and the excitation electrode 12 of the piezoelectric element 6. More specifically, the terminal portion 19a of the piezoelectric element 6, the excitation electrode 12 of the piezoelectric element 7, the terminal portion 19a of the piezoelectric element 8, and the excitation electrode 12 of the piezoelectric element 9 are electrically connected. The excitation electrode 12 of the piezoelectric element 6, the terminal portion 19 a of the piezoelectric element 7, the excitation electrode 12 of the piezoelectric element 8, and the terminal portion 19 a of the piezoelectric element 9 are electrically connected.
  • the four locations on the first main surface 11a side of the piezoelectric body 11 of the piezoelectric elements 6 to 9 may be electrically connected by bonding wires or the like. That is, since the terminal portion 19a of the adjacent piezoelectric element and the excitation electrode 12 are electrically connected in advance by the connection pads 23a to 23d, the number of electrical connection locations with the outside may be four.
  • the terminal electrodes connected to the same potential are connected in common on the first main surface 11a side.
  • the elastic body 5 has a square opening 5c and has a rectangular frame shape.
  • the elastic body 5 may have another polygonal opening. Good.
  • the inner surface of the opening part 5c of the said elastic body 5 was press-contacted to the outer peripheral surface of the cylindrical moving body 3, and the moving body 3 was made the movable state.
  • a spring member made of metal or the like may be fixed to the outer peripheral surface of the moving body 3.
  • the moving body 3 is not limited to a columnar shape, and may have a substantially prismatic shape like a moving body 3A shown in FIG. In this case, the spring member 4 shown in FIG. 12 may be attached to the moving body 3A.
  • the inner diameter of the spring member 4 made of metal or the like is made smaller than the maximum dimension in the cross-sectional direction orthogonal to the axial direction of the moving body 3A. Therefore, the spring member 4 may be attached to the moving body 3A while expanding the slit 4a of the spring member 4 having the slit 4a. In this case, the outer peripheral surface of the spring member 4 is pressed against the inner wall of the opening 5 c of the elastic body 5 of the drive unit 2, and the moving body 3 ⁇ / b> A is moved together with the spring member 4.
  • the piezoelectric element 31 includes a piezoelectric body 32, a first excitation electrode 33 provided on the first main surface of the piezoelectric body 32, and a second excitation electrode 34 provided on the second main surface. Also in the piezoelectric element 31, connection electrodes 35 and 36 are provided on both end faces of the piezoelectric body 32, and terminal portions 35 a and 36 a are connected to the connection electrodes 35 and 36, respectively.
  • the inactive region is located asymmetrically on both sides of a cross section that passes through the center in the direction connecting the first and second main surfaces of the piezoelectric body 32 and extends parallel to the first main surface. Yes. Therefore, the piezoelectric element 31 is also provided so that the inactive region is located at the same position on all the sides of the elastic body 5 in the rectangular frame shape, similarly to the piezoelectric elements 6 to 9 described above. Thereby, the same effect as in the case of the first embodiment can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Provided is a drive device that generates little variability in magnitude of displacement. A drive device 1 that has a drive unit 2 and a moving body 3 that is moved in a direction that connects a first main surface 5a and a second main surface 5b of an elastic body 5. The drive unit 2 includes the flexible body 5 and a plurality of piezoelectric elements 6-9. The piezoelectric elements 6-9 are provided to edge sections that surround an opening 5c in the elastic body 5. The piezoelectric elements 6-9 have an active region that is sandwiched between excitation electrodes and inactive regions A1, A2 that are not sandwiched between the excitation electrodes, the inactive regions A1, A2 being arranged in the same manner at all of the plurality of edge sections of the elastic body 5.

Description

駆動装置Drive device
 本発明は、圧電素子を駆動して移動体を移動させる駆動装置に関する。 The present invention relates to a drive device that moves a moving body by driving a piezoelectric element.
 従来、カメラのレンズなどを移動させる駆動装置として、圧電素子を用いた駆動装置が種々提案されている。 Conventionally, various drive devices using piezoelectric elements have been proposed as drive devices for moving a lens of a camera or the like.
 下記の特許文献1には、屈曲振動と他の振動とを利用した超音波モーターが開示されている。ここでは、筒状の移動体が、円板状の基体の貫通孔に挿入されている。筒状の移動体は、その軸方向に移動するように構成されている。円板状の基体の両面に圧電素子が設けられている。この円板の屈曲振動と径方向振動との複合共振が用いられている。 The following Patent Document 1 discloses an ultrasonic motor using bending vibration and other vibrations. Here, the cylindrical moving body is inserted into the through hole of the disk-shaped base. The cylindrical moving body is configured to move in the axial direction thereof. Piezoelectric elements are provided on both sides of the disk-shaped substrate. A combined resonance of the bending vibration and radial vibration of the disk is used.
特開平1-298968号公報JP-A-1-298968
 従来、圧電素子を用いた駆動装置では、移動体の変位量のばらつきが生じることがあった。 Conventionally, in a drive device using a piezoelectric element, variation in the amount of displacement of a moving body may occur.
 本発明の目的は、変位量のばらつきが少ない駆動装置を提供することにある。 An object of the present invention is to provide a drive device with little variation in displacement.
 本発明に係る駆動装置は、対向し合う第1及び第2の主面を有し、かつ前記第1の主面から前記第2の主面に向かって中央部を貫通している開口部と、該開口部を囲む複数の辺部とを有する弾性体と、前記弾性体の前記第1及び前記第2の主面における少なくとも一方の主面において、前記複数の辺部におのおの接合された複数の圧電素子とを有する駆動ユニットと、前記弾性体の前記開口部に挿入されており、前記駆動ユニットを駆動することにより、前記弾性体の前記第1の主面と前記第2の主面とを結ぶ方向に移動される移動体と、前記複数の圧電素子を駆動することにより、前記駆動ユニットが、屈曲振動と、前記屈曲振動とは異なる少なくとも一種の他の振動とで、または前記屈曲振動と、前記屈曲振動とは異なる少なくとも一種の前記他の振動とが結合してなる結合モードの振動で振動するように構成されており、前記他の振動または前記結合モードの振動が、前記移動体を移動させ得るように前記弾性体の前記開口部の内壁に前記移動体が摩擦係合している移動可能状態と、前記弾性体の前記開口部の前記内壁が前記移動体から隔てられており、あるいは前記移動可能状態よりも低い摩擦係合力で前記移動体が前記弾性体の前記開口部の前記内壁に接触しているリリース状態とをそれぞれ実現する振動姿態を有し、前記駆動ユニットの前記屈曲振動及び前記他の振動により、または前記結合モードの振動により、前記移動体を移動させ、前記複数の圧電素子が、板状の圧電体と、前記圧電体を励振するための複数の励振電極と、前記励振電極間に挟まれた活性領域と、前記励振電極間に挟まれていない不活性領域とを有し、前記複数の圧電素子における前記不活性領域が、前記複数の辺部の全てにおいて同様に配置されている。 The drive device according to the present invention has an opening having first and second main surfaces facing each other and penetrating a central portion from the first main surface toward the second main surface. And an elastic body having a plurality of sides surrounding the opening, and at least one main surface of the first and second main surfaces of the elastic body joined to the plurality of sides. A drive unit including the piezoelectric element, and the first main surface and the second main surface of the elastic body by being inserted into the opening of the elastic body and driving the drive unit. By driving the movable body moving in the direction connecting the two and the plurality of piezoelectric elements, the drive unit is caused to generate bending vibration and at least one other vibration different from the bending vibration, or the bending vibration. And at least one different from the bending vibration Of the elastic body so that the vibration of the other mode or the coupling mode can move the movable body. The movable state in which the movable body is frictionally engaged with the inner wall of the opening, and the inner wall of the opening of the elastic body is separated from the movable body, or the friction is lower than in the movable state. The movable body has a vibration state that realizes a release state in which the moving body is in contact with the inner wall of the opening of the elastic body by an engagement force, and the bending unit and the other vibration of the drive unit or The movable body is moved by the vibration of the coupling mode, and the plurality of piezoelectric elements are sandwiched between the plate-like piezoelectric body, the plurality of excitation electrodes for exciting the piezoelectric body, and the excitation electrode. Active region , And a non-active region not sandwiched between the excitation electrode, the inactive region in the plurality of piezoelectric elements are arranged similarly in all of the plurality of side portions.
 本発明に係る駆動装置のある特定の局面では、前記複数の圧電素子が、おのおの前記圧電体の前記弾性体に貼り合わされている面とは反対側の面に設けられた第1及び第2の端子電極を有し、前記複数の圧電素子における前記第1の端子電極が、おのおの隣り合っている辺部における前記複数の圧電素子の前記第2の端子電極と隣り合っている。 In a specific aspect of the drive device according to the present invention, the first and second piezoelectric elements are provided on the surfaces of the piezoelectric bodies opposite to the surfaces bonded to the elastic bodies. The first terminal electrode in the plurality of piezoelectric elements is adjacent to the second terminal electrode of the plurality of piezoelectric elements in each adjacent side portion.
 本発明に係る駆動装置のある特定の局面では、前記第1の端子電極と、隣り合っている辺部における前記第1の端子電極と隣り合っている前記第2の端子電極とを電気的に接続している電極パッドがさらに備えられている。この場合には、駆動装置を外部と電気的に接続する部分の数を減らすことができる。従って、電気的接続が容易となる。 In a specific aspect of the drive device according to the present invention, the first terminal electrode and the second terminal electrode adjacent to the first terminal electrode in adjacent side portions are electrically connected. A connecting electrode pad is further provided. In this case, the number of portions that electrically connect the driving device to the outside can be reduced. Therefore, electrical connection is facilitated.
 本発明に係る駆動装置の他の特定の局面では、前記弾性体の前記開口部が矩形の平面形状を有し、前記辺部が第1~第4の辺部であり、前記複数の圧電素子が、前記第1~第4の辺部に接合された第1~第4の圧電素子である。 In another specific aspect of the drive device according to the present invention, the opening of the elastic body has a rectangular planar shape, the side portions are first to fourth side portions, and the plurality of piezoelectric elements These are the first to fourth piezoelectric elements joined to the first to fourth sides.
 本発明に係る駆動装置の別の特定の局面では、前記圧電素子が、前記圧電体内において、圧電体層部分を介して積層された前記複数の励振電極を有する、積層型圧電素子である。この場合には、駆動ユニットの変位を大きくすることができる。 In another specific aspect of the drive device according to the present invention, the piezoelectric element is a stacked piezoelectric element having the plurality of excitation electrodes stacked via piezoelectric layer portions in the piezoelectric body. In this case, the displacement of the drive unit can be increased.
 もっとも、本発明に係る駆動装置では、前記圧電素子が、前記圧電体の前記弾性体側の面に設けられた第1の励振電極と、前記弾性体とは反対側の前記圧電体の面に設けられた第2の励振電極とを有し、単板型の圧電素子であってもよい。 However, in the drive device according to the present invention, the piezoelectric element is provided on the surface of the piezoelectric body opposite to the elastic body, and the first excitation electrode provided on the surface of the piezoelectric body on the elastic body side. A single-plate-type piezoelectric element may be used.
 本発明に係る駆動装置の他の特定の局面では、前記移動体が、前記弾性体の前記第1の主面と前記第2の主面とを結ぶ方向に延びる円柱状の形状を有する。 In another specific aspect of the driving apparatus according to the present invention, the moving body has a columnar shape extending in a direction connecting the first main surface and the second main surface of the elastic body.
 本発明に係る駆動装置のさらに他の特定の局面では、前記移動体に外挿されたバネ部材をさらに備え、前記バネ部材が、前記駆動ユニットの前記弾性体の前記開口部の前記内壁に圧接される。この場合には、移動体を、駆動ユニットにより効果的に移動させることができる。 In still another specific aspect of the drive device according to the present invention, the drive device further includes a spring member extrapolated to the movable body, and the spring member is pressed against the inner wall of the opening of the elastic body of the drive unit. Is done. In this case, the moving body can be moved effectively by the drive unit.
 本発明に係る駆動装置によれば、弾性体の開口部を囲む複数の辺部の変位量のばらつきを小さくすることができる。従って移動体を安定に移動することができる。 According to the drive device according to the present invention, it is possible to reduce the variation in the amount of displacement of the plurality of sides surrounding the opening of the elastic body. Therefore, the moving body can be moved stably.
図1(a)は、本発明の第1の実施形態で用いられている駆動ユニットの斜視図であり、図1(b)は、該駆動ユニットに用いられている圧電素子の正面断面図である。FIG. 1A is a perspective view of a drive unit used in the first embodiment of the present invention, and FIG. 1B is a front sectional view of a piezoelectric element used in the drive unit. is there. 図2は、比較例で用いた駆動ユニットの斜視図である。FIG. 2 is a perspective view of the drive unit used in the comparative example. 図3は、本発明の第1の実施形態に係る駆動装置の斜視図である。FIG. 3 is a perspective view of the driving apparatus according to the first embodiment of the present invention. 図4は、第1の実施形態で用いた駆動ユニットで励振される屈曲振動及び拡がり振動の各共振周波数と、弾性体の厚みとの関係を示す図である。FIG. 4 is a diagram illustrating a relationship between each resonance frequency of bending vibration and spread vibration excited by the drive unit used in the first embodiment and the thickness of the elastic body. 本発明の第1の実施形態の駆動装置において、図5(a)は初期状態を説明するための模式図である。図5(b)は移動可能状態を説明するための模式図である。In the driving apparatus according to the first embodiment of the present invention, FIG. 5A is a schematic diagram for explaining an initial state. FIG. 5B is a schematic diagram for explaining the movable state. 図6(a)及び図6(b)は、本発明の第1の実施形態の駆動装置において、おのおの移動体を移動する様子を説明するための模式図である。FIG. 6A and FIG. 6B are schematic views for explaining a state in which each moving body is moved in the driving apparatus according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態の駆動装置における駆動ユニットの各辺部の移動体に圧接される部分の変位量と印加される電圧と時間との関係を示す図である。FIG. 7 is a diagram showing the relationship between the amount of displacement of the portion pressed against the moving body on each side of the drive unit in the drive device according to the first embodiment of the present invention, the applied voltage, and time. 図8は、比較例の駆動装置における駆動ユニットの各辺部の移動体に圧接される部分の変位量と印加される電圧と時間との関係を示す図である。FIG. 8 is a diagram showing the relationship between the amount of displacement of the portion pressed against the moving body on each side of the drive unit in the drive device of the comparative example, the applied voltage, and time. 図9は、本発明の第2の実施形態に係る駆動ユニットの斜視図である。FIG. 9 is a perspective view of a drive unit according to the second embodiment of the present invention. 図10は、本発明の第1の実施形態の変形例2で用いられる圧電素子の正面断面図である。FIG. 10 is a front sectional view of a piezoelectric element used in Modification 2 of the first embodiment of the present invention. 図11は、本発明の第1の実施形態の変形例1で用いられる移動体の斜視図である。FIG. 11 is a perspective view of a moving body used in Modification 1 of the first embodiment of the present invention. 図12は、図11に示した移動体に取り付けられるバネ部材を示す斜視図である。FIG. 12 is a perspective view showing a spring member attached to the movable body shown in FIG.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in this specification is an example, and a partial replacement or combination of configurations is possible between different embodiments.
 (第1の実施形態)
 図1(a)は、本発明の第1の実施形態で用いられている駆動ユニットを示す斜視図であり、図1(b)は、該駆動ユニットで用いられている圧電素子の正面断面図であり、図3は、第1の実施形態に係る駆動装置を示す斜視図である。
(First embodiment)
FIG. 1A is a perspective view showing a drive unit used in the first embodiment of the present invention, and FIG. 1B is a front sectional view of a piezoelectric element used in the drive unit. FIG. 3 is a perspective view showing the driving apparatus according to the first embodiment.
 図3に示すように、駆動装置1は、駆動ユニット2と、移動体3とを有する。 As shown in FIG. 3, the drive device 1 includes a drive unit 2 and a moving body 3.
 図3に示すように、駆動ユニット2は、ベース部材10と、ベース部材10に支持されている弾性体5とを有する。図1(a)に示すように、弾性体5は、対向し合う第1の主面5aと、第2の主面5bとを有する。弾性体5は、金属などの適宜の剛性材料からなる。弾性体5は、本実施形態では、矩形枠状の形状を有し、中央に開口部5cを有する。第1の主面5a上には、複数の圧電素子6~9が接合されている。 As shown in FIG. 3, the drive unit 2 includes a base member 10 and an elastic body 5 supported by the base member 10. As shown in FIG. 1A, the elastic body 5 has a first main surface 5a and a second main surface 5b that face each other. The elastic body 5 is made of an appropriate rigid material such as metal. In this embodiment, the elastic body 5 has a rectangular frame shape and has an opening 5c in the center. A plurality of piezoelectric elements 6 to 9 are bonded on the first main surface 5a.
 複数の圧電素子6~9は、第1の主面5aでなく、第2の主面5bに接合されていてもよい。また、両主面に複数の圧電素子が接合されていてもよい。 The plurality of piezoelectric elements 6 to 9 may be bonded to the second main surface 5b instead of the first main surface 5a. A plurality of piezoelectric elements may be bonded to both main surfaces.
 図1(b)は、圧電素子6の正面断面図である。圧電素子6は、積層型圧電素子である。圧電素子6は、圧電体11を有する。圧電体11は、短手方向と、長手方向を有する、短冊板状の形状を有している。圧電体11は、長手方向に延びる第1の主面11aと、第1の主面11aと対向している第2の主面11bとを有する。圧電体11の長手方向の一方端側に第1の端面11cが位置しており、長手方向の他方端側に第2の端面11dが位置している。 FIG. 1B is a front sectional view of the piezoelectric element 6. The piezoelectric element 6 is a stacked piezoelectric element. The piezoelectric element 6 has a piezoelectric body 11. The piezoelectric body 11 has a strip-like shape having a lateral direction and a longitudinal direction. The piezoelectric body 11 has a first main surface 11a extending in the longitudinal direction, and a second main surface 11b facing the first main surface 11a. The first end face 11c is located on one end side in the longitudinal direction of the piezoelectric body 11, and the second end face 11d is located on the other end side in the longitudinal direction.
 また、圧電体11の第1の主面11a上には、励振電極12が設けられている。また、圧電体層を介して励振電極12に対向するように圧電体11内に励振電極13が設けられている。さらに、圧電体11内には、圧電体層を介して隣り合うように、励振電極14~16が設けられている。励振電極16と圧電体層を介して対向するように、第2の主面11b上に、励振電極17が設けられている。励振電極12,14,16は、第1の端面11cに引き出されている。第1の端面11c上に、接続電極18が設けられている。励振電極12,14,16は、接続電極18によって電気的に接続されている。他方、励振電極13,15,17は、第2の端面11dに至っている。第2の端面11dには、接続電極19が設けられている。励振電極13,15,17は、接続電極19によって電気的に接続されている。 Further, an excitation electrode 12 is provided on the first main surface 11 a of the piezoelectric body 11. An excitation electrode 13 is provided in the piezoelectric body 11 so as to face the excitation electrode 12 through the piezoelectric layer. Further, excitation electrodes 14 to 16 are provided in the piezoelectric body 11 so as to be adjacent to each other through the piezoelectric layer. An excitation electrode 17 is provided on the second main surface 11b so as to face the excitation electrode 16 with the piezoelectric layer interposed therebetween. The excitation electrodes 12, 14, and 16 are drawn out to the first end face 11c. A connection electrode 18 is provided on the first end face 11c. The excitation electrodes 12, 14, and 16 are electrically connected by the connection electrode 18. On the other hand, the excitation electrodes 13, 15, and 17 reach the second end face 11d. A connection electrode 19 is provided on the second end face 11d. The excitation electrodes 13, 15, and 17 are electrically connected by the connection electrode 19.
 接続電極18は、第2の主面11b上に至っている端子部18aを有する。端子部18aおよび励振電極17は、間隙を介して互いに隣り合う位置に形成されている。また、接続電極19は、第1の主面11a上に至っている端子部19aを有する。端子部19aおよび励振電極12は、間隙を介して互いに隣り合う位置に形成されている。 The connection electrode 18 has a terminal portion 18a reaching the second main surface 11b. The terminal portion 18a and the excitation electrode 17 are formed at positions adjacent to each other via a gap. The connection electrode 19 has a terminal portion 19a that reaches the first main surface 11a. The terminal portion 19a and the excitation electrode 12 are formed at positions adjacent to each other via a gap.
 圧電素子6は、図1(a)に示すように、励振電極17側が弾性体5の第1の主面5a上に密着されて固定されている。 As shown in FIG. 1A, the piezoelectric element 6 is fixed with the excitation electrode 17 side in close contact with the first main surface 5 a of the elastic body 5.
 励振電極12と接続電極19の端子部19aを利用して、外部と電気的に接続することができる。本実施形態では、励振電極12が第1の端子電極を兼ねており、端子部19aが第2の端子電極となっている。励振電極12~17間の圧電体層は、厚み方向に分極処理されている。従って、端子電極を兼ねる励振電極12と、端子部19aとの間に交流電圧を印加すると、圧電素子6は屈曲振動で振動する。 Using the excitation electrode 12 and the terminal portion 19a of the connection electrode 19, it can be electrically connected to the outside. In the present embodiment, the excitation electrode 12 also serves as the first terminal electrode, and the terminal portion 19a serves as the second terminal electrode. The piezoelectric layer between the excitation electrodes 12 to 17 is polarized in the thickness direction. Therefore, when an AC voltage is applied between the excitation electrode 12 serving also as a terminal electrode and the terminal portion 19a, the piezoelectric element 6 vibrates due to bending vibration.
 圧電素子7~9も、圧電素子6と同様の構造を有する。従って、同一部分については同一の参照番号を付することにより、その説明を省略する。 The piezoelectric elements 7 to 9 also have the same structure as the piezoelectric element 6. Therefore, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
 上記圧電素子6,8と圧電素子7,9とを逆相の屈曲振動で駆動すると、駆動ユニット2は、屈曲振動と、拡がり振動を生じる。本実施形態は、この屈曲振動と拡がり振動との結合モードを利用することにより、図3に示した移動体3を移動させる。移動体3は、本実施形態では円柱状の形状を有し、該円柱状の形状の軸方向に移動体3が移動される。言い換えれば、駆動ユニット2の弾性体5の第1の主面5aと第2の主面5bとを結ぶ方向に、移動体3を移動させる。この移動体3を移動させる操作については、後程詳述する。 When the piezoelectric elements 6 and 8 and the piezoelectric elements 7 and 9 are driven by bending vibrations having opposite phases, the driving unit 2 generates bending vibrations and spreading vibrations. In the present embodiment, the moving body 3 shown in FIG. 3 is moved by utilizing the coupling mode of the bending vibration and the spreading vibration. The moving body 3 has a cylindrical shape in the present embodiment, and the moving body 3 is moved in the axial direction of the cylindrical shape. In other words, the moving body 3 is moved in a direction connecting the first main surface 5a and the second main surface 5b of the elastic body 5 of the drive unit 2. The operation of moving the moving body 3 will be described in detail later.
 本実施形態の特徴は、圧電素子6~9において、後述する不活性領域が、弾性体5の矩形枠状の複数の辺部の全てにおいて同様に配置されていることにある。これをより詳細に説明する。 A feature of the present embodiment is that in the piezoelectric elements 6 to 9, inactive regions to be described later are similarly arranged on all of the plurality of sides of the elastic body 5 in the rectangular frame shape. This will be described in more detail.
 図1に示すように、弾性体5は、正方形の開口部5cを有する。すなわち、弾性体5は4つの辺部を有する矩形の枠体である。弾性体5の第1~第4の辺部における第1の主面5a上に、圧電素子6,7,8または9が固定されている。 As shown in FIG. 1, the elastic body 5 has a square opening 5c. That is, the elastic body 5 is a rectangular frame having four sides. Piezoelectric elements 6, 7, 8 or 9 are fixed on the first main surface 5 a in the first to fourth sides of the elastic body 5.
 圧電素子6を駆動した場合、圧電体11全体が変位するわけではない。すなわち、異電位に接続される励振電極間に挟まれた圧電体層部分は、圧電効果により変位する。この場合、図1(b)において、クロスのハッチングで付した部分は、異なる電位の励振電極間に挟まれていない。従って、積極的に圧電効果により変位しない部分であるため、このクロスのハッチングを付して示した領域を不活性領域A1,A2とする。残りの領域が、圧電効果により変位する活性領域となる。 When the piezoelectric element 6 is driven, the entire piezoelectric body 11 is not displaced. That is, the piezoelectric layer portion sandwiched between the excitation electrodes connected to different potentials is displaced by the piezoelectric effect. In this case, in FIG. 1B, the hatched portion of the cross is not sandwiched between the excitation electrodes having different potentials. Accordingly, since the portion is not positively displaced due to the piezoelectric effect, the regions indicated by the cross hatching are defined as inactive regions A1 and A2. The remaining area becomes an active area displaced by the piezoelectric effect.
 図1(b)に示すように、不活性領域A1は、第1の端面11cに沿って、圧電素子6の第1,第2の主面11a,11bを結ぶ方向である厚み方向に延びている。そして、励振電極17と端子部18aとの対向領域に至っている。すなわち、圧電体11の第2の主面11b側においては、不活性領域A1は、第1の端面11cから、上記励振電極17の先端側まで延びている。従って、正面断面図において、不活性領域A1は、L字状の形状を有している。 As shown in FIG. 1B, the inactive region A1 extends in the thickness direction, which is a direction connecting the first and second main surfaces 11a and 11b of the piezoelectric element 6, along the first end surface 11c. Yes. And it has reached the opposing area | region of the excitation electrode 17 and the terminal part 18a. That is, on the second main surface 11 b side of the piezoelectric body 11, the inactive region A <b> 1 extends from the first end surface 11 c to the tip end side of the excitation electrode 17. Therefore, in the front sectional view, the inactive region A1 has an L-shape.
 他方、第2の端面11d側においては、不活性領域A2は、第2の端面11dに沿って延びている。さらに、端子部19aに沿うように不活性領域A2が、第2の端面11dから励振電極12の先端に向かって延びている。従って、正面断面図において、不活性領域A2は、逆L字状の形状を有している。 On the other hand, on the second end face 11d side, the inactive region A2 extends along the second end face 11d. Further, the inactive region A2 extends from the second end surface 11d toward the tip of the excitation electrode 12 along the terminal portion 19a. Therefore, in the front sectional view, the inactive region A2 has an inverted L-shaped shape.
 従って、圧電素子6は、第1の主面11aと第2の主面11bとを結ぶ方向の中心を通り、第1の主面11aと平行であり、かつ、上記長手方向に沿う面に対して上下非対称に構成されている。従って、圧電素子6を第1の主面11aと第2の主面11bとが逆になるように弾性体5に固定することもできる。 Accordingly, the piezoelectric element 6 passes through the center in the direction connecting the first main surface 11a and the second main surface 11b, is parallel to the first main surface 11a, and is parallel to the longitudinal direction. The top and bottom are asymmetrical. Therefore, the piezoelectric element 6 can be fixed to the elastic body 5 so that the first main surface 11a and the second main surface 11b are reversed.
 もっとも、本実施形態では圧電素子6は、上記のように、励振電極12が設けられている面が弾性体5との接合面と反対側の面となるように弾性体5に固定されている。残りの圧電素子7~9も、励振電極12が設けられている面が圧電素子6と同じ向きになるように、弾性体5に固定されている。 However, in the present embodiment, as described above, the piezoelectric element 6 is fixed to the elastic body 5 so that the surface on which the excitation electrode 12 is provided is the surface opposite to the joint surface with the elastic body 5. . The remaining piezoelectric elements 7 to 9 are also fixed to the elastic body 5 so that the surface on which the excitation electrode 12 is provided is in the same direction as the piezoelectric element 6.
 すなわち、複数の圧電素子6~9における第1の端子電極が、おのおの隣り合っている辺部における複数の圧電素子の第2の端子電極と隣り合っている。具体的には、圧電素子6における励振電極12が圧電素子9における端子部19aと隣り合っている。圧電素子9における励振電極12が圧電素子8における端子部19aと隣り合っている。圧電素子8における励振電極12が圧電素子7における端子部19aと隣り合っている。圧電素子7における励振電極12が圧電素子6における端子部19aと隣り合っている。また、圧電素子6,8における励振電極12はおのおの電気的に接続されている。圧電素子7,9における励振電極12はおのおの電気的に接続されている。圧電素子6,8における端子部19aはおのおの電気的に接続されている。圧電素子7,9における端子部19aはおのおの電気的に接続されている。従って、弾性体5の各辺部における、上記圧電素子の不活性領域の位置は、弾性体5の矩形枠状の全ての辺部において同様に配置されている。そのため、駆動ユニット2の各辺部における変位量のばらつきを小さくすることができる。よって、駆動装置1を用いて移動体3を安定に移動させることができる。これを図2に示す比較例と対比することにより明らかにする。 That is, the first terminal electrodes of the plurality of piezoelectric elements 6 to 9 are adjacent to the second terminal electrodes of the plurality of piezoelectric elements on the adjacent sides. Specifically, the excitation electrode 12 in the piezoelectric element 6 is adjacent to the terminal portion 19 a in the piezoelectric element 9. The excitation electrode 12 in the piezoelectric element 9 is adjacent to the terminal portion 19 a in the piezoelectric element 8. The excitation electrode 12 in the piezoelectric element 8 is adjacent to the terminal portion 19 a in the piezoelectric element 7. The excitation electrode 12 in the piezoelectric element 7 is adjacent to the terminal portion 19 a in the piezoelectric element 6. The excitation electrodes 12 in the piezoelectric elements 6 and 8 are electrically connected to each other. The excitation electrodes 12 in the piezoelectric elements 7 and 9 are electrically connected to each other. The terminal portions 19a of the piezoelectric elements 6 and 8 are electrically connected to each other. The terminal portions 19a of the piezoelectric elements 7 and 9 are electrically connected to each other. Therefore, the position of the inactive region of the piezoelectric element in each side portion of the elastic body 5 is similarly arranged in all the side portions of the elastic body 5 in the rectangular frame shape. Therefore, variation in the amount of displacement at each side portion of the drive unit 2 can be reduced. Therefore, the moving body 3 can be stably moved using the driving device 1. This will be clarified by comparing with the comparative example shown in FIG.
 図2に示す駆動ユニット101は、圧電素子6,8に代えて、圧電素子6A,8Aを弾性体5の第1の主面5a上に固定したことを除いては、上記実施形態の駆動ユニット2と同様に構成されている。すなわち、励振電極17及び端子部18aが弾性体5との接合面と反対側の面となるように、圧電素子6Aが弾性体5に固定されている。圧電素子8Aについても同様である。また、圧電素子6Aの励振電極17および圧電素子8Aの励振電極17が電気的に接続されている。圧電素子7の励振電極12および圧電素子9の励振電極12が電気的に接続されている。圧電素子6Aの端子部18aおよび圧電素子8Aの端子部18aが電気的に接続されている。圧電素子7の端子部19aおよび圧電素子9の端子部19aが電気的に接続されている。比較例では、励振電極12,17が第1の端子電極であり、端子部18a,19aが第2の端子電極である。圧電素子6Aと圧電素子8Aにおいて、弾性体5の矩形枠状の辺部において不活性領域の位置は同じであるが、圧電素子6A,8Aと圧電素子7,9とでは、弾性体5の矩形枠状の辺部において不活性領域の位置が異なっている。従って、前述した不活性領域A1,A2の位置が、弾性体5の矩形枠状の全ての辺部において同様に配置されていない。 The drive unit 101 shown in FIG. 2 is the drive unit of the above embodiment except that the piezoelectric elements 6A and 8A are fixed on the first main surface 5a of the elastic body 5 instead of the piezoelectric elements 6 and 8. It is comprised similarly to 2. That is, the piezoelectric element 6 </ b> A is fixed to the elastic body 5 so that the excitation electrode 17 and the terminal portion 18 a are on the surface opposite to the joint surface with the elastic body 5. The same applies to the piezoelectric element 8A. Further, the excitation electrode 17 of the piezoelectric element 6A and the excitation electrode 17 of the piezoelectric element 8A are electrically connected. The excitation electrode 12 of the piezoelectric element 7 and the excitation electrode 12 of the piezoelectric element 9 are electrically connected. The terminal portion 18a of the piezoelectric element 6A and the terminal portion 18a of the piezoelectric element 8A are electrically connected. The terminal portion 19a of the piezoelectric element 7 and the terminal portion 19a of the piezoelectric element 9 are electrically connected. In the comparative example, the excitation electrodes 12 and 17 are first terminal electrodes, and the terminal portions 18a and 19a are second terminal electrodes. In the piezoelectric element 6A and the piezoelectric element 8A, the position of the inactive region is the same at the side of the rectangular frame shape of the elastic body 5, but the piezoelectric elements 6A and 8A and the piezoelectric elements 7 and 9 have the rectangular shape of the elastic body 5. The position of the inactive region is different in the frame-shaped side portion. Therefore, the positions of the inactive regions A1 and A2 described above are not similarly arranged in all the sides of the elastic frame 5 in the rectangular frame shape.
 上記実施形態と比較例との対比を、後程実験例に基づき説明する。その前に、上記駆動装置1における移動体3を移動させる構成を説明することとする。 The comparison between the above embodiment and the comparative example will be described later based on an experimental example. Before that, a configuration for moving the moving body 3 in the driving apparatus 1 will be described.
 前述したように、本実施形態では、弾性体5の屈曲振動と拡がり振動との結合モードを利用する。屈曲振動と拡がり振動の共振周波数を調整することにより、複数の結合モードを生じさせることができる。 As described above, in this embodiment, a coupling mode of bending vibration and spreading vibration of the elastic body 5 is used. A plurality of coupled modes can be generated by adjusting the resonance frequency of the bending vibration and the spreading vibration.
 圧電素子6~9に交流電圧を印加することにより、弾性体5が屈曲振動と、拡がり振動で振動する。 When an AC voltage is applied to the piezoelectric elements 6 to 9, the elastic body 5 vibrates due to bending vibration and spreading vibration.
 図4は、屈曲振動の共振周波数及び拡がり振動の共振周波数と、弾性体5の厚みとの関係を示す図である。図4に示すように、弾性体5の厚みを調整したりすることにより、屈曲振動の共振周波数及び拡がり振動の共振周波数を調整させることができ、両者の結合モードを生じさせることができる。後述するように、複数の結合モードのうち、第1の結合モード及び第2の結合モードの2つの結合モードを利用する。 FIG. 4 is a diagram showing the relationship between the resonance frequency of bending vibration and the resonance frequency of spread vibration and the thickness of the elastic body 5. As shown in FIG. 4, by adjusting the thickness of the elastic body 5, the resonance frequency of the bending vibration and the resonance frequency of the spreading vibration can be adjusted, and a coupling mode of both can be generated. As will be described later, two coupling modes of a first coupling mode and a second coupling mode among a plurality of coupling modes are used.
 本実施形態では、第1の結合モードと第2の結合モードとを利用する。第1,第2の結合モードの振動は、弾性体5の開口部5cの内壁が移動体3に圧接している移動可能状態と、開口部5cの内壁が移動体3に対して隔てられており、あるいは移動可能状態よりも低い摩擦係合力で移動体3に接触しているリリース状態とを実現する振動姿態を有する。すなわち、第1の結合モード及び第2の結合モードのいずれの場合においても、上記2つの状態を実現する振動姿態が生じる。 In this embodiment, the first coupling mode and the second coupling mode are used. The vibration in the first and second coupling modes is caused by the movable state in which the inner wall of the opening 5c of the elastic body 5 is pressed against the moving body 3 and the inner wall of the opening 5c being separated from the moving body 3. Or a vibration state that realizes a released state in contact with the moving body 3 with a frictional engagement force lower than that in the movable state. That is, in any case of the first coupling mode and the second coupling mode, a vibration state that realizes the two states is generated.
 ただし、第1の結合モードでは、移動可能状態において、上記第1の結合モードにより、移動体3は、上記移動体3の軸方向において一方側に移動される。これを前進とすると、第2の結合モードでは、移動可能状態において、開口部の内壁が移動体3を後退させることになる。すなわち、上記第1の結合モードと第2の結合モードが生じるように駆動周波数を切り換えることにより、移動体3を前進あるいは後退させることができる。 However, in the first coupling mode, the movable body 3 is moved to one side in the axial direction of the movable body 3 in the movable state in the first coupling mode. If this is a forward movement, in the second coupling mode, the inner wall of the opening part moves the moving body 3 backward in the movable state. That is, the moving body 3 can be moved forward or backward by switching the driving frequency so that the first coupling mode and the second coupling mode are generated.
 上記のように、本実施形態では、上記リリース状態と移動可能状態を実現する振動姿態が生じる第1,第2の結合モードを利用する。結合させるには、好ましくは、屈曲振動の共振周波数と、拡がり振動の共振周波数が一致されていることが望ましい。もっとも、双方の共振周波数は完全に一致されずともよく、屈曲振動の共振周波数と、拡がり振動の共振周波数との差の絶対値は、第1の結合モードにおける共振周波数及び第2の結合モードにおける共振周波数の平均値の15%以内の範囲内であればよい。 As described above, in the present embodiment, the first and second coupling modes in which the vibration state realizing the release state and the movable state are generated are used. In order to make the coupling, it is preferable that the resonance frequency of the bending vibration and the resonance frequency of the spreading vibration are matched. However, the resonance frequencies of both may not be exactly the same, and the absolute value of the difference between the resonance frequency of the bending vibration and the resonance frequency of the spread vibration is the resonance frequency in the first coupling mode and the second coupling mode. What is necessary is just to be in the range within 15% of the average value of resonance frequency.
 なお、本実施形態では、屈曲振動と拡がり振動との結合モードを利用しているが、屈曲振動と、結合モードとを利用してもよい。また、屈曲振動と、拡がり振動などの屈曲振動以外の他の振動モードとを利用してもよい。 Note that, in this embodiment, a coupled mode of bending vibration and spreading vibration is used, but bending vibration and coupled mode may be used. Further, bending vibration and vibration modes other than bending vibration such as spreading vibration may be used.
 図5(a)は、駆動装置1を操作する際の初期状態を示し、上記のように、第1の結合モードを生じるように駆動ユニット2を駆動することにより、図5(b)に示すように、移動可能状態とする。すなわち、弾性体5の開口部5cが移動体3の外周面に圧接される。その状態で、上記第1の結合モードで移動させることにより、図6(a)に示すように、移動体3を矢印方向に、すなわち軸方向一方側に進めることができる。そして、第1の結合モードにおいて、図6(b)に示すように、リリース状態を実現することにより、前進を停止する。これらの工程を繰り返すことにより、移動体3を前方にピッチ送りすることができる。 FIG. 5 (a) shows an initial state when operating the drive device 1, and as shown in FIG. 5 (b), by driving the drive unit 2 to generate the first coupling mode as described above. Thus, the movable state is set. That is, the opening 5 c of the elastic body 5 is pressed against the outer peripheral surface of the moving body 3. In this state, by moving in the first coupling mode, the moving body 3 can be advanced in the direction of the arrow, that is, one side in the axial direction, as shown in FIG. And in a 1st coupling | bonding mode, as shown in FIG.6 (b), advancing is stopped by implement | achieving a release state. By repeating these steps, the moving body 3 can be pitched forward.
 なお、後退させる場合には、第2の結合モードを発生させ、第2の結合モードにより駆動すれば、移動体3を後退させることができる。例えば、屈曲振動により、移動体3を前進または後退させ、拡がり振動により上記リリース状態と、移動可能状態とを実現してもよい。 In the case of retreating, the movable body 3 can be retreated by generating the second coupling mode and driving in the second coupling mode. For example, the movable body 3 may be moved forward or backward by bending vibration, and the release state and the movable state may be realized by spreading vibration.
 次に、本実施形態の駆動装置1によれば、上記圧電素子6~9の不活性領域が弾性体5の矩形枠状の複数の辺部の全てにおいて同様に配置されている。そのため、移動体の変位量の辺部におけるばらつきを小さくすることができ、それによって、移動体の変位量全体のばらつきを小さくし得ることを、図7及び図8を参照して説明する。 Next, according to the driving device 1 of the present embodiment, the inactive regions of the piezoelectric elements 6 to 9 are similarly arranged in all of the plurality of sides of the elastic body 5 in the rectangular frame shape. Therefore, it will be described with reference to FIG. 7 and FIG. 8 that the variation in the side of the displacement amount of the moving body can be reduced, thereby reducing the variation in the entire displacement amount of the moving body.
 図7の相対的に太い実線は、第1の実施形態の駆動装置における駆動電圧波形を示す。また、破線、一点鎖線、二点鎖線及び細線は、それぞれ、圧電素子6~9が設けられている各辺部の中央の開口部5cの内壁部分の変位量を示す。この各辺部の中央の内壁部分とは、移動体3に圧接される部分である。 7 represents a driving voltage waveform in the driving device of the first embodiment. Further, the broken line, the alternate long and short dash line, the alternate long and two short dashes line, and the thin line indicate the amount of displacement of the inner wall portion of the central opening 5c of each side where the piezoelectric elements 6 to 9 are provided. The central inner wall portion of each side portion is a portion pressed against the moving body 3.
 図8は前述した比較例の駆動装置における各辺部の中央の内壁部分の変位量と、駆動電圧波形とを示す図である。変位量は、例えば、小野測器社製、商品名「LV-1710」のドップラ振動計により駆動装置の各辺部の中央の開口部の内壁部分にレーザーを照射し、照射されたレーザーの反射光をドップラ振動計で受光することにより測定した。図7及び図8に示すように、第1の実施形態の駆動装置及び比較例の駆動装置には同じ波形の駆動電圧を印加しているが、比較例の駆動装置では、各辺部の中央の開口部の内壁部分の変位量が大きくばらついていることがわかる。これに対して、図7に示すように、第1の実施形態の駆動装置では、各辺部の中央の開口部の内壁部分の変位量がほぼ同様であり、変位量のばらつきを効果的に低減し得ることがわかる。 FIG. 8 is a diagram showing a displacement amount of a central inner wall portion of each side portion and a driving voltage waveform in the driving device of the comparative example described above. The amount of displacement is determined by, for example, irradiating the inner wall portion of the central opening of each side of the drive device with a Doppler vibrometer manufactured by Ono Sokki Co., Ltd. under the trade name “LV-1710”, and reflecting the irradiated laser The light was measured by receiving light with a Doppler vibrometer. As shown in FIGS. 7 and 8, the drive voltage having the same waveform is applied to the drive device of the first embodiment and the drive device of the comparative example. However, in the drive device of the comparative example, the center of each side portion is applied. It can be seen that the amount of displacement of the inner wall portion of the opening varies greatly. On the other hand, as shown in FIG. 7, in the driving device of the first embodiment, the displacement amount of the inner wall portion of the opening at the center of each side portion is almost the same, and the variation in the displacement amount is effectively reduced. It can be seen that it can be reduced.
 (第2の実施形態)
 図9は、本発明の第2の実施形態に係る駆動装置で用いられている駆動ユニットを示す斜視図である。駆動ユニット22では、接続パッド23a~23dが設けられていることを除いては、駆動ユニット2と同様である。従って、同一部分については同一の参照番号を付することにより、第1の実施形態の説明を援用することとする。
(Second Embodiment)
FIG. 9 is a perspective view showing a drive unit used in the drive apparatus according to the second embodiment of the present invention. The drive unit 22 is the same as the drive unit 2 except that connection pads 23a to 23d are provided. Therefore, the same reference numerals are assigned to the same parts, and the description of the first embodiment is incorporated.
 接続パッド23a~23dは、導電性材料からなる。電極パッドは、第1の端子電極と、隣り合っている辺部における第1の端子電極と隣り合っている第2の端子電極とを電気的に接続している。具体的には、接続パッド23aは、圧電素子6の端子部19aと、圧電素子7の第1の端子部としての励振電極12とを電気的に接続している。接続パッド23bは、圧電素子7の端子部19aと、圧電素子8の励振電極12とを電気的に接続している。接続パッド23cは、圧電素子8の端子部19aと圧電素子9の励振電極12とを電気的に接続している。接続パッド23dは、圧電素子9の端子部19aと、圧電素子6の励振電極12とを電気的に接続している。詳述すると、圧電素子6の端子部19a、圧電素子7の励振電極12、圧電素子8の端子部19a、および圧電素子9の励振電極12が電気的に接続されている。また、圧電素子6の励振電極12、圧電素子7の端子部19a、圧電素子8の励振電極12、および圧電素子9の端子部19aが電気的に接続されている。 The connection pads 23a to 23d are made of a conductive material. The electrode pad electrically connects the first terminal electrode and the second terminal electrode adjacent to the first terminal electrode in the adjacent side portion. Specifically, the connection pad 23 a electrically connects the terminal portion 19 a of the piezoelectric element 6 and the excitation electrode 12 as the first terminal portion of the piezoelectric element 7. The connection pad 23 b electrically connects the terminal portion 19 a of the piezoelectric element 7 and the excitation electrode 12 of the piezoelectric element 8. The connection pad 23 c electrically connects the terminal portion 19 a of the piezoelectric element 8 and the excitation electrode 12 of the piezoelectric element 9. The connection pad 23 d electrically connects the terminal portion 19 a of the piezoelectric element 9 and the excitation electrode 12 of the piezoelectric element 6. More specifically, the terminal portion 19a of the piezoelectric element 6, the excitation electrode 12 of the piezoelectric element 7, the terminal portion 19a of the piezoelectric element 8, and the excitation electrode 12 of the piezoelectric element 9 are electrically connected. The excitation electrode 12 of the piezoelectric element 6, the terminal portion 19 a of the piezoelectric element 7, the excitation electrode 12 of the piezoelectric element 8, and the terminal portion 19 a of the piezoelectric element 9 are electrically connected.
 従って、駆動ユニット22の駆動に際しては、圧電素子6~9の圧電体11の第1の主面11a側において、4箇所をボンディングワイヤーなどにより電気的に接続すればよい。すなわち、隣り合う圧電素子の端子部19aと励振電極12とが予め接続パッド23a~23dで電気的に接続されているため、外部との電気的接続箇所は4箇所でよい。 Therefore, when the drive unit 22 is driven, the four locations on the first main surface 11a side of the piezoelectric body 11 of the piezoelectric elements 6 to 9 may be electrically connected by bonding wires or the like. That is, since the terminal portion 19a of the adjacent piezoelectric element and the excitation electrode 12 are electrically connected in advance by the connection pads 23a to 23d, the number of electrical connection locations with the outside may be four.
 これに対して、前述した第1の実施形態では、各圧電素子6~9において、それぞれ、第1,第2の端子電極としての励振電極12及び端子部19aを外部と電気的に接続する必要があり、外部との電気的接続点は8箇所であった。 In contrast, in the first embodiment described above, in each of the piezoelectric elements 6 to 9, it is necessary to electrically connect the excitation electrode 12 as the first and second terminal electrodes and the terminal portion 19a to the outside. There were 8 electrical connection points with the outside.
 よって、本実施形態によれば、外部との電気的接続を容易に行うことができる。 Therefore, according to this embodiment, electrical connection with the outside can be easily performed.
 すなわち、第2の実施形態のように、隣り合う圧電素子6~9間において、同電位に接続される端子電極を第1の主面11a側において共通接続しておくことが好ましい。 That is, as in the second embodiment, between the adjacent piezoelectric elements 6 to 9, it is preferable that the terminal electrodes connected to the same potential are connected in common on the first main surface 11a side.
 なお、第1,第2の実施形態では、弾性体5は正方形の開口部5cを有し、矩形枠状の形状を有していたが、他の多角形状の開口部を有していてもよい。 In the first and second embodiments, the elastic body 5 has a square opening 5c and has a rectangular frame shape. However, the elastic body 5 may have another polygonal opening. Good.
 (第1の実施形態の変形例1)
 また、上記実施形態では、円柱状の移動体3の外周面に、上記弾性体5の開口部5cの内面が圧接され、移動体3を移動可能状態としていた。この場合、移動体3の外周面に、金属などからなるバネ部材を固定しておいてもよい。また、移動体3は円柱状に限らず、図11に示す移動体3Aのように略角柱状の形状を有していてもよい。この場合、図12に示すバネ部材4を移動体3Aに取り付けてもよい。すなわち、金属などからなるバネ部材4の内径は、移動体3Aの軸方向と直交する横断面方向の最大寸法よりも小さくされている。従って、スリット4aを有するバネ部材4のスリット4aを拡げつつ、移動体3Aにバネ部材4を取り付ければよい。この場合、バネ部材4の外周面が、上記駆動ユニット2の弾性体5の開口部5cの内壁に圧接され、移動体3Aがバネ部材4と共に移動されることになる。
(Modification 1 of the first embodiment)
Moreover, in the said embodiment, the inner surface of the opening part 5c of the said elastic body 5 was press-contacted to the outer peripheral surface of the cylindrical moving body 3, and the moving body 3 was made the movable state. In this case, a spring member made of metal or the like may be fixed to the outer peripheral surface of the moving body 3. Moreover, the moving body 3 is not limited to a columnar shape, and may have a substantially prismatic shape like a moving body 3A shown in FIG. In this case, the spring member 4 shown in FIG. 12 may be attached to the moving body 3A. That is, the inner diameter of the spring member 4 made of metal or the like is made smaller than the maximum dimension in the cross-sectional direction orthogonal to the axial direction of the moving body 3A. Therefore, the spring member 4 may be attached to the moving body 3A while expanding the slit 4a of the spring member 4 having the slit 4a. In this case, the outer peripheral surface of the spring member 4 is pressed against the inner wall of the opening 5 c of the elastic body 5 of the drive unit 2, and the moving body 3 </ b> A is moved together with the spring member 4.
 (第1の実施形態の変形例2)
 さらに、圧電素子6~9として積層型圧電素子を用いたが、図10に示す単板型の圧電素子31を用いてもよい。圧電素子31は、圧電体32と、圧電体32の第1の主面に設けられた第1の励振電極33と、第2の主面に設けられた第2の励振電極34とを有する。圧電素子31においても、圧電体32の両端面に接続電極35,36が設けられており、接続電極35,36に、端子部35a,36aがそれぞれ連ねられている。従って、圧電素子31においても、不活性領域は、圧電体32の第1,第2の主面を結ぶ方向中心を通り、第1の主面に平行に延びる断面の両側で非対称に位置している。よって、圧電素子31についても、上記圧電素子6~9と同様に、不活性領域が弾性体5の矩形枠状の全ての辺部において同様の位置にくるように設けられている。それによって、第1の実施形態の場合と同様の効果を得ることができる。
(Modification 2 of the first embodiment)
Further, although multilayer piezoelectric elements are used as the piezoelectric elements 6 to 9, a single plate type piezoelectric element 31 shown in FIG. 10 may be used. The piezoelectric element 31 includes a piezoelectric body 32, a first excitation electrode 33 provided on the first main surface of the piezoelectric body 32, and a second excitation electrode 34 provided on the second main surface. Also in the piezoelectric element 31, connection electrodes 35 and 36 are provided on both end faces of the piezoelectric body 32, and terminal portions 35 a and 36 a are connected to the connection electrodes 35 and 36, respectively. Therefore, also in the piezoelectric element 31, the inactive region is located asymmetrically on both sides of a cross section that passes through the center in the direction connecting the first and second main surfaces of the piezoelectric body 32 and extends parallel to the first main surface. Yes. Therefore, the piezoelectric element 31 is also provided so that the inactive region is located at the same position on all the sides of the elastic body 5 in the rectangular frame shape, similarly to the piezoelectric elements 6 to 9 described above. Thereby, the same effect as in the case of the first embodiment can be obtained.
1…駆動装置
2…駆動ユニット
3,3A…移動体
4…バネ部材
4a…スリット
5…弾性体
5a…第1の主面
5b…第2の主面
5c…開口部
6,7,8,9…圧電素子
6A,8A…圧電素子
10…ベース部材
11…圧電体
11a…第1の主面
11b…第2の主面
11c…第1の端面
11d…第2の端面
12,13,14,15,16,17…励振電極
18,19…接続電極
18a,19a…端子部
22…駆動ユニット
23a,23b,23c,23d…接続パッド
31…圧電素子
32…圧電体
33…第1の励振電極
34…第2の励振電極
35,36…接続電極
35a,36a…端子部
101…駆動ユニット
A1,A2…不活性領域
DESCRIPTION OF SYMBOLS 1 ... Drive device 2 ... Drive unit 3, 3A ... Moving body 4 ... Spring member 4a ... Slit 5 ... Elastic body 5a ... 1st main surface 5b ... 2nd main surface 5c ... Opening part 6, 7, 8, 9 ... piezoelectric elements 6A, 8A ... piezoelectric element 10 ... base member 11 ... piezoelectric body 11a ... first main surface 11b ... second main surface 11c ... first end surface 11d ... second end surfaces 12, 13, 14, 15 , 16, 17 ... excitation electrodes 18, 19 ... connection electrodes 18a, 19a ... terminal 22 ... drive units 23a, 23b, 23c, 23d ... connection pads 31 ... piezoelectric element 32 ... piezoelectric element 33 ... first excitation electrode 34 ... Second excitation electrodes 35, 36 ... connection electrodes 35a, 36a ... terminal portion 101 ... drive units A1, A2 ... inactive regions

Claims (8)

  1.  対向し合う第1及び第2の主面を有し、かつ前記第1の主面から前記第2の主面に向かって中央部を貫通している開口部と、該開口部を囲む複数の辺部とを有する弾性体と、前記弾性体の前記第1及び前記第2の主面における少なくとも一方の主面において、前記複数の辺部におのおの接合された複数の圧電素子とを有する駆動ユニットと、
     前記弾性体の前記開口部に挿入されており、前記駆動ユニットを駆動することにより、前記弾性体の前記第1の主面と前記第2の主面とを結ぶ方向に移動される移動体と、
     前記複数の圧電素子を駆動することにより、前記駆動ユニットが、屈曲振動と、前記屈曲振動とは異なる少なくとも一種の他の振動とで、または前記屈曲振動と、前記屈曲振動とは異なる少なくとも一種の前記他の振動とが結合してなる結合モードの振動で振動するように構成されており、
     前記他の振動または前記結合モードの振動が、前記移動体を移動させ得るように前記弾性体の前記開口部の内壁に前記移動体が摩擦係合している移動可能状態と、前記弾性体の前記開口部の前記内壁が前記移動体から隔てられており、あるいは前記移動可能状態よりも低い摩擦係合力で前記移動体が前記弾性体の前記開口部の前記内壁に接触しているリリース状態とをそれぞれ実現する振動姿態を有し、
     前記駆動ユニットの前記屈曲振動及び前記他の振動により、または前記結合モードの振動により、前記移動体を移動させ、
     前記複数の圧電素子が、板状の圧電体と、前記圧電体を励振するための複数の励振電極と、前記励振電極間に挟まれた活性領域と、前記励振電極間に挟まれていない不活性領域とを有し、
     前記複数の圧電素子における前記不活性領域が、前記複数の辺部の全てにおいて同様に配置されている、駆動装置。
    An opening having first and second main surfaces facing each other and penetrating a central portion from the first main surface toward the second main surface, and a plurality of surroundings surrounding the opening A drive unit comprising: an elastic body having a side portion; and a plurality of piezoelectric elements joined to the plurality of side portions on at least one main surface of the first and second main surfaces of the elastic body. When,
    A movable body that is inserted into the opening of the elastic body and is moved in a direction connecting the first main surface and the second main surface of the elastic body by driving the drive unit; ,
    By driving the plurality of piezoelectric elements, the driving unit is configured to bend and vibrate and at least one other vibration different from the bending vibration or at least one kind different from the bending vibration and the bending vibration. It is configured to vibrate with a combined mode vibration formed by combining with the other vibrations,
    A movable state in which the movable body is frictionally engaged with an inner wall of the opening of the elastic body so that the vibration of the other mode or the coupled mode can move the movable body; The inner wall of the opening is separated from the moving body, or the moving body is in contact with the inner wall of the opening of the elastic body with a lower frictional engagement force than the movable state. Have a vibration mode that realizes
    The movable body is moved by the bending vibration and the other vibration of the driving unit or by the vibration of the coupling mode,
    The plurality of piezoelectric elements include a plate-shaped piezoelectric body, a plurality of excitation electrodes for exciting the piezoelectric body, an active region sandwiched between the excitation electrodes, and a non- sandwiched area between the excitation electrodes. An active region,
    The drive device, wherein the inactive regions in the plurality of piezoelectric elements are similarly arranged in all of the plurality of sides.
  2.  前記複数の圧電素子が、おのおの前記圧電体の前記弾性体に貼り合わされている面とは反対側の面に設けられた第1及び第2の端子電極を有し、
     前記複数の圧電素子における前記第1の端子電極が、おのおの隣り合っている辺部における前記複数の圧電素子の前記第2の端子電極と隣り合っている、請求項1に記載の駆動装置。
    Each of the plurality of piezoelectric elements includes first and second terminal electrodes provided on a surface of the piezoelectric body opposite to a surface bonded to the elastic body;
    2. The driving device according to claim 1, wherein the first terminal electrodes in the plurality of piezoelectric elements are adjacent to the second terminal electrodes of the plurality of piezoelectric elements in adjacent side portions.
  3.  前記第1の端子電極と、隣り合っている辺部における前記第1の端子電極と隣り合っている前記第2の端子電極とを電気的に接続している電極パッドをさらに備える、請求項2に記載の駆動装置。 The electrode pad which electrically connects the 1st terminal electrode and the 2nd terminal electrode which adjoins the 1st terminal electrode in an adjoining side part is provided. The drive device described in 1.
  4.  前記弾性体の前記開口部が矩形の平面形状を有し、前記辺部が第1~第4の辺部であり、前記複数の圧電素子が、前記第1~第4の辺部に接合された第1~第4の圧電素子である、請求項1~3のいずれか1項に記載の駆動装置。 The opening of the elastic body has a rectangular planar shape, the side portions are first to fourth side portions, and the plurality of piezoelectric elements are joined to the first to fourth side portions. 4. The driving device according to claim 1, wherein the driving device is a first to a fourth piezoelectric element.
  5.  前記圧電素子が、前記圧電体内において、圧電体層部分を介して積層された前記複数の励振電極を有する、積層型圧電素子である、請求項1~4のいずれか1項に記載の駆動装置。 The driving device according to any one of claims 1 to 4, wherein the piezoelectric element is a stacked piezoelectric element having the plurality of excitation electrodes stacked via piezoelectric layer portions in the piezoelectric body. .
  6.  前記圧電素子が、前記圧電体の前記弾性体側の面に設けられた第1の励振電極と、前記弾性体とは反対側の前記圧電体の面に設けられた第2の励振電極とを有し、単板型の圧電素子である、請求項1~4のいずれか1項に記載の駆動装置。 The piezoelectric element has a first excitation electrode provided on the surface of the piezoelectric body on the elastic body side, and a second excitation electrode provided on the surface of the piezoelectric body opposite to the elastic body. The driving device according to any one of claims 1 to 4, wherein the driving device is a single plate type piezoelectric element.
  7.  前記移動体が、前記弾性体の前記第1の主面と前記第2の主面とを結ぶ方向に延びる円柱状の形状を有する、請求項1~6のいずれか1項に記載の駆動装置。 The drive device according to any one of claims 1 to 6, wherein the movable body has a cylindrical shape extending in a direction connecting the first main surface and the second main surface of the elastic body. .
  8.  前記移動体に外挿されたバネ部材をさらに備え、前記バネ部材が、前記駆動ユニットの前記弾性体の前記開口部の前記内壁に圧接される、請求項7に記載の駆動装置。 The drive device according to claim 7, further comprising a spring member extrapolated to the movable body, wherein the spring member is pressed against the inner wall of the opening of the elastic body of the drive unit.
PCT/JP2016/063425 2015-05-15 2016-04-28 Drive device WO2016185900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017519104A JP6406444B2 (en) 2015-05-15 2016-04-28 Drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015100192 2015-05-15
JP2015-100192 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016185900A1 true WO2016185900A1 (en) 2016-11-24

Family

ID=57320080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063425 WO2016185900A1 (en) 2015-05-15 2016-04-28 Drive device

Country Status (2)

Country Link
JP (1) JP6406444B2 (en)
WO (1) WO2016185900A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210823A1 (en) * 2022-04-28 2023-11-02 ミネベアミツミ株式会社 Vibration actuator and contact-type input device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201813A (en) * 2012-03-23 2013-10-03 Murata Mfg Co Ltd Driving device and motor
JP2015027154A (en) * 2013-07-25 2015-02-05 Tdk株式会社 Piezoelectric actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201813A (en) * 2012-03-23 2013-10-03 Murata Mfg Co Ltd Driving device and motor
JP2015027154A (en) * 2013-07-25 2015-02-05 Tdk株式会社 Piezoelectric actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210823A1 (en) * 2022-04-28 2023-11-02 ミネベアミツミ株式会社 Vibration actuator and contact-type input device

Also Published As

Publication number Publication date
JP6406444B2 (en) 2018-10-17
JPWO2016185900A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US7259497B2 (en) Vibration wave motor
US7911112B2 (en) Ultrasonic actuator
US8633632B2 (en) Vibration actuator and method for manufacturing the same
JP6245273B2 (en) Drive device
CN106100435B (en) Piezoelectric motor
US10069440B2 (en) Vibrator and ultrasonic motor
JPWO2007083752A1 (en) Ultrasonic actuator
JP2014018027A (en) Vibration type actuator, imaging apparatus, and stage
JPWO2007091443A1 (en) Piezoelectric element and ultrasonic actuator
JPWO2008102553A1 (en) Drive device
US20110234049A1 (en) Ultrasonic motor
JP6406444B2 (en) Drive device
US8004150B2 (en) Ultrasonic actuator with flexible cable connection member
JP2007312600A (en) Piezoelectric element and ultrasonic actuator
JP6774222B2 (en) Vibration wave motor and optical device using vibration wave motor
JP5275734B2 (en) Ultrasonic motor
JP4676395B2 (en) Piezoelectric vibrator and ultrasonic motor having the same
JP5085228B2 (en) Piezoelectric fan device
WO2021200417A1 (en) Actuator and optical reflective element
JP2017022846A (en) Vibrator, vibration actuator, and ultrasonic motor
JP6493525B2 (en) Drive unit and drive device
JP5847906B2 (en) Vibrator
JP2009033791A (en) Ultrasonic motor
JP2009174419A (en) Piezoelectric fan device
US8421309B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796294

Country of ref document: EP

Kind code of ref document: A1