WO2016183722A1 - 信息的发送和接收方法及系统、基站、第一用户设备 - Google Patents

信息的发送和接收方法及系统、基站、第一用户设备 Download PDF

Info

Publication number
WO2016183722A1
WO2016183722A1 PCT/CN2015/079050 CN2015079050W WO2016183722A1 WO 2016183722 A1 WO2016183722 A1 WO 2016183722A1 CN 2015079050 W CN2015079050 W CN 2015079050W WO 2016183722 A1 WO2016183722 A1 WO 2016183722A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
uplink
downlink
serving cell
frame structure
Prior art date
Application number
PCT/CN2015/079050
Other languages
English (en)
French (fr)
Inventor
成艳
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/079050 priority Critical patent/WO2016183722A1/zh
Priority to CN201580080042.3A priority patent/CN107710643B/zh
Priority to EP15892103.1A priority patent/EP3288193B1/en
Publication of WO2016183722A1 publication Critical patent/WO2016183722A1/zh
Priority to US15/812,603 priority patent/US10587337B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/143Two-way operation using the same type of signal, i.e. duplex for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for transmitting and receiving information, a base station, and a first user equipment.
  • the existing Long Term Evolution (LTE) system includes two frame structures, and the frame structure type 1 is applied to Frequency Division Duplexing (FDD), as shown in FIG. 1 .
  • Frame structure type 2 is applied to Time Division Duplexing (TDD), as shown in Figure 2.
  • TDD Time Division Duplexing
  • the user equipment in order to support the hybrid automatic retransmission, the user equipment needs to feed back the physical downlink shared channel (Physical Downlink) to the base station through the Physical Uplink Control Channel (PUCCH) and the Physical Uplink Shared Channel (PUSCH).
  • Hybrid automatic repeat-request acknowledgement (HARQ-ACK) transmitted by the shared channel (PDSCH) wherein the hybrid automatic repeat request acknowledgement may also be simply referred to as an acknowledgement response (ACK)/negative acknowledgement (Negative Acknowledgement) , NACK).
  • ACK acknowledgement response
  • NACK Negative Acknowledgement
  • the user equipment needs to receive the hybrid automatic repeat request acknowledgement HARQ-ACK corresponding to the physical uplink shared channel by using a physical hybrid automatic repeat indicator channel (PHICH).
  • PHICH physical hybrid automatic repeat indicator channel
  • the corresponding HARQ-ACK of the PDSCH transmitted in the downlink subframe n-4 will be fed back in the uplink subframe n.
  • the corresponding HARQ-ACK of the PDSCH transmitted in the subframe n-k will be fed back in the uplink subframe n, where k belongs to the set K, and the definition of K in the uplink and downlink ratio of each TDD is as shown in Table 1.
  • the subframe 7 is an uplink subframe, and the corresponding set K is ⁇ 7, 6 ⁇ , and the subframe 7 is moved forward by 6 subframes, and the subframe 7 is forwarded.
  • the 7 subframes are subframe 0, so they will feed back the HARQ-ACK corresponding to the PDSCH transmitted in subframe 0 and subframe 1.
  • the embodiments of the present invention provide a method and system for transmitting and receiving information, a base station, and a first user equipment, which enable the TDD system to have uniform HARQ-ACK timing for different uplink and downlink ratios, and can simultaneously Existing TDD systems coexist.
  • the first aspect provides a first user equipment, where the first user equipment includes: a first frame determining module, configured to determine a frame structure of the first serving cell; and a first transceiver module, connected to the first frame determining module, for The frame structure of the first serving cell sends and receives information on the first serving cell; wherein, in the frame structure of the first serving cell, one radio frame includes at least one first subframe and at least one second subframe, the first sub-frame
  • the frame and the second subframe include a symbol for downlink transmission, a guard time, and a symbol for uplink transmission, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, The number of symbols used for downlink transmission in the two subframes is smaller than the number of symbols used for uplink transmission.
  • each subframe is a 1 ms subframe, and the first subframe includes 12 symbols and durations for downlink transmission.
  • the guard time of 1 symbol and 1 symbol for uplink transmission the second subframe includes 1 symbol for downlink transmission, guard time of 1 symbol duration, and 12 symbols for uplink transmission.
  • the subframe 1 is the first subframe or the downlink subframe
  • the subframe l+4 is the first subframe, the second subframe, or the uplink subframe
  • l is a non-negative integer
  • the uplink and downlink ratio of the first serving cell is an uplink and downlink ratio of 0, and an uplink and downlink ratio of 1. Up and down Match 3 or up and down ratio 4.
  • one radio frame when the uplink and downlink ratio of the first serving cell is an uplink-downlink ratio of 0, one radio frame includes 10 subframes, where The subframe 0 and the subframe 5 are the first subframe, the subframe 1 and the subframe 6 are the downlink subframe or the first subframe, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3 and the subframe are the subframe.
  • subframe 4 and subframe 9 are uplink subframes; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 1, one radio frame includes 10 subframes, where subframe 0, subframe 4, Subframe 5 and subframe 9 are first subframes, subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are An uplink subframe; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 3, one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first The subframe, the subframe 6, the subframe 7 and the subframe 8 are one of the downlink subframe or the first subframe, the subframe 2 is the second subframe, and the subframe 3 and the subframe 4 are the uplink subframes; or when the first subframe clothes When the uplink-downlink ratio of the cell is the uplink-downlink ratio 4, one radio
  • the first transceiver module The method is: receiving a physical downlink shared channel on the subframe n-4 or receiving a downlink control channel indicating downlink half-persistent scheduling release, where the physical downlink shared channel or the downlink control channel indicating downlink half-persistent scheduling release is transmitted on the first serving cell And n is a non-negative integer; the hybrid automatic repeat request acknowledge response corresponding to the physical downlink shared channel or the downlink control channel of the subframe n-4 is transmitted in the subframe n, and the hybrid automatic weight corresponding to the physical downlink shared channel or the downlink control channel is used. The request acknowledgement response is transmitted on the first serving cell.
  • the first transceiver module is configured to: receive a downlink control channel for scheduling a physical uplink shared channel in subframe i; send a physical uplink shared channel scheduled by a downlink control channel on subframe i+k1, and perform physical uplink sharing for downlink control channel scheduling.
  • the channel is transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell.
  • the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the first transceiver module is configured to: send a physical uplink shared channel on the subframe j, and the physical uplink shared channel is in the first Transmission on a serving cell; receiving a hybrid automatic repeat request acknowledgement corresponding to the physical uplink shared channel in subframe j+k2, j is a non-negative integer, k2 is a positive integer, and the value of k2 is up and down according to frame structure type 2
  • the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12, which is determined by the timing when it is the same as the uplink and downlink ratio of the first serving cell.
  • the first transceiver module is configured to: receive a hybrid automatic repeat request acknowledgement corresponding to the physical uplink shared channel in the subframe m, and send a hybrid automatic repeat request to confirm the corresponding physical uplink shared channel in the subframe m+k3, and the hybrid automatic
  • the retransmission request confirms that the corresponding physical uplink shared channel is transmitted on the first serving cell, where m is a non-negative integer, k3 is a positive integer, and the value of k3 is based on the uplink and downlink ratio of the frame structure type 2 and the upper and lower serving cells.
  • the timing when the row ratio is the same is determined, and the frame structure type 2 is the frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • a second aspect provides a method for transmitting and receiving information, where: a first user equipment determines a frame structure of a first serving cell; and a first user equipment sends and receives information on a first serving cell based on a frame structure of the first serving cell.
  • one radio frame includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, guard time, and a symbol for uplink transmission, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than that for uplink transmission. The number of symbols.
  • each subframe is a 1 ms subframe, and the first subframe includes 12 symbols and durations for downlink transmission.
  • the guard time of 1 symbol and 1 symbol for uplink transmission the second subframe includes 1 symbol for downlink transmission, guard time of 1 symbol duration, and 12 symbols for uplink transmission.
  • the subframe 1 is the first subframe or the downlink subframe
  • the subframe l+4 is the first subframe, the second subframe, or the uplink subframe
  • l is a non-negative integer
  • the uplink and downlink ratio of the first serving cell is an uplink-downlink ratio of 0, and an uplink-downlink ratio of 1. Up/down ratio 3 or up/down ratio 4.
  • one radio frame when the uplink and downlink ratio of the first serving cell is an uplink-downlink ratio of 0, one radio frame includes 10 subframes, where The subframe 0 and the subframe 5 are the first subframe, the subframe 1 and the subframe 6 are the downlink subframe or the first subframe, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3 and the subframe are the subframe.
  • subframe 4 and subframe 9 are uplink subframes; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 1, one radio frame includes 10 subframes, where subframe 0, subframe 4, Subframe 5 and subframe 9 are first subframes, subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are An uplink subframe; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 3, one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first The subframe, the subframe 6, the subframe 7 and the subframe 8 are one of the downlink subframe or the first subframe, the subframe 2 is the second subframe, and the subframe 3 and the subframe 4 are the uplink subframes; or when the first subframe clothes When the uplink-downlink ratio of the cell is the uplink-downlink ratio 4, one radio
  • the first user equipment Transmitting and receiving information on the first serving cell based on the frame structure of the first serving cell, including: the first user equipment receiving the physical downlink shared channel on the subframe n-4 or receiving the downlink control channel indicating the downlink semi-persistent scheduling release, The physical downlink shared channel or the downlink control channel indicating the downlink semi-persistent scheduling release is transmitted on the first serving cell, where n is a non-negative integer; the first user equipment sends the physical downlink shared channel in the subframe n-4 in the subframe n or The hybrid automatic repeat request acknowledge response corresponding to the downlink control channel, and the hybrid automatic repeat request acknowledge response corresponding to the physical downlink shared channel or the downlink control channel is transmitted on the first serving cell.
  • the first user equipment sends and receives information on the first serving cell based on the frame structure of the first serving cell, where the first user equipment receives the downlink control channel that schedules the physical uplink shared channel in the subframe i; the first user equipment The physical uplink shared channel scheduled by the downlink control channel is transmitted on the subframe i+k1, and the physical uplink shared channel scheduled by the downlink control channel is transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 According to the timing when the uplink and downlink ratios of the frame structure type 2 are the same as the uplink and downlink ratios of the first serving cell, the frame structure type 2 is the Long Term Evolution System version 8 or version 9 or version 10 or version 11 Or the frame structure type in version 12.
  • the first user equipment sends and receives information on the first serving cell based on the frame structure of the first serving cell, where the first user equipment sends a physical uplink shared channel in the subframe j, and the physical uplink shared channel is in the first service.
  • the first user equipment receives the hybrid automatic repeat request acknowledgement corresponding to the physical uplink shared channel in subframe j+k2, j is a non-negative integer, k2 is a positive integer, and the value of k2 is up and down according to frame structure type 2
  • the timing is determined when the ratio is the same as the uplink and downlink ratio of the first serving cell, and the frame structure type 2 is the frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the first user equipment sends and receives information on the first serving cell based on the frame structure of the first serving cell, where the first user equipment receives the hybrid automatic repeat request acknowledgement corresponding to the physical uplink shared channel in the subframe m.
  • a user equipment sends a hybrid automatic repeat request to confirm the corresponding physical uplink shared channel on the subframe m+k3, and the hybrid automatic repeat request confirms that the corresponding physical uplink shared channel is transmitted on the first serving cell, where m is a non-negative integer.
  • K3 is a positive integer, and the value of k3 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, and the frame structure type 2 is the long-term evolution system version 8 or version 9 or version. Frame structure type in 10 or version 11 or version 12.
  • the third aspect provides a base station, including: a second frame determining module, configured to determine a frame structure of a first serving cell of the first user equipment; and a second transceiver module connected to the second frame determining module, configured to perform a frame structure Transmitting and receiving information with the first user equipment on the first serving cell; wherein, in a frame structure of the first serving cell, one radio frame includes at least one first subframe and at least one second subframe, and the first subframe and The second subframe includes a symbol for downlink transmission, a guard time, and a symbol for uplink transmission, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the second sub-frame The number of symbols used for downlink transmission in a frame is smaller than the number of symbols used for uplink transmission.
  • each subframe is a 1 ms subframe, and the first subframe includes 12 symbols and durations for downlink transmission.
  • the guard time of 1 symbol and 1 symbol for uplink transmission the second subframe includes 1 symbol for downlink transmission, guard time of 1 symbol duration, and 12 symbols for uplink transmission.
  • a second possible implementation manner in a frame structure of the first serving cell, if the subframe 1 is the first subframe or the downlink subframe, Subframe L+4 is the first subframe, the second subframe, or the uplink subframe, and l is a non-negative integer.
  • the uplink and downlink ratio of the first serving cell is an uplink and downlink ratio of 0, Up/down ratio 1, up/down ratio 3 or up/down ratio 4.
  • one radio frame when the uplink and downlink ratio of the first serving cell is an uplink-downlink ratio of 0, one radio frame includes 10 subframes, where The subframe 0 and the subframe 5 are the first subframe, the subframe 1 and the subframe 6 are the downlink subframe or the first subframe, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3 and the subframe are the subframe.
  • subframe 4 and subframe 9 are uplink subframes; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 1, one radio frame includes 10 subframes, where subframe 0, subframe 4, Subframe 5 and subframe 9 are first subframes, subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are An uplink subframe; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 3, one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first The subframe, the subframe 6, the subframe 7 and the subframe 8 are one of the downlink subframe or the first subframe, the subframe 2 is the second subframe, and the subframe 3 and the subframe 4 are the uplink subframes; or when the first subframe clothes When the uplink-downlink ratio of the cell is the uplink-downlink ratio 4, one radio
  • the second transceiver module The method is: sending a physical downlink shared channel to the first user equipment in the subframe n-4 or transmitting a downlink control channel indicating that the downlink semi-persistent scheduling is released, and the physical downlink shared channel or the downlink control channel that is sent to indicate the downlink semi-persistent scheduling release is Transmitted on the first serving cell, where n is a non-negative integer; receiving, in subframe n, a hybrid automatic repeat request acknowledge response corresponding to the physical downlink shared channel or downlink control channel of subframe n-4 fed back by the first user equipment, physical The hybrid automatic repeat request acknowledgement response corresponding to the downlink shared channel or the downlink control channel is transmitted on the first serving cell.
  • the second transceiver module The method is: sending a downlink control channel for scheduling a physical uplink shared channel to the first user equipment in the subframe i; receiving a physical uplink shared channel scheduled by the downlink control channel on the subframe i+k1, and a physical uplink shared channel scheduled by the downlink control channel Transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 According to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, the frame structure type 2 is in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12. Frame structure type.
  • the second transceiver module For receiving the physical uplink shared channel sent by the first user equipment, the physical uplink shared channel sent by the first user equipment is transmitted on the first serving cell, and the physical uplink shared channel is sent in the subframe j+k2.
  • the hybrid automatic repeat request confirms that j is a non-negative integer, k2 is a positive integer, and the value of k2 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, and the frame is determined.
  • the structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the second transceiver module The method is: sending a hybrid automatic repeat request acknowledgement corresponding to the physical uplink shared channel sent by the first user equipment in the subframe m, receiving a retransmission of the physical uplink shared channel, and retransmitting the physical uplink shared channel in the subframe m+k3 Transmitted on the first serving cell, m is a non-negative integer, k3 is a positive integer, and the value of k3 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, and the frame is determined.
  • the structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the second frame determining module is further configured to: determine a frame structure of the second serving cell, where the second serving cell is a serving cell of the second user equipment
  • the second transceiver module is further configured to: send and receive information with the second user equipment on the second serving cell based on a frame structure of the second serving cell; wherein the frame structure of the second serving cell and the Long Term Evolution system version 8 or version
  • the frame structure type 2 in 9 or Release 10 or Release 11 or Release 12 is the same, and the frequency resource of the second serving cell is adjacent or identical to the frequency resource of the first serving cell.
  • the uplink and downlink ratio of the first serving cell when the uplink and downlink ratio of the first serving cell is an uplink and downlink ratio
  • the uplink/downlink ratio of the second serving cell is the uplink-downlink ratio 1; or when the uplink-downlink ratio of the first serving cell is the uplink-downlink ratio 1, the uplink and downlink ratio of the second serving cell is the uplink and downlink ratio Than 2; or when the first service is small
  • the uplink-downlink ratio of the area is the uplink-downlink ratio 3
  • the uplink-downlink ratio of the second serving cell is the uplink-downlink ratio 4; or when the uplink-downlink ratio of the first serving cell is the uplink-downlink ratio 4,
  • the uplink and downlink ratio of the two serving cells is the uplink-downlink ratio of 5.
  • the ratio of the special subframe in the frame structure of the second serving cell is a special subframe configuration. Ratio 0 to 5 or special subframe.
  • the first serving cell and the second serving cell are inter-sub-frame offset Move 11 symbols.
  • the second transceiver module further uses And: indicating, to the second user equipment, a starting symbol of the physical downlink shared channel, where the starting symbol of the physical downlink shared channel is the fourth symbol.
  • the second transceiver module is further configured to: indicate, to the second user equipment, a transmission mode corresponding to the physical downlink shared channel, where the transmission mode is the transmission mode 10.
  • the second transceiver module is further configured to: send, by using the downlink sub-frame n1, the physical downlink shared channel to the second user equipment on the second serving cell, where the starting symbol of the physical downlink shared channel transmission is a downlink
  • the fourth symbol in frame n1, n1 is a non-negative integer.
  • a fourth aspect provides a method for transmitting and receiving information, where: a base station determines a frame structure of a first serving cell of a first user equipment; and the base station sends and receives information to the first user equipment on the first serving cell according to a frame structure; Wherein, in the frame structure of the first serving cell, one radio frame includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, protection time, and The symbol transmitted in the uplink, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than that used for uplink transmission. The number of symbols.
  • each subframe is a 1 ms subframe, and the first subframe includes 12 symbols and times for downlink transmission.
  • the guard time is 1 symbol long and 1 symbol for uplink transmission.
  • the second subframe includes 1 symbol for downlink transmission, guard time for 1 symbol duration, and 12 symbols for uplink transmission.
  • the subframe 1 is the first subframe or the downlink subframe
  • the subframe l+4 is the first subframe, the second subframe, or the uplink subframe
  • l is a non-negative integer
  • the uplink and downlink ratio of the first serving cell is an uplink and downlink ratio of 0, Up/down ratio 1, up/down ratio 3 or up/down ratio 4.
  • one radio frame when the uplink and downlink ratio of the first serving cell is an uplink-downlink ratio of 0, one radio frame includes 10 subframes, where The subframe 0 and the subframe 5 are the first subframe, the subframe 1 and the subframe 6 are the downlink subframe or the first subframe, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3 and the subframe are the subframe.
  • subframe 4 and subframe 9 are uplink subframes; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 1, one radio frame includes 10 subframes, where subframe 0, subframe 4, Subframe 5 and subframe 9 are first subframes, subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are An uplink subframe; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 3, one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first The subframe, the subframe 6, the subframe 7 and the subframe 8 are one of the downlink subframe or the first subframe, the subframe 2 is the second subframe, and the subframe 3 and the subframe 4 are the uplink subframes; or when the first subframe clothes When the uplink-downlink ratio of the cell is the uplink-downlink ratio 4, one radio
  • the base station is based on a frame structure Transmitting and receiving information with the first user equipment on the first serving cell includes: the base station sends a physical downlink shared channel to the first user equipment in subframe n-4 or sends a downlink control channel indicating that the downlink semi-persistent scheduling is released, and the physical The downlink shared channel or the downlink control channel indicating the downlink semi-persistent scheduling release is transmitted on the first serving cell, where n is a non-negative integer; the base station receives the physical downlink sharing of the subframe n-4 fed back by the first user equipment in the subframe n.
  • the hybrid automatic repeat request acknowledgement response corresponding to the channel or the downlink control channel, and the hybrid automatic repeat request acknowledgement response corresponding to the physical downlink shared channel or the downlink control channel is transmitted on the first serving cell.
  • the base station is based on a frame structure
  • Transmitting and receiving information with the first user equipment on the first serving cell includes: the base station sends a downlink control channel for scheduling the physical uplink shared channel to the first user equipment in the subframe i; the base station receives the downlink control on the subframe i+k1
  • the physical uplink shared channel of the channel scheduling, the physical uplink shared channel scheduled by the downlink control channel is transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 is based on the frame structure type 2
  • the timing when the uplink and downlink ratios of the first serving cell are the same is determined, and the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the base station is based on a frame structure Transmitting and receiving information with the first user equipment on the first serving cell, the base station receiving the physical uplink shared channel sent by the first user equipment in the subframe j, and the physical uplink shared channel sent by the first user equipment in the first service
  • the base station transmits the hybrid automatic repeat request corresponding to the physical uplink shared channel in the subframe j+k2, j is a non-negative integer, k2 is a positive integer, and the value of k2 is based on the frame structure type 2
  • the timing when the uplink and downlink ratios of the first serving cell are the same is determined, and the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the base station is based on a frame structure And transmitting, by the base station, the information about the hybrid automatic repeat request corresponding to the physical uplink shared channel sent by the first user equipment, where the base station is in the subframe m+k3 Retransmitting the physical uplink shared channel, the retransmission of the physical uplink shared channel is transmitted on the first serving cell, m is a non-negative integer, k3 is a positive integer, and the value of k3 is based on the frame structure type 2
  • the timing when the uplink and downlink ratios of the first serving cell are the same is determined, and the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the method further includes: determining, by the base station, a frame structure of the second serving cell, where the second serving cell is a serving cell of the second user equipment; The frame structure of the second serving cell transmits and receives information with the second user equipment on the second serving cell; wherein the frame structure of the second serving cell and the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version The frame structure type 2 in 12 is the same, and the frequency resource of the second serving cell is adjacent or identical to the frequency resource of the first serving cell.
  • the uplink and downlink ratio of the first serving cell when the uplink and downlink ratio of the first serving cell is an uplink and downlink ratio
  • the uplink/downlink ratio of the second serving cell is the uplink-downlink ratio 1; or when the uplink-downlink ratio of the first serving cell is the uplink-downlink ratio 1, the uplink and downlink ratio of the second serving cell is the uplink and downlink ratio Ratio 2; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 3, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 4; or when the uplink and downlink ratio of the first serving cell is When the uplink-downlink ratio is 4, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 5.
  • the ratio of the special subframe in the frame structure of the second serving cell is a special subframe configuration. Ratio 0 to 5 or special subframe.
  • the first serving cell and the second serving cell are inter-sub-frame offset Move 11 symbols.
  • the base station is based on the second serving cell
  • the frame structure is configured to send and receive information on the second serving cell with the second user equipment, where the base station indicates the start symbol of the physical downlink shared channel to the second user equipment, and the start symbol of the physical downlink shared channel is the fourth symbol.
  • the base station sends and receives information to the second user equipment on the second serving cell based on the frame structure of the second serving cell, where the base station indicates, to the second user equipment, a transmission mode corresponding to the physical downlink shared channel, and the transmission mode is the transmission mode. .
  • the base station sends and receives information to the second user equipment on the second serving cell based on the frame structure of the second serving cell, where the base station sends the second information on the second serving cell in the downlink subframe n1.
  • the user equipment sends a physical downlink shared channel, and the start symbol of the physical downlink shared channel transmission is the fourth symbol in the downlink subframe n1, and n1 is a non-negative integer.
  • the fifth aspect provides a system for transmitting and receiving information, including: the foregoing first user equipment, the second user equipment, and the foregoing base station, where the second user equipment includes: a third frame determining module, configured to determine the second service. a frame structure of the cell; the third transceiver module is connected to the third frame determining module, configured to send and receive information on the second serving cell based on a frame structure of the second serving cell; wherein, the frame structure and the long-term of the second serving cell
  • the frame structure type 2 in the evolved system version 8 or version 9 or version 10 or version 11 or version 12 is the same, and the frequency resource of the second serving cell is adjacent or identical to the frequency resource of the first serving cell.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio of 0, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio. 1; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 1, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 2; or when the uplink and downlink ratio of the first serving cell is up and down
  • the row ratio is 3
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 4; or when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio 4, the uplink and downlink ratio of the second serving cell For the up and down ratio of 5.
  • the ratio of the special subframe in the frame structure of the second serving cell is a special subframe ratio 5 Or special subframe ratio 0.
  • the first serving cell and the second serving cell are offset by 11 subframes. symbol.
  • the subframe of the first serving cell is 11 symbols ahead of the subframe of the second serving cell.
  • the third transceiver module For receiving the physical downlink shared channel on the second serving cell in the downlink subframe n1, the starting symbol of the physical downlink shared channel transmission is the fourth symbol in the downlink subframe n1, and n1 is a non-negative integer.
  • the third transceiver module For receiving the physical downlink control channel on the second serving cell in the downlink subframe n2, where the physical downlink control channel is carried on the first symbol of the downlink subframe n2, and n2 is a non-negative integer.
  • the physical downlink control channel is a physical downlink control channel corresponding to the common search space.
  • the invention determines the frame structure of the first serving cell by using the first user equipment, and is small based on the first service
  • the frame structure of the area transmits and receives information on the first serving cell, wherein, in the frame structure of the first serving cell, one radio frame includes at least one first subframe and at least one second subframe, the first subframe and the The second subframe includes a symbol for downlink transmission, a guard time, and a symbol for uplink transmission, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the second subframe
  • the number of symbols used for downlink transmission is smaller than the number of symbols used for uplink transmission, which enables the TDD system to have uniform HARQ-ACK timing for different uplink and downlink ratios, and can coexist with the existing TDD system.
  • FIG. 1 is a schematic structural diagram of a frame structure type 1 in the prior art
  • FIG. 2 is a schematic structural diagram of a frame structure type 2 in the prior art
  • FIG. 3 is a schematic structural diagram of a first user equipment according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first subframe and a second subframe in an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a first user equipment according to a second embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of a method for transmitting and receiving information according to a first embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a base station according to a first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a frame structure of a first serving cell and a second serving cell according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to a second embodiment of the present invention.
  • FIG. 10 is a flow chart showing a method for transmitting and receiving information according to a second embodiment of the present invention.
  • FIG. 11 is a flow chart showing a method of transmitting and receiving information according to a third embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a system for transmitting and receiving information according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first user equipment according to a first embodiment of the present invention.
  • the first user equipment 11 of the embodiment of the present invention includes: a first frame determining module 110 and a first transceiver module 111.
  • the first frame determining module 110 is configured to determine a frame structure of the first serving cell.
  • the first transceiver module 111 is coupled to the first frame determining module 110 for transmitting and receiving information on the first serving cell based on a frame structure of the first serving cell.
  • one radio frame in the frame structure of the first serving cell, includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, protection time, and The symbol transmitted on the upstream.
  • the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than the number of symbols used for uplink transmission.
  • the first subframe may transmit a physical downlink shared channel PDSCH
  • the second subframe may transmit a physical uplink shared channel PUSCH.
  • each subframe is a 1 ms subframe
  • the first subframe includes 12 symbols for downlink transmission, a guard time of 1 symbol duration, and 1 for The symbol transmitted in the uplink
  • the second subframe includes one symbol for downlink transmission, a guard time with a duration of 1 symbol, and 12 symbols for uplink transmission.
  • the symbols here may be Orthogonal Frequency Division Multiplexing (OFDM) symbols for the symbols used for downlink transmission, and single carrier orthogonal frequency division multiplexing for the symbols used for uplink transmission (Single- Carrier Orthogonal Frequency Division Multiplexing, SC-OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-OFDM Single- Carrier Orthogonal Frequency Division Multiplexing
  • the subframe structure of the special subframe in version 11 and version 12 is inconsistent, so the first subframe may also be referred to as a first special subframe, and the second subframe may also be referred to as a second special subframe.
  • the symbols used for uplink transmission may be used only for transmitting the physical uplink control channel and/or the sounding reference signal.
  • the symbols used for downlink transmission may be used only for transmitting the physical downlink control channel and/or the downlink reference signal.
  • the subframe 1 is the first subframe or the downlink subframe
  • the subframe l+k is the first subframe, the second subframe, or the uplink subframe
  • l is a non-negative integer
  • k A positive integer greater than 1, so that the HARQ-ACK corresponding to the subframe 1 can be fed back at l+k, so that the frame structure of the first serving cell has a uniform uplink HARQ for different uplink and downlink ratios. - ACK timing.
  • the value of k is not limited in the embodiment of the present invention. When the length of each subframe in the frame structure of the first serving cell is 1 ms, the value of k is preferably 4. It should be noted that l and l+k are subframe numbers.
  • the subframe number refers to the number of the subframe in multiple radio frames, and may be obtained as follows: the subframes in the multiple radio frames are monotonically increasing in chronological order. 0 starts numbering, that is, if the last subframe of the last radio frame is numbered n', the first subframe of the next radio frame is numbered n'+1.
  • each of the plurality of radio frames has a subframe number in the radio frame in which the subframe is located, that is, a subframe number of the subframe in the radio frame.
  • the subframe n is the subframe 2 in a radio frame, and may refer to the subframe number of the subframe n in the radio frame in which it is located is 2, or it may be said that the subframe n is located
  • the third subframe in the radio frame or it can be said that the subframe n corresponds to the third subframe in each radio frame, or it can be said that the subframe n corresponds to the subframe 2 in each radio frame.
  • the uplink and downlink ratio of the first serving cell may be an uplink-downlink ratio a, an uplink-downlink ratio b, an uplink-downlink ratio c, or an uplink-downlink ratio d. That is, the uplink and downlink ratio of the first serving cell may be one of the uplink-downlink ratio a, the uplink-downlink ratio b, the uplink-downlink ratio c, and the uplink-downlink ratio d, which may be uplinked and downlinked through high-level signaling. Conversion between ratios. Wherein, a, b, c, and d may be indexes of the uplink and downlink ratio, for example, the values may be 0, 1, 3, and 4, respectively.
  • the frame structure of the first serving cell is not the uplink and downlink in Table 2.
  • the ratio of the number of subframes of the channel is the same as in Table 2.
  • the uplink-downlink ratio of 0 indicates that the ratio of the number of subframes that can be used to transmit the physical downlink shared channel in one frame to the number of subframes that can be used to transmit the physical uplink shared channel is 2:3; the ratio of uplink and downlink ratios is 1, indicating one frame.
  • the ratio of the number of subframes that can be used to transmit the physical downlink shared channel to the number of subframes that can be used to transmit the physical uplink shared channel is 3:2; and the uplink and downlink ratio of 3, which indicates that the subframe can be used to transmit the physical downlink shared channel.
  • the ratio of the number of frames to the number of subframes that can be used to transmit the physical uplink shared channel is 7:3; the uplink and downlink ratio of 3 indicates the number of subframes that can be used to transmit the physical downlink shared channel in one frame and can be used to transmit the physical uplink shared channel.
  • the ratio of the number of subframes is 8:2.
  • the first frame determining module 110 determines a frame structure of the first serving cell, where the first frame determining module 110 determines the frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell, which may be:
  • one radio frame includes 10 subframes, where subframe 0 and subframe 5 are the first subframe, and subframe 1 and subframe 6 are downlink subframes. Or one of the first subframes, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3, the subframe 4, the subframe 8 and the subframe 9 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 4, subframe 5, and subframe 9 are the first subframe, and the subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first subframe, and the subframe 6.
  • Subframe 7 and subframe 8 are one of a downlink subframe or a first subframe
  • subframe 2 is a second subframe
  • subframe 3 and subframe 4 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 4, subframe 5, subframe 8 and subframe 9
  • subframe 6 and the subframe 7 are one of the downlink subframe or the first subframe
  • subframe 2 is the second subframe
  • subframe is the uplink subframe.
  • the first frame determining module 110 determines the frame structure of the first serving cell, and may also determine the frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell and the table 3, or may also be based on The uplink and downlink ratio of the first serving cell and Table 4 determine the frame structure of the first serving cell.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S1 represents a first subframe
  • S2 represents a second subframe.
  • the present invention does not limit the uplink and downlink ratio of the first serving cell, that is, the uplink and downlink ratio of the first serving cell is not limited to Table 3.
  • the uplink and downlink ratio of the first serving cell is preferably the uplink-downlink ratio 0, the uplink-downlink ratio, and the uplink-downlink ratio 3 Match with the upper and lower 4.
  • Table 3 changes part of the first subframe into a downlink subframe, and reduces GP overhead while ensuring coexistence with the existing LTE frame structure 2.
  • the first serving cell corresponding to the first user equipment 11 may refer to a serving cell configured by the network side device to the first user equipment 11, or a serving cell serving the first user equipment 11, or A serving cell accessed by a user equipment 11.
  • a serving cell in the embodiment of the present invention may also be referred to as a component carrier.
  • the first serving cell may be a primary serving cell or a secondary serving cell of the first user equipment 11.
  • the first transceiver module 111 sends and receives information on the first serving cell based on the frame structure of the first serving cell, and may perform the following uplink HARQ timing:
  • the first transceiver module 111 receives the physical downlink shared channel PDSCH on the subframe nk or receives the downlink control channel indicating the downlink semi-persistent scheduling SPS release, and the physical downlink shared channel or the downlink control channel indicating the downlink semi-persistent scheduling release is in the first serving cell.
  • n is a non-negative integer; the first transceiver module 111 transmits a hybrid automatic repeat request acknowledgement HARQ-ACK response corresponding to the physical downlink shared channel or the downlink control channel of the subframe n-4 in the subframe n, and physical downlink sharing The hybrid automatic repeat request acknowledgement response corresponding to the channel or the downlink control channel is transmitted on the first serving cell.
  • n and n-4 are subframe numbers, and subframe n-4 indicates that subframe n moves forward 4 The resulting sub-frame.
  • the first transceiver module 111 receives the downlink control channel for scheduling the physical uplink shared channel in the subframe i; the first transceiver module 111 sends the physical uplink shared channel scheduled by the downlink control channel on the subframe i+k1, and the physical uplink of the downlink control channel scheduling
  • the shared channel is transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell.
  • the frame structure type 2 is a frame structure type in the Long Term Evolution system version 8 or version 9 or version 10 or version 11 or version 12.
  • i and i+k1 are subframe numbers, and subframe i+k1 indicates Subframe i is shifted backward by the k1 bit.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio of 0
  • the value of k1 is matched with the uplink and downlink of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. 0 is the same.
  • the value of k1 is as shown in Table 5.
  • the first transceiver module 111 transmits a physical uplink shared channel on the subframe j, and the physical uplink shared channel is transmitted on the first serving cell.
  • the first transceiver module 111 receives the HARQ-ACK corresponding to the physical uplink shared channel in the subframe j+k2, j is a non-negative integer, k2 is a positive integer, and the value of k2 is based on the uplink and downlink ratio of the frame structure type 2 and the first
  • the frame structure type 2 is the frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • j and j+ K2 is the subframe number, and subframe j+k2 indicates the subframe obtained by shifting the subframe j backward by k2 bits.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio of 0
  • the value of k2 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time.
  • the value of k2 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k2 is as shown in Table 6.
  • the first transceiver module 111 receives the HARQ-ACK corresponding to the physical uplink shared channel in the subframe m.
  • the first transceiver module 111 sends a physical uplink shared channel corresponding to the HARQ-ACK on the subframe m+k3, where m is a non-negative integer, k3 is a positive integer, and the value of k3 is based on the frame structure type 2
  • the frame structure type 2 is the frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • m and m +k3 is the subframe number, and the subframe m+k3 indicates the subframe obtained by shifting the subframe m backward by k3 bits.
  • the value of k3 is the same as the LTE version 8 or version 9.
  • frame structure type 2 is the same as when the uplink and downlink ratio is 0.
  • the value of k3 is as shown in Table 5.
  • the uplink HARQ timing is unchanged for different uplink and downlink ratios, and the downlink HARQ timing is consistent with the existing LTE system.
  • the implementation complexity and the protocol complexity are simplified.
  • the uplink HARQ timing is such that one uplink subframe or the second subframe only needs to feed back a downlink subframe or a HARQ-ACK of the first subframe, so that the existing LTE system needs to be Compared with the HARQ-ACK in which one uplink subframe feeds back multiple downlink subframes, the feedback amount is reduced, and the HARQ-ACK performance is improved.
  • FIG. 5 is a schematic diagram of a first user equipment according to a second embodiment of the present invention.
  • the first user equipment 12 includes a transceiver 121, a memory 122, a processor 123, and a data bus 124.
  • Transceiver 121, memory 122, and processor 123 are coupled via data bus 124 for intercommunication.
  • the processor 123 determines the frame structure of the first serving cell.
  • the processor 123 may determine a frame structure of the first serving cell according to an uplink and downlink ratio of the first serving cell.
  • the frame structures corresponding to different uplink and downlink ratios are different, and the frames corresponding to different frame structures are different.
  • one radio frame includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, guard time, and The symbol of the uplink transmission, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than the symbol used for uplink transmission Number.
  • the memory 122 is configured to store a frame structure of the first serving cell.
  • the first subframe may transmit a physical downlink shared channel (PDSCH), and the second subframe may transmit a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the subframe l+k is the first subframe, the second subframe, or the uplink subframe, where l is a non-negative integer, and k is a positive integer greater than 1. Therefore, the HARQ-ACK corresponding to the subframe 1 can be fed back at l+k, so that the frame structure of the first serving cell has a uniform uplink HARQ-ACK timing for different uplink and downlink ratios.
  • l and l+k are subframe numbers.
  • the value of k is not limited in the embodiment of the present invention. When the length of each subframe in the frame structure of the first serving cell is 1 ms, the value of k is preferably 4.
  • the first subframe includes 12 symbols for downlink transmission, a guard time GP with a duration of 1 symbol, and 1 symbol for uplink transmission.
  • the second subframe includes one symbol for downlink transmission, a guard time GP with a duration of 1 symbol, and 12 symbols for uplink transmission.
  • the symbols herein may be OFDM symbols for symbols for downlink transmission and SC-FDMA symbols for symbols for uplink transmission.
  • the embodiment of the present invention does not limit the length of each subframe in the frame structure of the first serving cell, preferably 1 ms.
  • the first subframe and the second subframe in all the embodiments of the present invention may belong to a special subframe, but the actual subframe structure of the special subframe is compared with the existing LTE version 8, version 9, and version 10.
  • the subframe structure of the special subframe in version 11 and version 12 is inconsistent, so the first subframe may also be referred to as a first special subframe, and the second subframe may also be referred to as a second special subframe.
  • the symbols used for uplink transmission may be used only for transmitting a physical uplink control channel and/or a Sounding Reference Signal (SRS).
  • SRS Sounding Reference Signal
  • the symbols used for downlink transmission may be used only for transmitting the physical downlink control channel and/or the downlink reference signal.
  • the uplink and downlink ratio of the first serving cell may be an uplink-downlink ratio a, an uplink-downlink ratio b, an uplink-downlink ratio c, or an uplink-downlink ratio d. That is, the uplink and downlink ratio of the first serving cell may be one of the uplink-downlink ratio a, the uplink-downlink ratio b, the uplink-downlink ratio c, and the uplink-downlink ratio d, which may be uplinked and downlinked through high-level signaling. Conversion between ratios. Among them, a, b, c, d can be up and down The index of the ratio, for example, the values can be 0, 1, 3, and 4, respectively.
  • the frame structure of the first serving cell is not the uplink and downlink in Table 2.
  • the ratio of the number of subframes of the channel is the same as in Table 2.
  • the uplink-downlink ratio of 0 indicates that the ratio of the number of subframes that can be used to transmit the physical downlink shared channel in one frame to the number of subframes that can be used to transmit the physical uplink shared channel is 2:3; the ratio of uplink and downlink ratios is 1, indicating one frame.
  • the ratio of the number of subframes that can be used to transmit the physical downlink shared channel to the number of subframes that can be used to transmit the physical uplink shared channel is 3:2; and the uplink and downlink ratio of 3, which indicates that the subframe can be used to transmit the physical downlink shared channel.
  • the ratio of the number of frames to the number of subframes that can be used to transmit the physical uplink shared channel is 7:3; the uplink and downlink ratio of 3 indicates the number of subframes that can be used to transmit the physical downlink shared channel in one frame and can be used to transmit the physical uplink shared channel.
  • the ratio of the number of subframes is 8:2.
  • the processor 123 is configured to determine a frame structure of the first serving cell, where the first user equipment 12 determines the frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell, which may be:
  • one radio frame includes 10 subframes, where subframe 0 and subframe 5 are the first subframe, and subframe 1 and subframe 6 are downlink subframes. Or one of the first subframes, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3, the subframe 4, the subframe 8 and the subframe 9 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 4, subframe 5, and subframe 9 are the first subframe, and the subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first subframe, and the subframe 6.
  • Subframe 7 and subframe 8 are one of a downlink subframe or a first subframe
  • subframe 2 is a second subframe
  • subframe 3 and subframe 4 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 4, subframe 5, subframe 8 and subframe 9
  • subframe 6 and the subframe 7 are one of the downlink subframe or the first subframe
  • subframe 2 is the second subframe
  • subframe is the uplink subframe.
  • the processor 123 determines the frame structure of the first serving cell, and may also determine the frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell and the table 3, or may also be based on The uplink and downlink ratio of the first serving cell and Table 4 determine the frame structure of the first serving cell.
  • Table 3 and Table 4 are as in Embodiment 1, and are not described herein again.
  • the present invention does not limit the uplink and downlink ratio of the first serving cell, that is, the uplink and downlink ratio of the first serving cell is not limited to Table 3.
  • the uplink and downlink ratio of the first serving cell is preferably the uplink-downlink ratio 0, the uplink-downlink ratio, and the uplink-downlink ratio 3 Match with the upper and lower 4.
  • Table 3 changes part of the first subframe into a downlink subframe, and reduces GP overhead while ensuring coexistence with the existing LTE frame structure 2.
  • the first serving cell corresponding to the first user equipment 12 may refer to a serving cell configured by the network side device to the first user equipment 12, or a serving cell serving the first user equipment 12, or A serving cell accessed by a user equipment 12.
  • a serving cell in the embodiment of the present invention may also be referred to as a component carrier.
  • the first serving cell may be a primary serving cell or a secondary serving cell of the first user equipment 12.
  • the transceiver 121 sends and receives information on the first serving cell based on the frame structure of the first serving cell, and may perform the following uplink HARQ timing:
  • the transceiver 121 receives the physical downlink shared channel PDSCH transmission on the subframe nk or receives the downlink control channel indicating the downlink semi-persistent scheduling SPS release, and the physical downlink shared channel or the downlink control channel indicating the downlink semi-persistent scheduling release is on the first serving cell.
  • Transmission, n is a non-negative integer; the transceiver 121 transmits the HARQ-ACK corresponding to the physical downlink shared channel or the downlink control channel of the subframe n-4, the physical downlink shared channel or the HARQ corresponding to the downlink control channel in the subframe n - ACK is transmitted on the first serving cell. It should be noted that n and n-4 are subframe numbers.
  • the transceiver 121 receives the downlink control channel for scheduling the physical uplink shared channel in the subframe i; the transceiver 121 transmits the physical uplink shared channel scheduled by the downlink control channel on the subframe i+k1, and the physical uplink shared channel scheduled by the downlink control channel is in the first On a serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, and the frame structure type 2 is the frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k1 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k1 is the same as the frame structure type 2 in LTE version 8
  • the uplink-downlink ratio is the same as the uplink-downlink ratio of the first serving cell, and the value of k1 is as shown in Table 5. It should be noted that i and i+k1 are subframe numbers.
  • the transceiver 121 transmits a physical uplink shared channel on the subframe j, and the physical uplink shared channel is on the first serving cell; the transceiver 121 receives the HARQ-ACK corresponding to the physical uplink shared channel in the subframe j+k2, where j is a non-negative integer.
  • k2 is a positive integer, and the value of k2 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, and the frame structure type 2 is the long-term evolution system version 8 or version 9 or Frame structure type in version 10 or version 11 or version 12.
  • the value of k2 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k2 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k2 is as shown in Table 6. It should be noted that j and j+k2 are subframe numbers.
  • the transceiver 121 receives the HARQ-ACK corresponding to the physical uplink shared channel in the subframe m.
  • the transceiver 121 transmits the physical uplink shared channel corresponding to the HARQ-ACK on the subframe m+k3, and the physical uplink shared channel corresponding to the HARQ-ACK is in the first
  • m is a non-negative integer
  • k3 is a positive integer
  • the value of k3 is determined according to the timing when the uplink-downlink ratio of the frame structure type 2 is the same as the uplink-downlink ratio of the first serving cell
  • the frame structure type 2 is the frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k3 is matched with the uplink and downlink of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k3 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k3 is as shown in Table 5. It should be noted that m and m+k3 are subframe numbers.
  • the uplink HARQ timing is unchanged for different uplink and downlink ratios, and the downlink HARQ timing and the existing The LTE system is consistent, which can simplify implementation complexity and protocol complexity.
  • the uplink HARQ timing is such that one uplink subframe or the second subframe only needs to feed back a downlink subframe or a HARQ-ACK of the first subframe, thereby Compared with the HARQ-ACK in which an LTE system feeds back multiple downlink subframes in one uplink subframe, the feedback amount is reduced, and the HARQ-ACK performance is improved.
  • Fig. 6 is a flow chart showing the method of transmitting and receiving information according to the first embodiment of the present invention. As shown in FIG. 6, the method for transmitting and receiving information according to an embodiment of the present invention includes:
  • the first user equipment determines a frame structure of the first serving cell.
  • the first user equipment may determine a frame structure of the first serving cell according to an uplink and downlink ratio of the first serving cell.
  • the frame structures corresponding to different uplink and downlink ratios are different, and the frames corresponding to different frame structures are different.
  • one radio frame includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, guard time, and The symbol of the uplink transmission, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than the symbol used for uplink transmission Number.
  • the first subframe may transmit a physical downlink shared channel (PDSCH), and the second subframe may transmit a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the subframe l+k is the first subframe, the second subframe, or the uplink subframe, where l is a non-negative integer, and k is a positive integer greater than 1. Therefore, the HARQ-ACK corresponding to the subframe 1 can be fed back at l+k, so that the frame structure of the first serving cell has a uniform uplink HARQ-ACK timing for different uplink and downlink ratios.
  • the value of k is not limited in the embodiment of the present invention. When the length of each subframe in the frame structure of the first serving cell is 1 ms, the value of k is preferably 4. It should be noted that l and l+k are subframe numbers.
  • FIG. 4 shows a subframe structure of a first subframe and a second subframe when a subframe length is 1 ms.
  • the PDCCH is a physical downlink control channel
  • the PDSCH is a physical downlink shared channel
  • the PUSCH is a physical uplink shared channel
  • the PUCCH is a physical uplink control channel.
  • the first subframe includes 12 symbols for downlink transmission, a guard time GP of 1 symbol duration and 1 symbol for uplink transmission.
  • the second subframe includes one symbol for downlink transmission, a guard time GP with a duration of 1 symbol, and 12 symbols for uplink transmission.
  • the symbols herein may be OFDM symbols for symbols used for downlink transmission and SC-OFDM symbols for symbols for uplink transmission.
  • the embodiment of the present invention does not limit the length of each subframe in the frame structure of the first serving cell, preferably 1 ms. It should be noted that the first subframe and the second subframe in all the embodiments of the present invention may belong to a special subframe, but the actual subframe structure of the special subframe is compared with the existing LTE version 8, version 9, and version 10. The subframe structure of the special subframe in version 11 and version 12 is inconsistent, so the first subframe may also be referred to as a first special subframe, and the second subframe may also be referred to as a second special subframe.
  • the symbols used for uplink transmission may be used only for transmitting the physical uplink control channel and/or the sounding reference signal.
  • the symbols used for downlink transmission may be used only for transmitting the physical downlink control channel and/or the downlink reference signal.
  • the uplink and downlink ratio of the first serving cell may be an uplink and downlink ratio a, upper and lower Row ratio b, up/down ratio c or up/down ratio d. That is, the uplink and downlink ratio of the first serving cell may be one of the uplink-downlink ratio a, the uplink-downlink ratio b, the uplink-downlink ratio c, and the uplink-downlink ratio d, which may be uplinked and downlinked through high-level signaling. Conversion between ratios. Wherein, a, b, c, and d may be indexes of the uplink and downlink ratio, for example, the values may be 0, 1, 3, and 4, respectively.
  • the frame structure of the first serving cell is not the uplink and downlink in Table 2.
  • the ratio of the number of subframes of the channel is the same as in Table 2.
  • the uplink-downlink ratio of 0 indicates that the ratio of the number of subframes that can be used to transmit the physical downlink shared channel in one frame to the number of subframes that can be used to transmit the physical uplink shared channel is 2:3; the ratio of uplink and downlink ratios is 1, indicating one frame.
  • the ratio of the number of subframes that can be used to transmit the physical downlink shared channel to the number of subframes that can be used to transmit the physical uplink shared channel is 3:2; and the uplink and downlink ratio of 3, which indicates that the subframe can be used to transmit the physical downlink shared channel.
  • the ratio of the number of frames to the number of subframes that can be used to transmit the physical uplink shared channel is 7:3; the uplink and downlink ratio of 3 indicates the number of subframes that can be used to transmit the physical downlink shared channel in one frame and can be used to transmit the physical uplink shared channel.
  • the ratio of the number of subframes is 8:2.
  • the first user equipment determines a frame structure of the first serving cell, and may determine, by the first user equipment, a frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell, which may be:
  • one radio frame includes 10 subframes, where subframe 0 and subframe 5 are the first subframe, and subframe 1 and subframe 6 are downlink subframes. Or one of the first subframes, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3, the subframe 4, the subframe 8 and the subframe 9 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 4, subframe 5, and subframe 9 are the first subframe, and the subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first subframe, and the subframe 6.
  • Subframe 7 and subframe 8 are one of a downlink subframe or a first subframe
  • subframe 2 is a second subframe
  • subframe 3 and subframe 4 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 4, subframe 5, subframe 8 and subframe 9
  • subframe 6 and the subframe 7 are one of the downlink subframe or the first subframe
  • subframe 2 is the second subframe
  • subframe is the upper subframe. Line subframe.
  • the first user equipment determines the frame structure of the first serving cell, and may also determine the frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell and Table 3, or may also be according to the first The uplink and downlink ratio of the serving cell and Table 4 determine the frame structure of the first serving cell.
  • Table 3 and Table 4 are as in Embodiment 1, and are not described herein again.
  • the present invention does not limit the uplink and downlink ratio of the first serving cell, that is, the uplink and downlink ratio of the first serving cell is not limited to Table 3.
  • the uplink and downlink ratio of the first serving cell is preferably the uplink-downlink ratio 0, the uplink-downlink ratio, and the uplink-downlink ratio 3 Match with the upper and lower 4.
  • Table 3 changes part of the first subframe into a downlink subframe, and reduces GP overhead while ensuring coexistence with the existing LTE frame structure 2.
  • the first serving cell corresponding to the first user equipment may refer to a serving cell configured by the network side device to the first user equipment, or a serving cell serving the first user equipment, or a first user equipment. Access to the service cell.
  • the serving cell in the embodiment of the present invention may also be referred to as a carrier.
  • the first serving cell may be a primary serving cell or a secondary serving cell of the first user equipment.
  • the first user equipment sends and receives information on the first serving cell based on a frame structure of the first serving cell.
  • the first user equipment sends and receives information on the first serving cell based on the frame structure of the first serving cell, and may perform the following uplink HARQ timing:
  • the first user equipment receives the physical downlink shared channel PDSCH transmission on the subframe nk or receives the downlink control channel indicating the downlink semi-persistent scheduling SPS release, and the physical downlink shared channel PDSCH or the downlink control channel that sends the downlink semi-persistent SPS release is first.
  • n is a non-negative integer
  • the first user equipment sends the HARQ-ACK corresponding to the physical downlink shared channel or the downlink control channel of the subframe n-4 in the subframe n, and the physical downlink shared channel or the downlink control channel corresponds to
  • the HARQ-ACK is transmitted on the first serving cell. It should be noted that n and n-4 are subframe numbers.
  • the first user equipment receives the downlink control channel for scheduling the physical uplink shared channel in the subframe i; the first user equipment sends the physical uplink shared channel scheduled by the downlink control channel on the subframe i+k1, and the physical uplink shared channel scheduled by the downlink control channel Transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 is the same as the uplink-downlink ratio of the first serving cell according to the frame structure type 2
  • the timing determination determines that the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k1 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k1 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k1 is as shown in Table 5. It should be noted that i and i+k1 are subframe numbers.
  • the first user equipment sends a physical uplink shared channel on the subframe j, and the physical uplink shared channel sent by the first user equipment is transmitted on the first serving cell; the first user equipment receives the physical uplink shared channel corresponding to the subframe j+k2.
  • HARQ-ACK j is a non-negative integer
  • k2 is a positive integer
  • the value of k2 is determined according to the timing when the uplink-downlink ratio of the frame structure type 2 is the same as the uplink-downlink ratio of the first serving cell
  • the frame structure type 2 is The frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k2 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k2 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k2 is as shown in Table 6. It should be noted that j and j+k2 are subframe numbers.
  • the first user equipment receives the HARQ-ACK corresponding to the physical uplink shared channel in the subframe m.
  • the first user equipment sends the physical uplink shared channel corresponding to the HARQ-ACK on the subframe m+k3, and the physical uplink shared channel corresponding to the HARQ-ACK.
  • m is a non-negative integer
  • k3 is a positive integer
  • the value of k3 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, and the frame is determined.
  • the structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k3 is matched with the uplink and downlink of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k3 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k3 is as shown in Table 5. It should be noted that m and m+k3 are subframe numbers.
  • the uplink HARQ timing is unchanged for different uplink and downlink ratios, and the downlink HARQ timing is compared with the existing LTE system. Consistent, simplifying implementation complexity and protocol complexity; in addition, the upstream The HARQ timing is such that one uplink subframe or the second subframe only needs to feed back a downlink subframe or a HARQ-ACK of the first subframe, so that the existing LTE system needs to feed back multiple HARBs of multiple downlink subframes in one uplink subframe. Compared with ACK, the feedback amount is reduced and the HARQ-ACK performance is improved.
  • FIG. 7 is a schematic structural diagram of a base station according to a first embodiment of the present invention.
  • the base station 21 includes a second frame determining module 210 and a second transceiver module 211.
  • the second frame determining module 210 is configured to determine a frame structure of the first serving cell of the first user equipment.
  • the second transceiver module 211 is coupled to the second frame determining module 210 for transmitting and receiving information with the first user equipment on the first serving cell based on the frame structure.
  • the second frame determining module 210 may determine a frame structure of the first serving cell of the first user equipment according to an uplink and downlink ratio of the first serving cell of the first user equipment.
  • the frame structures corresponding to different uplink and downlink ratios are different, and the frames corresponding to different frame structures are different.
  • one radio frame in the frame structure of the first serving cell, includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, protection time, and The symbol transmitted in the uplink, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than that used for uplink transmission.
  • the first subframe may transmit a physical downlink shared channel PDSCH
  • the second subframe may transmit a physical uplink shared channel PUSCH.
  • the subframe 1 is the first subframe or the downlink subframe
  • the subframe l+k is the first subframe, the second subframe, or the uplink subframe, where l is a non-negative integer, and k is a positive integer greater than 1. Therefore, the HARQ-ACK corresponding to the subframe 1 can be fed back at l+k, so that the frame structure of the first serving cell has a uniform uplink HARQ-ACK timing for different uplink and downlink ratios.
  • the value of k is not limited in the embodiment of the present invention. When the length of each subframe in the frame structure of the first serving cell is 1 ms, the value of k is preferably 4. It should be noted that l and l+k are subframe numbers.
  • All embodiments of the present invention do not limit the length of each subframe in the frame structure of the first serving cell of the first user equipment, preferably 1 ms. All embodiments of the present invention do not limit the specific subframe structure of the first subframe and the second subframe.
  • Figure 4 shows the subframe structure of the first subframe and the second subframe when the length of one subframe is 1 ms. For other descriptions of the first subframe and the second subframe, refer to Embodiment 1, and details are not described herein again.
  • the uplink and downlink ratio of the first serving cell may be an uplink-downlink ratio a, an uplink-downlink ratio b, an uplink-downlink ratio c, or an uplink-downlink ratio d. That is, the uplink and downlink ratio of the first serving cell may be one of the uplink-downlink ratio a, the uplink-downlink ratio b, the uplink-downlink ratio c, and the uplink-downlink ratio d, which may be uplinked and downlinked through high-level signaling. Conversion between ratios. Wherein, a, b, c, and d may be indexes of the uplink and downlink ratio, for example, the values may be 0, 1, 3, and 4, respectively.
  • the frame structure is a frame structure corresponding to the uplink-downlink ratio 0, the uplink-downlink ratio 1, the uplink-downlink ratio 3, and the uplink-downlink ratio 4 in Table 2, but refers to a subframe in a frame that can be used to transmit the physical downlink shared channel.
  • the ratio of the number to the number of subframes available for transmitting the physical uplink shared channel is the same as in Table 2.
  • the uplink-downlink ratio of 0 indicates that the ratio of the number of subframes that can be used to transmit the physical downlink shared channel in one frame to the number of subframes that can be used to transmit the physical uplink shared channel is 2:3; the ratio of uplink and downlink ratios is 1, indicating one frame.
  • the ratio of the number of subframes that can be used to transmit the physical downlink shared channel to the number of subframes that can be used to transmit the physical uplink shared channel is 3:2; and the uplink and downlink ratio of 3, which indicates that the subframe can be used to transmit the physical downlink shared channel.
  • the ratio of the number of frames to the number of subframes that can be used to transmit the physical uplink shared channel is 7:3; the uplink and downlink ratio of 3 indicates the number of subframes that can be used to transmit the physical downlink shared channel in one frame and can be used to transmit the physical uplink shared channel.
  • the ratio of the number of subframes is 8:2.
  • the second frame determining module 210 may determine a frame structure of the first serving cell of the first user equipment according to an uplink and downlink ratio of the first serving cell of the first user equipment. Specifically, it can be:
  • one radio frame includes 10 subframes, where subframe 0 and subframe 5 are the first subframe, and subframe 1 and subframe 6 are downlink subframes. Or one of the first subframes, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3, the subframe 4, the subframe 8 and the subframe 9 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 4, subframe 5, and subframe 9 are the first subframe, and the subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first subframe, and the subframe 6.
  • Subframe 7 and subframe 8 are one of a downlink subframe or a first subframe
  • subframe 2 is a second subframe
  • subframe 3 and subframe 4 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 4, subframe 5, subframe 8 and subframe 9
  • subframe 6 and the subframe 7 are one of the downlink subframe or the first subframe
  • subframe 2 is the second subframe
  • subframe is the uplink subframe.
  • the second frame determining module 210 determines the frame structure of the first serving cell of the first user equipment, and may also determine the frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell and Table 3. Or, the frame structure of the first serving cell may be determined according to the uplink and downlink ratio of the first serving cell and Table 4. Other descriptions of Table 3 and Table 4 are as in Embodiment 1, and are not described herein again.
  • the first serving cell corresponding to the first user equipment may refer to a serving cell configured by the network side device to the first user equipment, or a serving cell serving the first user equipment, or a first user equipment. Access to the service cell.
  • the serving cell in the embodiment of the present invention may also be referred to as a carrier.
  • the first serving cell may be a primary serving cell or a secondary serving cell of the first user equipment.
  • the second transceiver module 211 is configured to send and receive information with the first user equipment on the first serving cell based on a frame structure of the first serving cell.
  • the second transceiver module 211 sends and receives information to the first user equipment on the first serving cell based on the frame structure of the first serving cell, and may perform the following uplink HARQ timing.
  • the second transceiver module 211 sends a physical downlink shared channel (PDSCH) to the first user equipment on the subframe nk or a downlink control channel that indicates that the downlink semi-persistent scheduling SPS is released, and the physical downlink shared channel or the downlink control channel that indicates the downlink semi-persistent scheduling release.
  • n is a non-negative integer.
  • the second transceiver module 211 receives, in the subframe n, the HARQ-ACK corresponding to the physical downlink shared channel or the downlink control channel of the subframe n-4, the physical downlink shared channel, or the HARQ corresponding to the downlink control channel that is fed back by the first user equipment.
  • - ACK is transmitted on the first serving cell.
  • the value of k is 4. It should be noted that n and n-4 are subframe numbers.
  • the second transceiver module 211 sends a downlink control channel for scheduling the physical uplink shared channel to the first user equipment in the subframe i; the second transceiver module 211 receives the physical uplink shared channel scheduled by the downlink control channel in the subframe i+k1, and downlink control
  • the physical uplink shared channel of the channel scheduling is transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 is based on the uplink and downlink ratio of the frame structure type 2 and the uplink and downlink ratio of the first serving cell.
  • the timing determination at the same time determines that the frame structure type 2 is the frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k1 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k1 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k1 is as shown in Table 5. It should be noted that i and i+k1 are subframe numbers.
  • the second transceiver module 211 receives the physical uplink shared channel sent by the first user equipment in the subframe j, and the physical uplink shared channel is on the first serving cell; the second transceiver module 211 sends the physical uplink shared channel corresponding to the subframe j+k2.
  • HARQ-ACK j is a non-negative integer
  • k2 is a positive integer
  • the value of k2 is based on
  • the timing of the frame structure type 2 is the same as the timing of the uplink and downlink ratio of the first serving cell, and the frame structure type 2 is the frame in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12. structure type.
  • the value of k2 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k2 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k2 is as shown in Table 6. It should be noted that j and j+k2 are subframe numbers.
  • the second transceiver module 211 sends the HARQ-ACK corresponding to the physical uplink shared channel sent by the first user equipment in the subframe m.
  • the second transceiver module 211 receives the retransmission of the physical uplink shared channel in the subframe m+k3, and the physical uplink sharing is performed.
  • the retransmission of the channel is transmitted on the first serving cell, m is a non-negative integer, k3 is a positive integer, and the value of k3 is the same as the uplink-downlink ratio of the first serving cell according to the uplink and downlink ratio of the frame structure type 2 It is determined periodically that the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k3 is matched with the uplink and downlink of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k3 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k3 is as shown in Table 5. It should be noted that m and m+k3 are subframe numbers.
  • the uplink HARQ timing does not change for different uplink and downlink ratios.
  • the downlink HARQ timing is consistent with the existing LTE system, which can simplify implementation complexity and protocol complexity.
  • the uplink HARQ timing requires only one downlink subframe or the second subframe to feed back one downlink subframe or the first subframe HARQ.
  • - ACK which reduces the feedback amount and improves the HARQ-ACK performance compared with the HARQ-ACK in which the existing LTE system needs to feed back multiple downlink subframes in one uplink subframe.
  • the frame structure of the first serving cell is introduced, but the evolution of the communication system is a gradual process, and thus the frame structure 2 of the existing LTE system also exists, so the new solution needs to be solved.
  • the embodiment of the present invention optimizes the existing LTE system frame structure 2 while introducing a new frame structure, and ensures coexistence of the new frame structure and the LTE system frame structure 2. Therefore, the second frame determining module 210 is further configured to determine a frame structure of the second serving cell, where the second serving cell is a serving cell of the second user equipment.
  • the second frame determining module 210 determines a frame structure of the second serving cell, where the frame structure of the second serving cell is the same as the frame structure type 2 in the LTE version 8 or version 9 or version 10 or version 11 or version 12, ie,
  • the frame structure of the two serving cells is as shown in Table 2.
  • the second frame determining module 210 may determine the frame structure of the second serving cell according to the uplink and downlink ratio of the second serving cell, or the second frame determining module 210 may determine according to the uplink and downlink ratio of the second serving cell and Table 2.
  • the frame structure of the second serving cell may be determined according to the uplink and downlink ratio of the second serving cell.
  • the frequency resource of the second serving cell is adjacent or identical to the frequency resource of the first serving cell.
  • the frequency resource of the first serving cell is the same as the frequency resource of the second serving cell, the physical cell corresponding to the first serving cell and the second serving cell may be different, that is, the corresponding physical cell ID is different.
  • the first serving cell and the second serving cell subframe are offset by 11 symbols.
  • the subframe of the first serving cell is 11 symbols ahead of the subframe of the second serving cell.
  • the last 3 symbols of the first subframe in the frame structure of the first serving cell (including the GP with a duration of 1 symbol) are overlapped with the first 3 symbols of the downlink subframe in the frame structure 2 of the existing LTE system, so that The puncturing of the second symbol and the third symbol of the downlink subframe in the LTE system frame structure 2 enables the frame structure of the first serving cell to coexist with the frame structure type 2 in the existing LTE system.
  • the existing LTE system frame structure type 2 can indicate that the second user equipment punctured the second symbol and the third symbol of the downlink subframe by indicating the start symbol of the PDSCH, and still can The PDCCH is received on one symbol.
  • the uplink and downlink ratio of the second serving cell when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio a, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 1.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio b
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 2.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio c
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 4.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio d
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 5.
  • the uplink subframe in the frame structure type 2 of the existing LTE system is not punctured, thereby implementing the first serving cell.
  • the frame structure coexists with the existing LTE system frame structure type 2. Because there is no mechanism in the existing LTE system frame structure type 2, the second user equipment can be instructed to punctify its uplink subframe.
  • the ratio of the special subframes in the frame structure of the second serving cell is a special subframe ratio 5 or a special subframe ratio 0.
  • the second user can be prevented from receiving the PDSCH in the special subframe or the downlink reference signal is measured on the 4th symbol to the 12th symbol of the special subframe, thereby implicitly applying the special subframe to the existing LTE system.
  • Punching also makes the existing LTE system frame knot
  • the subframe 2 and the subframe 7 in the configuration type 2 are complete uplink subframes, and the frame structure of the first serving cell is realized to coexist with the existing LTE system frame structure type 2.
  • the last three symbols of the uplink subframe in the frame structure of the first serving cell overlap with the first three symbols of the downlink subframe in the frame structure type 2 of the existing LTE system.
  • the first three symbols of the downlink subframe in the existing LTE system frame structure type 2 are punctured, because the downlink subframe of the existing LTE system frame structure type 2 can be implemented by notifying the second user equipment PDSCH start time.
  • the first 3 symbols are punctured; the last 3 symbols of the uplink subframe in the frame structure type of the first serving cell may also be punctured because a new signaling indication may be designed to support the uplink of the first serving cell frame structure.
  • the last 3 symbols of the sub-frame are punctured.
  • Figure a and Figure b in Figure 8 show that the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio of 0, and the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio of 1, respectively.
  • the second serving cell corresponding to the second user equipment may refer to a serving cell configured by the network side device to the second user equipment, or a serving cell serving the second user equipment, or a serving cell accessed by the second user equipment.
  • a serving cell in the embodiment of the present invention may also be referred to as a component carrier.
  • the second serving cell may be a primary serving cell or a secondary serving cell of the second user equipment.
  • the first serving cell or the second serving cell does not represent the sequence of the user equipment serving cell, only the first serving cell and the second serving cell are two serving cells.
  • the second user equipment and the first user equipment are not one user equipment.
  • the first user equipment may be a user equipment supporting a version of LTE Release 12 or later.
  • the second user equipment may be a user equipment supporting LTE Release 12 and/or previous LTE releases.
  • the second user equipment may be a user equipment supporting the LTE version 12 and the previous LTE version, or the second user equipment may be a user equipment supporting the LTE version 11 and the previous LTE version, or the second user equipment may be supporting the LTE.
  • the user equipment of the version 10 and the previous LTE version, or the second user equipment may be the user equipment supporting the LTE version 9 and the previous LTE version, or the second user equipment may be the user equipment supporting the LTE version 8.
  • the second transceiver module 211 is further configured to send and receive information with the second user equipment on the second serving cell based on the frame structure.
  • the second transceiver module 211 tries to send a physical downlink shared channel to the second user on the second serving cell in the downlink subframe n1, and the start symbol of the physical downlink shared channel transmission is in the downlink subframe n1.
  • the fourth symbol, n1 is a non-negative integer.
  • the second transceiver module 211 sends a physical downlink control signal to the second user equipment on the second serving cell in the downlink subframe n2, where the physical downlink control channel is carried on the first symbol of the downlink subframe n2, where n2 is A non-negative integer; wherein the physical downlink control channel received on the first symbol of the downlink subframe n2 may be a PDCCH corresponding to a common search space.
  • the second transceiver module 211 indicates, to the second user equipment, a start symbol of the physical downlink shared channel, where the start symbol of the physical downlink shared channel is the fourth symbol; specifically, if the second user equipment supports the LTE version
  • the second transceiver module 211 can use the PDSCH resource unit mapping in the downlink control information format 2D, and the second user equipment is a user equipment supporting the LTE version 11 and the previous LTE version.
  • the PDSCH RE Mapping and Quasi-Co-Location Indicator field indicates the start symbol of the physical downlink shared channel; if the second user equipment is the user equipment supporting the LTE version 10 and the previous LTE version, the second The transceiver module 211 can indicate the start symbol of the physical downlink shared channel by using the RRC signaling, and the second user equipment is configured to perform cross-carrier scheduling, and the second serving cell is the secondary serving cell of the second user equipment.
  • the second transceiver module 211 indicates, to the second user equipment, a transmission mode corresponding to the physical downlink shared channel, where the transmission mode is the transmission mode 10; at this time, the second user equipment is supported by the LTE version 12 and the previous LTE version.
  • the user equipment, or the second user equipment is a user equipment supporting LTE version 11 and previous LTE versions.
  • the second transceiver module 211 schedules the second user equipment in the un-punctured downlink subframe in the existing LTE system frame structure type 2, and the second user equipment supports the LTE version 9 and the previous LTE version.
  • User equipment, or a user equipment supporting LTE Release 8; or the transmission mode configured by the second user equipment is one of transmission modes 1 to 9.
  • FIG. 9 is a schematic structural diagram of a base station according to a second embodiment of the present invention.
  • the base station 22 includes a transceiver 221, a memory 222, a processor 223, and a data bus 224.
  • Transceiver 221, memory 222, and processor 223 are coupled via data bus 224 for intercommunication.
  • the processor 223 is configured to determine a frame structure of the first serving cell of the first user equipment.
  • the transceiver 221 is configured to send and receive information with the first user equipment on the first serving cell based on a frame structure.
  • the memory 222 is configured to store a frame structure of the first serving cell.
  • the processor 223 may determine a frame structure of the first serving cell of the first user equipment according to an uplink and downlink ratio of the first serving cell of the first user equipment.
  • the frame structures corresponding to different uplink and downlink ratios are different, and the frames corresponding to different frame structures are different.
  • one radio frame in the frame structure of the first serving cell, includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, protection time, and The symbol transmitted in the uplink, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than that used for uplink transmission.
  • the first subframe may transmit a physical downlink shared channel PDSCH
  • the second subframe may transmit a physical uplink shared channel PUSCH.
  • the subframe 1 is the first subframe or the downlink subframe
  • the subframe l+k is the first subframe, the second subframe, or the uplink subframe, where l is a non-negative integer, and k is a positive integer greater than 1. Therefore, the HARQ-ACK corresponding to the subframe 1 can be fed back at l+k, so that the frame structure of the first serving cell has a uniform uplink HARQ-ACK timing for different uplink and downlink ratios.
  • the value of k is not limited in the embodiment of the present invention. When the length of each subframe in the frame structure of the first serving cell is 1 ms, the value of k is preferably 4. It should be noted that l and l+k are subframe numbers.
  • All embodiments of the present invention do not limit the length of each subframe in the frame structure of the first serving cell of the first user equipment, preferably 1 ms. All embodiments of the present invention do not limit the specific subframe structure of the first subframe and the second subframe.
  • Figure 4 shows the subframe structure of the first subframe and the second subframe when the length of one subframe is 1 ms. For other descriptions of the first subframe and the second subframe, refer to Embodiment 1, and details are not described herein again.
  • the uplink and downlink ratio of the first serving cell may be an uplink-downlink ratio a, an uplink-downlink ratio b, an uplink-downlink ratio c, or an uplink-downlink ratio d. That is, the uplink and downlink ratio of the first serving cell may be one of the uplink-downlink ratio a, the uplink-downlink ratio b, the uplink-downlink ratio c, and the uplink-downlink ratio d, which may be uplinked and downlinked through high-level signaling. Conversion between ratios. Wherein, a, b, c, and d may be indexes of the uplink and downlink ratio, for example, the values may be 0, 1, 3, and 4, respectively.
  • the frame structure of the first serving cell is not the uplink and downlink in Table 2.
  • the ratio of the number of subframes of the channel is the same as in Table 2.
  • the uplink-downlink ratio of 0 indicates that the ratio of the number of subframes that can be used to transmit the physical downlink shared channel in one frame to the number of subframes that can be used to transmit the physical uplink shared channel is 2:3; the ratio of uplink and downlink ratios is 1, indicating one frame.
  • the ratio of the number of subframes that can be used to transmit the physical downlink shared channel to the number of subframes that can be used to transmit the physical uplink shared channel is 3:2; and the uplink and downlink ratio of 3, which indicates that the subframe can be used to transmit the physical downlink shared channel.
  • the ratio of the number of frames to the number of subframes that can be used to transmit the physical uplink shared channel is 7:3; the uplink and downlink ratio of 3 indicates the number of subframes that can be used to transmit the physical downlink shared channel in one frame and can be used to transmit the physical uplink shared channel.
  • the ratio of the number of subframes is 8:2.
  • the processor 223 may determine, according to the uplink and downlink ratio of the first serving cell of the first user equipment, the first The frame structure of the first serving cell of the user equipment. Specifically, it can be:
  • one radio frame includes 10 subframes, where subframe 0 and subframe 5 are the first subframe, and subframe 1 and subframe 6 are downlink subframes. Or one of the first subframes, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3, the subframe 4, the subframe 8 and the subframe 9 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 4, subframe 5, and subframe 9 are the first subframe, and the subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first subframe, and the subframe 6.
  • Subframe 7 and subframe 8 are one of a downlink subframe or a first subframe
  • subframe 2 is a second subframe
  • subframe 3 and subframe 4 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 4, subframe 5, subframe 8 and subframe 9
  • subframe 6 and the subframe 7 are one of the downlink subframe or the first subframe
  • subframe 2 is the second subframe
  • subframe is the uplink subframe.
  • the processor 223 determines a frame structure of the first serving cell of the first user equipment, and may also determine a frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell and the table 3, or may also The frame structure of the first serving cell is determined according to the uplink and downlink ratio of the first serving cell and Table 4.
  • Table 3 and Table 4 are as in Embodiment 1, and are not described herein again.
  • the first serving cell corresponding to the first user equipment may refer to a serving cell configured by the network side device to the first user equipment, or a serving cell serving the first user equipment, or a first user equipment. Access to the service cell.
  • the serving cell in the embodiment of the present invention may also be referred to as a carrier.
  • the first serving cell may be a primary serving cell or a secondary serving cell of the first user equipment.
  • the transceiver 221 is configured to send and receive information with the first user equipment on the first serving cell based on a frame structure of the first serving cell.
  • the transceiver 221 sends and receives information to the first user equipment on the first serving cell based on the frame structure of the first serving cell, and may perform the following uplink HARQ timing.
  • the transceiver 221 sends the physical downlink shared channel PDSCH to the first user equipment on the subframe n-k or Sending a downlink control channel indicating that the downlink semi-persistent scheduling SPS is released, the physical downlink shared channel PDSCH or the downlink control channel transmitting the downlink semi-persistent scheduling SPS release is transmitted on the first serving cell, where n is a non-negative integer.
  • the second transceiver module 211 receives, in the subframe n, the HARQ-ACK corresponding to the physical downlink shared channel or the downlink control channel of the subframe n-4, and the HARQ-ACK corresponding to the physical downlink shared channel or the downlink control channel fed back by the first user equipment. Transmitted on the first serving cell.
  • the value of k is 4. It should be noted that n and n-4 are subframe numbers.
  • the transceiver 221 sends a downlink control channel for scheduling the physical uplink shared channel to the first user equipment in the subframe i; the transceiver 221 receives the physical uplink shared channel scheduled by the downlink control channel on the subframe i+k1, and the physical of the downlink control channel scheduling
  • the uplink shared channel is transmitted on the first serving cell, i is a non-negative integer, k1 is a positive integer, and the value of k1 is based on the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell. It is determined that the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k1 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k1 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k1 is as shown in Table 5. It should be noted that i and i+k1 are subframe numbers.
  • the transceiver 221 receives the physical uplink shared channel sent by the first user equipment in the subframe j, and the physical uplink shared channel sent by the first user equipment is transmitted on the first serving cell; the transceiver 221 sends the physical uplink in the subframe j+k2.
  • the HARQ-ACK corresponding to the shared channel, j is a non-negative integer, k2 is a positive integer, and the value of k2 is determined according to the timing when the uplink-downlink ratio of the frame structure type 2 is the same as the uplink-downlink ratio of the first serving cell, and the frame is determined.
  • the structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k2 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k2 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k2 is as shown in Table 6. It should be noted that j and j+k2 are subframe numbers.
  • the transceiver 221 transmits the HARQ-ACK corresponding to the physical uplink shared channel sent by the first user equipment in the subframe m; the transceiver 221 receives the retransmission of the physical uplink shared channel in the subframe m+k3, and the physical The retransmission of the uplink shared channel is transmitted on the first serving cell, m is a non-negative integer, k3 is a positive integer, and the value of k3 is based on the uplink and downlink ratio of the frame structure type 2 and the uplink and downlink ratio of the first serving cell.
  • the frame structure type 2 is a frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k3 is matched with the uplink and downlink of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k3 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k3 is as shown in Table 5. It should be noted that m and m+k3 are subframe numbers.
  • the uplink HARQ timing is unchanged for different uplink and downlink ratios, and the downlink HARQ is performed. Timing is consistent with the existing LTE system, which can simplify the implementation complexity and protocol complexity.
  • the uplink HARQ timing makes it necessary to feed back one downlink subframe or the first subframe HARQ-ACK in one uplink subframe or second subframe. Therefore, compared with the HARQ-ACK in which the existing LTE system needs to feed back multiple downlink subframes in one uplink subframe, the feedback amount is reduced, and the HARQ-ACK performance is improved.
  • the frame structure of the first serving cell is introduced, but the evolution of the communication system is a gradual process, and thus the frame structure 2 of the existing LTE system also exists, so the new solution needs to be solved.
  • the embodiment of the present invention optimizes the existing LTE system frame structure 2 while introducing a new frame structure, and ensures coexistence of the new frame structure and the LTE system frame structure 2. Therefore, the processor 223 is further configured to determine a frame structure of the second serving cell, where the second serving cell is a serving cell of the second user equipment.
  • the processor 223 determines a frame structure of the second serving cell, where the frame structure of the second serving cell is the same as the frame structure type 2 in the LTE version 8 or version 9 or version 10 or version 11 or version 12, ie, the second serving cell
  • the frame structure is shown in Table 2.
  • the second frame determining module 210 may determine the frame structure of the second serving cell according to the uplink and downlink ratio of the second serving cell, or the second frame determining module 210 may determine according to the uplink and downlink ratio of the second serving cell and Table 2.
  • the frame structure of the second serving cell may be determined according to the uplink and downlink ratio of the second serving cell.
  • the frequency resource of the second serving cell is adjacent or identical to the frequency resource of the first serving cell.
  • the frequency resource of the first serving cell is the same as the frequency resource of the second serving cell, the physical cell corresponding to the first serving cell and the second serving cell may be different, that is, the corresponding physical cell ID is different.
  • the first serving cell and the second serving cell subframe are offset by 11 symbols.
  • the subframe of the first serving cell is 11 symbols ahead of the subframe of the second serving cell.
  • Making the last 3 symbols of the first subframe in the frame structure of the first serving cell (including a duration of 1)
  • the GP of the symbol overlaps with the first three symbols of the downlink subframe in the frame structure 2 of the existing LTE system, so that the second symbol and the third symbol of the downlink subframe in the frame structure 2 of the LTE system can be played.
  • the hole realizes that the frame structure of the first serving cell coexists with the frame structure type 2 in the existing LTE system. Because the existing LTE system frame structure type 2 can indicate that the second user equipment punctured the second symbol and the third symbol of the downlink subframe by indicating the start symbol of the PDSCH, and still can The PDCCH is received on one symbol.
  • the uplink and downlink ratio of the second serving cell when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio a, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 1.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio b
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 2.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio c
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 4.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio d
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 5.
  • the uplink subframe in the frame structure type 2 of the existing LTE system is not punctured, thereby implementing the first serving cell.
  • the frame structure coexists with the existing LTE system frame structure type 2. Because there is no mechanism in the existing LTE system frame structure type 2, the second user equipment can be instructed to punctify its uplink subframe.
  • the ratio of the special subframes in the frame structure of the second serving cell is a special subframe ratio 5 or a special subframe ratio 0.
  • the second user can be prevented from receiving the PDSCH in the special subframe or the downlink reference signal is measured on the 4th symbol to the 12th symbol of the special subframe, thereby implicitly applying the special subframe to the existing LTE system.
  • the puncturing is performed on the other hand, and the subframe structure 2 and the subframe 7 in the frame structure type 2 of the existing LTE system are complete uplink subframes, and the frame structure of the first serving cell and the frame structure type of the existing LTE system are implemented. coexist.
  • the last three symbols of the uplink subframe in the frame structure of the first serving cell overlap with the first three symbols of the downlink subframe in the frame structure type 2 of the existing LTE system.
  • the first three symbols of the downlink subframe in the existing LTE system frame structure type 2 are punctured, because the downlink subframe of the existing LTE system frame structure type 2 can be implemented by notifying the second user equipment PDSCH start time.
  • the first 3 symbols are punctured; the last 3 symbols of the uplink subframe in the frame structure type of the first serving cell may also be punctured because a new signaling indication may be designed to support the uplink of the first serving cell frame structure.
  • the last 3 symbols of the sub-frame are punctured.
  • Figure a and Figure b in Figure 8 show that the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio of 0, and the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio of 1, respectively.
  • the second serving cell corresponding to the second user equipment may refer to a serving cell configured by the network side device to the second user equipment, or a serving cell serving the second user equipment, or a serving cell accessed by the second user equipment.
  • a serving cell in the embodiment of the present invention may also be referred to as a component carrier.
  • the second serving cell may be a primary serving cell or a secondary serving cell of the second user equipment.
  • the first serving cell or the second serving cell does not represent the sequence of the user equipment serving cell, only the first serving cell and the second serving cell are two serving cells.
  • the second user equipment and the first user equipment are not one user equipment.
  • the first user equipment may be a user equipment supporting a version of LTE Release 12 or later.
  • the second user equipment may be a user equipment supporting LTE Release 12 and/or previous LTE releases.
  • the second user equipment may be a user equipment supporting the LTE version 12 and the previous LTE version, or the second user equipment may be a user equipment supporting the LTE version 11 and the previous LTE version, or the second user equipment may be supporting the LTE.
  • the user equipment of the version 10 and the previous LTE version, or the second user equipment may be the user equipment supporting the LTE version 9 and the previous LTE version, or the second user equipment may be the user equipment supporting the LTE version 8.
  • the transceiver 221 is further configured to send and receive information with the second user equipment on the second serving cell based on the frame structure.
  • the transceiver 221 tries to send the physical downlink shared channel to the second user on the second serving cell in the downlink subframe n1, and the start symbol of the physical downlink shared channel transmission is the fourth symbol in the downlink subframe n1, where n1 is Non-negative integer.
  • the transceiver 221 sends a physical downlink control channel to the second user equipment on the second serving cell in the downlink subframe n2, where the physical downlink control channel is carried on the first symbol of the downlink subframe n2, and n2 is non-negative.
  • the transceiver 221 indicates, to the second user equipment, a start symbol of the physical downlink shared channel, where the start symbol of the physical downlink shared channel is the fourth symbol; specifically, if the second user equipment supports LTE version 12 and The user equipment of the previous LTE version, or the second user equipment is a user equipment supporting the LTE version 11 and the previous LTE version, the transceiver 221 may adopt the PDSCH resource unit mapping and the alignment position indication in the downlink control information format 2D.
  • the (PDSCH RE Mapping and Quasi-Co-Location Indicator) field indicates the start symbol of the physical downlink shared channel; if the second user equipment is the user equipment supporting the LTE version 10 and the previous LTE version, the second transceiver module 211
  • the start symbol of the physical downlink shared channel may be indicated by the RRC signaling, where the second user equipment is configured for cross-carrier scheduling, and the second serving cell is the secondary serving cell of the second user equipment.
  • the transceiver 221 indicates, to the second user equipment, a transmission mode corresponding to the physical downlink shared channel, where the transmission mode is the transmission mode 10; in this case, the second user equipment is a user equipment supporting the LTE version 12 and the previous LTE version. Or the second user equipment is a user equipment supporting LTE version 11 and previous LTE versions.
  • the transceiver 221 schedules the second user equipment in the un-punctured downlink subframe in the existing LTE system frame structure type 2, the second user equipment is a user supporting the LTE version 9 and the previous LTE version.
  • the device, or the user equipment supporting LTE version 8; or the transmission mode configured by the second user equipment is one of transmission modes 1 to 9.
  • FIG. 10 is a flow chart showing a method of transmitting and receiving information according to a second embodiment of the present invention. As shown in FIG. 10, the method for transmitting and receiving information includes:
  • the base station determines a frame structure of the first serving cell of the first user equipment.
  • the base station may determine a frame structure of the first serving cell of the first user equipment according to an uplink and downlink ratio of the first serving cell of the first user equipment.
  • the frame structures corresponding to different uplink and downlink ratios are different, and the frames corresponding to different frame structures are different.
  • one radio frame includes at least one first subframe and at least one second subframe, and the first subframe and the second subframe include symbols for downlink transmission, guard time GP, and The symbol of the uplink transmission, where the number of symbols used for downlink transmission in the first subframe is greater than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than the symbol used for uplink transmission Number.
  • the first subframe may transmit a physical downlink shared channel PDSCH
  • the second subframe may transmit a physical uplink shared channel PUSCH.
  • the subframe 1 is the first subframe or the downlink subframe
  • the subframe l+k is the first subframe, the second subframe, or the uplink subframe, where l is a non-negative integer, and k is a positive integer greater than 1. Therefore, the HARQ-ACK corresponding to the subframe 1 can be fed back at l+k, so that the frame structure of the first serving cell has a uniform uplink HARQ-ACK timing for different uplink and downlink ratios.
  • the value of k is not limited in the embodiment of the present invention. When the length of each subframe in the frame structure of the first serving cell is 1 ms, the value of k is preferably 4. It should be noted that l and l+k are subframe numbers.
  • All embodiments of the present invention do not limit the length of each subframe in the frame structure of the first serving cell of the first user equipment, preferably 1 ms. All embodiments of the present invention do not limit the specific subframe structure of the first subframe and the second subframe.
  • Figure 4 shows the subframe structure of the first subframe and the second subframe when the length of one subframe is 1 ms. For other descriptions of the first subframe and the second subframe, refer to Embodiment 1, and details are not described herein again.
  • the uplink and downlink ratio of the first serving cell may be an uplink-downlink ratio a, an uplink-downlink ratio b, an uplink-downlink ratio c, or an uplink-downlink ratio d. That is, the uplink and downlink ratio of the first serving cell may be one of the uplink-downlink ratio a, the uplink-downlink ratio b, the uplink-downlink ratio c, and the uplink-downlink ratio d, which may be uplinked and downlinked through high-level signaling. Conversion between ratios. Wherein, a, b, c, and d may be indexes of the uplink and downlink ratio, for example, the values may be 0, 1, 3, and 4, respectively.
  • the frame structure of the first serving cell is not the uplink and downlink in Table 2.
  • the ratio of the number of subframes of the channel is the same as in Table 2.
  • the uplink-downlink ratio of 0 indicates that the ratio of the number of subframes that can be used to transmit the physical downlink shared channel in one frame to the number of subframes that can be used to transmit the physical uplink shared channel is 2:3; the ratio of uplink and downlink ratios is 1, indicating one frame.
  • the ratio of the number of subframes that can be used to transmit the physical downlink shared channel to the number of subframes that can be used to transmit the physical uplink shared channel is 3:2; and the uplink and downlink ratio of 3, which indicates that the subframe can be used to transmit the physical downlink shared channel.
  • the ratio of the number of frames to the number of subframes that can be used to transmit the physical uplink shared channel is 7:3; the uplink and downlink ratio of 3 indicates the number of subframes that can be used to transmit the physical downlink shared channel in one frame and can be used to transmit the physical uplink shared channel.
  • the ratio of the number of subframes is 8:2.
  • the base station may determine the frame structure of the first serving cell of the first user equipment according to the uplink and downlink ratio of the first serving cell of the first user equipment. Specifically, it can be:
  • one radio frame includes 10 subframes, where subframe 0 and subframe 5 are the first subframe, and subframe 1 and subframe 6 are downlink subframes. Or one of the first subframes, the subframe 2 and the subframe 7 are the second subframe, and the subframe 3, the subframe 4, the subframe 8 and the subframe 9 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 4, subframe 5, and subframe 9 are the first subframe, and the subframe 1 and subframe 6 are one of a downlink subframe or a first subframe, subframe 2 and subframe 7 are second subframes, and subframe 3 and subframe 8 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 5, and subframe 9 are the first subframe, and the subframe 6.
  • Subframe 7 and subframe 8 are one of a downlink subframe or a first subframe
  • subframe 2 is a second subframe
  • subframe 3 and subframe 4 are uplink subframes; or
  • one radio frame includes 10 subframes, where subframe 0, subframe 1, subframe 4, subframe 5, subframe 8 and subframe 9
  • subframe 1 subframe 1
  • subframe 4 subframe 5
  • subframe 8 subframe 9
  • the child The frame 6 and the subframe 7 are one of the downlink subframe or the first subframe
  • the subframe 2 is the second subframe
  • the subframe is the uplink subframe.
  • the base station determines the frame structure of the first serving cell of the first user equipment, and may determine the frame structure of the first serving cell according to the uplink and downlink ratio of the first serving cell and Table 3, or may also be based on The uplink and downlink ratio of the first serving cell and Table 4 determine the frame structure of the first serving cell.
  • Table 3 and Table 4 are as in Embodiment 1, and are not described herein again.
  • the first serving cell corresponding to the first user equipment may refer to a serving cell configured by the network side device to the first user equipment, or a serving cell serving the first user equipment, or a first user equipment. Access to the service cell.
  • a serving cell in the embodiment of the present invention may also be referred to as a component carrier.
  • the first serving cell may be a primary serving cell or a secondary serving cell of the first user equipment.
  • the base station sends and receives information to the first user equipment on the first serving cell based on a frame structure of the first serving cell.
  • the base station sends and receives information with the first user equipment on the first serving cell based on the frame structure of the first serving cell, and may perform according to the following uplink HARQ timing.
  • the base station sends a physical downlink shared channel (PDSCH) transmission or a downlink control channel indicating the downlink semi-persistent scheduling SPS release to the first user equipment on the subframe nk, and the physical downlink shared channel PDSCH or the downlink control channel indicating the downlink semi-persistent scheduling SPS release is
  • PDSCH physical downlink shared channel
  • n a non-negative integer
  • the base station receives, in subframe n, the HARQ-ACK corresponding to the physical downlink shared channel or the downlink control channel of the subframe n-4 fed back by the first user equipment, and the physical downlink shared channel.
  • the HARQ-ACK corresponding to the downlink control channel is transmitted on the first serving cell.
  • the value of k is 4. It should be noted that l and l+k are subframe numbers.
  • the base station sends a downlink control channel for scheduling the physical uplink shared channel to the first user equipment in the subframe i; the base station receives the physical uplink shared channel scheduled by the downlink control channel on the subframe i+k1, and the physical uplink shared channel scheduled by the downlink control channel is in the subframe
  • the first serving cell transmits, i is a non-negative integer, k1 is a positive integer, and the value of k1 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell, and the frame structure is determined.
  • Type 2 is the frame structure type in Long Term Evolution System Release 8 or Release 9 or Release 10 or Release 11 or Release 12.
  • the value of k1 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k1 is the same as the frame structure type 2 in LTE version 8
  • the uplink-downlink ratio is the same as the uplink-downlink ratio of the first serving cell, and the value of k1 is as shown in Table 5. It should be noted that i and i+k1 are subframe numbers.
  • the base station receives the physical uplink shared channel sent by the first user equipment in the subframe j, and the physical uplink shared channel sent by the first user equipment is transmitted on the first serving cell; the base station sends the physical uplink shared channel corresponding to the subframe j+k2.
  • HARQ-ACK j is a non-negative integer
  • k2 is a positive integer
  • the value of k2 is determined according to the timing when the uplink-downlink ratio of the frame structure type 2 is the same as the uplink-downlink ratio of the first serving cell
  • the frame structure type 2 is The frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k2 is compared with the uplink/downlink ratio of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k2 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k2 is as shown in Table 6. It should be noted that j and j+k2 are subframe numbers.
  • the base station sends the HARQ-ACK corresponding to the physical uplink shared channel sent by the first user equipment in the subframe m; the base station receives the retransmission of the physical uplink shared channel in the subframe m+k3, and the retransmission of the physical uplink shared channel is in the first service.
  • m is a non-negative integer
  • k3 is a positive integer
  • the value of k3 is determined according to the timing when the uplink and downlink ratio of the frame structure type 2 is the same as the uplink and downlink ratio of the first serving cell
  • the frame structure type 2 is The frame structure type in the Long Term Evolution System version 8 or version 9 or version 10 or version 11 or version 12.
  • the value of k3 is matched with the uplink and downlink of the frame structure type 2 in LTE version 8 or version 9 or version 10 or version 11 or version 12. Same time. For example, if the value of k3 is the same as the uplink-downlink ratio of the frame structure type 2 in LTE Release 8 and the uplink-downlink ratio of the first serving cell, the value of k3 is as shown in Table 5. It should be noted that m and m+k3 are subframe numbers.
  • the uplink HARQ timing is unchanged for different uplink and downlink ratios, and the downlink HARQ timing is
  • the existing LTE system is consistent, which can simplify implementation complexity and protocol complexity.
  • the uplink HARQ timing requires only one downlink subframe or the second subframe to feed back a downlink subframe or a HARQ-ACK of the first subframe, thereby Compared with the HARQ-ACK in which the existing LTE system needs to feed back multiple downlink subframes in one uplink subframe, the feedback amount is reduced, and the HARQ-ACK performance is improved.
  • FIG. 11 is a flow chart showing a method of transmitting and receiving information according to a third embodiment of the present invention. As shown in FIG. 11, the method for transmitting and receiving information further includes:
  • the base station determines a frame structure of the second serving cell, where the second serving cell is a serving cell of the second user equipment.
  • the base station determines a frame structure of the second serving cell, where the frame structure of the second serving cell is the same as the frame structure type 2 in the LTE version 8 or version 9 or version 10 or version 11 or version 12, that is, the frame of the second serving cell
  • the structure is shown in Table 2.
  • the base station may determine the frame structure of the second serving cell according to the uplink and downlink ratio of the second serving cell, or the base station may determine the frame structure of the second serving cell according to the uplink and downlink ratio of the second serving cell and Table 2.
  • the frequency resource of the second serving cell is adjacent or identical to the frequency resource of the first serving cell.
  • the frequency resource of the first serving cell is the same as the frequency resource of the second serving cell, the physical cell corresponding to the first serving cell and the second serving cell may be different, that is, the corresponding physical cell ID is different.
  • the first serving cell and the second serving cell subframe are offset by 11 symbols.
  • the subframe of the first serving cell is 11 symbols ahead of the subframe of the second serving cell.
  • the last 3 symbols of the first subframe in the frame structure of the first serving cell (including the GP with a duration of 1 symbol) are overlapped with the first 3 symbols of the downlink subframe in the frame structure 2 of the existing LTE system, so that The puncturing of the second symbol and the third symbol of the downlink subframe in the LTE system frame structure 2 enables the frame structure of the first serving cell to coexist with the frame structure type 2 in the existing LTE system.
  • the existing LTE system frame structure type 2 can indicate that the second user equipment punctured the second symbol and the third symbol of the downlink subframe by indicating the start symbol of the PDSCH, and still can The PDCCH is received on one symbol.
  • the uplink and downlink ratio of the second serving cell when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio a, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 1.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio b
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 2.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio c
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 4.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio d
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 5.
  • the uplink-downlink ratio of the first serving cell and the uplink-downlink ratio of the second serving cell are performed.
  • the limitation is that the uplink subframe in the frame structure type 2 of the existing LTE system is not punctured, so that the frame structure of the first serving cell and the existing LTE system frame structure type 2 coexist. Because there is no mechanism in the existing LTE system frame structure type 2, the second user equipment can be instructed to punctify its uplink subframe.
  • the ratio of the special subframes in the frame structure of the second serving cell is a special subframe ratio 5 or a special subframe ratio 0.
  • the second user can be prevented from receiving the PDSCH in the special subframe or the downlink reference signal is measured on the 4th symbol to the 12th symbol of the special subframe, thereby implicitly applying the special subframe to the existing LTE system.
  • the puncturing is performed on the other hand, and the subframe structure 2 and the subframe 7 in the frame structure type 2 of the existing LTE system are complete uplink subframes, and the frame structure of the first serving cell and the frame structure type of the existing LTE system are implemented. coexist.
  • the last three symbols of the uplink subframe in the frame structure of the first serving cell overlap with the first three symbols of the downlink subframe in the frame structure type 2 of the existing LTE system.
  • the first three symbols of the downlink subframe in the existing LTE system frame structure type 2 are punctured, because the downlink subframe of the existing LTE system frame structure type 2 can be implemented by notifying the second user equipment PDSCH start time.
  • the first 3 symbols are punctured; the last 3 symbols of the uplink subframe in the frame structure type of the first serving cell may also be punctured because a new signaling indication may be designed to support the uplink of the first serving cell frame structure.
  • the last 3 symbols of the sub-frame are punctured.
  • Figure a and Figure b in Figure 8 show that the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio of 0, and the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio of 1, respectively.
  • the second serving cell corresponding to the second user equipment may refer to a serving cell configured by the network side device to the second user equipment, or a serving cell serving the second user equipment, or a serving cell accessed by the second user equipment.
  • a serving cell in the embodiment of the present invention may also be referred to as a component carrier.
  • the second serving cell may be a primary serving cell or a secondary serving cell of the second user equipment.
  • the first serving cell or the second serving cell does not represent the sequence of the user equipment serving cell, only the first serving cell and the second serving cell are two serving cells.
  • the second user equipment and the first user equipment are not one user equipment.
  • the first user equipment may be a user equipment supporting a version of LTE Release 12 or later.
  • the second user equipment may be a user equipment supporting LTE Release 12 and/or previous LTE releases.
  • the second user equipment may be a user equipment supporting the LTE version 12 and the previous LTE version, or the second user equipment may be a user equipment supporting the LTE version 11 and the previous LTE version, or the second user equipment may be a branch.
  • the LTE version 10 and the previous LTE version of the user equipment, or the second user equipment may be the LTE version 9 and the previous LTE version of the user equipment, or the second user equipment may be the LTE version 8 user equipment.
  • the base station sends and receives information with the second user equipment on the second serving cell based on the frame structure.
  • the base station tries to send a physical downlink shared channel to the second user on the second serving cell in the downlink subframe n1, and the start symbol of the physical downlink shared channel transmission is the fourth symbol in the downlink subframe n1, where n1 is Non-negative integer.
  • the base station sends a physical downlink control channel to the second user equipment on the second serving cell in the downlink subframe n2, where the physical downlink control channel is carried on the first symbol of the downlink subframe n2, and n2 is a non-negative integer;
  • the physical downlink control channel received on the first symbol of the downlink subframe n2 may be a PDCCH corresponding to the common search space.
  • the base station indicates, to the second user equipment, a start symbol of the physical downlink shared channel, where the start symbol of the physical downlink shared channel is the fourth symbol; specifically, if the second user equipment supports LTE version 12 and before The LTE version of the user equipment, or the second user equipment is a user equipment supporting the LTE version 11 and the previous LTE version, the base station may adopt the PDSCH resource unit mapping and the pseudo-location indication (PDSCH RE Mapping) in the downlink control information format 2D.
  • PDSCH resource unit mapping and the pseudo-location indication PDSCH RE Mapping
  • the Quasi-Co-Location Indicator field indicates the start symbol of the physical downlink shared channel; if the second user equipment is the user equipment supporting the LTE version 10 and the previous LTE version, the base station may indicate the physical downlink by using the RRC signaling indication A start symbol of the shared channel, where the second user equipment is configured for cross-carrier scheduling, and the second serving cell is a secondary serving cell of the second user equipment.
  • the base station indicates, to the second user equipment, a transmission mode corresponding to the physical downlink shared channel, where the transmission mode is the transmission mode 10; in this case, the second user equipment is a user equipment supporting the LTE version 12 and the previous LTE version, or The second user equipment is a user equipment supporting LTE version 11 and previous LTE versions.
  • the base station schedules the second user equipment in the un-punctured downlink subframe in the frame structure type 2 of the existing LTE system, where the second user equipment is a user equipment supporting the LTE version 9 and the previous LTE version, Or a user equipment supporting LTE Release 8; or the transmission mode configured by the second user equipment is one of transmission modes 1 to 9.
  • FIG. 12 is a schematic structural diagram of a system for transmitting and receiving information according to an embodiment of the present invention.
  • the system 10 for transmitting and receiving information includes the aforementioned first user equipment, the aforementioned base station, and the Two user devices 13.
  • the frame structure of the first serving cell is introduced, and the evolution of the communication system is a gradual process. Therefore, the frame structure 2 of the existing LTE system also exists, and thus a new solution needs to be solved.
  • the coherence problem of the frame structure and the existing LTE system frame structure 2. Therefore, the system 10 for transmitting and receiving information also includes the second user device 13.
  • the second user equipment 13 includes a third frame determining module 130 and a third transceiver module 131.
  • the third frame determining module 130 determines a frame structure of the second serving cell.
  • the third transceiver module 131 transmits and receives information on the second serving cell based on the frame structure of the second serving cell.
  • the frame structure of the second serving cell is the same as the frame structure type 2 in the version 8 or version 9 or version 10 or version 11 or version 12 of the LTE system, that is, the frame structure of the second serving cell is as shown in Table 2.
  • the third frame determining module 130 may determine the frame structure of the second serving cell according to the uplink and downlink ratio of the second serving cell, or the third frame determining module 130 may be configured according to the uplink and downlink ratio of the second serving cell and Table 2 A frame structure of the second serving cell is determined.
  • the frequency resource of the first serving cell is adjacent or identical to the frequency resource of the second serving cell, the coexistence problem between the new frame structure and the existing LTE system frame structure 2 needs to be solved.
  • the frame structure 2 of the existing LTE system is optimized by introducing a new frame structure, and the coexistence of the new frame structure and the frame structure 2 of the LTE system can be further ensured by the following features.
  • the frame structure of the first serving cell in all embodiments of the present invention may be referred to as TDD-U or TDD-F.
  • the frequency resource of the first serving cell is adjacent to or the same as the frequency resource of the second serving cell.
  • the frequency resource of the first serving cell is the same as the frequency resource of the second serving cell
  • the physical cell corresponding to the first serving cell and the second serving cell may be different, that is, the corresponding physical cell ID is different.
  • the first serving cell and the second serving cell subframe are offset by 11 symbols.
  • the subframe of the first serving cell is 11 symbols ahead of the subframe of the second serving cell.
  • the last 3 symbols of the first subframe in the frame structure of the first serving cell (including the GP with a duration of 1 symbol) are overlapped with the first 3 symbols of the downlink subframe in the frame structure 2 of the existing LTE system, so that The puncturing of the second symbol and the third symbol of the downlink subframe in the LTE system frame structure 2 enables the frame structure of the first serving cell to coexist with the frame structure type 2 in the existing LTE system.
  • the existing LTE system frame structure type 2 can indicate that the second user equipment 13 punctured the second symbol and the third symbol of the downlink subframe by indicating the start symbol of the PDSCH, and still can The PDCCH is received on the first symbol.
  • the uplink and downlink ratio of the second serving cell when the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio a, the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 1.
  • the uplink and downlink ratio of the first serving cell is up and down
  • the uplink and downlink ratio of the second serving cell is the uplink and downlink ratio 2.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio c
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 4.
  • the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio d
  • the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio 5.
  • the uplink and downlink ratio of the first serving cell and the uplink and downlink ratio of the second serving cell are restricted in the foregoing manner, so that the uplink subframe in the frame structure type 2 of the existing LTE system is not punctured, thereby implementing the first service.
  • the frame structure of the cell coexists with the existing LTE system frame structure type 2. Because there is no mechanism in the existing LTE system frame structure type 2, the second user equipment 13 can be instructed to punctify its uplink subframe.
  • the ratio of the special subframes in the frame structure of the second serving cell is a special subframe ratio 5 or a special subframe ratio 0.
  • the second user can be prevented from receiving the PDSCH in the special subframe or the downlink reference signal is measured on the fourth symbol to the thirteenth symbol of the special subframe, thereby implicitly using the special subframe of the existing LTE system.
  • the puncturing is performed on the other hand, and the subframe structure 2 and the subframe 7 in the frame structure type 2 of the existing LTE system are complete uplink subframes, and the frame structure of the first serving cell and the frame structure type of the existing LTE system are implemented. coexist.
  • the last three symbols of the uplink subframe in the frame structure of the first serving cell overlap with the first three symbols of the downlink subframe in the existing LTE system frame structure type 2.
  • the first three symbols of the downlink subframe in the existing LTE system frame structure type 2 may be punctured because the frame structure type 2 of the existing LTE system can be implemented by notifying the second user equipment 13 the PDSCH start time.
  • the first 3 symbols of the downlink subframe are punctured; the last 3 symbols of the uplink subframe in the frame structure type of the first serving cell may also be punctured because a new signaling indication can be designed to support the first service.
  • the last 3 symbols of the uplink subframe of the cell frame structure are punctured.
  • Figure a and Figure b in Figure 8 show that the uplink and downlink ratio of the first serving cell is the uplink-downlink ratio a, and the uplink and downlink ratio of the second serving cell is the uplink-downlink ratio of 1, respectively.
  • the second serving cell corresponding to the second user equipment 13 may refer to a serving cell configured by the network side device to the second user equipment 13, or a serving cell serving the second user equipment 13, or a second user equipment 13 Service area.
  • a serving cell in the embodiment of the present invention may also be referred to as a component carrier.
  • the second serving cell may be a primary serving cell or a secondary serving cell of the second user equipment 13.
  • the first serving cell or the second serving cell does not represent the sequence of the user equipment serving cell, only the first serving cell and the second serving cell are two serving cells.
  • the second user equipment 13 and the first user equipment are not one user equipment.
  • the first user equipment may be a user equipment supporting a version of LTE Release 12 or later.
  • the second user equipment 13 may be a user equipment supporting LTE Release 12 and/or previous LTE releases.
  • the second user equipment 13 may be a user equipment supporting the LTE version 12 and the previous LTE version, or the second user equipment 13 may be a user equipment supporting the LTE version 11 and the previous LTE version, or the second user equipment 13 may The user equipment supporting the LTE version 10 and the previous LTE version, or the second user equipment 13 may be the user equipment supporting the LTE version 9 and the previous LTE version, or the second user equipment 13 may be the user equipment supporting the LTE version 8. .
  • the third transceiver module 131 receives the physical downlink shared channel on the second serving cell in the downlink subframe n1, and the start symbol of the physical downlink shared channel transmission is the fourth symbol in the downlink subframe n1.
  • N1 is a non-negative integer.
  • the third transceiver module 131 receives the physical downlink control channel on the second serving cell in the downlink subframe n2, where the physical downlink control channel is carried on the first symbol of the downlink subframe n2, where n2 is a non-negative integer;
  • the physical downlink control channel received on the first symbol of the downlink subframe n2 may be a PDCCH corresponding to the common search space.
  • the embodiment of the present invention does not limit the order in which the first user equipment and the second user equipment 13 perform.
  • the present invention determines a frame structure of a first serving cell by using a first user equipment, and sends and receives information on the first serving cell based on a frame structure of the first serving cell, where a frame structure of the first serving cell
  • the radio frame includes at least one first subframe and at least one second subframe, where the first subframe and the second subframe include symbols for downlink transmission, guard time, and symbols for uplink transmission, where The number of symbols used for downlink transmission in one subframe is larger than the number of symbols used for uplink transmission, and the number of symbols used for downlink transmission in the second subframe is smaller than the number of symbols used for uplink transmission, which enables the TDD system to Different uplink and downlink ratios have uniform HARQ-ACK timing and can coexist with existing TDD systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息的发送和接收方法及系统、基站、第一用户设备,方法包括:第一用户设备确定第一服务小区的帧结构;第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息,其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。通过以上公开内容,本发明能够使得TDD系统对于不同的上下行配比具有统一的HARQ-AcK定时,同时能够与现有TDD系统共存。

Description

信息的发送和接收方法及系统、基站、第一用户设备 【技术领域】
本发明涉及通信领域,特别是涉及一种信息的发送和接收方法及系统、基站、第一用户设备。
【背景技术】
现有长期演进(Long Term Evolution,LTE)系统包括两种帧结构,帧结构类型1应用于频分双工(Frequency Division Duplexing,FDD),如图1所示。帧结构类型2应用于时分双工(Time Division Duplexing,TDD),如图2所示。其中对于TDD,现有系统中存在7种上下行配比。
LTE系统中,为了支持混合自动重传,用户设备需通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)及物理上行共享信道(Physical Uplink Shared Channel,PUSCH)向基站反馈物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输的混合自动重传请求确认(hybridautomatic repeat-request acknowledgement,HARQ-ACK),其中混合自动重传请求确认也可简单称为确认应答(Acknowledgment,ACK)/否认应答(Negative Acknowledgement,NACK)。用户设备需通过物理混合自动重传指示信道(Physical Hybrid-ARQ Indicator Channel,PHICH)接收物理上行共享信道对应的混合自动重传请求确认HARQ-ACK。
现有系统中,对于FDD,在下行子帧n-4传输的PDSCH,其对应的HARQ-ACK将在上行子帧n进行反馈。对于TDD,在子帧n-k传输的PDSCH,其对应的HARQ-ACK将在上行子帧n进行反馈,其中k属于集合K,各TDD上下行配比下K的定义如表1。例如,对于TDD上下行配比1,子帧7为上行子帧,其对应的集合K为{7,6},子帧7向前移6个子帧则为子帧1,子帧7前移7个子帧则为子帧0,因此其将反馈在子帧0和子帧1传输的PDSCH对应的HARQ-ACK。
表1 TDD系统下行关联集合K
Figure PCTCN2015079050-appb-000001
Figure PCTCN2015079050-appb-000002
由表1可看出,现有TDD系统的HARQ-ACK定时对于不同的上下行配比不一样,相对于FDD系统复杂度高。
【发明内容】
有鉴于此,本发明实施例提供了一种信息的发送和接收方法及系统、基站、第一用户设备,能够使得TDD系统对于不同的上下行配比具有统一的HARQ-ACK定时,同时能够与现有TDD系统共存。
第一方面提供一种第一用户设备,第一用户设备包括:第一帧确定模块,用于确定第一服务小区的帧结构;第一收发模块,与第一帧确定模块连接,用于基于第一服务小区的帧结构在第一服务小区上发送和接收信息;其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
结合第一方面的实现方式,在第一种可能的实现方式中,第一服务小区的帧结构中,每个子帧为1ms子帧,第一子帧包括12个用于下行传输的符号、时长为1个符号的保护时间和1个用于上行传输的符号,第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
结合第一方面的、第一方面的第一种可能的实现方式,在第二种可能的实现方式中,第一服务小区的帧结构中,若子帧l为第一子帧或下行子帧,则子帧l+4为第一子帧、第二子帧或上行子帧,l为非负整数。
结合第一方面的、第一方面的第一种可能的实现方式,在第三种可能的实现方式中,第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行 配比3或上下行配比4。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,当第一服务小区的上下行配比为上下行配比0时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或当第一服务小区的上下行配比为上下行配比1时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或当第一服务小区的上下行配比为上下行配比3时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或当第一服务小区的上下行配比为上下行配比4时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第五种可能的实现方式中,第一收发模块用于:在子帧n-4上接收物理下行共享信道或接收指示下行半持续调度释放的下行控制信道,物理下行共享信道或指示下行半持续调度释放的下行控制信道在第一服务小区上传输,n为非负整数;在子帧n发送在子帧n-4的物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应,物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应在第一服务小区上传输。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的实现方式,在第六种可能的实现方式中,第一收发模块用于:在子帧i接收调度物理上行共享信道的下行控制信道;在子帧i+k1上发送下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能 的、第四种可能的、第五种可能的实现方式,在第七种可能的实现方式中,第一收发模块用于:在子帧j上发送物理上行共享信道,物理上行共享信道在第一服务小区上传输;在子帧j+k2接收物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第一方面的、第一方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的实现方式,在第八种可能的实现方式中,第一收发模块用于:在子帧m接收物理上行共享信道对应的混合自动重传请求确认;在子帧m+k3上发送混合自动重传请求确认对应的物理上行共享信道,混合自动重传请求确认对应的物理上行共享信道在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
第二方面提供一种信息的发送和接收方法,包括:第一用户设备确定第一服务小区的帧结构;第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息;其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
结合第二方面的实现方式,在第一种可能的实现方式中,第一服务小区的帧结构中,每个子帧为1ms子帧,第一子帧包括12个用于下行传输的符号、时长为1个符号的保护时间和1个用于上行传输的符号,第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
结合第二方面的、第二方面的第一种可能的实现方式,在第二种可能的实现方式中,第一服务小区的帧结构中,若子帧l为第一子帧或下行子帧,则子帧l+4为第一子帧、第二子帧或上行子帧,l为非负整数。
结合第二方面的、第二方面的第一种可能的实现方式,在第三种可能的实现方式中,第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行配比3或上下行配比4。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,当第一服务小区的上下行配比为上下行配比0时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或当第一服务小区的上下行配比为上下行配比1时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或当第一服务小区的上下行配比为上下行配比3时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或当第一服务小区的上下行配比为上下行配比4时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
结合第二方面的、第二方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第五种可能的实现方式中,第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:第一用户设备在子帧n-4上接收物理下行共享信道或接收指示下行半持续调度释放的下行控制信道,物理下行共享信道或指示下行半持续调度释放的下行控制信道在第一服务小区上传输,n为非负整数;第一用户设备在子帧n发送在子帧n-4的物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应,物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应在第一服务小区上传输。
结合第二方面的、第二方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的实现方式,在第六种可能的实现方式中,第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:第一用户设备在子帧i接收调度物理上行共享信道的下行控制信道;第一用户设备在子帧i+k1上发送下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11 或版本12中的帧结构类型。
结合第二方面的、第二方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的实现方式,在第七种可能的实现方式中,第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:第一用户设备在子帧j上发送物理上行共享信道,物理上行共享信道在第一服务小区上;第一用户设备在子帧j+k2接收物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第二方面的、第二方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的实现方式,在第八种可能的实现方式中,第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:第一用户设备在子帧m接收物理上行共享信道对应的混合自动重传请求确认;第一用户设备在子帧m+k3上发送混合自动重传请求确认对应的物理上行共享信道,混合自动重传请求确认对应的物理上行共享信道在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
第三方面提供一种基站,包括:第二帧确定模块,用于确定第一用户设备的第一服务小区的帧结构;第二收发模块,与第二帧确定模块连接,用于基于帧结构在第一服务小区上与第一用户设备发送和接收信息;其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
结合第三方面的实现方式,在第一种可能的实现方式中,第一服务小区的帧结构中,每个子帧为1ms子帧,第一子帧包括12个用于下行传输的符号、时长为1个符号的保护时间和1个用于上行传输的符号,第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
结合第三方面的、第三方面的第一种可能的实现方式,在第二种可能的实现方式中,第一服务小区的帧结构中,若子帧l为第一子帧或下行子帧,则子帧 l+4为第一子帧、第二子帧或上行子帧,l为非负整数。
结合第三方面的、第三方面的第一种可能的、第二种可能的实现方式,在第三种可能的实现方式中,第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行配比3或上下行配比4。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中,当第一服务小区的上下行配比为上下行配比0时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或当第一服务小区的上下行配比为上下行配比1时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或当第一服务小区的上下行配比为上下行配比3时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或当第一服务小区的上下行配比为上下行配比4时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
结合第三方面的、第三方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第五种可能的实现方式中,第二收发模块用于:在子帧n-4上给第一用户设备发送物理下行共享信道或发送指示下行半持续调度释放的下行控制信道,物理下行共享信道或发送指示下行半持续调度释放的下行控制信道在第一服务小区上传输,n为非负整数;在子帧n接收第一用户设备反馈的在子帧n-4的物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应,物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应在第一服务小区上传输。
结合第三方面的、第三方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第六种可能的实现方式中,第二收发模块用于:在子帧i向第一用户设备发送调度物理上行共享信道的下行控制信道;在子帧i+k1上接收下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值 根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第三方面的、第三方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第七种可能的实现方式中,第二收发模块用于:在子帧j上接收第一用户设备发送的物理上行共享信道,第一用户设备发送的物理上行共享信道在第一服务小区上传输;在子帧j+k2发送物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第三方面的、第三方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第八种可能的实现方式中,第二收发模块用于:在子帧m发送第一用户设备发送的物理上行共享信道对应的混合自动重传请求确认;在子帧m+k3上接收物理上行共享信道的重传,物理上行共享信道的重传在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第三方面的、第三方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的、第六种可能的、第七种可能的、第八种可能的实现方式,在第九种可能的实现方式中,第二帧确定模块还用于:确定第二服务小区的帧结构,第二服务小区为第二用户设备的服务小区;第二收发模块还用于:基于第二服务小区的帧结构在第二服务小区上与第二用户设备发送和接收信息;其中,第二服务小区的帧结构与长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,第二服务小区的频率资源与第一服务小区的频率资源相邻或相同。
结合第三方面的第九种可能的实现方式,在第十种可能的实现方式中,在第十一种可能的实现方式中,当第一服务小区的上下行配比为上下行配比0时,第二服务小区的上下行配比为上下行配比1;或当第一服务小区的上下行配比为上下行配比1时,第二服务小区的上下行配比为上下行配比2;或当第一服务小 区的上下行配比为上下行配比3时,第二服务小区的上下行配比为上下行配比4;或当第一服务小区的上下行配比为上下行配比4时,第二服务小区的上下行配比为上下行配比5。
结合第三方面的第九种可能的、第十种可能的实现方式,在第十一种可能的实现方式中,第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。
结合第三方面的第九种可能的、第十种可能的、第十一种可能的实现方式,在第十二种可能的实现方式中,第一服务小区和第二服务小区子帧间偏移11个符号。
结合第三方面的第九种可能的、第十种可能的、第十一种可能的、第十二种可能的实现方式,在第十三种可能的实现方式中,第二收发模块还用于:给第二用户设备指示物理下行共享信道的起始符号,物理下行共享信道的起始符号为第4个符号。
结合第三方面的第九种可能的、第十种可能的、第十一种可能的、第十二种可能的、第十三种可能的实现方式,在第十四种可能的实现方式中,第二收发模块还用于:给第二用户设备指示物理下行共享信道对应的传输模式,传输模式为传输模式10。
结合第三方面的第九种可能的、第十种可能的、第十一种可能的、第十二种可能的、第十三种可能的、第十四种可能的实现方式,在第十五种可能的实现方式中,第二收发模块还用于:在下行子帧n1在第二服务小区上给第二用户设备发送物理下行共享信道,物理下行共享信道传输的起始符号为下行子帧n1中的第4个符号,n1为非负整数。
第四方面提供一种信息的发送和接收方法,包括:基站确定第一用户设备的第一服务小区的帧结构;基站基于帧结构在第一服务小区上与第一用户设备发送和接收信息;其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
结合第四方面的实现方式,在第一种可能的实现方式中,第一服务小区的帧结构中,每个子帧为1ms子帧,第一子帧包括12个用于下行传输的符号、时 长为1个符号的保护时间和1个用于上行传输的符号,第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
结合第四方面的、第四方面的第一种可能的实现方式,在第二种可能的实现方式中,第一服务小区的帧结构中,若子帧l为第一子帧或下行子帧,则子帧l+4为第一子帧、第二子帧或上行子帧,l为非负整数。
结合第四方面的、第四方面的第一种可能的、第二种可能的实现方式,在第三种可能的实现方式中,第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行配比3或上下行配比4。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中,当第一服务小区的上下行配比为上下行配比0时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或当第一服务小区的上下行配比为上下行配比1时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或当第一服务小区的上下行配比为上下行配比3时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或当第一服务小区的上下行配比为上下行配比4时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
结合第四方面的、第四方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第五种可能的实现方式中,基站基于帧结构在第一服务小区上与第一用户设备发送和接收信息,包括:基站在子帧n-4上给第一用户设备发送物理下行共享信道或发送指示下行半持续调度释放的下行控制信道,物理下行共享信道或指示下行半持续调度释放的下行控制信道在第一服务小区上传输,n为非负整数;基站在子帧n接收第一用户设备反馈的在子帧n-4的物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应,物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应在第一服务小区上传输。
结合第四方面的、第四方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第六种可能的实现方式中,基站基于帧结构在第一服务小区上与第一用户设备发送和接收信息,包括:基站在子帧i向第一用户设备发送调度物理上行共享信道的下行控制信道;基站在子帧i+k1上接收下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第四方面的、第四方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第七种可能的实现方式中,基站基于帧结构在第一服务小区上与第一用户设备发送和接收信息,包括:基站在子帧j上接收第一用户设备发送的物理上行共享信道,第一用户设备发送的物理上行共享信道在第一服务小区上传输;基站在子帧j+k2发送物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第四方面的、第四方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第八种可能的实现方式中,基站基于帧结构在第一服务小区上与第一用户设备发送和接收信息,包括:基站在子帧m发送第一用户设备发送的物理上行共享信道对应的混合自动重传请求确认;基站在子帧m+k3上接收物理上行共享信道的重传,物理上行共享信道的重传在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
结合第四方面的、第四方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的、第五种可能的、第六种可能的、第七种可能的、第八种可能的实现方式,在第九种可能的实现方式中,方法还包括:基站确定第二服务小区的帧结构,第二服务小区为第二用户设备的服务小区;基站基于第二服务小区的帧结构在第二服务小区上与第二用户设备发送和接收信息;其中,第二服务小区的帧结构与长期演进系统版本8或版本9或版本10或版本11或版本 12中的帧结构类型2相同,第二服务小区的频率资源与第一服务小区的频率资源相邻或相同。
结合第四方面的第九种可能的实现方式,在第十种可能的实现方式中,在第十一种可能的实现方式中,当第一服务小区的上下行配比为上下行配比0时,第二服务小区的上下行配比为上下行配比1;或当第一服务小区的上下行配比为上下行配比1时,第二服务小区的上下行配比为上下行配比2;或当第一服务小区的上下行配比为上下行配比3时,第二服务小区的上下行配比为上下行配比4;或当第一服务小区的上下行配比为上下行配比4时,第二服务小区的上下行配比为上下行配比5。
结合第四方面的第九种可能的、第十种可能的实现方式,在第十一种可能的实现方式中,第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。
结合第四方面的第九种可能的、第十种可能的、第十一种可能的实现方式,在第十二种可能的实现方式中,第一服务小区和第二服务小区子帧间偏移11个符号。
结合第四方面的第九种可能的、第十种可能的、第十一种可能的、第十二种可能的实现方式,在第十三种可能的实现方式中,基站基于第二服务小区的帧结构在第二服务小区上与第二用户设备发送和接收信息,包括:基站给第二用户设备指示物理下行共享信道的起始符号,物理下行共享信道的起始符号为第4个符号。
结合第四方面的第九种可能的、第十种可能的、第十一种可能的、第十二种可能的、第十三种可能的实现方式,在第十四种可能的实现方式中,基站基于第二服务小区的帧结构在第二服务小区上与第二用户设备发送和接收信息,包括:基站给第二用户设备指示物理下行共享信道对应的传输模式,传输模式为传输模式10。
结合第四方面的第九种可能的、第十种可能的、第十一种可能的、第十二种可能的、第十三种可能的、第十四种可能的实现方式,在第十五种可能的实现方式中,基站基于第二服务小区的帧结构在第二服务小区上与第二用户设备发送和接收信息,包括:基站在下行子帧n1在第二服务小区上给第二用户设备发送物理下行共享信道,物理下行共享信道传输的起始符号为下行子帧n1中的第4个符号,n1为非负整数。
第五方面提供一种信息的发送和接收的系统,包括:前述的第一用户设备、第二用户设备以及前述的基站,第二用户设备包括:第三帧确定模块,用于确定第二服务小区的帧结构;第三收发模块,与第三帧确定模块连接,用于基于第二服务小区的帧结构在第二服务小区上发送和接收信息;其中,第二服务小区的帧结构与长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,第二服务小区的频率资源与第一服务小区的频率资源相邻或相同。
结合第五方面的实现方式,在第一种可能的实现方式中,当第一服务小区的上下行配比为上下行配比0时,第二服务小区的上下行配比为上下行配比1;或当第一服务小区的上下行配比为上下行配比1时,第二服务小区的上下行配比为上下行配比2;或当第一服务小区的上下行配比为上下行配比3时,第二服务小区的上下行配比为上下行配比4;或当第一服务小区的上下行配比为上下行配比4时,第二服务小区的上下行配比为上下行配比5。
结合第五方面的、第五方面的第一种可能的实现方式,在第二种可能的实现方式中,第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。
结合第五方面的、第五方面的第一种可能的、第二种可能的实现方式,在第三种可能的实现方式中,第一服务小区和第二服务小区子帧间偏移11个符号。
结合第五方面的第三种可能的实现方式,在第四种可能的实现方式中,第一服务小区的子帧比第二服务小区的子帧提前11个符号。
结合第五方面的、第五方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第五种可能的实现方式中,第三收发模块用于:在下行子帧n1在第二服务小区上接收物理下行共享信道,物理下行共享信道传输的起始符号为下行子帧n1中的第4个符号,n1为非负整数。
结合第五方面的、第五方面的第一种可能的、第二种可能的、第三种可能的、第四种可能的实现方式,在第六种可能的实现方式中,第三收发模块用于:在下行子帧n2在第二服务小区上接收物理下行控制信道,物理下行控制信道承载于下行子帧n2的第一个符号上,n2为非负整数。
结合第五方面的第六种可能的实现方式,在第七种可能的实现方式中,物理下行控制信道为公共搜索空间对应的物理下行控制信道。
本发明通过第一用户设备确定第一服务小区的帧结构,并基于第一服务小 区的帧结构在第一服务小区上发送和接收信息,其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数,能够使得TDD系统对于不同的上下行配比具有统一的HARQ-ACK定时,同时能够与现有TDD系统共存。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的帧结构类型1的结构示意图;
图2是现有技术中的帧结构类型2的结构示意图;
图3本发明第一实施例的第一用户设备的结构示意图;
图4是本发明实施例中第一子帧和第二子帧的结构示意图;
图5本发明第二实施例的第一用户设备的结构示意图;
图6本发明第一实施例的信息的发送和接收方法的流程示意图;
图7本发明第一实施例的基站的结构示意图;
图8是本发明实施例中第一服务小区和第二服务小区的帧结构示意图;
图9本发明第二实施例的基站的结构示意图;
图10是本发明第二实施例的信息的发送和接收方法的流程示意图;
图11是本发明第三实施例的信息的发送和接收方法的流程示意图;
图12本发明实施例的信息的发送和接收的系统的结构示意图。
【具体实施方式】
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例,都属于本发明保护的范围。
请参阅图3,图3本发明第一实施例的第一用户设备的结构示意图。如图3所示,本发明实施例的第一用户设备11包括:第一帧确定模块110和第一收发模块111。第一帧确定模块110用于确定第一服务小区的帧结构。第一收发模块111与第一帧确定模块110连接,用于基于第一服务小区的帧结构在第一服务小区上发送和接收信息。其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号。其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
在本发明实施例中,第一子帧可传输物理下行共享信道PDSCH,第二子帧可传输物理上行共享信道PUSCH。如图4所示,第一服务小区的帧结构中,每个子帧为1ms子帧,第一子帧包括12个用于下行传输的符号、时长为1个符号的保护时间和1个用于上行传输的符号,第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。此处的符号对于用于下行传输的符号可以为正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号,对于用于上行传输的符号可以为单载波正交频分复用(Single-carrier Orthogonal Frequency Division Multiplexing,SC-OFDM)符号。本发明实施例不对第一服务小区的帧结构中每个子帧的长度做限制,优选1ms。需要说明的是,本发明所有实施例中的第一子帧和第二子帧可以都属于特殊子帧,只是该特殊子帧的实际子帧结构与现有LTE版本8、版本9、版本10、版本11和版本12中的特殊子帧的子帧结构不一致,因此第一子帧也可以称为第一特殊子帧,第二子帧也可以称为第二特殊子帧。第一子帧中,用于上行传输的符号可仅用于传输物理上行控制信道和/或探测参考信号。第二子帧中,用于下行传输的符号可仅用于传输物理下行控制信道和/或下行参考信号。
第一服务小区的帧结构中,若子帧l为第一子帧或下行子帧,则子帧l+k为第一子帧、第二子帧或上行子帧,l为非负整数,k为大于1的正整数,从而使得对于子帧l对应的HARQ-ACK,都能在l+k反馈,从而使得对于不同的上下行配比,该第一服务小区的帧结构具有统一的上行HARQ-ACK定时。本发明实施例不限制k的取值,当第一服务小区的帧结构中每个子帧的长度为1ms时,k的值优选为4。需要说明的是,l和l+k为子帧编号。
本发明实施例以及之后的实施例中,子帧编号指子帧在多个无线帧中的编号,可按如下方式获得:按照时间先后顺序对多个无线帧中的子帧以单调递增方式从0开始进行编号,即若上一个无线帧的最后一个子帧的编号为n′,则下一个无线帧的第一个子帧的编号为n′+1。另外,多个无线帧中,每个子帧在其所在的无线帧中也有一个子帧序号,即为该子帧在该无线帧中的子帧序号。举例来说,我们说子帧n为一个无线帧中的子帧2,可以指该子帧n在其所在的那个无线帧中的子帧序号为2,或可以说该子帧n为其所在的那个无线帧中的第三个子帧,或可以说该子帧n对应每个无线帧中的第三个子帧,或可以说该子帧n对应每个无线帧中的子帧2。
在本发明实施例中,第一服务小区的上下行配比可以为上下行配比a、上下行配比b、上下行配比c或上下行配比d。即第一服务小区的上下行配比可以是上下行配比a、上下行配比b、上下行配比c和上下行配比d中的一个,可以通过高层信令在这几种上下行配比之间转换。其中,a、b、c、d可以为上下行配比的索引,例如值可以分别为0、1、3和4。需要说明的是,本发明所有实施例中,当a、b、c、d的值可以分别为0、1、3和4时,不是指该第一服务小区的帧结构为表2中上下行配比0、上下行配比1、上下行配比3和上下行配比4对应的帧结构,而是指一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比与表2中相同。例如上下行配比0,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为2∶3;上下行配比1,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为3∶2;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为7∶3;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为8∶2。
表2 TDD上下行配比
Figure PCTCN2015079050-appb-000003
Figure PCTCN2015079050-appb-000004
可选地,第一帧确定模块110确定第一服务小区的帧结构,可以为第一帧确定模块110根据第一服务小区的上下行配比确定第一服务小区的帧结构,具体可以为:
当第一服务小区的上下行配比为上下行配比a时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
当第一服务小区的上下行配比为上下行配比b时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或
当第一服务小区的上下行配比为上下行配比c时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或
当第一服务小区的上下行配比为上下行配比d时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
进一步可选地,第一帧确定模块110确定第一服务小区的帧结构,也可以为根据第一服务小区的上下行配比与表3确定第一服务小区的帧结构,或也可以为根据第一服务小区的上下行配比与表4确定第一服务小区的帧结构。表3和表4中,D代表下行子帧,U代表上行子帧,S1代表第一子帧,S2代表第二子帧。
表3第一服务小区的上下行配比示例1
Figure PCTCN2015079050-appb-000005
Figure PCTCN2015079050-appb-000006
表4第一服务小区的上下行配比示例2
Figure PCTCN2015079050-appb-000007
需要说明的是,本发明不对第一服务小区的上下行配比做限制,即第一服务小区的上下行配比不限定于表3。但当第一服务小区的帧结构需与现有LTE系统帧结构类型2共存时,第一服务小区的上下行配比优选为上下行配比0、上下行配比1、上下行配比3和上下行配比4。
表3与表4相比,将部分第一子帧变成了下行子帧,在保证可以和现有LTE帧结构2共存的同时,减少GP开销。
本发明所有实施例中,第一用户设备11对应的第一服务小区可以指网络侧设备给第一用户设备11配置的服务小区,或指为第一用户设备11服务的服务小区,或指第一用户设备11接入的服务小区。本发明实施例中的服务小区(serving cell)也可称为载波(component carrier)。本发明实施例中,该第一服务小区可以为该第一用户设备11的主服务小区(Primary serving cell)或辅服务小区。
在本发明实施例中,第一收发模块111基于第一服务小区的帧结构在第一服务小区上发送和接收信息,可以按照如下的上行HARQ定时进行:
第一收发模块111在子帧n-k上接收物理下行共享信道PDSCH或接收指示下行半持续调度SPS释放的下行控制信道,物理下行共享信道或指示下行半持续调度释放的下行控制信道在第一服务小区上传输,n为非负整数;第一收发模块111在子帧n发送在子帧n-4的物理下行共享信道或下行控制信道对应的混合自动重传请求确认HARQ-ACK响应,物理下行共享信道或下行控制信道对应的混合自动重传请求确认响应在第一服务小区上传输,需要说明的是,n和n-4为子帧编号,子帧n-4表示子帧n向前移4位得到的子帧。
可以按照如下下行HARQ定时进行:
第一收发模块111在子帧i接收调度物理上行共享信道的下行控制信道;第一收发模块111在子帧i+k1上发送下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型,需要说明的是,i和i+k1为子帧编号,子帧i+k1表示子帧i向后移k1位得到的子帧。例如,若第一服务小区的上下行配比为上下行配比0,则k1的值与LTE版本8或版本9或版本10或版本11或版本12中的帧结构类型2下上下行配比0时相同。例如,若k1的值与LTE版本8中的帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k1的值如表5所示。
和/或,可以按照如下下行HARQ定时进行:
第一收发模块111在子帧j上发送物理上行共享信道,物理上行共享信道在第一服务小区上传输。第一收发模块111在子帧j+k2接收物理上行共享信道对应的HARQ-ACK,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型,需要说明的是,j和j+k2为子帧编号,子帧j+k2表示子帧j向后移k2位得到的子帧。例如,若第一服务小区的上下行配比为上下行配比0,则k2的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k2的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k2的值如表6所示。
和/或,可以按照如下下行HARQ定时进行:
第一收发模块111在子帧m接收物理上行共享信道对应的HARQ-ACK。第一收发模块111在子帧m+k3上发送HARQ-ACK对应的物理上行共享信道,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型,需要说明的是,m和m+k3为子帧编号,子帧m+k3表示子帧m向后移k3位得到的子帧。例如,若第一服务小区的上下行配比为上下行配比0,则k3的值与LTE版本8或版本9 或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k3的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k3的值如表5所示。
表5不同上下行配比下的k1或k3值
Figure PCTCN2015079050-appb-000008
表6不同上下行配比下的k2值
Figure PCTCN2015079050-appb-000009
第一收发模块111基于第一服务小区的帧结构在第一服务小区上进行信息发送和接收时,上行HARQ定时对于不同的上下行配比不变,下行HARQ定时与现有LTE系统一致,能够简化实现复杂度和协议复杂度;另外,该上行HARQ定时使得一个上行子帧或第二子帧仅需反馈一个下行子帧或第一子帧的HARQ-ACK,从而与现有LTE系统需在一个上行子帧反馈多个下行子帧的HARQ-ACK相比,减少了反馈量,提高了HARQ-ACK性能。
图5是本发明第二实施例的第一用户设备的时示意图。如图5所示,第一用户设备12包括:收发器121、存储器122、处理器123以及数据总线124。收发器121、存储器122、处理器123通过数据总线124相连,以进行相互通信。
在本发明实施例中,处理器123确定第一服务小区的帧结构。处理器123可以根据第一服务小区的上下行配比确定第一服务小区的帧结构。不同的上下行配比对应的帧结构不同,不同的帧结构对应的帧的组成不同。其中第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。存储器122用于存储第一服务小区的帧结构。
其中,第一子帧可传输物理下行共享信道PDSCH,第二子帧可传输物理上行共享信道PUSCH。进一步地,若子帧l为第一子帧或下行子帧,则子帧l+k为第一子帧、第二子帧或上行子帧,l为非负整数,k为大于1的正整数,从而使得对于子帧1对应的HARQ-ACK,都能在l+k反馈,从而使得对于不同的上下行配比,该第一服务小区的帧结构具有统一的上行HARQ-ACK定时。需要说明的是,l和l+k为子帧编号。本发明实施例不限制k的取值,当第一服务小区的帧结构中每个子帧的长度为1ms时,k的值优选为4。
第一服务小区的帧结构中,参见图4,第一子帧包括12个用于下行传输的符号,、时长为1个符号的保护时间GP和1个用于上行传输的符号。第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间GP和12个用于上行传输的符号。此处的符号对于用于下行传输的符号可以为OFDM符号,对于用于上行传输的符号可以为SC-FDMA符号。本发明实施例不对第一服务小区的帧结构中每个子帧的长度做限制,优选1ms。需要说明的是,本发明所有实施例中的第一子帧和第二子帧可以都属于特殊子帧,只是该特殊子帧的实际子帧结构与现有LTE版本8、版本9、版本10、版本11和版本12中的特殊子帧的子帧结构不一致,因此第一子帧也可以称为第一特殊子帧,第二子帧也可以称为第二特殊子帧。第一子帧中,用于上行传输的符号可仅用于传输物理上行控制信道和/或探测参考信号(Sounding Reference Signal,SRS)。第二子帧中,用于下行传输的符号可仅用于传输物理下行控制信道和/或下行参考信号。
在本发明实施例中,第一服务小区的上下行配比可以为上下行配比a、上下行配比b、上下行配比c或上下行配比d。即第一服务小区的上下行配比可以是上下行配比a、上下行配比b、上下行配比c和上下行配比d中的一个,可以通过高层信令在这几种上下行配比之间转换。其中,a、b、c、d可以为上下行配 比的索引,例如值可以分别为0、1、3和4。需要说明的是,本发明所有实施例中,当a、b、c、d的值可以分别为0、1、3和4时,不是指该第一服务小区的帧结构为表2中上下行配比0、上下行配比1、上下行配比3和上下行配比4对应的帧结构,而是指一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比与表2中相同。例如上下行配比0,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为2∶3;上下行配比1,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为3∶2;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为7∶3;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为8∶2。
可选地,处理器123备确定第一服务小区的帧结构,可以为第一用户设备12根据第一服务小区的上下行配比确定第一服务小区的帧结构,具体可以为:
当第一服务小区的上下行配比为上下行配比a时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
当第一服务小区的上下行配比为上下行配比b时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或
当第一服务小区的上下行配比为上下行配比c时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或
当第一服务小区的上下行配比为上下行配比d时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
进一步可选地,处理器123确定第一服务小区的帧结构,也可以为根据第一服务小区的上下行配比与表3确定第一服务小区的帧结构,或也可以为根据 第一服务小区的上下行配比与表4确定第一服务小区的帧结构。对表3和表4的其他描述如实施例1,此处不再赘述。
需要说明的是,本发明不对第一服务小区的上下行配比做限制,即第一服务小区的上下行配比不限定于表3。但当第一服务小区的帧结构需与现有LTE系统帧结构类型2共存时,第一服务小区的上下行配比优选为上下行配比0、上下行配比1、上下行配比3和上下行配比4。
表3与表4相比,将部分第一子帧变成了下行子帧,在保证可以和现有LTE帧结构2共存的同时,减少GP开销。
本发明所有实施例中,第一用户设备12对应的第一服务小区可以指网络侧设备给第一用户设备12配置的服务小区,或指为第一用户设备12服务的服务小区,或指第一用户设备12接入的服务小区。本发明实施例中的服务小区(serving cell)也可称为载波(component carrier)。本发明实施例中,该第一服务小区可以为该第一用户设备12的主服务小区(Primary serving cell)或辅服务小区。
在本发明实施例中,收发器121基于第一服务小区的帧结构在第一服务小区上发送和接收信息,可以按照如下的上行HARQ定时进行:
收发器121在子帧n-k上接收物理下行共享信道PDSCH传输或接收指示下行半持续调度SPS释放的下行控制信道,物理下行共享信道或指示下行半持续调度释放的下行控制信道在第一服务小区上传输,n为非负整数;收发器121在子帧n发送在子帧n-4的物理下行共享信道或下行控制信道对应的HARQ-ACK,物理下行共享信道或所述下行控制信道对应的HARQ-ACK在第一服务小区上传输,需要说明的是,n和n-4为子帧编号。
可以按照如下下行HARQ定时进行:
收发器121在子帧i接收调度物理上行共享信道的下行控制信道;收发器121在子帧i+k1上发送下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k1的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k1的值与LTE版本8中帧结构类型2下 上下行配比与第一服务小区的上下行配比相同时相同,k1的值如表5所示。需要说明的是,i和i+k1为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
收发器121在子帧j上发送物理上行共享信道,物理上行共享信道在第一服务小区上;收发器121在子帧j+k2接收物理上行共享信道对应的HARQ-ACK,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k2的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k2的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k2的值如表6所示。需要说明的是,j和j+k2为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
收发器121在子帧m接收物理上行共享信道对应的HARQ-ACK;收发器121在子帧m+k3上发送HARQ-ACK对应的物理上行共享信道,HARQ-ACK对应的物理上行共享信道在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k3的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k3的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k3的值如表5所示。需要说明的是,m和m+k3为子帧编号。
在本发明实施例中,收发器121基于第一服务小区的帧结构在第一服务小区上进行信息发送和接收时,上行HARQ定时对于不同的上下行配比不变,下行HARQ定时与现有LTE系统一致,能够简化实现复杂度和协议复杂度;另外,该上行HARQ定时使得一个上行子帧或第二子帧仅需反馈一个下行子帧或第一子帧的HARQ-ACK,从而与现有LTE系统需在一个上行子帧反馈多个下行子帧的HARQ-ACK相比,减少了反馈量,提高了HARQ-ACK性能。
图6本发明第一实施例的信息的发送和接收方法的流程示意图。如图6所示,本发明实施例的信息的发送和接收方法包括:
S10:第一用户设备确定第一服务小区的帧结构。
具体地,第一用户设备可以根据第一服务小区的上下行配比确定第一服务小区的帧结构。不同的上下行配比对应的帧结构不同,不同的帧结构对应的帧的组成不同。其中第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
其中,第一子帧可传输物理下行共享信道PDSCH,第二子帧可传输物理上行共享信道PUSCH。进一步地,若子帧l为第一子帧或下行子帧,则子帧l+k为第一子帧、第二子帧或上行子帧,l为非负整数,k为大于1的正整数,从而使得对于子帧1对应的HARQ-ACK,都能在l+k反馈,从而使得对于不同的上下行配比,该第一服务小区的帧结构具有统一的上行HARQ-ACK定时。本发明实施例不限制k的取值,当第一服务小区的帧结构中每个子帧的长度为1ms时,k的值优选为4。需要说明的是,l和l+k为子帧编号。
在更具体的实施例中,图4给出了一个子帧长度为1ms时第一子帧和第二子帧的子帧结构。其中,PDCCH为物理下行控制信道,PDSCH为物理下行共享信道表示下行传输信道,PUSCH为物理上行共享信道,PUCCH为物理上行控制信道。参见图4,第一服务小区的帧结构中,第一子帧包括12个用于下行传输的符号,时长为1个符号的保护时间GP和1个用于上行传输的符号。第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间GP和12个用于上行传输的符号。此处的符号对于用于下行传输的符号可以为OFDM符号,对于用于上行传输的符号可以为SC-OFDM符号。本发明实施例不对第一服务小区的帧结构中每个子帧的长度做限制,优选1ms。需要说明的是,本发明所有实施例中的第一子帧和第二子帧可以都属于特殊子帧,只是该特殊子帧的实际子帧结构与现有LTE版本8、版本9、版本10、版本11和版本12中的特殊子帧的子帧结构不一致,因此第一子帧也可以称为第一特殊子帧,第二子帧也可以称为第二特殊子帧。第一子帧中,用于上行传输的符号可仅用于传输物理上行控制信道和/或探测参考信号。第二子帧中,用于下行传输的符号可仅用于传输物理下行控制信道和/或下行参考信号。
在本发明实施例中,第一服务小区的上下行配比可以为上下行配比a、上下 行配比b、上下行配比c或上下行配比d。即第一服务小区的上下行配比可以是上下行配比a、上下行配比b、上下行配比c和上下行配比d中的一个,可以通过高层信令在这几种上下行配比之间转换。其中,a、b、c、d可以为上下行配比的索引,例如值可以分别为0、1、3和4。需要说明的是,本发明所有实施例中,当a、b、c、d的值可以分别为0、1、3和4时,不是指该第一服务小区的帧结构为表2中上下行配比0、上下行配比1、上下行配比3和上下行配比4对应的帧结构,而是指一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比与表2中相同。例如上下行配比0,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为2∶3;上下行配比1,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为3∶2;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为7∶3;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为8∶2。
可选地,第一用户设备确定第一服务小区的帧结构,可以为第一用户设备根据第一服务小区的上下行配比确定第一服务小区的帧结构,具体可以为:
当第一服务小区的上下行配比为上下行配比a时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
当第一服务小区的上下行配比为上下行配比b时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或
当第一服务小区的上下行配比为上下行配比c时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或
当第一服务小区的上下行配比为上下行配比d时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上 行子帧。
进一步可选地,第一用户设备确定第一服务小区的帧结构,也可以为根据第一服务小区的上下行配比与表3确定第一服务小区的帧结构,或也可以为根据第一服务小区的上下行配比与表4确定第一服务小区的帧结构。对表3和表4的其他描述如实施例1,此处不再赘述。
需要说明的是,本发明不对第一服务小区的上下行配比做限制,即第一服务小区的上下行配比不限定于表3。但当第一服务小区的帧结构需与现有LTE系统帧结构类型2共存时,第一服务小区的上下行配比优选为上下行配比0、上下行配比1、上下行配比3和上下行配比4。
表3与表4相比,将部分第一子帧变成了下行子帧,在保证可以和现有LTE帧结构2共存的同时,减少GP开销。
本发明所有实施例中,第一用户设备对应的第一服务小区可以指网络侧设备给第一用户设备配置的服务小区,或指为第一用户设备服务的服务小区,或指第一用户设备接入的服务小区。本发明实施例中的服务小区也可称为载波。本发明实施例中,该第一服务小区可以为该第一用户设备的主服务小区或辅服务小区。
S11:第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息。
其中,第一用户设备基于第一服务小区的帧结构在第一服务小区上发送和接收信息,可以按照如下的上行HARQ定时进行:
第一用户设备在子帧n-k上接收物理下行共享信道PDSCH传输或接收指示下行半持续调度SPS释放的下行控制信道,物理下行共享信道PDSCH或发送指示下行半持续SPS释放的下行控制信道在第一服务小区上传输,n为非负整数;第一用户设备在子帧n发送在子帧n-4的物理下行共享信道或下行控制信道对应的HARQ-ACK,物理下行共享信道或下行控制信道对应的HARQ-ACK在第一服务小区上传输。,需要说明的是,n和n-4为子帧编号。
可以按照如下下行HARQ定时进行:
第一用户设备在子帧i接收调度物理上行共享信道的下行控制信道;第一用户设备在子帧i+k1上发送下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时 的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k1的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k1的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k1的值如表5所示。需要说明的是,i和i+k1为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
第一用户设备在子帧j上发送物理上行共享信道,第一用户设备发送的物理上行共享信道在第一服务小区上传输;第一用户设备在子帧j+k2接收物理上行共享信道对应的HARQ-ACK,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k2的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k2的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k2的值如表6所示。需要说明的是,j和j+k2为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
第一用户设备在子帧m接收物理上行共享信道对应的HARQ-ACK;第一用户设备在子帧m+k3上发送HARQ-ACK对应的物理上行共享信道,HARQ-ACK对应的物理上行共享信道在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k3的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k3的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k3的值如表5所示。需要说明的是,m和m+k3为子帧编号。
在S11中,第一用户设备基于第一服务小区的帧结构在第一服务小区上进行信息发送和接收时,上行HARQ定时对于不同的上下行配比不变,下行HARQ定时与现有LTE系统一致,能够简化实现复杂度和协议复杂度;另外,该上行 HARQ定时使得一个上行子帧或第二子帧仅需反馈一个下行子帧或第一子帧的HARQ-ACK,从而与现有LTE系统需在一个上行子帧反馈多个下行子帧的HARQ-ACK相比,减少了反馈量,提高了HARQ-ACK性能。
图7是本发明第一实施例的基站的结构示意图。如图7所示,基站21包括:第二帧确定模块210和第二收发模块211。第二帧确定模块210用于确定第一用户设备的第一服务小区的帧结构。第二收发模块211与第二帧确定模块210连接,用于基于帧结构在第一服务小区上与第一用户设备发送和接收信息。第二帧确定模块210可以根据第一用户设备的第一服务小区的上下行配比确定该第一用户设备的第一服务小区的帧结构。不同的上下行配比对应的帧结构不同,不同的帧结构对应的帧的组成不同。
其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。第一子帧可传输物理下行共享信道PDSCH,第二子帧可传输物理上行共享信道PUSCH。进一步地,若子帧l为第一子帧或下行子帧,则子帧l+k为第一子帧、第二子帧或上行子帧,l为非负整数,k为大于1的正整数,从而使得对于子帧1对应的HARQ-ACK,都能在l+k反馈,从而使得对于不同的上下行配比,该第一服务小区的帧结构具有统一的上行HARQ-ACK定时。本发明实施例不限制k的取值,当第一服务小区的帧结构中每个子帧的长度为1ms时,k的值优选为4。需要说明的是,l和l+k为子帧编号。
本发明所有实施例不对第一用户设备的第一服务小区的帧结构中每个子帧的长度做限制,优选1ms。本发明所有实施例不对第一子帧和第二子帧的具体子帧结构做限制。图4给出了一个子帧长度为1ms时第一子帧和第二子帧的子帧结构。对第一子帧和第二子帧的其他描述参照实施例1,此处不再赘述。
在本发明实施例中,第一服务小区的上下行配比可以为上下行配比a、上下行配比b、上下行配比c或上下行配比d。即第一服务小区的上下行配比可以是上下行配比a、上下行配比b、上下行配比c和上下行配比d中的一个,可以通过高层信令在这几种上下行配比之间转换。其中,a、b、c、d可以为上下行配比的索引,例如值可以分别为0、1、3和4。需要说明的是,本发明所有实施例中,当a、b、c、d的值可以分别为0、1、3和4时,不是指该第一服务小区的 帧结构为表2中上下行配比0、上下行配比1、上下行配比3和上下行配比4对应的帧结构,而是指一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比与表2中相同。例如上下行配比0,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为2∶3;上下行配比1,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为3∶2;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为7∶3;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为8∶2。
第二帧确定模块210可以根据第一用户设备的第一服务小区的上下行配比确定第一用户设备的第一服务小区的帧结构。具体可以为:
当第一服务小区的上下行配比为上下行配比a时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
当第一服务小区的上下行配比为上下行配比b时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或
当第一服务小区的上下行配比为上下行配比c时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或
当第一服务小区的上下行配比为上下行配比d时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
进一步可选地,第二帧确定模块210确定第一用户设备的第一服务小区的帧结构,也可以为根据第一服务小区的上下行配比与表3确定第一服务小区的帧结构,或也可以为根据第一服务小区的上下行配比与表4确定第一服务小区的帧结构。对表3和表4的其他描述如实施例1,此处不再赘述。
本发明所有实施例中,第一用户设备对应的第一服务小区可以指网络侧设备给第一用户设备配置的服务小区,或指为第一用户设备服务的服务小区,或指第一用户设备接入的服务小区。本发明实施例中的服务小区也可称为载波。本发明实施例中,该第一服务小区可以为该第一用户设备的主服务小区或辅服务小区。
第二收发模块211用于基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息。其中,第二收发模块211基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息,可以按照如下的上行HARQ定时进行。
第二收发模块211在子帧n-k上给第一用户设备发送物理下行共享信道PDSCH或发送指示下行半持续调度SPS释放的下行控制信道,物理下行共享信道或指示下行半持续调度释放的下行控制信道在第一服务小区上传输,n为非负整数。第二收发模块211在子帧n接收第一用户设备反馈的在子帧n-4的物理下行共享信道或下行控制信道对应的HARQ-ACK,物理下行共享信道或所述下行控制信道对应的HARQ-ACK在第一服务小区上传输。本发明实施例中,优选k的值为4。需要说明的是,n和n-4为子帧编号。
可以按照如下下行HARQ定时进行:
第二收发模块211在子帧i向第一用户设备发送调度物理上行共享信道的下行控制信道;第二收发模块211在子帧i+k1上接收下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k1的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k1的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k1的值如表5所示。需要说明的是,i和i+k1为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
第二收发模块211在子帧j上接收第一用户设备发送的物理上行共享信道,物理上行共享信道在第一服务小区上;第二收发模块211在子帧j+k2发送物理上行共享信道对应的HARQ-ACK,j为非负整数,k2为正整数,且k2的值根据 帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k2的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k2的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k2的值如表6所示。需要说明的是,j和j+k2为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
第二收发模块211在子帧m发送第一用户设备发送的物理上行共享信道对应的HARQ-ACK;第二收发模块211在子帧m+k3上接收物理上行共享信道的重传,物理上行共享信道的重传在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k3的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k3的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k3的值如表5所示。需要说明的是,m和m+k3为子帧编号。
在本发明实施例中,第二收发模块211基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息时,上行HARQ定时对于不同的上下行配比不变,下行HARQ定时与现有LTE系统一致,能够简化实现复杂度和协议复杂度;另外,该上行HARQ定时使得一个上行子帧或第二子帧仅需反馈一个下行子帧或第一子帧的HARQ-ACK,从而与现有LTE系统需在一个上行子帧反馈多个下行子帧的HARQ-ACK相比,减少了反馈量,提高了HARQ-ACK性能。
在本发明实施例中,在LTE系统中,会引入第一服务小区的帧结构,但通信系统的演进是循序渐进的过程,因而同时也会存在现有LTE系统的帧结构2,因而需解决新的帧结构与现有LTE系统帧结构2的共存问题。本发明实施例在引入新的帧结构对现有LTE系统帧结构2进行优化的同时,保证新的帧结构与LTE系统帧结构2的共存。因此,第二帧确定模块210还用于确定第二服务小区的帧结构,第二服务小区为第二用户设备的服务小区。
第二帧确定模块210确定第二服务小区的帧结构,其中,第二服务小区的帧结构与LTE版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,即第二服务小区的帧结构如表2所示。具体,第二帧确定模块210可以根据第二服务小区的上下行配比确定第二服务小区的帧结构,或第二帧确定模块210可以根据第二服务小区的上下行配比与表2确定第二服务小区的帧结构。
第二服务小区的频率资源与第一服务小区的频率资源相邻或相同。当第一服务小区的频率资源与第二服务小区的频率资源相同时,该第一服务小区和第二服务小区对应的物理小区可以不同,即对应的物理小区ID不同。
在本发明实施例中,第一服务小区和第二服务小区子帧间偏移11个符号。举例来说,参见图8,第一服务小区的子帧比第二服务小区的子帧提前11个符号。使得第一服务小区的帧结构中的第一子帧最后3个符号(包括时长为1个符号的GP)与现有LTE系统帧结构2中的下行子帧的前3个符号重叠,从而可以通过对LTE系统帧结构2中的下行子帧的第2个符号和第3个符号进行打孔,实现第一服务小区的帧结构与现有LTE系统中的帧结构类型2共存。因为现有LTE系统帧结构类型2中,可通过指示PDSCH的起始符号,实现指示第二用户设备对其下行子帧的第2个符号和第3个符号进行打孔,且仍然能在第1一个符号上接收PDCCH。
在本发明实施例中,当第一服务小区的上下行配比为上下行配比a时,第二服务小区的上下行配比为上下行配比1。当第一服务小区的上下行配比为上下行配比b时,第二服务小区的上下行配比为上下行配比2。当第一服务小区的上下行配比为上下行配比c时,第二服务小区的上下行配比为上下行配比4。当第一服务小区的上下行配比为上下行配比d时,第二服务小区的上下行配比为上下行配比5。
如此通过对第一服务小区的上下行配比和第二服务小区的上下行配比进行限制,使得现有LTE系统帧结构类型2中的上行子帧不被打孔,从而实现第一服务小区的帧结构和现有LTE系统帧结构类型2共存。因为现有LTE系统帧结构类型2中无任何机制能够指示第二用户设备对其上行子帧进行打孔。
进一步地,第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。通过这种方式,可使得第二用户不在特殊子帧接收PDSCH或在特殊子帧第4个符号到第12个符号上基于下行参考信号进行测量,从而隐式对现有LTE系统的特殊子帧进行打孔,另一方面,也使得现有LTE系统帧结 构类型2中的子帧2和子帧7为完整的上行子帧,实现第一服务小区的帧结构与现有LTE系统帧结构类型2共存。
基于上述特征,会存在第一服务小区的帧结构中的上行子帧的最后3个符号与现有LTE系统帧结构类型2中的下行子帧的前3个符号重叠的情况,此时,可以对现有LTE系统帧结构类型2中的下行子帧的前3个符号进行打孔,因为可以通过通知第二用户设备PDSCH起始时间实现对现有LTE系统帧结构类型2的下行子帧的前3个符号进行打孔;也可以对第一服务小区的帧结构类型中的上行子帧的最后3个符号进行打孔,因为可以设计新的信令指示支持第一服务小区帧结构的上行子帧的最后3个符号被打孔。图8中的图a和图b分别给出了第一服务小区的上下行配比为上下行配比0,第二服务小区的上下行配比为上下行配比1时,两种打孔方式下的第一服务小区和第二服务小区的帧结构示意图。
第二用户设备对应的第二服务小区可以指网络侧设备给第二用户设备配置的服务小区,或指为第二用户设备服务的服务小区,或指第二用户设备接入的服务小区。本发明实施例中的服务小区(serving cell)也可称为载波(component carrier)。本发明实施例中,第二服务小区可以为第二用户设备的主服务小区(Primary serving cell)或辅服务小区。另外,本发明所有实施例中,第一服务小区或第二服务小区不表示用户设备服务小区的顺序,仅为了区别第一服务小区和第二服务小区为两个服务小区。
需要说明的是,此处的第二用户设备与第一用户设备不是一个用户设备。第一用户设备可以是支持LTE版本12以后的版本的用户设备。第二用户设备可以是支持LTE版本12和/或之前的LTE版本的用户设备。例如,第二用户设备可以是支持LTE版本12及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本11及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本10及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本9及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本8的用户设备。
在本发明实施例中,第二收发模块211还用于基于帧结构在第二服务小区上与第二用户设备发送和接收信息。
其中,第二收发模块211在下行子帧n1在第二服务小区上给第二用户设法发送物理下行共享信道,物理下行共享信道传输的起始符号为下行子帧n1中的 第4个符号,n1为非负整数。
和/或,第二收发模块211在下行子帧n2在第二服务小区上给第二用户设备发送物理下行控制信,物理下行控制信道承载于下行子帧n2的第一个符号上,n2为非负整数;其中,该在下行子帧n2的第一个符号上接收的物理下行控制信道可以为公共搜索空间对应的PDCCH。
和/或,第二收发模块211给第二用户设备指示物理下行共享信道的起始符号,物理下行共享信道的起始符号为第4个符号;具体,若该第二用户设备为支持LTE版本12及之前的LTE版本的用户设备,或该第二用户设备为支持LTE版本11及之前的LTE版本的用户设备,则第二收发模块211可以通过下行控制信息格式2D中的PDSCH资源单元映射和准同位置指示(PDSCH RE Mapping and Quasi-Co-Location Indicator)域指示物理下行共享信道的起始符号;若该第二用户设备为支持LTE版本10及之前的LTE版本的用户设备,则第二收发模块211可以通过RRC信令指示指示物理下行共享信道的起始符号,此时该第二用户设备被配置了跨载波调度,且该第二服务小区为该第二用户设备的辅服务小区。
和/或,第二收发模块211给第二用户设备指示物理下行共享信道对应的传输模式,传输模式为传输模式10;此时,该第二用户设备为支持LTE版本12及之前的LTE版本的用户设备,或该第二用户设备为支持LTE版本11及之前的LTE版本的用户设备。
和/或,第二收发模块211在现有LTE系统帧结构类型2中的不被打孔的下行子帧调度该第二用户设备,该第二用户设备为支持LTE版本9及之前的LTE版本的用户设备,或为支持LTE版本8的用户设备;或该第二用户设备被配置的传输模式为传输模式1到9中的一个。
图9是本发明第二实施例的基站的结构示意图。如图9所示,基站22包括:收发器221、存储器222、处理器223以及数据总线224。收发器221、存储器222、处理器223通过数据总线224相连,以进行相互通信。处理器223用于确定第一用户设备的第一服务小区的帧结构。收发器221用于基于帧结构在第一服务小区上与第一用户设备发送和接收信息。存储器222用于存储第一服务小区的帧结构。处理器223可以根据第一用户设备的第一服务小区的上下行配比确定该第一用户设备的第一服务小区的帧结构。不同的上下行配比对应的帧结构不同,不同的帧结构对应的帧的组成不同。
其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。第一子帧可传输物理下行共享信道PDSCH,第二子帧可传输物理上行共享信道PUSCH。进一步地,若子帧l为第一子帧或下行子帧,则子帧l+k为第一子帧、第二子帧或上行子帧,l为非负整数,k为大于1的正整数,从而使得对于子帧l对应的HARQ-ACK,都能在l+k反馈,从而使得对于不同的上下行配比,该第一服务小区的帧结构具有统一的上行HARQ-ACK定时。本发明实施例不限制k的取值,当第一服务小区的帧结构中每个子帧的长度为1ms时,k的值优选为4。需要说明的是,l和l+k为子帧编号。
本发明所有实施例不对第一用户设备的第一服务小区的帧结构中每个子帧的长度做限制,优选1ms。本发明所有实施例不对第一子帧和第二子帧的具体子帧结构做限制。图4给出了一个子帧长度为1ms时第一子帧和第二子帧的子帧结构。对第一子帧和第二子帧的其他描述参照实施例1,此处不再赘述。
在本发明实施例中,第一服务小区的上下行配比可以为上下行配比a、上下行配比b、上下行配比c或上下行配比d。即第一服务小区的上下行配比可以是上下行配比a、上下行配比b、上下行配比c和上下行配比d中的一个,可以通过高层信令在这几种上下行配比之间转换。其中,a、b、c、d可以为上下行配比的索引,例如值可以分别为0、1、3和4。需要说明的是,本发明所有实施例中,当a、b、c、d的值可以分别为0、1、3和4时,不是指该第一服务小区的帧结构为表2中上下行配比0、上下行配比1、上下行配比3和上下行配比4对应的帧结构,而是指一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比与表2中相同。例如上下行配比0,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为2∶3;上下行配比1,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为3∶2;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为7∶3;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为8∶2。
处理器223可以根据第一用户设备的第一服务小区的上下行配比确定第一 用户设备的第一服务小区的帧结构。具体可以为:
当第一服务小区的上下行配比为上下行配比a时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
当第一服务小区的上下行配比为上下行配比b时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或
当第一服务小区的上下行配比为上下行配比c时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或
当第一服务小区的上下行配比为上下行配比d时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
进一步可选地,处理器223确定第一用户设备的第一服务小区的帧结构,也可以为根据第一服务小区的上下行配比与表3确定第一服务小区的帧结构,或也可以为根据第一服务小区的上下行配比与表4确定第一服务小区的帧结构。对表3和表4的其他描述如实施例1,此处不再赘述。
本发明所有实施例中,第一用户设备对应的第一服务小区可以指网络侧设备给第一用户设备配置的服务小区,或指为第一用户设备服务的服务小区,或指第一用户设备接入的服务小区。本发明实施例中的服务小区也可称为载波。本发明实施例中,该第一服务小区可以为该第一用户设备的主服务小区或辅服务小区。
收发器221用于基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息。其中,收发器221基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息,可以按照如下的上行HARQ定时进行。
收发器221在子帧n-k上给第一用户设备发送物理下行共享信道PDSCH或 发送指示下行半持续调度SPS释放的下行控制信道,物理下行共享信道PDSCH或发送指示下行半持续调度SPS释放的下行控制信道在第一服务小区上传输,n为非负整数。第二收发模块211在子帧n接收第一用户设备反馈的在子帧n-4的物理下行共享信道或下行控制信道对应的HARQ-ACK,物理下行共享信道或下行控制信道对应的HARQ-ACK在第一服务小区上传输。本发明实施例中,优选k的值为4。,需要说明的是,n和n-4为子帧编号。
可以按照如下下行HARQ定时进行:
收发器221在子帧i向第一用户设备发送调度物理上行共享信道的下行控制信道;收发器221在子帧i+k1上接收下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k1的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k1的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k1的值如表5所示。需要说明的是,i和i+k1为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
收发器221在子帧j上接收第一用户设备发送的物理上行共享信道,第一用户设备发送的物理上行共享信道在第一服务小区上传输;收发器221在子帧j+k2发送物理上行共享信道对应的HARQ-ACK,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k2的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k2的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k2的值如表6所示。需要说明的是,j和j+k2为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
收发器221在子帧m发送第一用户设备发送的物理上行共享信道对应的HARQ-ACK;收发器221在子帧m+k3上接收物理上行共享信道的重传,物理 上行共享信道的重传在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k3的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k3的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k3的值如表5所示。需要说明的是,m和m+k3为子帧编号。
在本发明实施例中,收发器221基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息时,上行HARQ定时对于不同的上下行配比不变,下行HARQ定时与现有LTE系统一致,能够简化实现复杂度和协议复杂度;另外,该上行HARQ定时使得一个上行子帧或第二子帧仅需反馈一个下行子帧或第一子帧的HARQ-ACK,从而与现有LTE系统需在一个上行子帧反馈多个下行子帧的HARQ-ACK相比,减少了反馈量,提高了HARQ-ACK性能。
在本发明实施例中,在LTE系统中,会引入第一服务小区的帧结构,但通信系统的演进是循序渐进的过程,因而同时也会存在现有LTE系统的帧结构2,因而需解决新的帧结构与现有LTE系统帧结构2的共存问题。本发明实施例在引入新的帧结构对现有LTE系统帧结构2进行优化的同时,保证新的帧结构与LTE系统帧结构2的共存。因此,处理器223还用于确定第二服务小区的帧结构,第二服务小区为第二用户设备的服务小区。
处理器223确定第二服务小区的帧结构,其中,第二服务小区的帧结构与LTE版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,即第二服务小区的帧结构如表2所示。具体,第二帧确定模块210可以根据第二服务小区的上下行配比确定第二服务小区的帧结构,或第二帧确定模块210可以根据第二服务小区的上下行配比与表2确定第二服务小区的帧结构。
第二服务小区的频率资源与第一服务小区的频率资源相邻或相同。当第一服务小区的频率资源与第二服务小区的频率资源相同时,该第一服务小区和第二服务小区对应的物理小区可以不同,即对应的物理小区ID不同。
在本发明实施例中,第一服务小区和第二服务小区子帧间偏移11个符号。举例来说,参见图8,第一服务小区的子帧比第二服务小区的子帧提前11个符号。使得第一服务小区的帧结构中的第一子帧最后3个符号(包括时长为1个 符号的GP)与现有LTE系统帧结构2中的下行子帧的前3个符号重叠,从而可以通过对LTE系统帧结构2中的下行子帧的第2个符号和第3个符号进行打孔,实现第一服务小区的帧结构与现有LTE系统中的帧结构类型2共存。因为现有LTE系统帧结构类型2中,可通过指示PDSCH的起始符号,实现指示第二用户设备对其下行子帧的第2个符号和第3个符号进行打孔,且仍然能在第1一个符号上接收PDCCH。
在本发明实施例中,当第一服务小区的上下行配比为上下行配比a时,第二服务小区的上下行配比为上下行配比1。当第一服务小区的上下行配比为上下行配比b时,第二服务小区的上下行配比为上下行配比2。当第一服务小区的上下行配比为上下行配比c时,第二服务小区的上下行配比为上下行配比4。当第一服务小区的上下行配比为上下行配比d时,第二服务小区的上下行配比为上下行配比5。
如此通过对第一服务小区的上下行配比和第二服务小区的上下行配比进行限制,使得现有LTE系统帧结构类型2中的上行子帧不被打孔,从而实现第一服务小区的帧结构和现有LTE系统帧结构类型2共存。因为现有LTE系统帧结构类型2中无任何机制能够指示第二用户设备对其上行子帧进行打孔。
进一步地,第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。通过这种方式,可使得第二用户不在特殊子帧接收PDSCH或在特殊子帧第4个符号到第12个符号上基于下行参考信号进行测量,从而隐式对现有LTE系统的特殊子帧进行打孔,另一方面,也使得现有LTE系统帧结构类型2中的子帧2和子帧7为完整的上行子帧,实现第一服务小区的帧结构与现有LTE系统帧结构类型2共存。
基于上述特征,会存在第一服务小区的帧结构中的上行子帧的最后3个符号与现有LTE系统帧结构类型2中的下行子帧的前3个符号重叠的情况,此时,可以对现有LTE系统帧结构类型2中的下行子帧的前3个符号进行打孔,因为可以通过通知第二用户设备PDSCH起始时间实现对现有LTE系统帧结构类型2的下行子帧的前3个符号进行打孔;也可以对第一服务小区的帧结构类型中的上行子帧的最后3个符号进行打孔,因为可以设计新的信令指示支持第一服务小区帧结构的上行子帧的最后3个符号被打孔。图8中的图a和图b分别给出了第一服务小区的上下行配比为上下行配比0,第二服务小区的上下行配比为上下行配比1时,两种打孔方式下的第一服务小区和第二服务小区的帧结构示意 图。
第二用户设备对应的第二服务小区可以指网络侧设备给第二用户设备配置的服务小区,或指为第二用户设备服务的服务小区,或指第二用户设备接入的服务小区。本发明实施例中的服务小区(serving cell)也可称为载波(component carrier)。本发明实施例中,第二服务小区可以为第二用户设备的主服务小区(Primary serving cell)或辅服务小区。另外,本发明所有实施例中,第一服务小区或第二服务小区不表示用户设备服务小区的顺序,仅为了区别第一服务小区和第二服务小区为两个服务小区。
需要说明的是,此处的第二用户设备与第一用户设备不是一个用户设备。第一用户设备可以是支持LTE版本12以后的版本的用户设备。第二用户设备可以是支持LTE版本12和/或之前的LTE版本的用户设备。例如,第二用户设备可以是支持LTE版本12及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本11及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本10及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本9及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本8的用户设备。
在本发明实施例中,收发器221还用于基于帧结构在第二服务小区上与第二用户设备发送和接收信息。其中,收发器221在下行子帧n1在第二服务小区上给第二用户设法发送物理下行共享信道,物理下行共享信道传输的起始符号为下行子帧n1中的第4个符号,n1为非负整数。
和/或,收发器221在下行子帧n2在第二服务小区上给第二用户设备发送物理下行控制信道,物理下行控制信道承载于下行子帧n2的第一个符号上,n2为非负整数;其中,该在下行子帧n2的第一个符号上接收的物理下行控制信道可以为公共搜索空间对应的PDCCH。
和/或,收发器221给第二用户设备指示物理下行共享信道的起始符号,物理下行共享信道的起始符号为第4个符号;具体,若该第二用户设备为支持LTE版本12及之前的LTE版本的用户设备,或该第二用户设备为支持LTE版本11及之前的LTE版本的用户设备,则收发器221可以通过下行控制信息格式2D中的PDSCH资源单元映射和准同位置指示(PDSCH RE Mapping and Quasi-Co-Location Indicator)域指示物理下行共享信道的起始符号;若该第二用户设备为支持LTE版本10及之前的LTE版本的用户设备,则第二收发模块211 可以通过RRC信令指示指示物理下行共享信道的起始符号,此时该第二用户设备被配置了跨载波调度,且该第二服务小区为该第二用户设备的辅服务小区。
和/或,收发器221给第二用户设备指示物理下行共享信道对应的传输模式,传输模式为传输模式10;此时,该第二用户设备为支持LTE版本12及之前的LTE版本的用户设备,或该第二用户设备为支持LTE版本11及之前的LTE版本的用户设备。
和/或,收发器221在现有LTE系统帧结构类型2中的不被打孔的下行子帧调度该第二用户设备,该第二用户设备为支持LTE版本9及之前的LTE版本的用户设备,或为支持LTE版本8的用户设备;或该第二用户设备被配置的传输模式为传输模式1到9中的一个。
图10是本发明第二实施例的信息的发送和接收方法的流程示意图。如图10所示,信息的发送和接收方法包括:
S20:基站确定第一用户设备的第一服务小区的帧结构。
在S20中,基站可以根据第一用户设备的第一服务小区的上下行配比确定该第一用户设备的第一服务小区的帧结构。不同的上下行配比对应的帧结构不同,不同的帧结构对应的帧的组成不同。
第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间GP和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。第一子帧可传输物理下行共享信道PDSCH,第二子帧可传输物理上行共享信道PUSCH。进一步地,若子帧l为第一子帧或下行子帧,则子帧l+k为第一子帧、第二子帧或上行子帧,l为非负整数,k为大于1的正整数,从而使得对于子帧l对应的HARQ-ACK,都能在l+k反馈,从而使得对于不同的上下行配比,该第一服务小区的帧结构具有统一的上行HARQ-ACK定时。本发明实施例不限制k的取值,当第一服务小区的帧结构中每个子帧的长度为1ms时,k的值优选为4。需要说明的是,l和l+k为子帧编号。
本发明所有实施例不对第一用户设备的第一服务小区的帧结构中每个子帧的长度做限制,优选1ms。本发明所有实施例不对第一子帧和第二子帧的具体子帧结构做限制。图4给出了一个子帧长度为1ms时第一子帧和第二子帧的子帧结构。对第一子帧和第二子帧的其他描述参照实施例1,此处不再赘述。
在本发明实施例中,第一服务小区的上下行配比可以为上下行配比a、上下行配比b、上下行配比c或上下行配比d。即第一服务小区的上下行配比可以是上下行配比a、上下行配比b、上下行配比c和上下行配比d中的一个,可以通过高层信令在这几种上下行配比之间转换。其中,a、b、c、d可以为上下行配比的索引,例如值可以分别为0、1、3和4。需要说明的是,本发明所有实施例中,当a、b、c、d的值可以分别为0、1、3和4时,不是指该第一服务小区的帧结构为表2中上下行配比0、上下行配比1、上下行配比3和上下行配比4对应的帧结构,而是指一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比与表2中相同。例如上下行配比0,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为2∶3;上下行配比1,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为3∶2;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为7∶3;上下行配比3,表示一个帧中可用于传输物理下行共享信道的子帧数与可用于传输物理上行共享信道的子帧数之比为8∶2。
基站可以根据第一用户设备的第一服务小区的上下行配比确定第一用户设备的第一服务小区的帧结构。具体可以为:
当第一服务小区的上下行配比为上下行配比a时,一个无线帧包括10个子帧,其中,子帧0和子帧5为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
当第一服务小区的上下行配比为上下行配比b时,一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为第一子帧,子帧1和子帧6为下行子帧或第一子帧中的一个,子帧2和子帧7为第二子帧,子帧3和子帧8为上行子帧;或
当第一服务小区的上下行配比为上下行配比c时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为第一子帧,子帧6、子帧7和子帧8为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧3和子帧4为上行子帧;或
当第一服务小区的上下行配比为上下行配比d时,一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为第一子帧,子 帧6和子帧7为下行子帧或第一子帧中的一个,子帧2为第二子帧,子帧为上行子帧。
进一步可选地,基站确定第一用户设备的第一服务小区的帧结构,也可以为根据第一服务小区的上下行配比与表3确定第一服务小区的帧结构,或也可以为根据第一服务小区的上下行配比与表4确定第一服务小区的帧结构。对表3和表4的其他描述如实施例1,此处不再赘述。
本发明所有实施例中,第一用户设备对应的第一服务小区可以指网络侧设备给第一用户设备配置的服务小区,或指为第一用户设备服务的服务小区,或指第一用户设备接入的服务小区。本发明实施例中的服务小区(serving cell)也可称为载波(component carrier)。本发明实施例中,该第一服务小区可以为该第一用户设备的主服务小区(Primary serving cell)或辅服务小区。
S21:基站基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息。
在S21中,基站基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息,可以按照如下的上行HARQ定时进行。
基站在子帧n-k上给第一用户设备发送物理下行共享信道PDSCH传输或发送指示下行半持续调度SPS释放的下行控制信道,物理下行共享信道PDSCH或指示下行半持续调度SPS释放的下行控制信道在第一服务小区上传输,n为非负整数;基站在子帧n接收第一用户设备反馈的在子帧n-4的物理下行共享信道或下行控制信道对应的HARQ-ACK,物理下行共享信道或下行控制信道对应的HARQ-ACK在第一服务小区上传输。本发明实施例中,优选k的值为4。需要说明的是,l和l+k为子帧编号。
可以按照如下下行HARQ定时进行:
基站在子帧i向第一用户设备发送调度物理上行共享信道的下行控制信道;基站在子帧i+k1上接收下行控制信道调度的物理上行共享信道,下行控制信道调度的物理上行共享信道在第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k1的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k1的值与LTE版本8中帧结构类型2下 上下行配比与第一服务小区的上下行配比相同时相同,k1的值如表5所示。需要说明的是,i和i+k1为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
基站在子帧j上接收第一用户设备发送的物理上行共享信道,第一用户设备发送的物理上行共享信道在第一服务小区上传输;基站在子帧j+k2发送物理上行共享信道对应的HARQ-ACK,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k2的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k2的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k2的值如表6所示。需要说明的是,j和j+k2为子帧编号。
和/或,可以按照如下下行HARQ定时进行:
基站在子帧m发送第一用户设备发送的物理上行共享信道对应的HARQ-ACK;基站在子帧m+k3上接收物理上行共享信道的重传,物理上行共享信道的重传在第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与第一服务小区的上下行配比相同时的定时确定,帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。例如,若第一服务小区的上下行配比为上下行配比0,则k3的值与LTE版本8或版本9或版本10或版本11或版本12中帧结构类型2下上下行配比0时相同。例如,若k3的值与LTE版本8中帧结构类型2下上下行配比与第一服务小区的上下行配比相同时相同,k3的值如表5所示。需要说明的是,m和m+k3为子帧编号。
在本发明实施例中,基站基于第一服务小区的帧结构在第一服务小区上与第一用户设备发送和接收信息时,上行HARQ定时对于不同的上下行配比不变,下行HARQ定时与现有LTE系统一致,能够简化实现复杂度和协议复杂度;另外,该上行HARQ定时使得一个上行子帧或第二子帧仅需反馈一个下行子帧或第一子帧的HARQ-ACK,从而与现有LTE系统需在一个上行子帧反馈多个下行子帧的HARQ-ACK相比,减少了反馈量,提高了HARQ-ACK性能。
在本发明实施例中,在LTE系统中,会引入第一服务小区的帧结构,但通 信系统的演进是循序渐进的过程,因而同时也会存在现有LTE系统的帧结构2,因而需解决新的帧结构与现有LTE系统帧结构2的共存问题。本发明实施例在引入新的帧结构对现有LTE系统帧结构2进行优化的同时,保证新的帧结构与LTE系统帧结构2的共存。因此,图11是本发明第三实施例的信息的发送和接收方法的流程示意图。如图11所示,信息的发送和接收方法还包括:
S22:基站确定第二服务小区的帧结构,第二服务小区为第二用户设备的服务小区。
基站确定第二服务小区的帧结构,其中,第二服务小区的帧结构与LTE版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,即第二服务小区的帧结构如表2所示。具体,基站可以根据第二服务小区的上下行配比确定第二服务小区的帧结构,或基站可以根据第二服务小区的上下行配比与表2确定第二服务小区的帧结构。
第二服务小区的频率资源与第一服务小区的频率资源相邻或相同。当第一服务小区的频率资源与第二服务小区的频率资源相同时,该第一服务小区和第二服务小区对应的物理小区可以不同,即对应的物理小区ID不同。
在本发明实施例中,第一服务小区和第二服务小区子帧间偏移11个符号。举例来说,参见图8,第一服务小区的子帧比第二服务小区的子帧提前11个符号。使得第一服务小区的帧结构中的第一子帧最后3个符号(包括时长为1个符号的GP)与现有LTE系统帧结构2中的下行子帧的前3个符号重叠,从而可以通过对LTE系统帧结构2中的下行子帧的第2个符号和第3个符号进行打孔,实现第一服务小区的帧结构与现有LTE系统中的帧结构类型2共存。因为现有LTE系统帧结构类型2中,可通过指示PDSCH的起始符号,实现指示第二用户设备对其下行子帧的第2个符号和第3个符号进行打孔,且仍然能在第1一个符号上接收PDCCH。
在本发明实施例中,当第一服务小区的上下行配比为上下行配比a时,第二服务小区的上下行配比为上下行配比1。当第一服务小区的上下行配比为上下行配比b时,第二服务小区的上下行配比为上下行配比2。当第一服务小区的上下行配比为上下行配比c时,第二服务小区的上下行配比为上下行配比4。当第一服务小区的上下行配比为上下行配比d时,第二服务小区的上下行配比为上下行配比5。
如此通过对第一服务小区的上下行配比和第二服务小区的上下行配比进行 限制,使得现有LTE系统帧结构类型2中的上行子帧不被打孔,从而实现第一服务小区的帧结构和现有LTE系统帧结构类型2共存。因为现有LTE系统帧结构类型2中无任何机制能够指示第二用户设备对其上行子帧进行打孔。
进一步地,第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。通过这种方式,可使得第二用户不在特殊子帧接收PDSCH或在特殊子帧第4个符号到第12个符号上基于下行参考信号进行测量,从而隐式对现有LTE系统的特殊子帧进行打孔,另一方面,也使得现有LTE系统帧结构类型2中的子帧2和子帧7为完整的上行子帧,实现第一服务小区的帧结构与现有LTE系统帧结构类型2共存。
基于上述特征,会存在第一服务小区的帧结构中的上行子帧的最后3个符号与现有LTE系统帧结构类型2中的下行子帧的前3个符号重叠的情况,此时,可以对现有LTE系统帧结构类型2中的下行子帧的前3个符号进行打孔,因为可以通过通知第二用户设备PDSCH起始时间实现对现有LTE系统帧结构类型2的下行子帧的前3个符号进行打孔;也可以对第一服务小区的帧结构类型中的上行子帧的最后3个符号进行打孔,因为可以设计新的信令指示支持第一服务小区帧结构的上行子帧的最后3个符号被打孔。图8中的图a和图b分别给出了第一服务小区的上下行配比为上下行配比0,第二服务小区的上下行配比为上下行配比1时,两种打孔方式下的第一服务小区和第二服务小区的帧结构示意图。
第二用户设备对应的第二服务小区可以指网络侧设备给第二用户设备配置的服务小区,或指为第二用户设备服务的服务小区,或指第二用户设备接入的服务小区。本发明实施例中的服务小区(serving cell)也可称为载波(component carrier)。本发明实施例中,第二服务小区可以为第二用户设备的主服务小区(Primary serving cell)或辅服务小区。另外,本发明所有实施例中,第一服务小区或第二服务小区不表示用户设备服务小区的顺序,仅为了区别第一服务小区和第二服务小区为两个服务小区。
需要说明的是,此处的第二用户设备与第一用户设备不是一个用户设备。第一用户设备可以是支持LTE版本12以后的版本的用户设备。第二用户设备可以是支持LTE版本12和/或之前的LTE版本的用户设备。例如,第二用户设备可以是支持LTE版本12及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本11及之前的LTE版本的用户设备,或第二用户设备可以是支 持LTE版本10及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本9及之前的LTE版本的用户设备,或第二用户设备可以是支持LTE版本8的用户设备。
S23:基站基于帧结构在第二服务小区上与第二用户设备发送和接收信息。
在S23中,基站在下行子帧n1在第二服务小区上给第二用户设法发送物理下行共享信道,物理下行共享信道传输的起始符号为下行子帧n1中的第4个符号,n1为非负整数。
和/或,基站在下行子帧n2在第二服务小区上给第二用户设备发送物理下行控制信道,物理下行控制信道承载于下行子帧n2的第一个符号上,n2为非负整数;其中,该在下行子帧n2的第一个符号上接收的物理下行控制信道可以为公共搜索空间对应的PDCCH。
和/或,基站给第二用户设备指示物理下行共享信道的起始符号,物理下行共享信道的起始符号为第4个符号;具体,若该第二用户设备为支持LTE版本12及之前的LTE版本的用户设备,或该第二用户设备为支持LTE版本11及之前的LTE版本的用户设备,则基站可以通过下行控制信息格式2D中的PDSCH资源单元映射和准同位置指示(PDSCH RE Mapping and Quasi-Co-Location Indicator)域指示物理下行共享信道的起始符号;若该第二用户设备为支持LTE版本10及之前的LTE版本的用户设备,则基站可以通过RRC信令指示指示物理下行共享信道的起始符号,此时该第二用户设备被配置了跨载波调度,且该第二服务小区为该第二用户设备的辅服务小区。
和/或,基站给第二用户设备指示物理下行共享信道对应的传输模式,传输模式为传输模式10;此时,该第二用户设备为支持LTE版本12及之前的LTE版本的用户设备,或该第二用户设备为支持LTE版本11及之前的LTE版本的用户设备。
和/或,基站在现有LTE系统帧结构类型2中的不被打孔的下行子帧调度该第二用户设备,该第二用户设备为支持LTE版本9及之前的LTE版本的用户设备,或为支持LTE版本8的用户设备;或该第二用户设备被配置的传输模式为传输模式1到9中的一个。
需要说明的是,本发明实施例并不限定S20到S24执行的顺序。
图12本发明实施例的信息的发送和接收的系统的结构示意图。如图12所示,信息的发送和接收的系统10包括前述的第一用户设备、前述的基站以及第 二用户设备13。在本发明实施例中,在LTE系统中,引入了第一服务小区的帧结构,而通信系统的演进是循序渐进的过程,因此同时也会存在现有LTE系统的帧结构2,因而需解决新的帧结构与现有LTE系统帧结构2的共存问题。因此,信息的发送和接收的系统10还包括第二用户设备13。第二用户设备13包括第三帧确定模块130和第三收发模块131。第三帧确定模块130确定第二服务小区的帧结构。第三收发模块131基于第二服务小区的帧结构在第二服务小区上发送和接收信息。
其中,第二服务小区的帧结构与长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,即第二服务小区的帧结构如表2所示。具体地,第三帧确定模块130可以根据第二服务小区的上下行配比确定第二服务小区的帧结构,或第三帧确定模块130可以根据第二服务小区的上下行配比与表2确定第二服务小区的帧结构。当第一服务小区的频率资源与第二服务小区的频率资源相邻或相同时,需解决新的帧结构与现有LTE系统帧结构2的共存问题。本发明实施例在引入新的帧结构对现有LTE系统帧结构2进行优化的同时,可通过下述特征,进一步保证新的帧结构与LTE系统帧结构2的共存。本发明所有实施例中第一服务小区的帧结构,可以称为TDD-U或TDD-F。
在本发明实施例中,第一服务小区的频率资源与第二服务小区的频率资源相邻或相同。当第一服务小区的频率资源与第二服务小区的频率资源相同时,该第一服务小区和第二服务小区对应的物理小区可以不同,即对应的物理小区ID不同。
进一步地,第一服务小区和第二服务小区子帧间偏移11个符号。举例来说,如图8所示,第一服务小区的子帧比第二服务小区的子帧提前11个符号。使得第一服务小区的帧结构中的第一子帧最后3个符号(包括时长为1个符号的GP)与现有LTE系统帧结构2中的下行子帧的前3个符号重叠,从而可以通过对LTE系统帧结构2中的下行子帧的第2个符号和第3个符号进行打孔,实现第一服务小区的帧结构与现有LTE系统中的帧结构类型2共存。因为现有LTE系统帧结构类型2中,可通过指示PDSCH的起始符号,实现指示第二用户设备13对其下行子帧的第2个符号和第3个符号进行打孔,且仍然能在第1个符号上接收PDCCH。
在本发明实施例中,当第一服务小区的上下行配比为上下行配比a时,第二服务小区的上下行配比为上下行配比1。当第一服务小区的上下行配比为上下 行配比b时,第二服务小区的上下行配比为上下行配比2。当第一服务小区的上下行配比为上下行配比c时,第二服务小区的上下行配比为上下行配比4。当第一服务小区的上下行配比为上下行配比d时,第二服务小区的上下行配比为上下行配比5。通过以上方式对第一服务小区的上下行配比和第二服务小区的上下行配比进行限制,使得现有LTE系统帧结构类型2中的上行子帧不被打孔,从而实现第一服务小区的帧结构和现有LTE系统帧结构类型2共存。因为现有LTE系统帧结构类型2中无任何机制能够指示第二用户设备13对其上行子帧进行打孔。
进一步地,第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。通过这种方式,可使得第二用户不在特殊子帧接收PDSCH或在特殊子帧第4个符号到第13个符号上基于下行参考信号进行测量,从而隐式对现有LTE系统的特殊子帧进行打孔,另一方面,也使得现有LTE系统帧结构类型2中的子帧2和子帧7为完整的上行子帧,实现第一服务小区的帧结构与现有LTE系统帧结构类型2共存。
基于上述特征,会存在第一服务小区的帧结构中的上行子帧的最后3个符号与现有LTE系统帧结构类型2中的下行子帧的前3个符号重叠的情况。此时,可以对现有LTE系统帧结构类型2中的下行子帧的前3个符号进行打孔,因为可以通过通知第二用户设备13 PDSCH起始时间实现对现有LTE系统帧结构类型2的下行子帧的前3个符号进行打孔;也可以对第一服务小区的帧结构类型中的上行子帧的最后3个符号进行打孔,因为可以设计新的信令指示支持第一服务小区帧结构的上行子帧的最后3个符号被打孔。图8中的图a和图b分别给出了第一服务小区的上下行配比为上下行配比a,第二服务小区的上下行配比为上下行配比1时,两种打孔方式下的第一服务小区和第二服务小区的帧结构示意图。
第二用户设备13对应的第二服务小区可以指网络侧设备给第二用户设备13配置的服务小区,或指为第二用户设备13服务的服务小区,或指第二用户设备13接入的服务小区。本发明实施例中的服务小区(serving cell)也可称为载波(component carrier)。本发明实施例中,第二服务小区可以为第二用户设备13的主服务小区(Primary serving cell)或辅服务小区。另外,本发明所有实施例中,第一服务小区或第二服务小区不表示用户设备服务小区的顺序,仅为了区别第一服务小区和第二服务小区为两个服务小区。
需要说明的是,此处的第二用户设备13与第一用户设备不是一个用户设备。第一用户设备可以是支持LTE版本12以后的版本的用户设备。第二用户设备13可以是支持LTE版本12和/或之前的LTE版本的用户设备。例如,第二用户设备13可以是支持LTE版本12及之前的LTE版本的用户设备,或第二用户设备13可以是支持LTE版本11及之前的LTE版本的用户设备,或第二用户设备13可以是支持LTE版本10及之前的LTE版本的用户设备,或第二用户设备13可以是支持LTE版本9及之前的LTE版本的用户设备,或第二用户设备13可以是支持LTE版本8的用户设备。
在本发明实施例中,第三收发模块131在下行子帧n1在第二服务小区上接收物理下行共享信道,物理下行共享信道传输的起始符号为下行子帧n1中的第4个符号,n1为非负整数。和/或,第三收发模块131在下行子帧n2在第二服务小区上接收物理下行控制信道,物理下行控制信道承载于下行子帧n2的第一个符号上,n2为非负整数;其中,该在下行子帧n2的第一个符号上接收的物理下行控制信道可以为公共搜索空间对应的PDCCH。
需要说明的是,本发明实施例并不限定第一用户设备和第二用户设备13执行的顺序。
综上所述,本发明通过第一用户设备确定第一服务小区的帧结构,并基于第一服务小区的帧结构在第一服务小区上发送和接收信息,其中,第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,第一子帧和第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数,能够使得TDD系统对于不同的上下行配比具有统一的HARQ-ACK定时,同时能够与现有TDD系统共存。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (58)

  1. 一种第一用户设备,其特征在于,所述第一用户设备包括:
    第一帧确定模块,用于确定第一服务小区的帧结构;
    第一收发模块,与所述第一帧确定模块连接,用于基于所述第一服务小区的帧结构在第一服务小区上发送和接收信息;
    其中,所述第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,所述第一子帧和所述第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,所述第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,所述第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
  2. 根据权利要求1所述的第一用户设备,其特征在于,所述第一服务小区的帧结构中,每个子帧为1ms子帧,所述第一子帧包括12个用于下行传输的符号、时长为1个符号的保护时间和1个用于上行传输的符号,所述第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
  3. 根据权利要求1至2任一项所述的第一用户设备,其特征在于,所述第一服务小区的帧结构中,若子帧l为所述第一子帧或下行子帧,则子帧l+4为所述第一子帧、所述第二子帧或上行子帧,l为非负整数。
  4. 根据权利要求1至2任一项所述的第一用户设备,其特征在于,所述第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行配比3或上下行配比4。
  5. 根据权利要求4所述的第一用户设备,其特征在于,
    当所述第一服务小区的上下行配比为上下行配比0时,所述一个无线帧包括10个子帧,其中,子帧0和子帧5为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比1时,所述一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子 帧,子帧3和子帧8为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比3时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为所述第一子帧,子帧6、子帧7和子帧8为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧,子帧3和子帧4为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比4时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为所述第一子帧,子帧6和子帧7为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧,子帧为上行子帧。
  6. 根据权利要求1至5任一项所述的第一用户设备,其特征在于,所述第一收发模块用于:
    在子帧n-4上接收物理下行共享信道或接收指示下行半持续调度释放的下行控制信道,所述物理下行共享信道或指示下行半持续调度释放的下行控制信道在所述第一服务小区上传输,n为非负整数;
    在子帧n发送在所述子帧n-4的所述物理下行共享信道或所述下行控制信道对应的混合自动重传请求确认响应,所述物理下行共享信道或所述下行控制信道对应的混合自动重传请求确认响应在所述第一服务小区上传输。
  7. 根据权利要求1至6任一项所述的第一用户设备,其特征在于,所述第一收发模块用于:
    在子帧i接收调度物理上行共享信道的下行控制信道;
    在子帧i+k1上发送所述下行控制信道调度的物理上行共享信道,i为非负整数,所述下行控制信道调度的物理上行共享信道在所述第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  8. 根据权利要求1至6任一项所述的第一用户设备,其特征在于,所述第一收发模块用于:
    在子帧j上发送物理上行共享信道,所述物理上行共享信道在所述第一服务小区上传输;
    在子帧j+k2接收所述物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与所述第 一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  9. 根据权利要求1至6任一项所述的第一用户设备,其特征在于,所述第一收发模块用于:
    在子帧m接收物理上行共享信道对应的混合自动重传请求确认;
    在子帧m+k3上发送所述混合自动重传请求确认对应的物理上行共享信道,所述混合自动重传请求确认对应的物理上行共享信道在所述第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  10. 一种信息的发送和接收方法,其特征在于,所述方法包括:
    第一用户设备确定第一服务小区的帧结构;
    所述第一用户设备基于所述第一服务小区的帧结构在第一服务小区上发送和接收信息;
    其中,所述第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,所述第一子帧和所述第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,所述第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,所述第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
  11. 根据权利要求10所述的方法,其特征在于,所述第一服务小区的帧结构中,每个子帧为1ms子帧,所述第一子帧包括12个用于下行传输的符号、时长为1个符号的保护时间和1个用于上行传输的符号,所述第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
  12. 根据权利要求10至11任一项所述的方法,其特征在于,所述第一服务小区的帧结构中,若子帧l为所述第一子帧或下行子帧,则子帧l+4为所述第一子帧、所述第二子帧或上行子帧,l为非负整数。
  13. 根据权利要求10至11任一项所述的方法,其特征在于,所述第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行配比3或上下行配比4。
  14. 根据权利要求13所述的方法,其特征在于,
    当所述第一服务小区的上下行配比为上下行配比0时,所述一个无线帧包 括10个子帧,其中,子帧0和子帧5为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比1时,所述一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子帧,子帧3和子帧8为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比3时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为所述第一子帧,子帧6、子帧7和子帧8为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧,子帧3和子帧4为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比4时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为所述第一子帧,子帧6和子帧7为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧,子帧为上行子帧。
  15. 根据权利要求10至14任一项所述的方法,其特征在于,所述第一用户设备基于所述第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:
    所述第一用户设备在子帧n-4上接收物理下行共享信道或接收指示下行半持续调度释放的下行控制信道,所述物理下行共享信道或指示下行半持续调度释放的下行控制信道在所述第一服务小区上传输,n为非负整数;
    所述第一用户设备在子帧n发送在所述子帧n-4的所述物理下行共享信道或所述下行控制信道对应的混合自动重传请求确认响应,所述物理下行共享信道或所述下行控制信道对应的混合自动重传请求确认响应在所述第一服务小区上传输。
  16. 根据权利要求10至15任一项所述的方法,其特征在于,所述第一用户设备基于所述第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:
    所述第一用户设备在子帧i接收调度物理上行共享信道的下行控制信道;
    所述第一用户设备在子帧i+k1上发送所述下行控制信道调度的物理上行共享信道,所述下行控制信道调度的物理上行共享信道在所述第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期 演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  17. 根据权利要求10至15任一项所述的方法,其特征在于,所述第一用户设备基于所述第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:
    所述第一用户设备在子帧j上发送物理上行共享信道,所述物理上行共享信道在所述第一服务小区上;
    所述第一用户设备在子帧j+k2接收所述物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  18. 根据权利要求10至15任一项所述的方法,其特征在于,所述第一用户设备基于所述第一服务小区的帧结构在第一服务小区上发送和接收信息,包括:
    所述第一用户设备在子帧m接收物理上行共享信道对应的混合自动重传请求确认;
    所述第一用户设备在子帧m+k3上发送所述混合自动重传请求确认对应的物理上行共享信道,所述混合自动重传请求确认对应的物理上行共享信道在所述第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  19. 一种基站,其特征在于,包括:
    第二帧确定模块,用于确定第一用户设备的第一服务小区的帧结构;
    第二收发模块,与所述第二帧确定模块连接,用于基于所述帧结构在第一服务小区上与所述第一用户设备发送和接收信息;
    其中,所述第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,所述第一子帧和所述第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,所述第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,所述第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
  20. 根据权利要求19所述的基站,其特征在于,所述第一服务小区的帧结构中,每个子帧为1ms子帧,所述第一子帧包括12个用于下行传输的符号、时 长为1个符号的保护时间和1个用于上行传输的符号,所述第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
  21. 根据权利要求要求19至20任一项所述的基站,其特征在于,所述第一服务小区的帧结构中,若子帧l为所述第一子帧或下行子帧,则子帧l+4为所述第一子帧、所述第二子帧或上行子帧,l为非负整数。
  22. 根据权利要求19至21任一项所述的基站,其特征在于,所述第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行配比3或上下行配比4。
  23. 根据权利要求要求22所述的基站,其特征在于,
    当所述第一服务小区的上下行配比为上下行配比0时,所述一个无线帧包括10个子帧,其中,子帧0和子帧5为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比1时,所述一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子帧,子帧3和子帧8为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比3时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为所述第一子帧,子帧6、子帧7和子帧8为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧,子帧3和子帧4为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比4时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为所述第一子帧,子帧6和子帧7为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧,子帧为上行子帧。
  24. 根据权利要求19至23任一项所述的基站,其特征在于,所述第二收发模块用于:
    在子帧n-4上给第一用户设备发送物理下行共享信道或发送指示下行半持续调度释放的下行控制信道,所述物理下行共享信道或指示下行半持续调度释放的下行控制信道在所述第一服务小区上传输,n为非负整数;
    在子帧n接收所述第一用户设备反馈的在所述子帧n-4的所述物理下行共享 信道或所述下行控制信道对应的混合自动重传请求确认响应,所述物理下行共享信道或所述下行控制信道对应的混合自动重传请求确认响应在所述第一服务小区上传输。
  25. 根据权利要求19至23任一项所述的基站,其特征在于,所述第二收发模块用于:
    在子帧i向所述第一用户设备发送调度物理上行共享信道的下行控制信道;
    在子帧i+k1上接收所述下行控制信道调度的物理上行共享信道,所述下行控制信道调度的物理上行共享信道在所述第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  26. 根据权利要求19至23任一项所述的基站,其特征在于,所述第二收发模块用于:
    在子帧j上接收所述第一用户设备发送的物理上行共享信道,所述第一用户设备发送的物理上行共享信道在所述第一服务小区上传输;
    在子帧j+k2发送所述物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  27. 根据权利要求19至23任一项所述的基站,其特征在于,所述第二收发模块用于:
    在子帧m发送所述第一用户设备发送的物理上行共享信道对应的混合自动重传请求确认;
    在子帧m+k3上接收所述物理上行共享信道的重传,所述物理上行共享信道的重传在所述第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  28. 根据权利要求19至27任一项所述的基站,其特征在于,
    所述第二帧确定模块还用于:确定第二服务小区的帧结构,所述第二服务小区为第二用户设备的服务小区;
    所述第二收发模块还用于:基于所述第二服务小区的帧结构在第二服务小区上与所述第二用户设备发送和接收信息;
    其中,所述第二服务小区的帧结构与长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,所述第二服务小区的频率资源与所述第一服务小区的频率资源相邻或相同。
  29. 根据权利要求28所述的基站,其特征在于,
    当所述第一服务小区的上下行配比为上下行配比0时,所述第二服务小区的上下行配比为上下行配比1;或
    当所述第一服务小区的上下行配比为上下行配比1时,所述第二服务小区的上下行配比为上下行配比2;或
    当所述第一服务小区的上下行配比为上下行配比3时,所述第二服务小区的上下行配比为上下行配比4;或
    当所述第一服务小区的上下行配比为上下行配比4时,所述第二服务小区的上下行配比为上下行配比5。
  30. 根据权利要求28至29任一项所述的基站,其特征在于,所述第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。
  31. 根据权利要求28至30任一项所述的基站,其特征在于,所述第一服务小区和所述第二服务小区子帧间偏移11个符号。
  32. 根据权利要求28至31任一项所述的基站,其特征在于,所述第二收发模块还用于:
    给所述第二用户设备指示物理下行共享信道的起始符号,所述物理下行共享信道的起始符号为第4个符号。
  33. 根据权利要求28至32任一项所述的基站,其特征在于,所述第二收发模块还用于:
    给所述第二用户设备指示物理下行共享信道对应的传输模式,所述传输模式为传输模式10。
  34. 根据权利要求28至33任一项所述的基站,其特征在于,所述第二收发模块还用于:
    在下行子帧n1在所述第二服务小区上给所述第二用户设备发送物理下行共享信道,所述物理下行共享信道传输的起始符号为所述下行子帧n1中的第4个符号,所述n1为非负整数。
  35. 一种信息的发送和接收方法,其特征在于,包括:
    基站确定第一用户设备的第一服务小区的帧结构;
    所述基站基于所述帧结构在第一服务小区上与所述第一用户设备发送和接收信息;
    其中,所述第一服务小区的帧结构中,一个无线帧包括至少一个第一子帧和至少一个第二子帧,所述第一子帧和所述第二子帧包括用于下行传输的符号、保护时间和用于上行传输的符号,其中,所述第一子帧中用于下行传输的符号个数大于用于上行传输的符号个数,所述第二子帧中用于下行传输的符号个数小于用于上行传输的符号个数。
  36. 根据权利要求35所述的方法,其特征在于,所述第一服务小区的帧结构中,每个子帧为1ms子帧,所述第一子帧包括12个用于下行传输的符号、时长为1个符号的保护时间和1个用于上行传输的符号,所述第二子帧包括1个用于下行传输的符号、时长为1个符号的保护时间和12个用于上行传输的符号。
  37. 根据权利要求要求35至36任一项所述的方法,其特征在于,所述第一服务小区的帧结构中,若子帧l为所述第一子帧或下行子帧,则子帧l+4为所述第一子帧、所述第二子帧或上行子帧,l为非负整数。
  38. 根据权利要求35至37任一项所述的方法,其特征在于,所述第一服务小区的上下行配比为上下行配比0、上下行配比1、上下行配比3或上下行配比4。
  39. 根据权利要求要求38所述的方法,其特征在于,
    当所述第一服务小区的上下行配比为上下行配比0时,所述一个无线帧包括10个子帧,其中,子帧0和子帧5为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子帧,子帧3、子帧4、子帧8和子帧9为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比1时,所述一个无线帧包括10个子帧,其中,子帧0、子帧4、子帧5和子帧9为所述第一子帧,子帧1和子帧6为下行子帧或所述第一子帧中的一个,子帧2和子帧7为所述第二子帧,子帧3和子帧8为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比3时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧5和子帧9为所述第一子帧,子帧6、子帧7和子帧8为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧, 子帧3和子帧4为上行子帧;或
    当所述第一服务小区的上下行配比为上下行配比4时,所述一个无线帧包括10个子帧,其中,子帧0、子帧1、子帧4、子帧5、子帧8和子帧9为所述第一子帧,子帧6和子帧7为下行子帧或所述第一子帧中的一个,子帧2为所述第二子帧,子帧为上行子帧。
  40. 根据权利要求35至39任一项所述的方法,其特征在于,所述基站基于所述帧结构在第一服务小区上与所述第一用户设备发送和接收信息,包括:
    所述基站在子帧n-4上给第一用户设备发送物理下行共享信道或发送指示下行半持续调度释放的下行控制信道,所述物理下行共享信道或指示下行半持续调度释放的下行控制信道在所述第一服务小区上传输,n为非负整数;
    所述基站在子帧n接收所述第一用户设备反馈的在所述子帧n-4的所述物理下行共享信道或所述下行控制信道对应的混合自动重传请求确认响应,所述物理下行共享信道或所述下行控制信道对应的混合自动重传请求确认响应在所述第一服务小区上传输。
  41. 根据权利要求35至39任一项所述的方法,其特征在于,所述基站基于所述帧结构在第一服务小区上与所述第一用户设备发送和接收信息,包括:
    所述基站在子帧i向所述第一用户设备发送调度物理上行共享信道的下行控制信道;
    所述基站在子帧i+k1上接收所述下行控制信道调度的物理上行共享信道,所述下行控制信道调度的物理上行共享信道在所述第一服务小区上传输,i为非负整数,k1为正整数,且k1的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  42. 根据权利要求35至39任一项所述的方法,其特征在于,所述基站基于所述帧结构在第一服务小区上与所述第一用户设备发送和接收信息,包括:
    所述基站在子帧j上接收所述第一用户设备发送的物理上行共享信道,所述第一用户设备发送的物理上行共享信道在所述第一服务小区上传输;
    所述基站在子帧j+k2发送所述物理上行共享信道对应的混合自动重传请求确认,j为非负整数,k2为正整数,且k2的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  43. 根据权利要求35至39任一项所述的方法,其特征在于,所述基站基于所述帧结构在第一服务小区上与所述第一用户设备发送和接收信息,包括:
    所述基站在子帧m发送所述第一用户设备发送的物理上行共享信道对应的混合自动重传请求确认;
    所述基站在子帧m+k3上接收所述物理上行共享信道的重传,所述物理上行共享信道的重传在所述第一服务小区上传输,m为非负整数,k3为正整数,且k3的值根据帧结构类型2下上下行配比与所述第一服务小区的上下行配比相同时的定时确定,所述帧结构类型2为长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型。
  44. 根据权利要求35至43任一项所述的方法,其特征在于,所述方法还包括:
    所述基站确定第二服务小区的帧结构,所述第二服务小区为第二用户设备的服务小区;
    所述基站基于所述第二服务小区的帧结构在第二服务小区上与所述第二用户设备发送和接收信息;
    其中,所述第二服务小区的帧结构与长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,所述第二服务小区的频率资源与所述第一服务小区的频率资源相邻或相同。
  45. 根据权利要求44所述的方法,其特征在于,
    当所述第一服务小区的上下行配比为上下行配比0时,所述第二服务小区的上下行配比为上下行配比1;或
    当所述第一服务小区的上下行配比为上下行配比1时,所述第二服务小区的上下行配比为上下行配比2;或
    当所述第一服务小区的上下行配比为上下行配比3时,所述第二服务小区的上下行配比为上下行配比4;或
    当所述第一服务小区的上下行配比为上下行配比4时,所述第二服务小区的上下行配比为上下行配比5。
  46. 根据权利要求44至45任一项所述的方法,其特征在于,所述第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。
  47. 根据权利要求44至46任一项所述的方法,其特征在于,所述第一服务小区和所述第二服务小区子帧间偏移11个符号。
  48. 根据权利要求44至47任一项所述的方法,其特征在于,所述基站基于所述第二服务小区的帧结构在第二服务小区上与所述第二用户设备发送和接收信息,包括:
    所述基站给所述第二用户设备指示物理下行共享信道的起始符号,所述物理下行共享信道的起始符号为第4个符号。
  49. 根据权利要求44至48任一项所述的方法,其特征在于,所述基站基于所述第二服务小区的帧结构在第二服务小区上与所述第二用户设备发送和接收信息,包括:
    所述基站给所述第二用户设备指示物理下行共享信道对应的传输模式,所述传输模式为传输模式10。
  50. 根据权利要求44至49任一项所述的方法,其特征在于,所述基站基于所述第二服务小区的帧结构在第二服务小区上与所述第二用户设备发送和接收信息,包括:
    所述基站在下行子帧n1在所述第二服务小区上给所述第二用户设备发送物理下行共享信道,所述物理下行共享信道传输的起始符号为所述下行子帧n1中的第4个符号,所述n1为非负整数。
  51. 一种信息的发送和接收的系统,其特征在于,所述系统包括:如权利要求1-9任一项所述的第一用户设备、第二用户设备以及如权利要求19-34任一项所述的基站,所述第二用户设备包括:
    第三帧确定模块,用于确定第二服务小区的帧结构;
    第三收发模块,与所述第三帧确定模块连接,用于基于所述第二服务小区的帧结构在第二服务小区上发送和接收信息;
    其中,所述第二服务小区的帧结构与长期演进系统版本8或版本9或版本10或版本11或版本12中的帧结构类型2相同,所述第二服务小区的频率资源与所述第一服务小区的频率资源相邻或相同。
  52. 根据权利要求51所述的系统,其特征在于,
    当所述第一服务小区的上下行配比为上下行配比0时,所述第二服务小区的上下行配比为上下行配比1;或
    当所述第一服务小区的上下行配比为上下行配比1时,所述第二服务小区的上下行配比为上下行配比2;或
    当所述第一服务小区的上下行配比为上下行配比3时,所述第二服务小区 的上下行配比为上下行配比4;或
    当所述第一服务小区的上下行配比为上下行配比4时,所述第二服务小区的上下行配比为上下行配比5。
  53. 根据权利要求51至52任一项所述的系统,其特征在于,所述第二服务小区的帧结构中的特殊子帧的配比为特殊子帧配比5或特殊子帧配比0。
  54. 根据权利要求51至53任一项所述的系统,其特征在于,所述第一服务小区和所述第二服务小区子帧间偏移11个符号。
  55. 根据权利要求54所述的系统,其特征在于,所述第一服务小区的子帧比所述第二服务小区的子帧提前11个符号。
  56. 根据权利要求51至55任一项所述的系统,其特征在于,所述第三收发模块用于:
    在下行子帧n1在所述第二服务小区上接收物理下行共享信道,所述物理下行共享信道传输的起始符号为所述下行子帧n1中的第4个符号,所述n1为非负整数。
  57. 根据权利要求51至55任一项所述的系统,其特征在于,所述第三收发模块用于:
    在下行子帧n2在所述第二服务小区上接收物理下行控制信道,所述物理下行控制信道承载于所述下行子帧n2的第一个符号上,所述n2为非负整数。
  58. 根据权利要求57所述的系统,其特征在于,所述物理下行控制信道为公共搜索空间对应的物理下行控制信道。
PCT/CN2015/079050 2015-05-15 2015-05-15 信息的发送和接收方法及系统、基站、第一用户设备 WO2016183722A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/079050 WO2016183722A1 (zh) 2015-05-15 2015-05-15 信息的发送和接收方法及系统、基站、第一用户设备
CN201580080042.3A CN107710643B (zh) 2015-05-15 2015-05-15 信息的发送和接收方法及系统、基站、第一用户设备
EP15892103.1A EP3288193B1 (en) 2015-05-15 2015-05-15 Method and system for sending and receiving information, base station, and first user equipment
US15/812,603 US10587337B2 (en) 2015-05-15 2017-11-14 Information sending and receiving method and system, base station, and first user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079050 WO2016183722A1 (zh) 2015-05-15 2015-05-15 信息的发送和接收方法及系统、基站、第一用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/812,603 Continuation US10587337B2 (en) 2015-05-15 2017-11-14 Information sending and receiving method and system, base station, and first user equipment

Publications (1)

Publication Number Publication Date
WO2016183722A1 true WO2016183722A1 (zh) 2016-11-24

Family

ID=57319092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079050 WO2016183722A1 (zh) 2015-05-15 2015-05-15 信息的发送和接收方法及系统、基站、第一用户设备

Country Status (4)

Country Link
US (1) US10587337B2 (zh)
EP (1) EP3288193B1 (zh)
CN (1) CN107710643B (zh)
WO (1) WO2016183722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809319A (zh) * 2018-08-06 2020-02-18 黎光洁 一种物联网中的数据传输方法及数据传输系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172902A1 (zh) * 2015-04-30 2016-11-03 华为技术有限公司 一种信息的发送和接收方法、用户设备及基站
SG10202001291QA (en) * 2016-04-08 2020-04-29 Idac Holdings Inc Phy layer multiplexing of different types of traffic in 5g systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141187A (zh) * 2007-10-12 2008-03-12 中兴通讯股份有限公司 时分双工模式下正交频分复用技术的帧的生成方法
CN102075310A (zh) * 2011-02-25 2011-05-25 电信科学技术研究院 载波重配置中处理ack/nack反馈的方法及装置
CN102377475A (zh) * 2010-08-19 2012-03-14 大唐移动通信设备有限公司 一种确定下行子帧的控制区符号数的方法及装置
US20120195272A1 (en) * 2011-01-31 2012-08-02 Samsung Electronics Co., Ltd. Apparatus and method for avoiding downlink interference from interfering base station in mobile communication system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026653B (zh) * 2010-07-26 2016-05-25 Lg电子株式会社 在无线通信系统中发送上行控制信息的方法和设备
CN102223214B (zh) * 2011-06-01 2014-04-16 电信科学技术研究院 一种数据传输的方法及装置
US9602251B2 (en) 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems
US20130286902A1 (en) * 2012-04-27 2013-10-31 Qualcomm Incorporated Flexible special subframe configuration for tdd in lte
CN103516487B (zh) * 2012-06-18 2017-11-28 中兴通讯股份有限公司 混合自动重传请求确认应答信息的传输方法和终端
WO2014168448A1 (ko) * 2013-04-11 2014-10-16 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치
WO2015046358A1 (ja) * 2013-09-26 2015-04-02 シャープ株式会社 端末、基地局、および通信方法
CN104519579B (zh) * 2013-09-27 2019-06-18 上海诺基亚贝尔股份有限公司 基于子帧集合的操作和信令生成方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141187A (zh) * 2007-10-12 2008-03-12 中兴通讯股份有限公司 时分双工模式下正交频分复用技术的帧的生成方法
CN102377475A (zh) * 2010-08-19 2012-03-14 大唐移动通信设备有限公司 一种确定下行子帧的控制区符号数的方法及装置
US20120195272A1 (en) * 2011-01-31 2012-08-02 Samsung Electronics Co., Ltd. Apparatus and method for avoiding downlink interference from interfering base station in mobile communication system
CN102075310A (zh) * 2011-02-25 2011-05-25 电信科学技术研究院 载波重配置中处理ack/nack反馈的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NSN: "Downlink ACK Transmission", 3GPPTSG-RANWG1 MEETING #74, R1-133728, 23 August 2013 (2013-08-23), XP050716808 *
See also references of EP3288193A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809319A (zh) * 2018-08-06 2020-02-18 黎光洁 一种物联网中的数据传输方法及数据传输系统
CN110809319B (zh) * 2018-08-06 2023-10-31 黎光洁 一种物联网中的数据传输方法及数据传输系统

Also Published As

Publication number Publication date
CN107710643B (zh) 2020-04-28
EP3288193A1 (en) 2018-02-28
US10587337B2 (en) 2020-03-10
US20180069622A1 (en) 2018-03-08
EP3288193B1 (en) 2020-03-04
CN107710643A (zh) 2018-02-16
EP3288193A4 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
CN107147480B (zh) 一种支持pusch的同步harq传输的方法及装置
CN109474371B (zh) 一种harq-ack信息反馈方法和设备
US20180098318A1 (en) Physical uplink control channel (pucch) resource allocation (ra) for a hybrid automatic retransmission re-quest-acknowledge (harq-ack) transmission
US8798014B2 (en) Data transmission method and device in carrier aggregation system
TWI604706B (zh) 載波聚合確認位元
KR101983240B1 (ko) 무선 통신 시스템에서 ack/nack 신호를 송신하는 방법 및 장치
JP6561130B2 (ja) ハイブリッド自動再送要求−肯定応答伝送方法及び装置
US11050520B2 (en) Soft buffer processing method and device in TDD systems
US20150055519A1 (en) Harq feedback implementation method and device
US10715280B2 (en) Method and apparatus for determining a feedback time sequence, and device and storage medium
WO2017133005A1 (zh) 反馈信息发送方法及装置
CN103516499B (zh) 一种ack/nack反馈比特数确定方法及装置
JP2016530761A5 (zh)
RU2016107020A (ru) Временная шкала harq для tdd-fdd агрегирования несущих
KR20140073564A (ko) 무선 통신에서 확인응답 타이밍의 선택
JP2015508246A5 (zh)
WO2016197343A1 (zh) 信息发送或接收方法、用户设备及基站
EP2712258B1 (en) Cross-carrier scheduling based data transmission method, user equipment and base station
WO2017132811A1 (zh) 上行信息传输的方法、装置
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
WO2012175020A1 (zh) 时分双工系统中传输信息的方法、用户设备和基站
WO2014173351A1 (zh) 一种上行控制信息的发送方法及用户设备、基站
WO2013113272A1 (zh) 一种发送和接收反馈信息的方法、系统及装置
WO2013120430A1 (zh) 上行数据传输方法和装置
WO2013159734A1 (zh) 一种数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015892103

Country of ref document: EP