WO2016182351A1 - Diffuser for sewage/waste water treatment apparatus, and method for manufacturing same - Google Patents

Diffuser for sewage/waste water treatment apparatus, and method for manufacturing same Download PDF

Info

Publication number
WO2016182351A1
WO2016182351A1 PCT/KR2016/004947 KR2016004947W WO2016182351A1 WO 2016182351 A1 WO2016182351 A1 WO 2016182351A1 KR 2016004947 W KR2016004947 W KR 2016004947W WO 2016182351 A1 WO2016182351 A1 WO 2016182351A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
sewage
treatment apparatus
waste water
mixture
Prior art date
Application number
PCT/KR2016/004947
Other languages
French (fr)
Korean (ko)
Inventor
김호걸
Original Assignee
주식회사 코리아세라믹인터내셔날
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코리아세라믹인터내셔날 filed Critical 주식회사 코리아세라믹인터내셔날
Publication of WO2016182351A1 publication Critical patent/WO2016182351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a wastewater treatment apparatus, and more particularly, to an diffuser and a manufacturing method of a wastewater treatment apparatus for purifying sewage or wastewater using air bubbles in sewage or wastewater.
  • activated sludge In biological sewage treatment processes to remove organic matter, nitrogen and phosphorus in sewage, a collection of microorganisms called activated sludge is a biological solid that plays a key role.
  • the operating efficiency of the sewage treatment process (activated sludge process) using activated sludge depends on the concentration load and flow load of pollutants including organic matter of the influent sewage, the activated sludge concentration and state of the reactor, the hydraulic residence time and the solid residence time. It is greatly affected.
  • the concentration of activated sludge has been recognized as a very important driving factor not only in typical activated sludge processes but also in advanced sewage treatment processes including nitrogen and phosphorus removal.
  • the methods developed for the operation of a high concentration activated sludge process include an activated sludge process (Membrane Bioreactor, MBR) using an immersion membrane, a pure oxygen aeration process, and a biofilter method using a carrier which is a typical deposition growth method.
  • MBR activated sludge process
  • the organic matter load per unit volume can be increased by increasing the organic matter treatment capacity in the aeration tank, which can reduce the reaction tank volume by 50 ⁇ 75%, and thus the required site area. Also greatly reduced.
  • the nitrification rate is expected to be sharply improved according to the increase in the nitric oxide microbial concentration, it is possible to maximize the removal efficiency of ammonia nitrogen.
  • the initial cost according to the purchase of the membrane or the carrier is very large, and the blockage by activated sludge or sludge secretion occurs during a long period of operation, thereby increasing the pressure loss.
  • a sequencing batch reactor (SBR) process has been developed and applied to wastewater treatment.
  • This method is not only unnecessary secondary sedimentation basin because each unit process is performed in a single reactor, it is easy to control filamentous bacteria and easy construction, which is very advantageous in terms of stable management of sewage.
  • the existing SBR process has a disadvantage that the sludge particles are included in the effluent when the water flow characteristics in the reaction vessel is changed in the process of flowing out the treated water.
  • blowers are used in most existing aeration processes, the use of a large amount of power has caused a problem due to an increase in the cost of maintenance of the process.
  • a flotation method may be used, and among these, dissolved air flotation (DAF) is widely used as a prior art.
  • DAF dissolved air flotation
  • the dissolved air flotation method requires a high pressure of 4-5 atm to supply dissolved air and a large-capacity compression device to secure the air volume. There are disadvantages.
  • air flotation which is recently used, generates bubbles by using ceramic membrane diffusers instead of generating bubbles by using dissolved dissolved air.
  • the solid-liquid flotation is separated, and the high-liquid sludge separated from the solid-liquid is transported and removed by a skimmer.
  • the sewage treatment apparatus by air flotation method performs the precipitation process, and after performing the aeration process one or more times to increase the amount of dissolved oxygen by using the air bubbles again after performing the precipitation process fine bubbles Injury process to injure the sludge and remove it can be performed sequentially.
  • the aeration process and the flotation process are performed through the diffuser formed pores.
  • the conventional wastewater treatment apparatus using the air flotation method has a problem in that it is difficult to manufacture a diffuser suitable for performing the aeration process and the flotation process, so that the wastewater treatment method using the air flotation method is commercialized.
  • An object of the present invention is to provide a diffuser and a manufacturing method of a wastewater treatment apparatus capable of forming bubbles capable of providing an optimal aeration effect in order to solve the above problems.
  • the present invention was created in order to achieve the object of the present invention as described above, the present invention, sewage or waste water to increase the amount of dissolved oxygen using aeration bubble, and after the precipitation process using sewage or fine bubbles
  • a wastewater treatment apparatus that floats particles in wastewater, the diffuser forming an aeration bubble having a diameter distribution of 0.5 mm to 5 mm or more and 90% or more, comprising SiO 2 , Al 2 O 3 , starch, and remainder as inevitable impurities.
  • a diffuser of a wastewater treatment apparatus manufactured by mixing and kneading a mixture with water and then molding and baking.
  • the mixture may include one or more of Fe 2 O 3 , CaO, MgO, Actigel, micelles, and PEO.
  • the mixture is 49wt% to 60wt% SiO 2 , 28wt% to 41wt% Al 2 O 3 , 0.5wt% to 1.5wt% Fe 2 O 3 , 0.1wt% to 0.6wt% CaO, 0.05wt% As 0.3 wt% MgO, 0.1 wt% to 0.4 wt% etigel, 0.1 wt% to 0.4 wt% micelles, and 0.1 wt% to 0.4 wt% PEO, 3 wt% to 13 wt% starch, and the balance May contain unavoidable impurities.
  • Actigel is a product of Active Minerals (http://activeminerals.com/) and is defined as hydrous magnesium aluminum-silicate.
  • Micelles also referred to as micelles, refer to aggregates in which surfactants are aggregated above a certain concentration.
  • the mixture After kneading the mixture, it may be formed as a molded body by extrusion molding and then formed by drying and firing.
  • Firing of the molded body may be performed under a temperature of 900 °C ⁇ 1,400 °C.
  • the diffuser has a length between 20 cm and 200 cm, and air may be injected at an air pressure between 0.09 MPa and 0.2 MPa.
  • the present invention also increases the amount of dissolved oxygen in the sewage or waste water by using aeration bubbles, and in the sewage treatment apparatus for floating particles in sewage or waste water using fine bubbles after the precipitation process, the diameter distribution is 0.5mm ⁇
  • a method for producing an diffuser that forms an aeration bubble of 5% or more at 5 mm, wherein a mixture containing SiO 2 , Al 2 O 3 , starch, and unavoidable impurities as remainder is mixed with water and kneaded, followed by molding and firing Disclosed is a method of manufacturing an diffuser of a manufactured sewage water treatment apparatus.
  • the diffuser and the method of manufacturing the wastewater treatment apparatus according to the present invention by providing a composition of the mixture for the formation of the diffuser forming the aeration bubbles, it is possible to form aeration bubbles that can give an optimum aeration effect There is an advantage to that.
  • FIG. 1 is a block diagram showing an example of a treatment process of a wastewater treatment apparatus using an air flotation method.
  • FIG. 2 is a conceptual diagram showing a part of a wastewater treatment apparatus according to the present invention.
  • FIG. 3 is a perspective view showing one embodiment of the diffuser in FIG.
  • Figure 4 is a graph showing the distribution of the diameter of the bubble for aeration formed by the diffuser formed by the composition of the conditions according to the present invention as the diffuser of FIG.
  • 5 is a graph showing the amount of air discharged by injection pressure (MPa).
  • the diffuser 2 of the wastewater treatment apparatus according to the present invention is installed in the bottom portion of the septic tank 1 containing the sewage or wastewater to form bubbles in the sewage or wastewater to sewage Or to increase the amount of dissolved oxygen in the wastewater.
  • the wastewater treatment apparatus forms aeration bubbles at the bottom of the septic tank 1 containing the sewage or wastewater, that is, increases the amount of dissolved oxygen in the sewage or wastewater by using the bubbles to secure microbial concentration and settling reactions. It is a device for shortening the time and purifying sewage or wastewater by removing particles, etc. deposited after the aeration process using fine bubbles.
  • the diffuser (2) has a certain length so as to form a bubble for aeration in the bottom portion of the septic tank (1) containing the sewage or waste water is connected to the main pipe (3) connected to the air supply device, such as an air pump It may have a pipe shape.
  • the diffuser 2 has a length between 20 cm and 200 cm, and air may be injected at an air pressure between 0.09 MPa and 0.2 MPa.
  • the diffuser 2 may be configured as a hollow cylinder having one end connected to the main pipe 3 described above and the other end blocked.
  • the diffuser (2) may be arranged parallel to each other on both sides with respect to the main pipe (3).
  • the diffuser (2) confirms the best effect of increasing the amount of dissolved oxygen when forming an aeration bubble having a diameter distribution of more than 90% at 0.5mm ⁇ 5mm under the conditions of air pressure between 0.09MPa ⁇ 0.2MPa It was.
  • the said bubble for aeration is 2 mm in average diameter.
  • the diffuser 2 is preferably manufactured to form an aeration bubble having a diameter distribution of 90% or more at 0.5mm to 5mm under conditions of air pressure between 0.09MPa and 0.2MPa.
  • the present inventors present the composition and firing conditions of the mixture for forming the diffuser 2, the diffuser 2, forming a bubble for aeration having a diameter distribution of more than 90% at 0.5mm ⁇ 5mm.
  • the diffuser it is preferable that the mixture containing SiO 2 , Al 2 O 3 , starch, and the remainder as an unavoidable impurity is mixed with water and kneaded, followed by molding and firing.
  • the acid pipe (2) is a mixture of SiO 2 , Al 2 O 3 , starch, unavoidable impurities as a balance to form a mixture, adding water to the mixed mixture through the mixing process Kneading process by kneading, molding process of forming the diffuser 2 to a diameter and length predesigned after the kneading process, drying process of drying the molded body through the molding process, and heating the molded body after the drying process to a predetermined temperature By firing can be prepared through a firing process.
  • the mixing process and the kneading process may be merged with each other depending on the time of the water input, the amount of water to be added may be selected in an appropriate amount in consideration of the molding conditions.
  • the molding process is a process of molding the diffuser 2 to a diameter and length previously designed after kneading, and is preferably extruded in consideration of having an empty hollow cylinder structure inside.
  • the firing process may be performed by various processes as a process of heating and baking a molded product that has undergone a drying process and a drying process at a temperature of 900 ° C to 1,400 ° C.
  • the diffuser (2) the diameter distribution of the aeration bubbles formed by the adjustment of the mixture is determined, at least one of Fe 2 O 3 , CaO, MgO, actigel, micelles, and PEO (polyethylene oxide) It is more preferable to include.
  • the diffuser 2 needs to be optimized for the composition of the mixture so as to form aeration bubbles having a diameter distribution of 90% or more at 0.5 mm to 5 mm under conditions of air pressure between 0.09 MPa and 0.2 MPa. .
  • the mixture is a weight ratio excluding water, 49wt% ⁇ 60wt% SiO 2 , 28wt% ⁇ 41wt% Al 2 O 3 , 0.5wt% ⁇ 1.5wt% Fe 2 O 3 , 0.1wt% ⁇ 0.6 wt% CaO, 0.05wt% ⁇ 0.3wt% MgO, 0.1wt% ⁇ 0.4wt% Actigel, 0.1wt% ⁇ 0.4wt% Micell, and 0.1wt% ⁇ 0.4wt% PEO, 3wt% ⁇ It is preferable to contain 13 wt% of starch, and remainder as unavoidable impurities.
  • the diameter of the bubble for aeration is 1.0 mm-3.0 mm. If the diameter of the bubble for aeration is smaller than 1.0mm, there is a problem that the slurry containing the organic material including nitric acid, phosphorus, etc. is floated to the surface layer, if larger than 3.0mm there is a problem that rises immediately to the dissolved oxygen increase effect is reduced. .
  • the composition of the mixture was 55 wt% SiO 2 , 35 wt% Al 2 O 3 , 1.5 wt% Fe 2 O 3 , 0.6 wt% CaO, 0.3 wt% MgO, 0.35 wt% Actigel, 0.35 wt% Micelles, 0.35 wt% PEO, 6 wt% starch, and the balance were unavoidable impurities.
  • the diffuser 2 was formed with a hollow inner diameter D 2 of 2.6 cm, an outer diameter D 1 of 4 cm, and a length of 120 cm.
  • the aeration bubbles formed by the diffuser 2 have a diameter distribution of more than 90% at a diameter of 0.5 mm to 5 mm.
  • the aeration bubbles are 90% or more in diameter distribution of 0.5mm ⁇ 5mm, aeration bubbles that can give the optimum dissolved oxygen increase effect It can be seen that they can form.
  • the aeration bubbles are more than 90% at a diameter distribution of 0.5mm ⁇ 5mm, according to the composition conditions described above in forming aeration bubbles that can give an optimum dissolved oxygen increase effect It can be seen that it is implemented.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The present invention relates to a sewage/waste water treatment apparatus, and more specifically, a diffuser for a sewage/waste water treatment apparatus for purifying sewage or waste water using bubbles in the sewage or waste water, and a method for manufacturing same. Disclosed is a diffuser for a sewage/waste water treatment apparatus which increases dissolved oxygen in sewage and waste water using aeration bubbles, performs sedimentation, and then floats particles in the sewage or waste water using microbubbles, wherein the diffuser, as a diffuser forming 90% or more of aeration bubbles having a diameter of 0.5 mm to 5 mm, is manufactured by mixing water and a mixture comprising SiO2, Al2O3, starch, and inevitable impurities as a remainder, kneading the resulting mixture, then molding and firing.

Description

하폐수 처리장치의 산기관 및 그 제조방법 Diffusion engine of sewage water treatment system and its manufacturing method
본 발명은 하폐수 처리장치에 관한 것으로서, 보다 상세하게는 하수 또는 폐수에 기포를 이용하여 하수 또는 폐수를 정화하기 위한 하폐수 처리장치의 산기관 및 그 제조방법에 관한 것이다.The present invention relates to a wastewater treatment apparatus, and more particularly, to an diffuser and a manufacturing method of a wastewater treatment apparatus for purifying sewage or wastewater using air bubbles in sewage or wastewater.
하수 중의 유기물, 질소, 인 등을 제거하는 생물학적 하수 처리 공정에서 활성슬러지라 불리는 미생물 집합은 가장 핵심적인 역할을 수행하는 생물학적 고형물이다. In biological sewage treatment processes to remove organic matter, nitrogen and phosphorus in sewage, a collection of microorganisms called activated sludge is a biological solid that plays a key role.
이러한 활성슬러지를 이용한 하수 처리 공정(활성슬러지 공정)의 운전 효율은 유입 하수의 유기물을 포함한 오염 물질의 농도 부하 및 유량 부하, 반응조의 활성슬러지 농도 및 상태, 수리학적 체류시간과 고형물 체류시간 등에 의해 큰 영향을 받는다. The operating efficiency of the sewage treatment process (activated sludge process) using activated sludge depends on the concentration load and flow load of pollutants including organic matter of the influent sewage, the activated sludge concentration and state of the reactor, the hydraulic residence time and the solid residence time. It is greatly affected.
특히, 활성슬러지의 농도는 전형적인 활성슬러지 공정 뿐만 아니라 질소 및 인 제거를 포함한 하수 고도처리공정에서도 매우 중요한 운전인자로서 인식되고 있다. In particular, the concentration of activated sludge has been recognized as a very important driving factor not only in typical activated sludge processes but also in advanced sewage treatment processes including nitrogen and phosphorus removal.
그러나, 기존의 고액분리 방법 중 가장 보편적으로 사용되는 중력침전으로는 반응조의 활성슬러지 농도를 적절히 조절하거나 고농도로 유지할 수가 없다. However, gravity sedimentation, which is most commonly used among the existing solid-liquid separation methods, cannot properly adjust or maintain the activated sludge concentration in the reactor.
특히, 간헐적으로 발생하는 슬러지 팽화현상(bulking)이나 침전과정에서 탈질에 의해 발생하는 질소가스에 의한 슬러지 재부상과 이에 따른 고액분리 효율의 저하 및 활성슬러지의 과다 유실 문제는 중력침전에서 가장 대처하기 곤란한 문제점으로 지적되고 있다. In particular, sludge swelling caused by intermittent sludge bulking or sedimentation during sludge, sludge re-injury caused by nitrogen gas deterioration, consequent deterioration of solid-liquid separation efficiency and excessive loss of activated sludge are best addressed in gravity settling. It is pointed out as a difficult problem.
지금까지 고농도 활성슬러지 공정의 운전을 위해 개발된 방법으로는 침지형 막을 이용한 활성슬러지 공정(Membrane Bioreactor, MBR), 순산소 폭기 공정 및 대표적인 부착성장공법인 담체를 이용한 바이오필터 공법 등이 있다. The methods developed for the operation of a high concentration activated sludge process include an activated sludge process (Membrane Bioreactor, MBR) using an immersion membrane, a pure oxygen aeration process, and a biofilter method using a carrier which is a typical deposition growth method.
활성슬러지 공정에서 미생물을 고농도로 유지할 경우, 폭기조 내에서의 유기물 처리능력의 상승으로 단위 용적당 유기물 부하율을 증가시킬 수 있기 때문에 반응조 용적을 50~75%까지 감소시킬 수 있고, 이에 따른 소요 부지 면적도 대폭 줄어들게 된다. When microorganisms are maintained at high concentration in activated sludge process, the organic matter load per unit volume can be increased by increasing the organic matter treatment capacity in the aeration tank, which can reduce the reaction tank volume by 50 ~ 75%, and thus the required site area. Also greatly reduced.
뿐만 아니라, 질산화 미생물 농도의 증가에 따라 질산화율이 급격히 향상될 것으로 기대되어, 암모니아성 질소의 제거효율이 극대화될 수 있다. In addition, the nitrification rate is expected to be sharply improved according to the increase in the nitric oxide microbial concentration, it is possible to maximize the removal efficiency of ammonia nitrogen.
또한 F/M 비(food-to -microorganism ratio)가 낮아 슬러지의 자기 산화가 활발히 진행되어 잉여슬러지의 발생량이 줄어들 것으로 예상된다. In addition, due to the low F / M ratio (food-to-microorganism ratio), the self-oxidation of sludge is actively progressed and the amount of excess sludge is expected to decrease.
그러나 MBR 공정이나 바이오필터 공법과 같은 경우에는 막 또는 담체의 구입에 따른 초기비용이 매우 클 뿐만 아니라, 장기간 운전시 활성슬러지 또는 슬러지 분비물에 의한 폐색이 발생하고 이에 따라 압력손실이 커지게 된다. However, in the case of the MBR process or the biofilter method, the initial cost according to the purchase of the membrane or the carrier is very large, and the blockage by activated sludge or sludge secretion occurs during a long period of operation, thereby increasing the pressure loss.
따라서, 주기적인 세척 또는 역세척이 반드시 수반되어야 하는 단점이 있다.Therefore, there is a disadvantage in that periodic cleaning or backwashing must be accompanied.
순산소를 이용한 폭기 공법의 경우에는 활성슬러지를 고농도로 유지하기 위해서 매우 양호한 슬러지의 침전성이 항상 확보되어야 하기 때문에 안정적인 운전이 불가능하고, 폭기조의 미생물 농도 또한 8,000 mg/L 이상으로는 유지하기 어렵다고 알려져 있다.In the case of aeration using pure oxygen, stable sedimentation of the sludge must be ensured at all times in order to maintain activated sludge at a high concentration. Known.
더불어 순산소를 공급하기 위해 추가적인 비용이 든다는 단점도 있다.In addition, there is a disadvantage in that additional costs are required to supply oxygen.
이러한 방법들 이외에도, 단일 반응조에서 하수 등의 유입(fill), 반응(reaction), 침전(settle), 배출(draw) 및 휴지(idle)의 단위 공정이 정해진 시간의 배열에 따라 연속적으로 이루어지는 연속 회분식 반응기(sequencing batch reactor, SBR) 공정이 개발되어 하폐수 처리에 적용되고 있다. In addition to these methods, a continuous batch process in which a unit process of fill, reaction, settling, draw and idle of sewage and the like in a single reactor is continuously performed according to a predetermined time sequence. A sequencing batch reactor (SBR) process has been developed and applied to wastewater treatment.
이 방법은 각각의 단위 공정이 단일 반응조에서 이루어지므로 이차 침전지가 불필요할 뿐만 아니라 사상균의 제어가 용이하며 시공이 간편하여 하수 등의 안정적 관리 측면에서 매우 유리하다. This method is not only unnecessary secondary sedimentation basin because each unit process is performed in a single reactor, it is easy to control filamentous bacteria and easy construction, which is very advantageous in terms of stable management of sewage.
그러나, 이러한 전형적인 또는 변형된 형태의 SBR 공정은 혼합액 현탁 고형물(mixed liquor suspended solids, MLSS) 농도를 원하는 수준으로 높게 유지할 수 없을뿐만 아니라 거의 필수적으로 거쳐야 하는 침전 반응에 소요되는 시간이 길어 전체 공정의 주기 시간을 증가시키게 되는 단점이 있다. However, this typical or modified form of SBR process is not only able to keep the mixed liquor suspended solids (MLSS) concentrations as high as desired, but also requires a long time for the precipitation reaction, which is almost essential to complete the entire process. The disadvantage is that the cycle time is increased.
또한 기존의 SBR 공정은 처리수를 유출하는 과정에서 반응조 내의 수류 특성이 변하는 경우에 슬러지 입자가 유출수에 포함되어 유실될 수 있는 단점이 있다.In addition, the existing SBR process has a disadvantage that the sludge particles are included in the effluent when the water flow characteristics in the reaction vessel is changed in the process of flowing out the treated water.
또한 기존의 대부분의 폭기공정에서 Blower(송풍기)를 사용하므로 대량의 전력량의 사용으로 공정의 유지관리의 비용의 상승에 의한 문제점으로 대두 되고 있는 실정이다.In addition, since blowers are used in most existing aeration processes, the use of a large amount of power has caused a problem due to an increase in the cost of maintenance of the process.
한편 반응조의 미생물 농도 확보와 침전 반응에 소요되는 시간을 단축하기 위하여 부상분리법을 사용할 수 있는데, 이 중 용존 공기 부상법(Dissolved Air Flotation, DAF)이 선행기술로 널리 사용되고 있다. Meanwhile, in order to shorten the time required for securing the microbial concentration and the precipitation reaction of the reactor, a flotation method may be used, and among these, dissolved air flotation (DAF) is widely used as a prior art.
그러나 용존 공기 부상법에서는 용존된 공기를 공급하기 위해서 4-5기압의 높은 압력이 필요하고, 공기량 확보를 위해 대용량의 압축장치가 필요하기 때문에 전체 공정을 운영하는데 넓은 부지소요되며 운영 비용이 많이 든다는 단점이 존재한다. However, the dissolved air flotation method requires a high pressure of 4-5 atm to supply dissolved air and a large-capacity compression device to secure the air volume. There are disadvantages.
이러한 단점을 극복하기 위해 최근 사용되는 방법인 공기 부상법(air flotation, AF)에서는 가압하여 과용해시킨 용존 공기를 이용하여 기포를 발생시키는 대신, 세라믹 멤브레인 산기관에 의해 인위적으로 발생시킨 미세 기포를 이용하여 고액 부상분리시키고, 고액분리된 고농도 슬러지를 스키머(skimmer) 등으로 이송·제거하는 방식을 취한다.In order to overcome this drawback, air flotation (AF), which is recently used, generates bubbles by using ceramic membrane diffusers instead of generating bubbles by using dissolved dissolved air. The solid-liquid flotation is separated, and the high-liquid sludge separated from the solid-liquid is transported and removed by a skimmer.
한편 공기 부상법에 의한 하폐수 처리장치는, 도 1에 도시된 바와 같이, 침전과정의 수행하고, 기포를 이용하여 용존 산소량을 증가시키는 1회 이상의 폭기과정을 거친 후 다시 침전과정의 수행 후 미세기포를 이용하여 슬러지 등을 부상시켜 제거하는 부상과정을 순차적으로 수행할 수 있다.On the other hand, the sewage treatment apparatus by air flotation method, as shown in Figure 1, performs the precipitation process, and after performing the aeration process one or more times to increase the amount of dissolved oxygen by using the air bubbles again after performing the precipitation process fine bubbles Injury process to injure the sludge and remove it can be performed sequentially.
여기서 폭기과정 및 부상과정은, 기공들이 형성된 산기관을 통하여 이루어진다.Here, the aeration process and the flotation process are performed through the diffuser formed pores.
그런데 종래의 공기 부상법에 의한 하폐수 처리장치는, 폭기과정 및 부상과정의 수행에 적합한 산기관의 제조가 어려워 공기 부상법에 의한 하폐수 처리방법이 상용화되는데 문제점이 있다.However, the conventional wastewater treatment apparatus using the air flotation method has a problem in that it is difficult to manufacture a diffuser suitable for performing the aeration process and the flotation process, so that the wastewater treatment method using the air flotation method is commercialized.
본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여, 최적의 폭기효과를 부여할 수 있는 기포들을 형성할 수 있는 하폐수 처리장치의 산기관 및 그 제조방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a diffuser and a manufacturing method of a wastewater treatment apparatus capable of forming bubbles capable of providing an optimal aeration effect in order to solve the above problems.
본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 본 발명은, 하수 또는 폐수를 폭기용 기포를 이용하여 용존산소량을 증가시키고, 침전과정을 거친 후 미세기포를 이용하여 하수 또는 폐수에서 파티클을 부상시키는 하폐수 처리장치에 있어서, 직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성하는 산기관으로서, SiO2, Al2O3, 전분, 및 잔부로서 불가피 불순물을 포함하는 혼합물을 물과 혼합하여 반죽한 후 성형 및 소성에 의하여 제조된 하폐수 처리장치의 산기관을 개시한다.The present invention was created in order to achieve the object of the present invention as described above, the present invention, sewage or waste water to increase the amount of dissolved oxygen using aeration bubble, and after the precipitation process using sewage or fine bubbles A wastewater treatment apparatus that floats particles in wastewater, the diffuser forming an aeration bubble having a diameter distribution of 0.5 mm to 5 mm or more and 90% or more, comprising SiO 2 , Al 2 O 3 , starch, and remainder as inevitable impurities. Disclosed is a diffuser of a wastewater treatment apparatus manufactured by mixing and kneading a mixture with water and then molding and baking.
상기 혼합물은, Fe2O3, CaO, MgO, 엑티겔, 마이셀, 및 PEO 중 하나 이상을 포함할 수 있다.The mixture may include one or more of Fe 2 O 3 , CaO, MgO, Actigel, micelles, and PEO.
상기 혼합물은, 49wt%~60wt%의 SiO2, 28wt%~41wt%의 Al2O3, 0.5wt%~1.5wt%의 Fe2O3, 0.1wt%~0.6wt%의 CaO, 0.05wt%~0.3wt%의 MgO, 0.1wt%~0.4wt%의 엑티겔, 0.1wt%~0.4wt%의 마이셀, 및 0.1wt%~0.4wt%의 PEO, 3wt%~13wt%의 전분, 및 잔부로서 불가피 불순물을 포함할 수 있다.The mixture is 49wt% to 60wt% SiO 2 , 28wt% to 41wt% Al 2 O 3 , 0.5wt% to 1.5wt% Fe 2 O 3 , 0.1wt% to 0.6wt% CaO, 0.05wt% As 0.3 wt% MgO, 0.1 wt% to 0.4 wt% etigel, 0.1 wt% to 0.4 wt% micelles, and 0.1 wt% to 0.4 wt% PEO, 3 wt% to 13 wt% starch, and the balance May contain unavoidable impurities.
여기서 엑티겔(Actigel)은, Active Minerals 사(홈페이지 http://activeminerals.com/)의 제품으로서, 수화 마그네슘 규산 알루미늄 (hydrous magnesium aluminum-silicate)으로 정의된다.Actigel is a product of Active Minerals (http://activeminerals.com/) and is defined as hydrous magnesium aluminum-silicate.
마이셀은, 미셀(micelle)로도 일컬어지며 계면활성제가 일정 농도 이상에서 모인 집합체를 말한다.Micelles, also referred to as micelles, refer to aggregates in which surfactants are aggregated above a certain concentration.
상기 혼합물의 반죽 후 압출 성형에 의하여 성형체로서 형성된 후 건조 및 소성에 의하여 형성될 수 있다.After kneading the mixture, it may be formed as a molded body by extrusion molding and then formed by drying and firing.
상기 성형체의 소성은, 900℃~1,400℃의 온도 하에서 수행될 수 있다.Firing of the molded body may be performed under a temperature of 900 ℃ ~ 1,400 ℃.
상기 산기관은, 20㎝~200㎝ 사이의 길이를 가지며, 0.09MPa~0.2MPa 사이의 공기압으로 공기가 주입될 수 있다.The diffuser has a length between 20 cm and 200 cm, and air may be injected at an air pressure between 0.09 MPa and 0.2 MPa.
본 발명은 또한 하수 또는 폐수를 폭기용 기포를 이용하여 용존산소량을 증가시키고, 침전과정을 거친 후 미세기포를 이용하여 하수 또는 폐수에서 파티클을 부상시키는 하폐수 처리장치에 있어서, 직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성하는 산기관의 제조방법으로서, SiO2, Al2O3, 전분, 및 잔부로서 불가피 불순물을 포함하는 혼합물을 물과 혼합하여 반죽한 후 성형 및 소성에 의하여 제조된 하폐수 처리장치의 산기관의 제조방법을 개시한다.The present invention also increases the amount of dissolved oxygen in the sewage or waste water by using aeration bubbles, and in the sewage treatment apparatus for floating particles in sewage or waste water using fine bubbles after the precipitation process, the diameter distribution is 0.5mm ~ A method for producing an diffuser that forms an aeration bubble of 5% or more at 5 mm, wherein a mixture containing SiO 2 , Al 2 O 3 , starch, and unavoidable impurities as remainder is mixed with water and kneaded, followed by molding and firing Disclosed is a method of manufacturing an diffuser of a manufactured sewage water treatment apparatus.
본 발명에 따른 하폐수 처리장치의 산기관 및 그 제조방법은, 폭기용 기포들을 형성하는 산기관의 형성을 위한 혼합물의 조성을 제공함으로써, 최적의 폭기효과를 부여할 수 있는 폭기용 기포들을 형성할 수 있는 이점이 있다.The diffuser and the method of manufacturing the wastewater treatment apparatus according to the present invention, by providing a composition of the mixture for the formation of the diffuser forming the aeration bubbles, it is possible to form aeration bubbles that can give an optimum aeration effect There is an advantage to that.
도 1은, 공기부상법에 의한 하폐수 처리장치의 처리과정의 일예를 보여주는 블럭도이다.1 is a block diagram showing an example of a treatment process of a wastewater treatment apparatus using an air flotation method.
도 2는, 본 발명에 따른 하폐수 처리장치의 일부를 보여주는 개념도이다.2 is a conceptual diagram showing a part of a wastewater treatment apparatus according to the present invention.
도 3은, 도 1에서 산기관의 일실시예를 보여주는 사시도이다.3 is a perspective view showing one embodiment of the diffuser in FIG.
도 4는, 도 1의 산기관으로서 본 발명에 따른 조건의 조성에 의하여 형성된 산기관에 의하여 형성되는 폭기용 기포의 직경의 분포를 보여주는 그래프이다.Figure 4 is a graph showing the distribution of the diameter of the bubble for aeration formed by the diffuser formed by the composition of the conditions according to the present invention as the diffuser of FIG.
도 5는, 주입 압력별(MPa) 공기 방출량을 보여주는 그래프이다.5 is a graph showing the amount of air discharged by injection pressure (MPa).
이하 본 발명에 따른 하폐수 처리장치의 산기관 및 그 제조방법에 관하여 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, the diffuser and the manufacturing method of the wastewater treatment apparatus according to the present invention will be described with reference to the accompanying drawings.
본 발명에 따른 하폐수 처리장치의 산기관(2)은, 도 2 및 도 3에 도시된 바와 같이, 하수 또는 폐수가 담긴 정화조(1)의 바닥 부분에 설치되어 하수 또는 폐수에 기포를 형성하여 하수 또는 폐수 내에 용존 산소량을 증가시키는 데 사용됨을 특징으로 한다.The diffuser 2 of the wastewater treatment apparatus according to the present invention, as shown in Figures 2 and 3, is installed in the bottom portion of the septic tank 1 containing the sewage or wastewater to form bubbles in the sewage or wastewater to sewage Or to increase the amount of dissolved oxygen in the wastewater.
여기서 하폐수 처리장치는, 하수 또는 폐수가 담긴 정화조(1)의 바닥 부분에서 폭기용 기포를 형성하여, 즉 기포를 이용하여 하수 또는 폐수에 용존산소량을 증가킴으로써 미생물 농도 확보와 침전 반응에 소요되는 시간을 단축하며, 폭기 과정 후에 침전된 파티클 등을 미세기포를 이용하여 제거함으로써 하수 또는 폐수를 정화하는 장치이다.Here, the wastewater treatment apparatus forms aeration bubbles at the bottom of the septic tank 1 containing the sewage or wastewater, that is, increases the amount of dissolved oxygen in the sewage or wastewater by using the bubbles to secure microbial concentration and settling reactions. It is a device for shortening the time and purifying sewage or wastewater by removing particles, etc. deposited after the aeration process using fine bubbles.
그리고 상기 산기관(2)은, 공기펌프와 같은 공기공급장치와 연결된 주배관(3)과 연결되어 하수 또는 폐수가 담긴 정화조(1)의 바닥 부분에서 폭기용 기포를 형성할 수 있도록 일정한 길이를 가지는 파이프 형상을 가질 수 있다.And the diffuser (2) has a certain length so as to form a bubble for aeration in the bottom portion of the septic tank (1) containing the sewage or waste water is connected to the main pipe (3) connected to the air supply device, such as an air pump It may have a pipe shape.
구체적으로, 상기 산기관(2)은, 20㎝~200㎝ 사이의 길이를 가지며, 0.09MPa~0.2MPa 사이의 공기압으로 공기가 주입될 수 있다.In detail, the diffuser 2 has a length between 20 cm and 200 cm, and air may be injected at an air pressure between 0.09 MPa and 0.2 MPa.
여기서 상기 산기관(2)은, 일단이 앞서 설명한 주배관(3)과 연결되고 타단이 막힌 형태의 중공 실린더로 구성될 수 있다.Here, the diffuser 2 may be configured as a hollow cylinder having one end connected to the main pipe 3 described above and the other end blocked.
아울러, 상기 산기관(2)은, 주배관(3)을 중심으로 양측에서 서로 평행하게 배치될 수 있다.In addition, the diffuser (2) may be arranged parallel to each other on both sides with respect to the main pipe (3).
한편 상기 산기관(2)은, 실험에 따르면, 0.09MPa~0.2MPa 사이의 공기압의 조건 하에서 직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성할 때 용존 산소량 증가효과 가장 좋음을 확인하였다.On the other hand, the diffuser (2), according to the experiment, confirms the best effect of increasing the amount of dissolved oxygen when forming an aeration bubble having a diameter distribution of more than 90% at 0.5mm ~ 5mm under the conditions of air pressure between 0.09MPa ~ 0.2MPa It was.
특히 그리고 상기 폭기용 기포는, 평균 직경이 2mm인 것이 바람직하다.In particular, it is preferable that the said bubble for aeration is 2 mm in average diameter.
이에, 상기 산기관(2)은, 0.09MPa~0.2MPa 사이의 공기압의 조건 하에서 직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성하도록 제조됨이 바람직하다.Thus, the diffuser 2 is preferably manufactured to form an aeration bubble having a diameter distribution of 90% or more at 0.5mm to 5mm under conditions of air pressure between 0.09MPa and 0.2MPa.
이에 본 출원의 발명자는, 산기관(2)을 성형을 위한 혼합물의 조성 및 소성 조건을 제시하며, 산기관(2)은, 직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성하는 산기관으로서, SiO2, Al2O3, 전분, 및 잔부로서 불가피 불순물을 포함하는 혼합물을 물과 혼합하여 반죽한 후 성형 및 소성에 의하여 제조됨이 바람직하다.The present inventors present the composition and firing conditions of the mixture for forming the diffuser 2, the diffuser 2, forming a bubble for aeration having a diameter distribution of more than 90% at 0.5mm ~ 5mm. As the diffuser, it is preferable that the mixture containing SiO 2 , Al 2 O 3 , starch, and the remainder as an unavoidable impurity is mixed with water and kneaded, followed by molding and firing.
구체적은 제조과정으로서, 상기 산기관(2)은, SiO2, Al2O3, 전분, 잔부로서 불가피 불순물 등을 혼합하여 혼합물을 형성하는 혼합과정, 혼합과정을 통하여 혼합된 혼합물에 물을 추가하여 반죽하는 반죽과정, 반죽과정 후에 미리 설계된 직경 및 길이로 산기관(2)을 성형하는 성형과정, 성형과정을 거쳐 성형된 성형체를 건조하는 건조과정 및 건조과정을 거친 성형체를 소정의 온도로 가열하여 소성하는 소성과정을 통하여 제조될 수 있다.As a specific manufacturing process, the acid pipe (2) is a mixture of SiO 2 , Al 2 O 3 , starch, unavoidable impurities as a balance to form a mixture, adding water to the mixed mixture through the mixing process Kneading process by kneading, molding process of forming the diffuser 2 to a diameter and length predesigned after the kneading process, drying process of drying the molded body through the molding process, and heating the molded body after the drying process to a predetermined temperature By firing can be prepared through a firing process.
상기 혼합과정 및 반죽과정은, 물의 투입 시점에 따라서 서로 병합될 수 있으며, 투입되는 물의 양은 성형조건을 고려하여 적절한 양으로 선택될 수 있다.The mixing process and the kneading process may be merged with each other depending on the time of the water input, the amount of water to be added may be selected in an appropriate amount in consideration of the molding conditions.
상기 성형과정은, 반죽과정 후에 미리 설계된 직경 및 길이로 산기관(2)을 성형하는 과정으로서, 내부가 빈 중공 실린더 구조를 가짐을 고려하여 압출 성형되는 것이 바람직하다.The molding process is a process of molding the diffuser 2 to a diameter and length previously designed after kneading, and is preferably extruded in consideration of having an empty hollow cylinder structure inside.
상기 소성과정은, 건조과정 및 건조과정을 거친 성형체를 900℃~1,400℃ 온도로 가열하여 소성하는 과정으로서 다양한 과정에 의하여 수행될 수 있다.The firing process may be performed by various processes as a process of heating and baking a molded product that has undergone a drying process and a drying process at a temperature of 900 ° C to 1,400 ° C.
한편 상기 산기관(2)은, 혼합물의 조정에 따라서 형성되는 폭기용 기포들의 직경분포가 결정되며, Fe2O3, CaO, MgO, 엑티겔, 마이셀, 및 PEO(poly ethylene Oxide) 중 하나 이상을 포함하는 것이 보다 바람직하다.On the other hand, the diffuser (2), the diameter distribution of the aeration bubbles formed by the adjustment of the mixture is determined, at least one of Fe 2 O 3 , CaO, MgO, actigel, micelles, and PEO (polyethylene oxide) It is more preferable to include.
특히 조성물 중 엑티겔 < 0.1wt% 혹은 PEO < 0.1wt% 경우, 압출기의 압력이 고부하로 작동, 압출장비의 마모가 심하며, 압출속도 저하로 생산성 급속저하되(50%이상)는 문제점이 있다.In particular, if the composition in the actigel <0.1wt% or PEO <0.1wt%, the pressure of the extruder is operated at a high load, the wear of the extrusion equipment is severe, there is a problem that the productivity is rapidly reduced (50% or more) due to the extrusion speed decrease.
아울러, 엑티겔 > 0.4wt% 혹은 PEO > 0.4wt% 경우 성형물 형성이 약하고, 건조과정에서 성형물의 휨현상 발생하는 문제점이 있다.In addition, if the actigel> 0.4wt% or PEO> 0.4wt%, the formation of the molding is weak, and there is a problem that the warpage of the molding occurs during the drying process.
그러나, 0.1wt%~0.4wt%의 엑티겔 및 0.1wt%~0.4wt%의 PEO의 경우 위와 같은 문제점을 현저히 개선됨을 확인하였다.However, in the case of 0.1wt% ~ 0.4wt% of actigel and 0.1wt% ~ 0.4wt% PEO it was confirmed that the above problems are significantly improved.
아울러, 마이셀 < 0.1wt%인 경우 성형물의 소성 시 크랙(crack)현상 발생하는 문제점이 있으며, 마이셀 < 0.4wt% 인 경우 토련 및 압출시스템의 과부하로 장비의 마모도 심하며, 생산성이 급속하게 저하되는 문제점이 있다.In addition, if the micelle <0.1wt%, there is a problem of cracking during firing of the molding, and if the micelle <0.4wt%, the wear of the equipment is severe due to overload of the refining and extrusion systems, and the productivity is rapidly deteriorated. There is this.
그러나, 0.1wt%~0.4wt%의 마이셀의 경우 위와 같은 문제점을 현저히 개선됨을 확인하였습니다.However, in the case of micelles of 0.1wt% ~ 0.4wt%, it was confirmed that the above problems are remarkably improved.
또한, 상기 산기관(2)은, 0.09MPa~0.2MPa 사이의 공기압의 조건 하에서 직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성하기 위하여, 그 혼합물의 조성이 최적화될 필요가 있다.In addition, the diffuser 2 needs to be optimized for the composition of the mixture so as to form aeration bubbles having a diameter distribution of 90% or more at 0.5 mm to 5 mm under conditions of air pressure between 0.09 MPa and 0.2 MPa. .
이에, 상기 혼합물은, 물을 제외한 중량비로서, 49wt%~60wt%의 SiO2, 28wt%~41wt%의 Al2O3, 0.5wt%~1.5wt%의 Fe2O3, 0.1wt%~0.6wt%의 CaO, 0.05wt%~0.3wt%의 MgO, 0.1wt%~0.4wt%의 엑티겔, 0.1wt%~0.4wt%의 마이셀, 및 0.1wt%~0.4wt%의 PEO, 3wt%~13wt%의 전분, 및 잔부로서 불가피 불순물을 포함하는 것이 바람직하다.Thus, the mixture is a weight ratio excluding water, 49wt% ~ 60wt% SiO 2 , 28wt% ~ 41wt% Al 2 O 3 , 0.5wt% ~ 1.5wt% Fe 2 O 3 , 0.1wt% ~ 0.6 wt% CaO, 0.05wt% ~ 0.3wt% MgO, 0.1wt% ~ 0.4wt% Actigel, 0.1wt% ~ 0.4wt% Micell, and 0.1wt% ~ 0.4wt% PEO, 3wt% ~ It is preferable to contain 13 wt% of starch, and remainder as unavoidable impurities.
참고로, 실험에 따르면 폭기용 기포의 직경 분포가 0.5mm~5mm에서 90% 이상인 경우 용존산소량의 증가효과를 최적화시킬 수 있다.For reference, according to the experiment, when the diameter distribution of the aeration bubble is more than 90% at 0.5mm ~ 5mm, it is possible to optimize the effect of increasing the amount of dissolved oxygen.
특히 폭기용 기포의 직경은 1.0mm~3.0mm인 것이 바람직하다. 폭기용 기포의 직경이 1.0mm 보다 작은 경우 질산, 인 등을 포함하는 유기물을 포함하는 슬러리가 표층으로 부상되는 문제점이 있으며, 3.0mm 보다 큰 경우 곧바로 부상되어 용존산소량 증가효과가 저감되는 문제점이 있다.It is preferable that especially the diameter of the bubble for aeration is 1.0 mm-3.0 mm. If the diameter of the bubble for aeration is smaller than 1.0mm, there is a problem that the slurry containing the organic material including nitric acid, phosphorus, etc. is floated to the surface layer, if larger than 3.0mm there is a problem that rises immediately to the dissolved oxygen increase effect is reduced. .
- 실시예Example
혼합물의 조성을, 55wt%의 SiO2, 35wt%의 Al2O3, 1.5wt%의 Fe2O3, 0.6wt%의 CaO, 0.3wt%의 MgO, 0.35wt%의 엑티겔, 0.35wt%의 마이셀, 및 0.35wt%의 PEO, 6wt%의 전분, 및 잔부로서 불가피 불순물로 하였다.The composition of the mixture was 55 wt% SiO 2 , 35 wt% Al 2 O 3 , 1.5 wt% Fe 2 O 3 , 0.6 wt% CaO, 0.3 wt% MgO, 0.35 wt% Actigel, 0.35 wt% Micelles, 0.35 wt% PEO, 6 wt% starch, and the balance were unavoidable impurities.
그리고 혼합물에 물을 투입하여 반죽하고, 압출성형한 후 건조 및 소성에 의하여 형성하였다.Then, water was added to the mixture to knead, extruded, and formed by drying and baking.
소성 후 산기관(2)은, 중공의 내경(D2)이 2.6cm, 외경(D1)이 4cm, 길이가 120cm으로 형성되었다.After firing, the diffuser 2 was formed with a hollow inner diameter D 2 of 2.6 cm, an outer diameter D 1 of 4 cm, and a length of 120 cm.
이러한 산기관(2)에 0.12MPa의 압력으로 공기를 주입하고, 정화조 내에서 형성되는 폭기용 기포들을 측정할 결과 도 4와 같은 그래프의 조건으로 폭기용 기포들이 형성되며 도 5와 같이 주입 압력별(MPa) 공기 방출량을 확인하였다.Injecting air to the diffuser 2 at a pressure of 0.12 MPa and measuring the aeration bubbles formed in the septic tank, aeration bubbles are formed under the conditions of the graph as shown in FIG. (MPa) The amount of air released was confirmed.
도 4를 보면, 산기관(2)에 의하여 형성되는 폭기용 기포들이 직경분포가 0.5mm~5mm에서 90% 이상이 됨을 알 수 있다.4, it can be seen that the aeration bubbles formed by the diffuser 2 have a diameter distribution of more than 90% at a diameter of 0.5 mm to 5 mm.
이에, 위와 같은 혼합물의 조건으로, 산기관(2)을 형성하는 경우, 폭기용 기포들이 직경분포가 0.5mm~5mm에서 90% 이상이 되어, 최적의 용존산소량 증가효과 부여할 수 있는 폭기용 기포들을 형성할 수 있음을 알 수 있다.Therefore, under the conditions of the mixture as described above, when forming the diffuser (2), the aeration bubbles are 90% or more in diameter distribution of 0.5mm ~ 5mm, aeration bubbles that can give the optimum dissolved oxygen increase effect It can be seen that they can form.
즉, 본 발명의 실험에 따르면, 폭기용 기포들이 직경분포가 0.5mm~5mm에서 90% 이상이 되어, 최적의 용존산소량 증가효과 부여할 수 있는 폭기용 기포들을 형성함에 있어서 앞서 설명한 조성 조건에 의하여 구현됨을 알 수 있다.That is, according to the experiment of the present invention, the aeration bubbles are more than 90% at a diameter distribution of 0.5mm ~ 5mm, according to the composition conditions described above in forming aeration bubbles that can give an optimum dissolved oxygen increase effect It can be seen that it is implemented.
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.Since the above has been described only with respect to some of the preferred embodiments that can be implemented by the present invention, the scope of the present invention, as is well known, should not be construed as limited to the above embodiments, the present invention described above It will be said that both the technical idea and the technical idea which together with the base are included in the scope of the present invention.

Claims (12)

  1. 하수 또는 폐수를 폭기용 기포를 이용하여 용존산소량을 증가시키고, 침전과정을 거친 후 미세기포를 이용하여 하수 또는 폐수에서 파티클을 부상시키는 하폐수 처리장치에 있어서,In the sewage treatment apparatus for increasing the dissolved oxygen amount of the sewage or waste water by using the aeration bubble, and after the sedimentation process to float the particles in the sewage or waste water by using fine bubbles,
    직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성하는 산기관으로서,An diffuser that forms aeration bubbles with a diameter distribution of 0.5mm to 5mm or more and 90% or more.
    SiO2, Al2O3, 전분, 및 잔부로서 불가피 불순물을 포함하는 혼합물을 물과 혼합하여 반죽한 후 성형 및 소성에 의하여 제조된 하폐수 처리장치의 산기관.A diffuser of a wastewater treatment apparatus manufactured by molding and firing after mixing a mixture containing SiO 2 , Al 2 O 3 , starch, and unavoidable impurities as remainder with water.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 혼합물은, Fe2O3, CaO, MgO, 엑티겔, 마이셀, 및 PEO 중 하나 이상을 포함하는 것을 특징으로 하는 하폐수 처리장치의 산기관.The mixture is Fe 2 O 3 , CaO, MgO, Actigel, micelles, and the diffuser of the sewage treatment apparatus, characterized in that it comprises at least one of PEO.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 혼합물은, 49wt%~60wt%의 SiO2, 28wt%~41wt%의 Al2O3, 0.5wt%~1.5wt%의 Fe2O3, 0.1wt%~0.6wt%의 CaO, 0.05wt%~0.3wt%의 MgO, 0.1wt%~0.4wt%의 엑티겔, 0.1wt%~0.4wt%의 마이셀, 및 0.1wt%~0.4wt%의 PEO, 3wt%~13wt%의 전분, 및 잔부로서 불가피 불순물을 포함하는 것을 특징으로 하는 하폐수 처리장치의 산기관.The mixture is 49wt% to 60wt% SiO 2 , 28wt% to 41wt% Al 2 O 3 , 0.5wt% to 1.5wt% Fe 2 O 3 , 0.1wt% to 0.6wt% CaO, 0.05wt% As 0.3 wt% MgO, 0.1 wt% to 0.4 wt% etigel, 0.1 wt% to 0.4 wt% micelles, and 0.1 wt% to 0.4 wt% PEO, 3 wt% to 13 wt% starch, and the balance The diffuser of the sewage treatment apparatus, comprising inevitable impurities.
  4. 청구항 1 내지 청구항 3 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 3,
    상기 혼합물의 반죽 후 압출 성형에 의하여 성형체로서 형성된 후 건조 및 소성에 의하여 형성되는 것을 특징으로 하는 하폐수 처리장치의 산기관.A diffuser of the wastewater treatment apparatus, characterized in that the mixture is formed as a molded body by extrusion molding and then dried and baked.
  5. 청구항 1 내지 청구항 3 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 3,
    상기 성형체의 소성은, 900℃~1,400℃의 온도 하에서 수행되는 것을 특징으로 하는 하폐수 처리장치의 산기관.Firing of the compact, the diffuser of the wastewater treatment apparatus, characterized in that carried out at a temperature of 900 ℃ ~ 1,400 ℃.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 산기관은, 20㎝~200㎝ 사이의 길이를 가지며, 0.09MPa~0.2MPa 사이의 공기압으로 공기가 주입되는 것을 특징으로 하는 하폐수 처리장치의 산기관.The diffuser has a length between 20 cm and 200 cm and air is injected into the air pressure between 0.09 MPa and 0.2 MPa.
  7. 하수 또는 폐수를 폭기용 기포를 이용하여 용존산소량을 증가시키고, 침전과정을 거친 후 미세기포를 이용하여 하수 또는 폐수에서 파티클을 부상시키는 하폐수 처리장치에 있어서,In the sewage treatment apparatus for increasing the dissolved oxygen amount of the sewage or waste water by using the aeration bubble, and after the sedimentation process to float the particles in the sewage or waste water by using fine bubbles,
    직경분포가 0.5mm~5mm에서 90% 이상인 폭기용 기포를 형성하는 산기관의 제조방법으로서,As the manufacturing method of the diffuser which forms the bubble for aeration whose diameter distribution is 90% or more in 0.5mm-5mm,
    SiO2, Al2O3, 전분, 및 잔부로서 불가피 불순물을 포함하는 혼합물을 물과 혼합하여 반죽한 후 성형 및 소성에 의하여 제조된 하폐수 처리장치의 산기관의 제조방법.A method for producing an acid pipe of a sewage treatment apparatus manufactured by molding and baking after mixing a mixture containing SiO 2 , Al 2 O 3 , starch, and unavoidable impurities as remainder with water.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 혼합물은, Fe2O3, CaO, MgO, 엑티겔, 마이셀, 및 PEO 중 하나 이상을 포함하는 것을 특징으로 하는 하폐수 처리장치의 산기관의 제조방법.The mixture is Fe 2 O 3 , CaO, MgO, Actigel, micelles, PEO manufacturing method of the diffuser of the wastewater treatment apparatus, characterized in that it comprises a PEO.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 혼합물은, 49wt%~60wt%의 SiO2, 28wt%~41wt%의 Al2O3, 0.5wt%~1.5wt%의 Fe2O3, 0.1wt%~0.6wt%의 CaO, 0.05wt%~0.3wt%의 MgO, 0.1wt%~0.4wt%의 엑티겔, 0.1wt%~0.4wt%의 마이셀, 및 0.1wt%~0.4wt%의 PEO, 3wt%~13wt%의 전분, 및 잔부로서 불가피 불순물을 포함하는 것을 특징으로 하는 하폐수 처리장치의 산기관의 제조방법.The mixture is 49wt% to 60wt% SiO 2 , 28wt% to 41wt% Al 2 O 3 , 0.5wt% to 1.5wt% Fe 2 O 3 , 0.1wt% to 0.6wt% CaO, 0.05wt% As 0.3 wt% MgO, 0.1 wt% to 0.4 wt% etigel, 0.1 wt% to 0.4 wt% micelles, and 0.1 wt% to 0.4 wt% PEO, 3 wt% to 13 wt% starch, and the balance A method for producing an diffuser of a sewage treatment apparatus, comprising inevitable impurities.
  10. 청구항 7 내지 청구항 9 중 어느 하나의 항에 있어서,The method according to any one of claims 7 to 9,
    상기 혼합물의 반죽 후 압출 성형에 의하여 성형체로서 형성된 후 건조 및 소성에 의하여 형성되는 것을 특징으로 하는 하폐수 처리장치의 산기관의 제조방법.And forming a molded body by extrusion molding after kneading the mixture, followed by drying and firing.
  11. 청구항 7 내지 청구항 9 중 어느 하나의 항에 있어서,The method according to any one of claims 7 to 9,
    상기 성형체의 소성은, 900℃~1,400℃의 온도 하에서 수행되는 것을 특징으로 하는 하폐수 처리장치의 산기관의 제조방법.Firing of the molded body, the manufacturing method of the diffuser of the sewage treatment apparatus, characterized in that carried out at a temperature of 900 ℃ ~ 1,400 ℃.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 산기관은, 20㎝~200㎝ 사이의 길이를 가지며, 0.09MPa~0.2MPa 사이의 공기압으로 공기가 주입되는 것을 특징으로 하는 하폐수 처리장치의 산기관의 제조방법.The diffuser has a length between 20 cm and 200 cm, and air is injected at an air pressure between 0.09 MPa and 0.2 MPa.
PCT/KR2016/004947 2015-05-11 2016-05-11 Diffuser for sewage/waste water treatment apparatus, and method for manufacturing same WO2016182351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150065590A KR20160132708A (en) 2015-05-11 2015-05-11 Diffuser for disposal plant for purifying sewage or waste water, and manfacturing method therefor
KR10-2015-0065590 2015-05-11

Publications (1)

Publication Number Publication Date
WO2016182351A1 true WO2016182351A1 (en) 2016-11-17

Family

ID=57249280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004947 WO2016182351A1 (en) 2015-05-11 2016-05-11 Diffuser for sewage/waste water treatment apparatus, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20160132708A (en)
WO (1) WO2016182351A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005406B1 (en) * 1989-12-30 1992-07-03 포항종합제철 주식회사 Ceramic green material having gehlenite
KR200239065Y1 (en) * 2000-03-03 2001-09-25 (주)엠에치엔지니어링 Air supplying pipes for waste water disposal system
KR100759834B1 (en) * 2006-07-26 2007-10-04 한국과학기술연구원 Silica or alumina ceramic membrane diffuser for generating microbubbles, manufacturing method and manufacturing device
KR100844141B1 (en) * 2007-03-20 2008-07-04 한국과학기술연구원 Silica or alumina ceramic diffuser for generating microbubbles, method for manufacturing the same and method for air-floatation using the same
JP2010179268A (en) * 2009-02-07 2010-08-19 Kosei:Kk Plant for producing support

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005406B1 (en) * 1989-12-30 1992-07-03 포항종합제철 주식회사 Ceramic green material having gehlenite
KR200239065Y1 (en) * 2000-03-03 2001-09-25 (주)엠에치엔지니어링 Air supplying pipes for waste water disposal system
KR100759834B1 (en) * 2006-07-26 2007-10-04 한국과학기술연구원 Silica or alumina ceramic membrane diffuser for generating microbubbles, manufacturing method and manufacturing device
KR100844141B1 (en) * 2007-03-20 2008-07-04 한국과학기술연구원 Silica or alumina ceramic diffuser for generating microbubbles, method for manufacturing the same and method for air-floatation using the same
JP2010179268A (en) * 2009-02-07 2010-08-19 Kosei:Kk Plant for producing support

Also Published As

Publication number Publication date
KR20160132708A (en) 2016-11-21

Similar Documents

Publication Publication Date Title
KR101753204B1 (en) System for purifying sewage or waste water
CN103373794A (en) Sewage treatment process and special-purpose one-piece sewage treatment plant
WO2013183965A1 (en) Membrane system and method for treating sewage and wastewater capable of automated removal/destruction of scum/foam with high energy efficiency, high flux and low operation costs and having process conversion method from constant level continuous batch reactor process
KR101368295B1 (en) Integrated waste water treatment apparatus
KR20210009111A (en) Wastewater treatment facility with granule sludge acceleration reactor and recovery device and method using the same
KR20130118574A (en) A disposal facilities of sewage
WO2017126745A1 (en) Water treatment apparatus including granular activated sludge and membrane bioreactor, and water treatment method using same
CN110510815B (en) Integrated sewage treatment device based on simultaneous nitrification and denitrification and sewage treatment method
CN206289048U (en) Sewage combination biochemistry and sludge static state deposition separating treatment integrated apparatus
WO2014112765A1 (en) Sewage and wastewater treatment device having activated-sludge holding unit, and nitrogen content reducing method for sewage and wastewater using same
CN214693785U (en) System suitable for distributed domestic sewage treatment
WO2016182351A1 (en) Diffuser for sewage/waste water treatment apparatus, and method for manufacturing same
KR20120064836A (en) A none piping membrane bioreactor with circulation-agitater
WO2016182350A1 (en) Diffuser for sewage/waste water treatment apparatus, and method for manufacturing same
CN101580331B (en) Tubificidae-microorganism symbiotic system muddy water degradation continuous flow reactor and application thereof
CN111606502A (en) Harmless wastewater treatment process and system for livestock and poultry died of diseases
CN217103259U (en) Microbial carbon sequestration reaction system
WO2012099283A1 (en) Sewage treatment apparatus
CN102874980A (en) Method for processing wastewater by utilizing combination of granular sludge and dynamic film
CN1834033A (en) Appts of utilizing upper-flowing multi-layer biofilm filtering technique to treat sewage
CN211644993U (en) Urban domestic sewage integrated treatment device
WO2011059218A2 (en) Hybrid water treatment apparatus based on sbr and mbr
CN203373201U (en) Integrated sewage treatment facility
WO2015064933A1 (en) Method for treating drain-water using sludge aeration in water treatment plant
KR101795608B1 (en) Vertical gravity sedimentation wastewater treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792997

Country of ref document: EP

Kind code of ref document: A1