WO2011059218A2 - Hybrid water treatment apparatus based on sbr and mbr - Google Patents

Hybrid water treatment apparatus based on sbr and mbr Download PDF

Info

Publication number
WO2011059218A2
WO2011059218A2 PCT/KR2010/007893 KR2010007893W WO2011059218A2 WO 2011059218 A2 WO2011059218 A2 WO 2011059218A2 KR 2010007893 W KR2010007893 W KR 2010007893W WO 2011059218 A2 WO2011059218 A2 WO 2011059218A2
Authority
WO
WIPO (PCT)
Prior art keywords
mbr
reactor
membrane module
sbr
diffuser
Prior art date
Application number
PCT/KR2010/007893
Other languages
French (fr)
Korean (ko)
Other versions
WO2011059218A3 (en
Inventor
김현욱
권오성
이인규
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100003116A external-priority patent/KR101150335B1/en
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2011059218A2 publication Critical patent/WO2011059218A2/en
Publication of WO2011059218A3 publication Critical patent/WO2011059218A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention is a technology for stably treating target raw water, such as sewage, sewage and digestive waste liquid,
  • the SVR and MVR mixes that use hydraulic characteristics are moved up and down.
  • a molding water treatment apparatus In order to minimize contamination of the membrane module for the MBR process and to delay contamination of the membrane for long-term use, the SVR and MVR mixes that use hydraulic characteristics are moved up and down. A molding water treatment apparatus.
  • the present invention is basically a technique for removing water pollutants generated in a general living system such as sewage and sewage, and the most common method of treating sewage and sewage is the removal of organic matter, nitrogen, and phosphorus by microorganisms.
  • a commonly used microbial process is a method of oxidizing and removing organic substances in water represented by COD and BOD by using aerobic microorganisms existing in water by the standard activated sludge method.
  • the standard activated sludge process cannot remove nutrients that cause eutrophication in rivers, lakes and oceans, such as nitrogen and phosphorus, other than organic matter.
  • A2O process The composition of the process is anaerobic tank, anaerobic tank, sewage and sewage flow into anaerobic tank to release phosphorus from anaerobic tank and transfer to anaerobic tank. , Removed.
  • the ammonia nitrogen in the influent flowing into the aerobic tank through the anaerobic tank is oxidized to nitrite and nitrate by the active microorganism under aerobic conditions, and organic matter is removed at the same time.
  • the oxidized nitrogen component is transferred to an oxygen-free tank through internal transport, and is reduced to nitrogen gas under anoxic conditions and discharged and removed to the atmosphere.
  • phosphate ions released from the anaerobic tank are removed microorganisms under aerobic conditions.
  • SVR process implements this reaction by changing the conditions over time in a single reactor, and determines the air supply time to achieve aerobic conditions and the air cutoff time to achieve anoxic conditions to remove nitrogen and phosphorus in the water. do.
  • SVR process is characterized by being able to control the process more efficiently than the general A2O process by using the time, such as air supply time, blocking time, settling time as a major factor.
  • time such as air supply time, blocking time, settling time
  • the SSR process has a problem in that it is difficult to continuously process the new influent until the first influent is completely discharged because each unit process must be performed over time in a single reactor.
  • it since it is a process using a microorganism, it is difficult to secure stable water at all times due to the change in the sedimentation property according to the change of the operating environment such as the state and temperature of microorganisms and the load change of pollutants.
  • the membrane process is a water treatment technology currently attracting the most attention in water treatment and sewage treatment is a technique for excluding particles larger than the fine pores by using fine pores formed on the surface of the separator consisting of a polymer.
  • the membrane process is based on the size of the micropores formed on the surface of the membrane, microfiltration (MF, micro-filtration), ultra-filtration (UF, ultra-filtration), nanofiltration (NF, nano-filtration), reverse osmosis (RO, reverse) osmosis) and is used for various purposes depending on the size of micropores.
  • the membrane process is basically processed through a sieving effect, the technology to secure water quality stability of treated water through the advantage of completely removing particulate matter in water purification and sewage treatment processes. to be.
  • materials that do not pass through the micropores of the membrane is accumulated on the surface of the membrane causing contamination of the membrane has a problem that the filtration efficiency is lowered. This problem is called membrane fouling. If the membrane contamination continues, the filtration efficiency decreases and periodic chemical cleaning and physical cleaning must be performed to recover the membrane fouling. Therefore, minimizing contamination of the separator is a major issue.
  • the process of treating sewage, sewage, and wastewater by using a membrane is generally called a membrane bio-reactor (MWR).
  • MBR process has the advantage of completely removing the particulate matter in the final treated water by using the sieving effect of the separator without relying on precipitation as the conventional microbial process.
  • microorganisms 3 to 4 times more than the concentration of activated sludge used in the general microbial process can be used, and thus the processing time of contaminants can be shortened and higher processing efficiency can be expected.
  • this also causes a high concentration on the membrane surface due to the problem of filtering out the high concentration of microorganisms as described above.
  • the permeability (filtration efficiency) of the membrane is reduced by the sludge formed as a cake. In order to prevent this, efforts are made to reduce membrane contamination by supplying air from the bottom and using scrubbing and scouring effects of air.
  • the present invention is linked to the SVR and MBR processes, and the membrane module is moved up and down to minimize the contamination of the membrane module for the MBR process and delay the contamination for long-term use. It is an object of the present invention to provide a SVR and MBR hybrid water treatment apparatus that minimizes contamination by using the same.
  • the present invention arranges the diffuser in the lower portion of the membrane module, and the diffuser is configured to be elevated together with the membrane module, when the membrane module is transferred to the upper portion of the diffuser located at the bottom of the membrane module as well Since the lower end of the second reactor for MBR becomes a relatively quiet point, the sludge inside the first reactor is concentrated and concentrated at the lower end, and the upper part has a relatively low sludge concentration. It is an object of the present invention to provide a SVR and MBR hybrid water treatment apparatus capable of minimizing contamination of the membrane module by filtration using the membrane module.
  • the present invention introduces a plurality of SSR to which the different reactions proceed, when the SSR process is composed of a single reactor, the SSR and the problem that can solve the problem of a large amount of water to be treated and requires continuous treatment
  • An object of the present invention is to provide an MBR hybrid water treatment apparatus.
  • the present invention introduces a conveying line including a pump for conveying the concentrated sludge in the second reaction tank to the first reaction tank, thereby linking the SV process with the MBR process and eliminating the need for consideration of the sludge settling in the SV process.
  • Activated sludge of concentration can be used, so short treatment time is required to treat the target sewage, so the treatment process can be configured more simply and the SVR and MBR mixed water treatment devices can be minimized due to the short treatment time. It aims to provide.
  • the first reactor into which raw water flows,
  • Blower for supplying air to the diffuser
  • a membrane module provided in the second reactor is a membrane module provided in the second reactor
  • Lifting means for raising the membrane module when the sludge concentration increases with the inflow of treated water
  • MWR comprising a
  • a diffuser is provided below the membrane module, the diffuser is lifted together with the membrane module and further includes a blower for supplying air to the diffuser.
  • a conveying line including a pump for conveying the concentrated sludge in the second reaction tank to the first reaction tank.
  • the SVR and MBR mixed water treatment apparatus is linked to the SVR and MBR processes, and minimizes the contamination of the membrane module for the MBR process and delays the contamination so that it can be used for a long time.
  • the hydraulic characteristics can be used to minimize contamination, and by arranging an diffuser under the membrane module, the diffuser can be elevated together with the membrane module, so that the membrane module is transferred upward.
  • the diffuser located at the bottom of the membrane module is also transferred to the upper part so that the lower end of the second reactor for MBR becomes a relatively quiet point, and the sludge inside the first reactor is concentrated and concentrated on the lower part.
  • FIG. 1 is a schematic view of a water treatment apparatus according to the present invention.
  • FIG. 2 is a schematic view relating to a modification of the water treatment device according to the present invention.
  • blower S sensor
  • the same reference numerals in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same or similar functions, and unless otherwise specified, each member in the figures The member referred to by the reference numeral may be regarded as a member conforming to these criteria.
  • the core of the present invention relates to a process for removing contaminants generated from raw water to be treated, such as sewage, sewage, and wastewater.
  • Sequencing batch reactor (SBR) to remove nitrogen-based contaminants (ammonia nitrogen, etc.) in water through continuous aerobic and anoxic conditions
  • the present invention uses the SSR process that can be easily controlled through a sensor, etc. in order to remove organic substances present in sewage, sewage and wastewater, and stably remove nutrients nitrogen and phosphorus, and constitute MBR at the rear end. It is a technology for more stable treatment of the concentration of organic matter and nutrients in the final treatment water through the complete removal of particulate matter by using a membrane module.
  • the SVR process is generally performed in a single reactor by phosphorus release, denitrification, and nitrification by changing conditions and time differences. As described above, this makes continuous processing impossible and the processing is intermittent. In addition, the sedimentation of the sludge is not completely secured, and there is a possibility that the water quality of the treated water may change due to the outflow of the sludge.
  • the SSR process is composed of two stages or three stages in multiple stages so that the inflow time between the reaction tanks can be continuously processed.
  • the MBR process is located at the end of the SSR process, and the sludge is separated between the treated water and the sludge in the MBR process through phosphorus release denitrification and phosphorus nitrate absorption in the SSR reactor. Therefore, the SVR process does not require special consideration for sedimentation for sludge separation.
  • the SSR process eliminates the need for consideration of the sludge settling properties, so that activated sludge of high concentration (8,000 to 10,000 mg / L) can be used.
  • activated sludge of high concentration 8,000 to 10,000 mg / L
  • the treatment process can be configured more simply, and the treatment plant site can be minimized due to the short treatment time.
  • the present invention proposes the movement of the membrane module as a method for minimizing the contamination of the separator in the MBR process.
  • the membrane module is fixed to the bottom of the reactor.
  • the membrane module when the sludge introduced in the SBR process is introduced into the MBR reaction tank for the first time, the membrane module is placed at the bottom to perform filtration at low pressure by using high water pressure.
  • the membrane module is transferred to the upper part so as to delay the contamination of the separator by performing the filtration in the upper part of the reactor where the sludge is settled in the lower part where the membrane module is not located and the sludge sediment is relatively low. do.
  • the hybrid type water treatment apparatus A is composed of SVR 10 and MBR 20.
  • Raw water introduced into the process flows into the first reactor 11 for the progress of the SVR process and undergoes anaerobic, anaerobic and aerobic conditions over time, and contains organic substances and nutrients in the raw water. Is removed.
  • Duration and acid amount of each condition is controlled by the sensor unit S consisting of sensors such as pH, DO, ORP.
  • the first reactor 11 (SVR Reactor) is connected through a blower B connected to an aerator 13 provided in the first reactor 11.
  • the supply of air to the water is cut off, and DO is completely maintained at 0 (preferably equipped with an agitator 15 in the first reactor).
  • the aerobic conditions are maintained by supplying air into the first reactor (11).
  • the second reaction tank 21 for treating MWR 20 in this state is treated.
  • MWR reactor 'membrane separation tank' is more accurate than the second 'reactor'.
  • the second reactor 21 for the MBR 20 receives the treated water that has been treated through the first reactor 11 for the previous SV 10, particularly the submerged membrane module 23. Is performing filtration through
  • the concentrated sludge settled in the lower part is returned to the first reaction tank 11 of SV.
  • the conveying line 30 provided between the two reaction tanks 11 and 21 is provided with a pump 31 for concentrating recycling.
  • the treated water in the SVR process is introduced into the second reactor 21 of the MBR 20,
  • the membrane module 23 Since the concentration of the introduced sludge is not high at the beginning of the inflow, the membrane module 23 is positioned below the second reactor by the elevating means 25.
  • the treated water having passed through the first reaction tank 11 is transferred to the second reaction tank 21 using various methods.
  • a natural flow method may be used.
  • the membrane module 23 After the sludge is filled in the second reactor 21, the membrane module 23 starts filtration.
  • valve in particular, an electric valve V (Sol. Valve) for automatic control between the two reactors 11 and 21. Is high and the membrane module 23 is located at the bottom, so that filtration occurs easily under high water pressure.
  • V Sol. Valve
  • Filtration is carried out continuously so that the treated water is discharged, thereby contaminating the membrane as the sludge concentration in the second reactor 21 increases.
  • the membrane module 23 is transferred upward by using the elevating means 25.
  • the elevating means 25 includes, for example, a winch reel 25A operated by the motor 25B, and the wire 25a connecting the membrane module 23 and the winch reel 25A is connected through a roller 25b. The direction is switched so that the reel 25A can be wound and unwinded smoothly.
  • lifting means can be implemented, but the lifting means is preferably configured using a motor or a hydraulic (or pneumatic) cylinder in consideration of the automation control.
  • the diffuser 27 (also connected with the blower B) located at the bottom of the membrane module is also transferred upward.
  • the lower part of the second reactor 21 is a relatively quiet point because the diffuser 27 is transferred upward.
  • the sludge contained in the treated water supplied from the first reaction tank 11 is concentrated and sedimented at the lower end of the second reaction tank 21.
  • the sludge is naturally precipitated and concentrated at the bottom of the second reactor 21, so that the upper portion has a relatively low sludge concentration. Filtration occurs in such low sludge concentration regions, thereby minimizing contamination of the membrane module 23.
  • the final treated water passing through the MBR 20 is discharged through the treated water discharge line 40, the discharge line 40 is provided with a suction pump (41),
  • a pressure gauge 43 and a flow transmitter 45 are provided in the discharge line 40. It is preferable that it is provided.
  • the SV and MBR mixed water treatment apparatus described above with reference to FIG. 1 is a case where the SV process is composed of a single reactor.
  • FIG. 2 is a schematic apparatus diagram in which two first reactors 11 for SBR 10A and 10B and one second reactor 21 for MBR 20 are linked.
  • the two first reactors 11 for SVR start the treatment sequentially.
  • the treated water which has already been treated in the first reactor of another SBR 10B is transferred to the second reactor 21.
  • the second reactor undergoes filtration in the same order as described above with reference to FIG. 1.

Abstract

The present invention relates to a hybrid water treatment apparatus based on an SBR and an MBR as the technique for stably treating feed water to be treated, such as sewage, wastewater, digested waste, and the like, which connects SBR and MBR processes and uses hydraulic characteristics by moving a membrane module up and down to retard the contamination generated in a membrane for minimizing the contamination of a membrane module for an MBR process and for using the membrane module for a long time. The hybrid water treatment apparatus based on an SBR and an MBR according to the present invention comprises: an SBR comprising a first reactor where feed water flows, a diffuser provided inside the first reactor, and a blower for supplying air to the diffuser; and an MBR comprising a second reactor where the treated water passed through the first reactor flows, a membrane module provided inside the second reactor, and a lifting means for raising the membrane module if the concentration of sludge increases according to the inflow of the treated water.

Description

SBR 및 MBR 혼성형 수처리 장치SVR and MBR hybrid water treatment devices
본 발명은 하수, 오수 및 소화폐액 등의 처리 대상 원수를 대상으로 안정적으로 처리하기 위한 기술로써, The present invention is a technology for stably treating target raw water, such as sewage, sewage and digestive waste liquid,
SBR 및 MBR 공정을 연계하였으며, 또 MBR 공정을 위한 멤브레인모듈의 오염을 최소화시키고 장기적으로 사용할 수 있도록 막에 발생하는 오염을 지연시키기 위하여 멤브레인 모듈이 상하로 이동하여 수리학적 특성을 이용하는 SBR 및 MBR 혼성형 수처리 장치에 관한 것이다. In order to minimize contamination of the membrane module for the MBR process and to delay contamination of the membrane for long-term use, the SVR and MVR mixes that use hydraulic characteristics are moved up and down. A molding water treatment apparatus.
본 발명은 기본적으로 하수 및 오수와 같이 일반적인 생활계에서 발생한 수질오염물질을 제거하기 위한 기술로써, 하수와 오수를 처리하는 가장 일반적인 방식은 미생물에 의한 유기물, 질소, 인 제거기술이다. The present invention is basically a technique for removing water pollutants generated in a general living system such as sewage and sewage, and the most common method of treating sewage and sewage is the removal of organic matter, nitrogen, and phosphorus by microorganisms.
일반적으로 많이 사용되는 미생물 공정은 표준활성슬러지법으로 수중에 존재하는 호기성 미생물을 이용하여 COD, BOD로 대변되는 수중의 유기물질을 산화, 제거시키는 방식이다. 그러나 표준활성슬러지 공법에서는 유기물 이외의 질소, 인과 같은 하천이나 호소, 해양에서 부영양화를 발생시키는 영양염류 물질들을 제거할 수 없다. A commonly used microbial process is a method of oxidizing and removing organic substances in water represented by COD and BOD by using aerobic microorganisms existing in water by the standard activated sludge method. However, the standard activated sludge process cannot remove nutrients that cause eutrophication in rivers, lakes and oceans, such as nitrogen and phosphorus, other than organic matter.
환경에 대한 인식이 높아지고, 하절기 반복적으로 발생되는 부영양화에 대한 문제를 해결하기 위하여 질소, 인 처리에 대한 관심이 높아지고 있으며, 이를 위해 미생물을 이용한 질소, 인의 처리가 급격하게 도입되고 있다. 대표적인 질소, 인 처리 공정은 A2O공정으로 공정의 구성이 혐기조, 무산소조, 호기조로 유입된 하수 및 오수가 혐기반응조에서 인을 방출하고 무산소조로 이동, 내포된 질산성 질소가 환원되어 질소가스형태로 변화, 제거된다. 무산소조를 거쳐 호기조로 유입된 유입수 중의 암모니아성 질소는 호기조건에서의 활성미생물에 의해 아질산성 질소(Nitrite), 질산성 질소(Nitrate)로 산화되고 동시에 유기물이 제거된다. 이렇게 산화된 질소성분은 내부반송을 통해 무산소조로 이송, 무산소조건에서 질소가스로 환원되어 대기중으로 방출, 제거된다. 특히 혐기조에서 방출된 인산 이온들은 호기조건에서 미생물이 제거된다. Increasing environmental awareness, in order to solve the problem of eutrophication that occurs repeatedly in the summer, interest in the treatment of nitrogen, phosphorus is increasing, for this purpose, the treatment of nitrogen, phosphorus using microorganisms is rapidly introduced. Representative nitrogen and phosphorus treatment process is A2O process. The composition of the process is anaerobic tank, anaerobic tank, sewage and sewage flow into anaerobic tank to release phosphorus from anaerobic tank and transfer to anaerobic tank. , Removed. The ammonia nitrogen in the influent flowing into the aerobic tank through the anaerobic tank is oxidized to nitrite and nitrate by the active microorganism under aerobic conditions, and organic matter is removed at the same time. The oxidized nitrogen component is transferred to an oxygen-free tank through internal transport, and is reduced to nitrogen gas under anoxic conditions and discharged and removed to the atmosphere. In particular, phosphate ions released from the anaerobic tank are removed microorganisms under aerobic conditions.
이와 같이 미생물을 이용한 일반적인 질소, 인 처리방식은 혐기, 무산소, 호기 조건을 통해 이루어진다. SBR공정은 이러한 반응을 단일 반응조 내에서 시간에 따른 조건변화를 통해 구현한 것으로, 호기조건을 이루기 위한 공기공급시간, 무산소 조건을 이루기 위한 공기차단시간을 결정하여 줌으로써 수중의 질소, 인 성분을 제거한다. SBR공정은 공기공급시간, 차단시간, 침전시간 등 시간을 주요 인자로 활용함으로써, 일반적인 A2O공정에 비해 보다 효율적으로 공정을 제어할 수 있는 특징이 있다. 특히 질산화 반응, 탈질 반응 등에서 나타나는 생화학적 특성을 pH, DO, ORP와 같은 센서를 이용하여 감지함으로써, 반응조의 상태에 따른 자동제어가 충분히 가능하다. As such, general nitrogen and phosphorus treatment using microorganisms is performed through anaerobic, anaerobic and aerobic conditions. The SVR process implements this reaction by changing the conditions over time in a single reactor, and determines the air supply time to achieve aerobic conditions and the air cutoff time to achieve anoxic conditions to remove nitrogen and phosphorus in the water. do. SVR process is characterized by being able to control the process more efficiently than the general A2O process by using the time, such as air supply time, blocking time, settling time as a major factor. In particular, by detecting the biochemical properties of the nitrification, denitrification, etc. using sensors such as pH, DO, ORP, automatic control according to the state of the reactor is possible.
그러나 SBR공정은 단일 반응조에서 시간의 경과에 따라 각 단위공정이 이루어져야 하므로 일차적으로 유입된 유입수가 완전하게 배출되는 데까지는 새로운 유입수를 유입시킬 수 없으므로 지속적인 처리가 곤란한 문제가 있다. 또한, 근본적으로 미생물을 이용한 공정이기 때문에 미생물의 상태 및 온도변화, 오염물질의 부하 변화 등 운전환경의 변화에 따라 침강성이 변화하여 항상 안정적인 처리수를 확보하는데 어려움이 있다. However, the SSR process has a problem in that it is difficult to continuously process the new influent until the first influent is completely discharged because each unit process must be performed over time in a single reactor. In addition, since it is a process using a microorganism, it is difficult to secure stable water at all times due to the change in the sedimentation property according to the change of the operating environment such as the state and temperature of microorganisms and the load change of pollutants.
한편, 분리막 공정은 현재 정수처리, 하수처리에서 가장 각광받고 있는 수처리기술로써 폴러머로 구성된 분리막 표면에 미세하게 형성된 미세공을 이용, 미세공보다 큰 입자를 배제시키는 기술이다. 이러한 분리막 공정은 분리막 표면에 형성된 미세공의 크기에 따라 정밀여과(MF, micro-filtration), 한외여과(UF, ultra-filtration), 나노여과(NF, nano-filtration), 역삼투(RO, reverse osmosis)로 구분되며, 미세공의 크기에 따라 다양한 용도로 활용된다. On the other hand, the membrane process is a water treatment technology currently attracting the most attention in water treatment and sewage treatment is a technique for excluding particles larger than the fine pores by using fine pores formed on the surface of the separator consisting of a polymer. The membrane process is based on the size of the micropores formed on the surface of the membrane, microfiltration (MF, micro-filtration), ultra-filtration (UF, ultra-filtration), nanofiltration (NF, nano-filtration), reverse osmosis (RO, reverse) osmosis) and is used for various purposes depending on the size of micropores.
분리막 공정은 기본적으로 체거름효과(sieving effect)를 통해 처리가 이루어지므로, 정수 및 하수처리공정에 있어서는 근본적으로 입자성 물질을 완벽하게 제거할 수 있는 장점을 통해 처리수의 수질 안정성을 확보한 기술이다. 다만, 분리막의 미세공을 통과하지 못한 물질들이 분리막 표면에 쌓여 분리막의 오염을 유발시킴으로써 여과효율이 떨어지는 문제점을 가지고 있다. 이러한 문제를 분리막 오염(membrane fouling)이라고 하며, 분리막 오염이 지속적으로 진행될 경우 여과효율이 감소하고 이를 회복시키기 위해 주기적인 화학적 세정, 물리적 세정을 반드시 수행하여야 한다. 따라서 분리막이 오염을 최소화 하는 것이 가장 큰 이슈이다. Since the membrane process is basically processed through a sieving effect, the technology to secure water quality stability of treated water through the advantage of completely removing particulate matter in water purification and sewage treatment processes. to be. However, materials that do not pass through the micropores of the membrane is accumulated on the surface of the membrane causing contamination of the membrane has a problem that the filtration efficiency is lowered. This problem is called membrane fouling. If the membrane contamination continues, the filtration efficiency decreases and periodic chemical cleaning and physical cleaning must be performed to recover the membrane fouling. Therefore, minimizing contamination of the separator is a major issue.
분리막을 이용하여 하수, 오수 및 폐수를 처리하는 공정을 일반적으로 MBR(membrane bio-reactor)라 부른다. MBR공정은 슬러지와 처리수를 분리하는 공정을 기존의 미생물 공정과 같이 침전에 의존하지 않고 분리막의 체거름 효과를 이용함으로써 최종 처리수 내 입자성 물질을 완벽하게 제거할 수 있다는 장점이 있다. 이로 인해 일반적인 미생물 공정에서 사용하는 활성슬러지의 농도보다 3∼4배 이상의 미생물을 이용할 수 있으므로, 오염물질의 처리시간이 짧고 보다 높은 처리효율을 기대할 수 있다. 그러나 이 또한 앞서 설명한 바와 같이 높은 농도의 미생물을 걸러내야 하는 문제로 인해 분리막 표면에 높은 농축이 일어나게 된다. 이렇게 농축되어 케익처럼 형성된 슬러지에 의해 분리막의 투과율(여과효율)이 저감하게 된다. 이를 방지하기 위하여 하부에서 공기를 공급하여 공기의 세정(Scrubbing 및 scouring)효과 등을 이용하여 분리막 오염을 저감시키는 노력을 기울이고 있다. The process of treating sewage, sewage, and wastewater by using a membrane is generally called a membrane bio-reactor (MWR). The MBR process has the advantage of completely removing the particulate matter in the final treated water by using the sieving effect of the separator without relying on precipitation as the conventional microbial process. As a result, microorganisms 3 to 4 times more than the concentration of activated sludge used in the general microbial process can be used, and thus the processing time of contaminants can be shortened and higher processing efficiency can be expected. However, this also causes a high concentration on the membrane surface due to the problem of filtering out the high concentration of microorganisms as described above. Thus, the permeability (filtration efficiency) of the membrane is reduced by the sludge formed as a cake. In order to prevent this, efforts are made to reduce membrane contamination by supplying air from the bottom and using scrubbing and scouring effects of air.
그러나 이와 같이 공기로부터 발생된 난류에 의한 분리막 오염저감 효과는 제한적이며, 지속적으로 높은 공기공급량을 유지시켜주어야 하기 때문에 높은 운영비를 필요로 하는 단점을 안고 있다. However, the membrane pollution reduction effect by the turbulence generated from the air is limited and has a disadvantage of requiring a high operating cost because it must maintain a high air supply continuously.
현재, SBR을 이용한 공정과 MBR을 이용한 공정을 연계한 수처리시스템은 제시되어 있으나, 이를 멤브레인 모듈의 오염을 최소화시키고 장기적으로 사용할 수 있도록 오염을 지연시키기 위한 적절한 방안은 제시되고 있지 못하다.At present, a water treatment system linking a process using SVR and a process using MBR has been proposed, but an appropriate method for minimizing the contamination of the membrane module and delaying the contamination to be used for a long time has not been proposed.
문제점을 해결하기 위하여 본 발명은 SBR 및 MBR 공정을 연계함과 아울러, MBR 공정을 위한 멤브레인 모듈의 오염을 최소화시키고 장기적으로 사용할 수 있도록 오염을 지연시키기 위하여 멤브레인 모듈이 상하로 이동하여 수리학적 특성을 이용하여 오염을 최소화하는 SBR 및 MBR 혼성형 수처리 장치를 제공하는 것을 목적으로 한다.In order to solve the problem, the present invention is linked to the SVR and MBR processes, and the membrane module is moved up and down to minimize the contamination of the membrane module for the MBR process and delay the contamination for long-term use. It is an object of the present invention to provide a SVR and MBR hybrid water treatment apparatus that minimizes contamination by using the same.
또 본 발명은 상기 멤브레인 모듈의 하부에는 산기관을 배열하고, 이 산기관이 멤브레인 모듈과 함께 승강되도록 구성함으로써, 멤브레인 모듈이 상부로 이송하게 되면 멤브레인 모듈 하단에 위치한 산기관도 동일하게 상부로 이송하게 되어 MBR을 위한 제2반응조의 하단부는 상대적으로 조용한 지점이 되므로, 하단부에는 제1반응조 내부의 슬러지가 자연침강하여 농축하게 되며, 상부는 상대적으로 낮은 슬러지 농도가 이루어지므로, 낮은 슬러지 농도 지역에서 멤브레인 모듈을 이용한 여과가 일어남으로써 멤브레인 모듈의 오염은 최소화되도록 할 수 있는 SBR 및 MBR 혼성형 수처리 장치를 제공하는 것을 목적으로 한다.In addition, the present invention arranges the diffuser in the lower portion of the membrane module, and the diffuser is configured to be elevated together with the membrane module, when the membrane module is transferred to the upper portion of the diffuser located at the bottom of the membrane module as well Since the lower end of the second reactor for MBR becomes a relatively quiet point, the sludge inside the first reactor is concentrated and concentrated at the lower end, and the upper part has a relatively low sludge concentration. It is an object of the present invention to provide a SVR and MBR hybrid water treatment apparatus capable of minimizing contamination of the membrane module by filtration using the membrane module.
아울러 본 발명은 서로 다른 반응이 진행되는 복수의 SBR을 도입하여, SBR공정이 단일 반응조로 구성되어 있는 경우, 처리대상수의 양이 많고 지속적인 처리를 필요로 할 경우의 문제점을 해결할 수 있는 SBR 및 MBR 혼성형 수처리 장치를 제공하는 것을 목적으로 한다.In addition, the present invention introduces a plurality of SSR to which the different reactions proceed, when the SSR process is composed of a single reactor, the SSR and the problem that can solve the problem of a large amount of water to be treated and requires continuous treatment An object of the present invention is to provide an MBR hybrid water treatment apparatus.
나아가 본 발명은 상기 제2반응조 내의 농축슬러지를 제1반응조로 반송하는 펌프를 포함하는 반송라인을 도입하여, SBR공정과 MBR공정을 연계하여 SBR공정에서 슬러지의 침강성에 대한 고려가 필요 없게 됨으로써 높은 농도의 활성슬러지를 이용할 수 있어 대상오수를 처리함에 있어 짧은 처리시간 만이 필요하므로 처리공정을 보다 단순하게 구성할 수 있고 짧은 처리시간으로 인해 처리장 부지를 최소화 할 수 있는 SBR 및 MBR 혼성형 수처리 장치를 제공하는 것을 목적으로 한다.Furthermore, the present invention introduces a conveying line including a pump for conveying the concentrated sludge in the second reaction tank to the first reaction tank, thereby linking the SV process with the MBR process and eliminating the need for consideration of the sludge settling in the SV process. Activated sludge of concentration can be used, so short treatment time is required to treat the target sewage, so the treatment process can be configured more simply and the SVR and MBR mixed water treatment devices can be minimized due to the short treatment time. It aims to provide.
이와 같은 목적을 달성하기 위해 본 발명에 따른 SBR 및 MBR 혼성형 수처리 장치는In order to achieve the object SBR and MBR mixed water treatment apparatus according to the present invention is
원수가 유입되는 제1반응조,The first reactor into which raw water flows,
상기 제1반응조 내에 구비된 산기관,An diffuser provided in the first reactor,
상기 산기관에 에어를 공급하는 블로어Blower for supplying air to the diffuser
를 포함하는 SBR; 및SVR containing a; And
상기 제1반응조를 거친 처리수가 유입되는 제2반응조,A second reaction tank into which the treated water passed through the first reaction tank is introduced;
상기 제2반응조 내에 구비된 멤브레인 모듈,A membrane module provided in the second reactor,
처리수의 유입에 따라 슬러지 농도가 증가하는 경우 멤브레인 모듈을 상승시키는 승강수단Lifting means for raising the membrane module when the sludge concentration increases with the inflow of treated water
을 포함하는 MBR;MWR comprising a;
을 포함하여 이루어진다.It is made, including.
또 본 발명에 따른 SBR 및 MBR 혼성형 수처리 장치에서In the SV and MBR mixed water treatment apparatus according to the present invention
상기 멤브레인 모듈의 하부에는 산기관이 구비되며, 이 산기관은 멤브레인 모듈과 함께 승강되고, 상기 산기관에 에어를 공급하는 블로어를 더 포함하며,A diffuser is provided below the membrane module, the diffuser is lifted together with the membrane module and further includes a blower for supplying air to the diffuser.
서로 다른 반응이 진행되는 복수의 SBR이 구비되어 있고,There are a plurality of SVRs in which different reactions proceed,
상기 제2반응조 내의 농축슬러지를 제1반응조로 반송하는 펌프를 포함하는 반송라인을 더 포함하는 것이 바람직하다.It is preferable to further include a conveying line including a pump for conveying the concentrated sludge in the second reaction tank to the first reaction tank.
이상에서 설명한 바와 같이 본 발명에 따른 SBR 및 MBR 혼성형 수처리 장치는 SBR 및 MBR 공정을 연계함과 아울러, MBR 공정을 위한 멤브레인 모듈의 오염을 최소화시키고 장기적으로 사용할 수 있도록 오염을 지연시키기 위하여 멤브레인 모듈이 상하로 이동하여 수리학적 특성을 이용하여 오염을 최소화할 수 있고, 또 상기 멤브레인 모듈의 하부에는 산기관을 배열하고, 이 산기관이 멤브레인 모듈과 함께 승강되도록 구성함으로써, 멤브레인 모듈이 상부로 이송하게 되면 멤브레인 모듈 하단에 위치한 산기관도 동일하게 상부로 이송하게 되어 MBR을 위한 제2반응조의 하단부는 상대적으로 조용한 지점이 되므로, 하단부에는 제1반응조 내부의 슬러지가 자연침강하여 농축하게 되며, 상부는 상대적으로 낮은 슬러지 농도가 이루어지므로, 낮은 슬러지 농도 지역에서 멤브레인 모듈을 이용한 여과가 일어남으로써 멤브레인 모듈의 오염은 최소화되도록 할 수 있으며, 아울러 서로 다른 반응이 진행되는 복수의 SBR을 도입하여, SBR공정이 단일 반응조로 구성되어 있는 경우, 처리대상수의 양이 많고 지속적인 처리를 필요로 할 경우의 문제점을 해결할 수 있고, 나아가 상기 제2반응조 내의 농축슬러지를 제1반응조로 반송하는 펌프를 포함하는 반송라인을 도입하여, SBR공정과 MBR공정을 연계하여 SBR공정에서 슬러지의 침강성에 대한 고려가 필요 없게 됨으로써 높은 농도의 활성슬러지를 이용할 수 있어 대상오수를 처리함에 있어 짧은 처리시간 만이 필요하므로 처리공정을 보다 단순하게 구성할 수 있고 짧은 처리시간으로 인해 처리장 부지를 최소화 할 수 있다.As described above, the SVR and MBR mixed water treatment apparatus according to the present invention is linked to the SVR and MBR processes, and minimizes the contamination of the membrane module for the MBR process and delays the contamination so that it can be used for a long time. By moving up and down, the hydraulic characteristics can be used to minimize contamination, and by arranging an diffuser under the membrane module, the diffuser can be elevated together with the membrane module, so that the membrane module is transferred upward. In the same way, the diffuser located at the bottom of the membrane module is also transferred to the upper part so that the lower end of the second reactor for MBR becomes a relatively quiet point, and the sludge inside the first reactor is concentrated and concentrated on the lower part. Has a relatively low sludge concentration As a result of the filtration using the membrane module in a low sludge concentration region, contamination of the membrane module can be minimized, and when the SVR process is composed of a single reactor by introducing a plurality of SVRs in which different reactions are performed. In the case of a large amount of water to be treated and a need for continuous treatment, a problem can be solved, and a conveying line including a pump for conveying the concentrated sludge in the second reaction tank to the first reaction tank is introduced, By linking the MBR process, it is not necessary to consider the sedimentation of sludge in the SBR process, so that high concentration of activated sludge can be used. Therefore, the treatment process can be made simpler because it requires only a short treatment time to treat the target sewage. Treatment time can minimize plant floor .
도 1은 본 발명에 따른 수처리 장치의 개략도. 1 is a schematic view of a water treatment apparatus according to the present invention.
도 2는 본 발명에 따른 수처리 장치의 변형예와 관련된 개략도. 2 is a schematic view relating to a modification of the water treatment device according to the present invention.
* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
A: 수처리 장치 10: SBRA: Water treatment device 10: SVR
11: 제1반응조 13: 산기관11: Reactor 1: Reactor
15: 교반기 20: MBR15: stirrer 20: MBR
21: 제2반응조 23: 멤브레인 모듈21: second reactor 23: membrane module
25: 승강수단 27: 산기관25: lifting means 27: diffuser
30: 반송라인 31: 반송펌프30: conveying line 31: conveying pump
40: 처리수배출라인 41: 배수펌프40: treated water discharge line 41: drain pump
B: 블로어 S: 센서부B: blower S: sensor
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하도록 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 구현예(態樣, aspect)(또는 실시예)들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention may be modified in various ways and have various forms, embodiments (or embodiments) will be described in detail in the text. However, this is not intended to limit the present invention to the specific form disclosed, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
각 도면에서 동일한 참조부호, 특히 십의 자리 및 일의 자리 수, 또는 십의 자리, 일의 자리 및 알파벳이 동일한 참조부호는 동일 또는 유사한 기능을 갖는 부재를 나타내고, 특별한 언급이 없을 경우 도면의 각 참조부호가 지칭하는 부재는 이러한 기준에 준하는 부재로 파악하면 된다. In each of the drawings, the same reference numerals, in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same or similar functions, and unless otherwise specified, each member in the figures The member referred to by the reference numeral may be regarded as a member conforming to these criteria.
본 명세서에서 사용한 용어는 단지 특정한 구현예(態樣, aspect)(또는 실시예)를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, ~포함하다~ 또는 ~이루어진다~ 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing particular aspects (or embodiments) only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms “comprises” or “consists” are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, but one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
본 명세서에서 기재한 ~제1~, ~제2~ 등은 서로 다른 구성 요소들임을 구분하기 위해서 지칭할 것일 뿐, 제조된 순서에 구애받지 않는 것이며, 발명의 상세한 설명과 특허청구범위에서 그 명칭이 일치하지 않을 수 있다. In the present specification, the first to the second and the second will only refer to different components, and are not limited to the order of manufacture, and their names in the detailed description of the invention and the claims. This may not match.
본 발명의 핵심은 하수, 오수 및 폐수 등의 처리 대상 원수에서 발생된 오염물질을 제거하기 위한 공정과 관련된 것으로, 하수, 오수 및 소화폐액 등의 처리 대상 원수에서 발생하는 수중 오염물질을 일개 반응조에서 호기조건, 무산소조건의 연속수행을 통해 수중의 질소계 오염물질(암모니아성 질소 등)을 제거(SBR, sequencing batch reactor)하고, The core of the present invention relates to a process for removing contaminants generated from raw water to be treated, such as sewage, sewage, and wastewater. Sequencing batch reactor (SBR) to remove nitrogen-based contaminants (ammonia nitrogen, etc.) in water through continuous aerobic and anoxic conditions
오염 부하량이 저감된 처리수를 MBR을 구성하는 멤브레인 모듈, 특히 침지형 멤브레인 모듈(submerged membrane module)을 통해 최종처리수를 생산하는 기술이다. It is a technology for producing the final treated water through the membrane module constituting the MBR, particularly submerged membrane module, the treated water reduced pollution load.
부언하면, 본 발명은 하수, 오수 및 폐수 내에 존재하는 유기물질을 제거하고, 영양염류인 질소와 인을 안정적으로 제거하기 위하여 센서등을 통해 쉽게 제어가 가능한 SBR공정을 이용하고 후단에 MBR을 구성하는 멤브레인 모듈을 이용함으로써 입자성 물질의 완벽한 제거를 통해 최종처리수의 유기물 및 영양염류의 농도를 보다 안정적으로 처리하기 위한 기술이다. In addition, the present invention uses the SSR process that can be easily controlled through a sensor, etc. in order to remove organic substances present in sewage, sewage and wastewater, and stably remove nutrients nitrogen and phosphorus, and constitute MBR at the rear end. It is a technology for more stable treatment of the concentration of organic matter and nutrients in the final treatment water through the complete removal of particulate matter by using a membrane module.
SBR공정은 일반적으로 단일 반응조 내에서 인방출, 탈질화, 질산화가 조건변화와 시간차에 의해 이루어진다. 앞에서 설명한 바와 같이 이로 인해 지속적인 처리가 불가능하며, 처리가 간헐적으로 이루어진다. 또한, 슬러지에 대한 침강성이 완전하게 확보되지 않아 슬러지의 유출로 인한 처리수의 수질변화가 일어날 가능성이 있다. The SVR process is generally performed in a single reactor by phosphorus release, denitrification, and nitrification by changing conditions and time differences. As described above, this makes continuous processing impossible and the processing is intermittent. In addition, the sedimentation of the sludge is not completely secured, and there is a possibility that the water quality of the treated water may change due to the outflow of the sludge.
따라서 본 특허에서는 단일 SBR공정을 비롯하여, 대상의 지속적인 처리를 필요로 할 경우, SBR공정을 2단 또는 3단식으로 다단으로 구성하여 각 반응조간의 유입시간의 시차를 두어 지속적으로 처리가 가능토록 한다. Therefore, in the present patent, if a continuous treatment of the subject, including a single SSR process, the SSR process is composed of two stages or three stages in multiple stages so that the inflow time between the reaction tanks can be continuously processed.
MBR공정은 SBR공정 후단에 위치하며, SBR반응조에서 인 방출탈질화, 질산화 인 흡수 반응을 통해 슬러지가 MBR공정내에서 처리수와 슬러지 간의 분리가 일어나도록 한다. 따라서 SBR공정은 슬러지 분리를 위한 침강성에 대해 특별히 고려할 필요가 없게 된다. The MBR process is located at the end of the SSR process, and the sludge is separated between the treated water and the sludge in the MBR process through phosphorus release denitrification and phosphorus nitrate absorption in the SSR reactor. Therefore, the SVR process does not require special consideration for sedimentation for sludge separation.
SBR공정과 MBR공정을 연계함으로써 SBR공정에서는 슬러지의 침강성에 대한 고려가 필요 없게 됨으로써 높은 농도(8,000∼10,000mg/L)의 활성슬러지를 이용할 수 있다. 높은 활성슬러지 농도를 이용하게 됨으로써 대상오수를 처리함에 있어 짧은 처리시간만이 필요하므로, 처리공정을 보다 단순하게 구성할 수 있고, 짧은 처리시간으로 인해 처리장 부지를 최소화 할 수 있다. By linking the SVR process with the MBR process, the SSR process eliminates the need for consideration of the sludge settling properties, so that activated sludge of high concentration (8,000 to 10,000 mg / L) can be used. By using a high activated sludge concentration, only a short treatment time is required for treating the target sewage, so that the treatment process can be configured more simply, and the treatment plant site can be minimized due to the short treatment time.
MBR공정에서 분리막의 오염을 최소화시키기 위한 방법으로 본 발명에서는 멤브레인 모듈의 이동을 제안한다. 일반적인 MBR공정에서 멤브레인 모듈은 반응조의 하부에 고정되어 있다.The present invention proposes the movement of the membrane module as a method for minimizing the contamination of the separator in the MBR process. In a typical MBR process, the membrane module is fixed to the bottom of the reactor.
이로 인해 여과시간이 지남에 따라 분리막을 투과하지 못한 입자성 물질 및 슬러지 등은 반응조 내에서 지속적으로 농축되고, 보다 높은 농도의 슬러지를 배제해야 하는 분리막은 슬러지의 농도가 증가함에 따라 빠르게 오염된다. 이러한 문제를 해결하기 위해서 본 발명에서는 SBR공정에서 유입된 슬러지가 처음 MBR반응조로 유입되었을 경우 멤브레인 모듈을 하단에 위치하고 여과를 수행함으로써 높은 수압을 이용하여 낮은 압력에서 여과를 수행할 수 있도록 하고, 반응조 내부에서 슬러지가 농축됨에 따라 멤브레인 모듈을 상부로 이송시켜 멤브레인 모듈이 위치하지 않은 하부에서는 슬러지가 침강하고 슬러지 침강으로 인해 상대적으로 낮은 농도를 나타내는 반응조 상부에서 여과를 수행함으로써 분리막의 오염을 지연시키도록 한다.  As a result, particulate matter and sludge that do not penetrate the separator over time are continuously concentrated in the reaction tank, and the separator which has to exclude a higher concentration of sludge is rapidly contaminated as the concentration of sludge increases. In order to solve this problem, in the present invention, when the sludge introduced in the SBR process is introduced into the MBR reaction tank for the first time, the membrane module is placed at the bottom to perform filtration at low pressure by using high water pressure. As the sludge is concentrated in the interior, the membrane module is transferred to the upper part so as to delay the contamination of the separator by performing the filtration in the upper part of the reactor where the sludge is settled in the lower part where the membrane module is not located and the sludge sediment is relatively low. do.
도 1에서 확인할 수 있는 바와 같이, 본 발명에 따른 혼성형 수처리 장치(A)는 SBR(10)와 MBR(20)로 구성된다. 공정 내로 유입된 대상 원수(Raw Water)는 SBR공정의 진행을 위하여 제1반응조(11)로 유입되어 시간경과에 따라 혐기조건, 무산소조건, 호기성조건을 거치면서 원수 내에 포함된 유기물질과 영양염류가 제거된다. As can be seen in FIG. 1, the hybrid type water treatment apparatus A according to the present invention is composed of SVR 10 and MBR 20. Raw water introduced into the process flows into the first reactor 11 for the progress of the SVR process and undergoes anaerobic, anaerobic and aerobic conditions over time, and contains organic substances and nutrients in the raw water. Is removed.
각 조건의 지속시간 및 산기량 등은 pH, DO, ORP 등의 센서로 이루어진 센서부(S)를 통해 제어된다. Duration and acid amount of each condition is controlled by the sensor unit S consisting of sensors such as pH, DO, ORP.
대상 원수가 유입되고 혐기조건을 필요로 할 시에는 제1반응조(11) 내에 구비된 산기관(aerator)(13)과 연결된 블로어(blower)(B)를 통해 제1반응조(11)(SBR Reactor)로 유입되는 공기의 공급이 차단되며, DO가 완전하게 0이 유지되게 한다(제1반응조에는 교반기(Agitator)(15)가 구비되는 것이 바람직함). When the target raw water flows and requires anaerobic conditions, the first reactor 11 (SVR Reactor) is connected through a blower B connected to an aerator 13 provided in the first reactor 11. The supply of air to the water) is cut off, and DO is completely maintained at 0 (preferably equipped with an agitator 15 in the first reactor).
혐기조건과 무산소 조건이 유지된 시점에서 더 이상의 탈질반응이 일어나지 않을 경우 제1반응조(11) 내부로 공기를 공급시켜 호기조건을 유지하고 If no further denitrification occurs at the time when anaerobic and anaerobic conditions are maintained, the aerobic conditions are maintained by supplying air into the first reactor (11).
pH와 ORP, DO 등을 위한 센서부(S)를 통해 호기조건에서의 질산화와 유기물 분해가 모두 이루어진 상태가 감지되면, 이 상태에서의 처리수를 MBR(20)을 위한 제2반응조(21)(MBR reactor)(제2 '반응조' 보다는 '막분리조'가 보다 정확한 표현임)로 이송시킨다. When a state in which both nitrification and organic matter decomposition are performed under aerobic conditions is detected through the sensor unit S for pH, ORP, DO, and the like, the second reaction tank 21 for treating MWR 20 in this state is treated. (MBR reactor) ('membrane separation tank' is more accurate than the second 'reactor').
이 시점에서 MBR(20)을 위한 제2반응조(21)는 이전 SBR(10)을 위한 제1반응조(11)를 통해 처리된 처리수를 멤브레인 모듈, 특히 침지형 멤브레인 모듈(23)(submerged membrane module)을 통하여 여과를 수행하고 있는 상태이며 At this point, the second reactor 21 for the MBR 20 receives the treated water that has been treated through the first reactor 11 for the previous SV 10, particularly the submerged membrane module 23. Is performing filtration through
현상태에서의 제1반응조(11)의 처리수가 유입되기 바로 전에 하부에 침강하여 있는 농축슬러지를 SBR의 제1반응조(11)로 반송시킨다. 이를 위하여 두 반응조(11)(21) 사이에 구비된 반송라인(30)에는 농축슬러지 반송(Concentrate Recycle)용 펌프(31)가 구비되는 것이 바람직하다. Immediately before the treated water of the first reaction tank 11 in the present state flows, the concentrated sludge settled in the lower part is returned to the first reaction tank 11 of SV. For this purpose, it is preferable that the conveying line 30 provided between the two reaction tanks 11 and 21 is provided with a pump 31 for concentrating recycling.
이 과정 후에 SBR공정에서의 처리수가 MBR(20)의 제2반응조(21)로 유입되며, After this process, the treated water in the SVR process is introduced into the second reactor 21 of the MBR 20,
유입초기에는 유입된 슬러지의 농도가 높지 않으므로 멤브레인 모듈(23)은 승강수단(25)에 의하여 제2반응조 하부에 위치한다.Since the concentration of the introduced sludge is not high at the beginning of the inflow, the membrane module 23 is positioned below the second reactor by the elevating means 25.
한편, 제1반응조(11)를 거친 처리수는 다양한 방법을 이용하여 제2반응조(21)로 이송되는데, 일례로 자연유하 방식을 이용할 수 있다.Meanwhile, the treated water having passed through the first reaction tank 11 is transferred to the second reaction tank 21 using various methods. For example, a natural flow method may be used.
제2반응조(21)에 슬러지가 채워진 후 멤브레인 모듈(23)은 여과를 시작하게 되는데,After the sludge is filled in the second reactor 21, the membrane module 23 starts filtration.
자연유하 방식(이를 위하여 두 반응조(11)(21) 사이에는 밸브, 특히 자동 제어를 위한 전동밸브(V)(Sol. Valve)가 구비되는 것이 바람직함)의 경우 제1반응조(11)의 수두가 높고 멤브레인 모듈(23)은 하단에 위치하여 있으므로 높은 수압을 받아 여과가 용이하게 일어난다. In the case of the natural flow method (for this purpose, it is preferable to provide a valve, in particular, an electric valve V (Sol. Valve) for automatic control between the two reactors 11 and 21). Is high and the membrane module 23 is located at the bottom, so that filtration occurs easily under high water pressure.
지속적으로 여과가 수행되어 처리수가 배출되고 그로 인해 제2반응조(21) 내에 슬러지 농도가 높아짐에 따라 멤브레인의 오염이 진행된다. Filtration is carried out continuously so that the treated water is discharged, thereby contaminating the membrane as the sludge concentration in the second reactor 21 increases.
따라서 MBR(20) 제2반응조(21) 내에 슬러지의 농도가 높아지는 시점에 승강수단(25)을 이용하여 멤브레인 모듈(23)을 상부로 이송시킨다.Therefore, when the concentration of sludge in the MBR 20 second reactor 21 is increased, the membrane module 23 is transferred upward by using the elevating means 25.
승강수단(25)은 일례로 모터(25B)에 의하여 작동되는 윈치릴(25A)을 포함하고, 멤브레인모둘(23)과 윈치릴(25A)을 연결하는 와이어(25a)는 롤러(25b)를 통하여 방향이 전환되어 부드럽게 릴(25A)에 감기고 풀리는 동작이 이루어질 수 있게 되며, The elevating means 25 includes, for example, a winch reel 25A operated by the motor 25B, and the wire 25a connecting the membrane module 23 and the winch reel 25A is connected through a roller 25b. The direction is switched so that the reel 25A can be wound and unwinded smoothly.
그외 다양한 승강수단의 구현이 가능하나, 승강수단은 자동화 제어를 고려하여 모터나 유압(또는 공압) 실린더 등을 이용하여 구성하는 것이 바람직하다. Various other lifting means can be implemented, but the lifting means is preferably configured using a motor or a hydraulic (or pneumatic) cylinder in consideration of the automation control.
상기 멤브레인 모듈(23)이 상부로 이송하게 되면 멤브레인 모듈 하단에 위치한 산기관(27)(역시 블로어(B)와 연결됨)도 동일하게 상부로 이송하게 되고 When the membrane module 23 is transferred upward, the diffuser 27 (also connected with the blower B) located at the bottom of the membrane module is also transferred upward.
산기관(27)이 상부로 이송함으로 인해 제2반응조(21)의 하부는 상대적으로 조용한 지점이 된다. The lower part of the second reactor 21 is a relatively quiet point because the diffuser 27 is transferred upward.
따라서 제2반응조(21) 하단부에는 제1반응조(11)로부터 공급된 처리수에 내포된 슬러지가 자연 침강하여 농축하게 된다. 이와 같이 제2반응조(21) 하단에 슬러지가 자연침강하여 농축함으로써 상부는 상대적으로 낮은 슬러지 농도가 이루어진다. 이렇게 낮은 슬러지 농도 지역에서 여과가 일어남으로써 멤브레인 모듈(23)의 오염은 최소화된다. Therefore, the sludge contained in the treated water supplied from the first reaction tank 11 is concentrated and sedimented at the lower end of the second reaction tank 21. As such, the sludge is naturally precipitated and concentrated at the bottom of the second reactor 21, so that the upper portion has a relatively low sludge concentration. Filtration occurs in such low sludge concentration regions, thereby minimizing contamination of the membrane module 23.
이러한 공정의 반복을 통해 높은 효율을 오염물질 제거효율을 나타낼 수 있으며, 멤브레인 모듈(23)의 오염을 최소화 시킬 수 있다. By repeating such a process, high efficiency may be indicated to remove contaminants, and contamination of the membrane module 23 may be minimized.
MBR(20)을 거친 최종 처리수는 처리수 배출라인(40)을 통하여 방류되는데, 상기 배출라인(40)에는 석션펌프(Suction Pump)(41)가 구비되고, The final treated water passing through the MBR 20 is discharged through the treated water discharge line 40, the discharge line 40 is provided with a suction pump (41),
또 제1반응조(11)에 구비된 센서부(S)와 함께 수처리공정의 중앙 자동제어 구현을 위하여 배출라인(40)에는 압력계(Pressure Transmitter)(43)와 유량계(Flow Transmitter)(45)가 구비되어 있는 것이 바람직하다.In addition, in order to implement central automatic control of the water treatment process together with the sensor unit S provided in the first reactor 11, a pressure gauge 43 and a flow transmitter 45 are provided in the discharge line 40. It is preferable that it is provided.
이상에서 도 1과 관련하여 설명한 SBR 및 MBR 혼성형 수처리 장치는 SBR공정이 단일 반응조로 구성되어 있는 경우로,The SV and MBR mixed water treatment apparatus described above with reference to FIG. 1 is a case where the SV process is composed of a single reactor.
만약 처리대상수의 양이 많고 지속적인 처리를 필요로 할 경우 단일 반응조로는 그 처리가 불가능 하다. If the amount of water to be treated is large and continuous treatment is required, the treatment is not possible with a single reactor.
따라서 처리하고자 하는 대상수가 많거나, 충분한 처리시간의 확보가 어려울 경우, 도 2와 같은 변형 장치를 사용하는 것이 바람직하다.Therefore, when the number of objects to be treated is large or when it is difficult to secure sufficient processing time, it is preferable to use the deformation apparatus as shown in FIG. 2.
도 2는 두 개의 SBR(10A)(10B)용 제1반응조(11)와 한 개의 MBR(20)용 제2반응조(21)가 연계된 개략적인 장치 도면으로, FIG. 2 is a schematic apparatus diagram in which two first reactors 11 for SBR 10A and 10B and one second reactor 21 for MBR 20 are linked.
도 2에서 확인할 수 있는 바와 같이, 두 개의 SBR용 제1반응조(11)는 순차적으로 처리를 시작한다. As can be seen in FIG. 2, the two first reactors 11 for SVR start the treatment sequentially.
하나의 SBR(10A) 제1반응조(11)에서 처리반응이 일어나는 동안 While the treatment reaction takes place in one SBR (10A) first reactor (11)
다른 SBR(10B)의 제1반응조에서 이미 처리를 끝낸 처리수가 제2반응조(21)로 이송되는데The treated water which has already been treated in the first reactor of another SBR 10B is transferred to the second reactor 21.
제2반응조는 앞서 도1과 관련하여 설명한 바와 같은 순서로 여과를 진행한다. The second reactor undergoes filtration in the same order as described above with reference to FIG. 1.
여과가 끝났을 때, 이미 반응을 마친 다른 SBR(10A)의 제1반응조에서 처리수를 공급받아 지속적으로 여과를 수행함으로써, When the filtration is finished, by receiving the treated water from the first reaction tank of the other SBR (10A) that has already completed the reaction, by performing filtration continuously,
공정의 연속성을 가질 수 있고 이로 인해 많은 유량의 대상 오수를 처리할 수 있는 것이다. 필요에 따라 제1반응조의 수는 증감될 수 있다.It is possible to have a continuity of the process, which can treat a large amount of target wastewater. If necessary, the number of first reactors may be increased or decreased.
나아가 MBR(20)용 제2반응조(21) 및 멤브레인 모듈(23) 또한 필요에 따라 둘 이상 도입될 수 있다.Furthermore, more than one second reactor 21 and membrane module 23 for MBR 20 may be introduced as necessary.
이상의 설명에서 통상의 공지된 기술을 생략되어 있으나, 당업자라면 용이하게 이를 추측 및 추론하고 재현할 수 있다. Although the well-known techniques are omitted in the above description, those skilled in the art can easily infer, infer, and reproduce them.
또 이상에서 본 발명을 설명함에 있어 첨부된 도면을 참조하여 특정 형상과 구조를 갖는 수처리 장치를 위주로 설명하였으나 본 발명은 당업자에 의하여 다양한 수정, 변경 및 치환이 가능하고, 이러한 수정, 변경 및 치환은 본 발명의 보호범위에 속하는 것으로 해석되어야 한다. In addition, in the above description of the present invention, the water treatment apparatus having a specific shape and structure has been described with reference to the accompanying drawings, but the present invention can be variously modified, changed, and replaced by those skilled in the art. It should be interpreted as falling within the protection scope of the present invention.

Claims (4)

  1. 원수가 유입되는 제1반응조,The first reactor into which raw water flows,
    상기 제1반응조 내에 구비된 산기관,An diffuser provided in the first reactor,
    상기 산기관에 에어를 공급하는 블로어Blower for supplying air to the diffuser
    를 포함하는 SBR; 및SVR containing a; And
    상기 제1반응조를 거친 처리수가 유입되는 제2반응조,A second reaction tank into which the treated water passed through the first reaction tank is introduced;
    상기 제2반응조 내에 구비된 멤브레인 모듈,A membrane module provided in the second reactor,
    처리수의 유입에 따라 슬러지 농도가 증가하는 경우 멤브레인 모듈을 상승시키는 승강수단Lifting means for raising the membrane module when the sludge concentration increases with the inflow of treated water
    을 포함하는 MBR;MWR comprising a;
    을 포함하여 이루어진 SBR 및 MBR 혼성형 수처리 장치. SBR and MBR mixed water treatment device comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 멤브레인 모듈의 하부에는 산기관이 구비되며, 이 산기관은 멤브레인 모듈과 함께 승강되고,A diffuser is provided below the membrane module, and the diffuser is elevated together with the membrane module.
    상기 산기관에 에어를 공급하는 블로어를 더 포함하는 것을 특징으로 하는 SBR 및 MBR 혼성형 수처리 장치. SBR and MBR mixed water treatment apparatus further comprises a blower for supplying air to the diffuser.
  3. 제 1 항에 있어서,The method of claim 1,
    서로 다른 반응이 진행되는 복수의 SBR이 구비되어 있는 것을 특징으로 하는 SBR 및 MBR 혼성형 수처리 장치. SVR and MBR hybrid water treatment apparatus, characterized in that a plurality of SVR to which different reactions proceed.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제2반응조 내의 농축슬러지를 제1반응조로 반송하는 펌프를 포함하는 반송라인을 더 포함하는 것을 특징으로 하는 SBR 및 MBR 혼성형 수처리 장치. SBR and MBR mixed water treatment apparatus further comprising a conveying line including a pump for conveying the concentrated sludge in the second reaction tank to the first reaction tank.
PCT/KR2010/007893 2009-11-10 2010-11-10 Hybrid water treatment apparatus based on sbr and mbr WO2011059218A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0108262 2009-11-10
KR20090108262 2009-11-10
KR10-2010-0003116 2010-01-13
KR1020100003116A KR101150335B1 (en) 2009-11-10 2010-01-13 Wastewater treatment apparatus combined sbr with mbr

Publications (2)

Publication Number Publication Date
WO2011059218A2 true WO2011059218A2 (en) 2011-05-19
WO2011059218A3 WO2011059218A3 (en) 2011-11-10

Family

ID=43992202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007893 WO2011059218A2 (en) 2009-11-10 2010-11-10 Hybrid water treatment apparatus based on sbr and mbr

Country Status (1)

Country Link
WO (1) WO2011059218A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015434A1 (en) * 2018-07-17 2020-01-23 厦门理工学院 Treatment method for dye wastewater
WO2020015459A1 (en) * 2018-07-17 2020-01-23 厦门理工学院 Method for treating wastewater containing heavy metal
US11352278B2 (en) 2018-07-17 2022-06-07 Xiamen University Of Technology Method for treating domestic sewage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226310A (en) * 1998-02-13 1999-08-24 Marushima Aqua System:Kk Filtration apparatus employing fibrous filtration medium
KR20040018605A (en) * 2002-08-23 2004-03-04 한국과학기술연구원 Apparatus for Treatment of Domestic Wastewater Combining Continuous SBR and Contact Aeration Tank and Method Therefor Using the Apparatus
US20060213831A1 (en) * 2004-10-14 2006-09-28 Dimitriou Michael A Energy-efficient biological treatment system with filtration membrane
US20090145844A1 (en) * 2007-12-07 2009-06-11 Industrial Technology Research Institute Sequencing batch membrane bioreactor and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226310A (en) * 1998-02-13 1999-08-24 Marushima Aqua System:Kk Filtration apparatus employing fibrous filtration medium
KR20040018605A (en) * 2002-08-23 2004-03-04 한국과학기술연구원 Apparatus for Treatment of Domestic Wastewater Combining Continuous SBR and Contact Aeration Tank and Method Therefor Using the Apparatus
US20060213831A1 (en) * 2004-10-14 2006-09-28 Dimitriou Michael A Energy-efficient biological treatment system with filtration membrane
US20090145844A1 (en) * 2007-12-07 2009-06-11 Industrial Technology Research Institute Sequencing batch membrane bioreactor and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015434A1 (en) * 2018-07-17 2020-01-23 厦门理工学院 Treatment method for dye wastewater
WO2020015459A1 (en) * 2018-07-17 2020-01-23 厦门理工学院 Method for treating wastewater containing heavy metal
US11286186B2 (en) 2018-07-17 2022-03-29 Xiamen University Of Technology Method for treating dye wastewater
US11352278B2 (en) 2018-07-17 2022-06-07 Xiamen University Of Technology Method for treating domestic sewage
US11485656B2 (en) 2018-07-17 2022-11-01 Xiamen University Of Technology Method for treating heavy metal wastewater

Also Published As

Publication number Publication date
WO2011059218A3 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
US7569148B2 (en) Continuous membrane filtration and solids reduction
WO2010123174A1 (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
WO2018221924A1 (en) Sewage treatment system based on anaerobic ammonium oxidation method in water treatment process in sewage treatment plant
WO2013183965A1 (en) Membrane system and method for treating sewage and wastewater capable of automated removal/destruction of scum/foam with high energy efficiency, high flux and low operation costs and having process conversion method from constant level continuous batch reactor process
KR101368295B1 (en) Integrated waste water treatment apparatus
WO2007086240A1 (en) Method of treating drainage water using fixation support
KR101721251B1 (en) SBR Process coupled with Membrane Process
WO2022108140A1 (en) Partial nitritation using sequencing batch reactor with filter media and wastewater treatment device and system for shortcut nitrogen removal using same
WO2017052167A1 (en) Wastewater treatment apparatus adopting biofiltration process for pretreatment of shortened nitrogen removal process
WO2011059218A2 (en) Hybrid water treatment apparatus based on sbr and mbr
KR101150335B1 (en) Wastewater treatment apparatus combined sbr with mbr
KR102021951B1 (en) Water Treatment System Using Reciprocation of the Filtration Membrane and intermittent Air scour
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
KR100709456B1 (en) Waste water disposal plant and waste water disposal method
KR100992321B1 (en) Wastewater treatment apparatus with membrane module
KR100911443B1 (en) System for treatment of wastewater and method for treatment of wastewater using the same
CN114409204A (en) Automatic wastewater treatment system and treatment method thereof
CN211814020U (en) Single-pump integrated control sewage treatment integrated equipment
KR100742395B1 (en) An apparatus for purifying the polluted water
KR102250902B1 (en) Treatment System of The Wastewater Containing Silica With Improved Treatment efficiency
KR102250903B1 (en) Treatment System of The Wastewater Containing Silica Capable of removing nitrogen and Phosphorus
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
KR101298290B1 (en) Advanced method for wastewater treatment and method for excessive sludge degradation treatment, using immobilized carrier
KR20010109976A (en) Nutrients removing method and apparatus from sewage and industrial waste water
CN215627421U (en) Landfill leachate treatment device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10830150

Country of ref document: EP

Kind code of ref document: A2