WO2015064933A1 - Method for treating drain-water using sludge aeration in water treatment plant - Google Patents

Method for treating drain-water using sludge aeration in water treatment plant Download PDF

Info

Publication number
WO2015064933A1
WO2015064933A1 PCT/KR2014/009731 KR2014009731W WO2015064933A1 WO 2015064933 A1 WO2015064933 A1 WO 2015064933A1 KR 2014009731 W KR2014009731 W KR 2014009731W WO 2015064933 A1 WO2015064933 A1 WO 2015064933A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
concentration
manganese
aeration
water
Prior art date
Application number
PCT/KR2014/009731
Other languages
French (fr)
Korean (ko)
Inventor
백인호
이성진
박정욱
최일경
변일환
Original Assignee
한국수자원공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사 filed Critical 한국수자원공사
Publication of WO2015064933A1 publication Critical patent/WO2015064933A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the present invention relates to a wastewater treatment method using the sludge aeration of water treatment plant, in particular, to provide air to the sludge to prevent the increase in the concentration of contaminants, such as heavy metals and volatile organic substances contained in the sludge due to the anaerobic sludge (
  • the present invention relates to a wastewater treatment method using sludge aeration in a water treatment plant in which sludge is aerated to reduce a concentration of heavy metals and volatile organic substances in the sludge.
  • a water treatment plant includes a water treatment plant that produces tap water using raw water and a wastewater treatment plant that treats effluent such as sludge generated during the water treatment process.
  • the wastewater treatment facility is designed and operated for the purpose of removing the suspended solids contained in the sludge generated during the treatment of raw water, and then discharged after treatment.
  • the present invention not only removes heavy metals and volatile organic substances included in the sludge generated during the water treatment process, but also requires less facility investment and operating costs, and minimizes the space for installing the water treatment plant sludge aeration. Provides a method of treating wastewater used.
  • the wastewater treatment method using the sludge aeration plant the sludge generated during the treatment of the raw water in the water purification plant to provide a sludge support; Supplying air to the sludge provided in the sludge support to oxidize and degas heavy metals and volatile organic substances included in the sludge to reduce the concentration; Concentrating the sludge aerated in the sludge support in a sludge thickening tank and discharging the supernatant; Concentrating the sludge aerated in the sludge support in a sludge thickening tank; And dewatering the sludge concentrated in the concentration tank in a dehydration tank.
  • the heavy metal comprises manganese formed by the oxidation of chlorine provided to the raw water during the water treatment process in the water purification plant.
  • the volatile organic material includes chlorform formed by reacting with the chlorine provided in the raw water and the organic material contained in the raw water.
  • the amount of air supplied to the sludge is preferably 270 mL / min to 330 mL / min per 20 [L] of sludge. 300 mL / min.
  • the air is supplied to the sludge for 12 to 24 hours.
  • the sludge is re-dissolved in the concentration facility to increase the concentration of heavy metals and volatile organic substances, so that the hydrogen ion index (S) in the sludge to further reduce the concentration of manganese contained in the sludge.
  • S hydrogen ion index
  • the hydrogen ion index (pH) of the sludge provided with the pH adjusting agent is pH 8 to pH 10.
  • the present invention not only can the heavy metal and volatile organic substances contained in the sludge generated during the water treatment process be easily removed at the same time, but also the sludge settling property is improved, and facility investment cost and operation cost are low, It has the effect of minimizing the space for installation.
  • FIG. 1 is a flowchart illustrating a wastewater treatment method using sludge aeration water treatment plant according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a wastewater treatment facility for implementing the wastewater treatment method using the water treatment plant sludge aeration of FIG. 1.
  • FIG. 3 is a graph showing the sludge volume change according to the amount of air by the wastewater treatment method using the water treatment plant sludge aeration according to FIG.
  • FIG. 4 is a graph showing a change in manganese concentration according to the amount of air in FIG.
  • 5 is a graph showing the volume change of the sludge according to the air supply time in the optimized air amount.
  • FIG. 6 is a graph illustrating symbol manganese concentration according to the air supply time of FIG. 5.
  • FIG. 7 is a graph showing the concentration of supernatant chloroform according to the air supply time of FIG. 5.
  • FIG. 8 is a graph showing symbolic manganese concentration according to air supply and pH adjustment of FIG. 5.
  • FIG. 1 is a flowchart illustrating a wastewater treatment method using sludge aeration water treatment plant according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a wastewater treatment plant for implementing the wastewater treatment method using the wastewater treatment plant sludge aeration shown in FIG. 1.
  • Step S10 a large amount of sludge 10 generated in the process of purifying raw water by the purified water treatment plant 100 in the water purification plant 600 is discharged to the sludge support 100 of the wastewater treatment facility 500. Is provided. (Step S10)
  • the sludge provided as the slurry support 100 contains a large amount of organic matter, earth and sand, a plurality of inorganic materials, heavy metals such as manganese and chlorform, which is a volatile organic material.
  • the manganese concentration contained in the sludge 10 increases in proportion to the residence time of the sludge 10 provided as the sludge support 100, which does not supply oxygen to the sludge 10 so that anaerobicization of the sludge 10 proceeds. This is because the manganese oxide contained in the sludge 10 is reduced to the form of dissolved manganese.
  • the concentration of chlorform, which is a volatile organic material included in the sludge 10 is increased in proportion to the residence time of the sludge 10 provided as the sludge support 100.
  • the concentrations of manganese and chlorform contained in the sludge 10 provided as the sludge support 100 are in proportion to the time of staying in the anaerobic state generated by not supplying oxygen to the sludge 10 in common.
  • the aeration unit 250 is installed in the slurry support 200 as shown in FIG. 2.
  • the aeration unit 250 supplies air containing oxygen to the sludge 10 provided as the sludge support 200 to aerobic the sludge 10 while preventing the anaerobicization of the sludge 10 to the sludge 10. To reduce the concentration of manganese and chlorform contained below the reference value, the sedimentation of the sludge 10 can also be improved.
  • the aeration unit 250 shown in FIG. 2 is disposed in the interior of the sludge support 200, and the aeration unit 250 includes, for example, a blower 220 and a sludge 10 for blowing air containing oxygen. It may include a blower pipe 240 for injecting air containing oxygen into the.
  • blowers 220 are connected to each other including a spare device, and the blower pipe 240 is connected to the discharge port of the blower 220.
  • Each blower tube 240 is provided with acid substrates 245 for generating bubbles.
  • the sludge 10 is aerated as air containing oxygen is supplied to the sludge 10 provided into the sludge support 200 by the blower 220, the blower tube 240, and the acid substrate 245. It is possible to greatly reduce the concentration of manganese by preventing the reduction of manganese oxide contained in the sludge 10, and greatly reduce the concentration of chlorform, a volatile organic substance, through degassing by supplied air, and through sludge equalization Reduction in porosity can also improve sedimentation.
  • by supplying air containing oxygen to the sludge 10 of the sludge support 200 for about 12 hours can reduce the concentration of manganese contained in the sludge 10 by about 40% have.
  • the concentration of chlorform contained in the sludge 10 is reduced by about 60%, and the sludge of the sludge support 200 is reduced.
  • the total volume of the sludge 10 can be reduced by about 35%.
  • FIG. 3 is a graph showing the sludge volume change in the wastewater treatment method using the sludge aeration plant according to FIG. 4 is a graph showing a change in manganese concentration according to the air supply amount in FIG.
  • the laboratory sampled four sludges 10 each for about 24 hours with aeration (no air), 300 mL / min, 600 mL / min and 900 mL / min of air volume, respectively. Air was supplied (aerated) and then the four sludges 10 sampled were concentrated (sedimented) for about 240 hours.
  • the sludge 10 when the air is supplied for about 24 hours at an air volume of about 300 L / min, and then concentrated for about 24 hours (line A of FIG. 3), the sludge 10 The volume of was about 540 mL / L and the volume of the aeration sludge 10 was about 760 mL / L. At a volume of air of 300 L / min, the volume of the sludge 10 was reduced by 29% compared to the volume of the aeration sludge 10. .
  • the manganese concentration of the symbol water (clear water in the upper part of the sludge after the sludge settled)
  • the manganese concentration of the non-aeration sludge (10) is initially about 6 mg / L but the non-aeration sludge (10 )
  • Concentration of manganese rose sharply from about 6 mg / L to about 10 mg / L.
  • Comparing the manganese concentration measured in the symbolic water of the non-aeration sludge in Figure 4 and the manganese concentration in the symbolic water of the sludge 10 provided air amounts of about 300 mL / min, about 600 mL / min and about 900 mL / min,
  • the manganese concentration of the aeration sludge 10 is about 8 mg / L, while the manganese concentration of the sludge 10 which provides the air volumes of about 300 mL / min, about 600 mL / min and about 900 mL / min is about 3.12 mg / L.
  • the reduction was about 61%.
  • the volume of the sludge 10 is reduced by about 12% to provide air to the sludge 10 at an air volume of about 300 mL / min.
  • the volume reduction efficiency of the sludge 10 was lower than when provided.
  • the volume reduction efficiency of the sludge 10 and the decrease of manganese concentration are not proportional, but about 300 mL / min per 20 [L] of the sludge 10.
  • Providing air to the sludge 10 in the amount of air is the best for reducing the volume of the sludge 10, reducing the manganese concentration and the removal of chloroform, preferably of about 300 mL / min of the amount of air provided to the sludge 10
  • the volume reduction efficiency of the sludge 10, the manganese concentration reduction and the removal efficiency of chloroform are also excellent in the range of 270 mL / min to 330 mL / min, which is an error range of 10%.
  • FIG. 5 is a graph showing the volume change of the sludge according to the aeration time in the sludge support 200 in an optimized air volume.
  • FIG. 6 is a graph illustrating symbol manganese concentration according to the air supply of FIG. 5.
  • FIG. 7 is a graph showing the concentration of supernatant chloroform according to the air supply of FIG.
  • the rate of decrease in concentration of water chloroform was particularly good.
  • the sludge settling volume was reduced by about 35% compared to the settling volume of the non-aeration sludge 10, which was about 300 mL / min. This is because by providing air to the), the voids are reduced according to the homogenization of floc particles of the sludge 10, thereby improving the settling property.
  • bar graph A represents manganese concentration of symbol water during non-aeration
  • bar graph B represents manganese concentration of symbol water by enrichment time after supplying air for 2 hours
  • graph C supplying air for 6 hours.
  • graph D shows the manganese concentration of symbol water by enrichment time after supplying air for 12 hours
  • graph E shows the manganese concentration of symbol water by enrichment time after supplying air for 24 hours Indicates.
  • the bar graph A shows the concentration of the symbolic chloroform during non-aeration
  • the graph B shows the concentration of the symbolic chloroform after 2 hours of aeration
  • the graph C shows the concentration of the symbolic chloroform after 6 hours of aeration
  • the graph D Is the concentration of symbolic chloroform at 12 hours aeration
  • graph E represents the concentration of symbolic chloroform at 24 hours aeration.
  • Graphs A to D are concentrations measured after 24 hours of precipitation after different time aerations.
  • the concentration of chloroform in graph A corresponding to non-aeration is 0.175 mg / L, whereas the concentration of chloroform in the symbolic water of graph D is about 0.067 mg / L for 12 hours when air is supplied to the sludge 10 for 12 hours.
  • the concentration of the supernatant chloroform of the supplied sludge 10 was reduced by about 60% compared to the non-aeration sludge 10.
  • the operating condition of the aeration unit 250 was about 300 mL / min (per 20 [L] of sludge) considering the power ratio, and the air was provided based on the optimum amount of air.
  • the time is preferably about 12 hours to about 24 hours.
  • the air in the sludge 10 at the optimum amount of air for an optimal time
  • the concentration of volatile organic substances such as heavy metals and chloroform, including manganese contained in the sludge 10 can be improved.
  • the sludge support 200 is sludged with a pH adjusting chemical provided by the pH adjusting unit 260 to adjust the hydrogen ion index (pH) of the sludge 10 provided as the sludge support 200. It may be provided in (10), the pH adjusting agent may be provided to the sludge 10 after the step of providing the sludge 10 to the slurry support 200.
  • graph A represents manganese concentration of symbol water by sedimentation time during non-aeration
  • graph B shows manganese concentration of sedimentation time by sedimentation time after 12 hours of aeration with sludge itself without pH adjustment at 300mL / min.
  • Graph C of Figure 8 shows the manganese concentration of the symbolic water by sedimentation time after 12 hours aeration with the aeration amount after adjusting to pH 8
  • graph D shows the manganese concentration of sedimenting time by the sedimentation time after aeration with the aeration amount after adjusting to pH 9
  • the graph E shows the manganese concentration of the symbolic water according to the settling time after 12 hours of aeration after adjusting to pH 10.
  • graph B shows that the symbolic manganese concentration sharply increases after 48 hours of sedimentation despite the sludge aeration, and the symbolic manganese concentration of 24 hours after sedimentation is 3.77mg / L after 144 hours of sedimentation. This shows a sharp increase of 4.5 times.
  • the hydrogen ion index (ph) of the sludge 10 provided in the slurry support 200 is from about pH6.5 to about pH7.5, by the pH control unit 260 When (ph) is adjusted to about pH8 to pH10, manganese concentration can be reduced to 60% or more.
  • Step S30 the sludge 10 provided with air from about 12 hours to about 24 hours in the sludge support 200 is provided to the sludge thickener 300 connected in series with the sludge support 200. And concentrated.
  • the symbol water generated after condensing the sludge aerated in the sludge support 200 in the sludge thickening tank 300 is discharged, wherein the discharged water is the concentration of manganese and chlorform defined by the aeration in the sludge support 200 Satisfies the concentration.
  • Step S40 the supernatant is discharged and the concentrated sludge remaining in the sludge thickening tank 300 is dewatered in the dewatering tank 400 disposed adjacent to the sludge thickening tank 300.
  • the present invention provides air to the sludge of the water purification plant to reduce the concentration of manganese contained in the sludge and to provide a pH adjusting agent to the sludge with reduced manganese concentration does not increase the concentration of manganese contained in the sludge over time It can be used for the treatment of effluent from the water purification plant.

Abstract

The present invention relates to a method for treating drain-water using sludge aeration in a water treatment plant. The method for treating drain-water using sludge aeration in a water treatment plant comprises the steps of: providing, to a balancing tank, sludge generated while raw water is being treated in a water treatment plant; providing air to the sludge provided to the balancing tank to reduce density of heavy metal and volatile organic material contained in the sludge; concentrating the sludge, aerated in the balancing tank, in a sludge thickener and discharging upper cleaned water; concentrating the sludge, aerated in the balancing tank, in the sludge thickener; and dehydrating the sludge, which was concentrated in the thickener, in a dehydration tank.

Description

정수장 슬러지 폭기를 이용한 배출수 처리 방법Effluent treatment method using water treatment plant sludge aeration
본 발명은 정수장 슬러지 폭기를 이용한 배출수 처리 방법에 관한 것으로, 특히 슬러지(sludge)의 혐기화에 따른 상기 슬러지에 포함된 중금속 및 휘발성 유기 물질 등 오염물질 농도 증가를 방지하기 위해 슬러지에 공기를 제공(폭기)하여 슬러지를 호기화 시킴으로써 슬러지의 중금속 및 휘발성 유기 물질의 농도를 감소시킨 정수장 슬러지 폭기를 이용한 배출수 처리 방법에 관한 것이다.The present invention relates to a wastewater treatment method using the sludge aeration of water treatment plant, in particular, to provide air to the sludge to prevent the increase in the concentration of contaminants, such as heavy metals and volatile organic substances contained in the sludge due to the anaerobic sludge ( The present invention relates to a wastewater treatment method using sludge aeration in a water treatment plant in which sludge is aerated to reduce a concentration of heavy metals and volatile organic substances in the sludge.
일반적으로 정수장(water treatment plant)은 원수를 이용해 수돗물을 생산하는 정수처리시설 및 정수처리하는 과정에서 발생한 슬러지(sludge) 등의 배출수를 처리하는 배출수 처리시설을 포함한다.In general, a water treatment plant includes a water treatment plant that produces tap water using raw water and a wastewater treatment plant that treats effluent such as sludge generated during the water treatment process.
통상 배출수 처리시설은 원수를 정수처리하는 도중 발생된 슬러지에 포함된 고형물(Suspended Solid)제거를 주 목적으로 설계, 운영되고 있어, 이를 처리한 후 방류하게 된다Normally, the wastewater treatment facility is designed and operated for the purpose of removing the suspended solids contained in the sludge generated during the treatment of raw water, and then discharged after treatment.
최근 배출수 처리시설에서 방류되는 방류수의 수질규제 강화에 따라 방류수에 포함된 망간과 클로르포름 등 오염물질의 관리가 보다 엄격하게 진행되고 있으며, 망간 및 클로르포름 등 특히 문제가 되는 오염물질을 보다 효율적으로 제거하기 위한 다양한 시설들이 요구되고 있다.Recently, due to the strengthening of water quality regulation of effluents discharged from effluent treatment facilities, the management of pollutants such as manganese and chlorform contained in the effluent is being carried out more strictly. Various facilities are required for removal.
그러나, 방류수에서 망간 및 클로르포름을 제거하기 위해서는 오염물질별로 높은 비용의 다양한 시설투자가 요구되고, 설치된 시설의 운영비는 물론 별도의 운영인력이 추가로 소요되며 시설 배치에 따른 많은 공간을 차지하는 문제점을 갖는다.However, in order to remove manganese and chloroform from the effluent, various facility investments with high costs are required for each pollutant, and additional operating personnel are required as well as operating costs of the installed facilities. Have
따라서, 본 발명은 원수를 정수처리하는 과정에서 발생된 슬러지에 포함된 중금속 및 휘발성 유기물질을 함께 제거할 뿐만 아니라 시설 투자비 및 운영비가 적게 소요되며 시설을 설치하기 위한 공간을 최소화한 정수장 슬러지 폭기를 이용한 배출수 처리 방법을 제공한다.Therefore, the present invention not only removes heavy metals and volatile organic substances included in the sludge generated during the water treatment process, but also requires less facility investment and operating costs, and minimizes the space for installing the water treatment plant sludge aeration. Provides a method of treating wastewater used.
일실시예로서, 정수장 슬러지 폭기를 이용한 배출수 처리 방법은 정수장에서 원수를 처리하는 도중 발생된 슬러지를 배슬러지지로 제공하는 단계; 상기 배슬러지지에 제공된 상기 슬러지에 공기를 공급하여 상기 슬러지에 포함된 중금속 및 휘발성 유기물질을 산화 및 탈기하여 농도를 감소시키는 단계; 상기 배슬러지지에서 폭기된 상기 슬러지를 슬러지 농축조에서 농축시키고 상징수는 방류하는 단계; 상기 배슬러지지에서 폭기된 상기 슬러지를 슬러지 농축조에서 농축시키는 단계; 및 상기 농축조에서 농축된 상기 슬러지를 탈수조에서 탈수 시키는 단계를 포함한다.In one embodiment, the wastewater treatment method using the sludge aeration plant, the sludge generated during the treatment of the raw water in the water purification plant to provide a sludge support; Supplying air to the sludge provided in the sludge support to oxidize and degas heavy metals and volatile organic substances included in the sludge to reduce the concentration; Concentrating the sludge aerated in the sludge support in a sludge thickening tank and discharging the supernatant; Concentrating the sludge aerated in the sludge support in a sludge thickening tank; And dewatering the sludge concentrated in the concentration tank in a dehydration tank.
정수장 슬러지 폭기를 이용한 배출수 처리 방법 중 상기 슬러지에 포함된 중금속 및 휘발성 유기물질의 농도를 감소시키는 단계에서, 상기 중금속은 상기 정수장에서 정수처리공정 중 상기 원수에 제공된 염소의 산화작용으로 형성된 망간을 포함하고, 상기 휘발성 유기물질은 상기 원수에 제공된 상기 염소와 원수에 포함된 유기물과 반응하여 형성되는 클로르포름을 포함한다.In the step of reducing the concentration of heavy metals and volatile organic substances contained in the sludge in the wastewater treatment method using a water treatment plant sludge aeration, the heavy metal comprises manganese formed by the oxidation of chlorine provided to the raw water during the water treatment process in the water purification plant. In addition, the volatile organic material includes chlorform formed by reacting with the chlorine provided in the raw water and the organic material contained in the raw water.
정수장 슬러지 폭기를 이용한 배출수 처리 방법 중 상기 슬러지에 포함된 중금속 및 휘발성 유기물질의 농도를 감소시키는 단계에서, 상기 슬러지에 공급되는 공기량은 상기 슬러지 20[L]당 270mL/min 내지 330mL/min 바람직하게 300mL/min이다.In the step of reducing the concentration of heavy metals and volatile organic substances contained in the sludge in the wastewater treatment method using a water treatment plant sludge aeration, the amount of air supplied to the sludge is preferably 270 mL / min to 330 mL / min per 20 [L] of sludge. 300 mL / min.
정수장 슬러지 폭기를 이용한 배출수 처리 방법 중 상기 슬러지에 포함된 중금속 및 휘발성 유기물질의 농도를 감소시키는 단계에서, 상기 슬러지에는 12 시간 내지 24 시간 동안 상기 공기가 공급된다.In the step of reducing the concentration of heavy metals and volatile organic substances included in the sludge in the wastewater treatment method using a water treatment plant sludge aeration, the air is supplied to the sludge for 12 to 24 hours.
정수장 슬러지 폭기를 이용한 배출수 처리 방법 중 상기 슬러지가 농축시설에서 재용출되어 중금속 및 휘발성 유기물질의 농도가 증가되어, 상기 슬러지에 포함된 상기 망간의 농도를 추가 감소시키기 위해 상기 슬러지에 수소 이온 지수(pH)를 조절하는 pH 조절 약품을 제공하는 단계를 포함한다.In the effluent treatment method using the water treatment plant sludge aeration, the sludge is re-dissolved in the concentration facility to increase the concentration of heavy metals and volatile organic substances, so that the hydrogen ion index (S) in the sludge to further reduce the concentration of manganese contained in the sludge. providing a pH adjusting agent to adjust the pH).
정수장 슬러지 폭기를 이용한 배출수 처리 방법에서 상기 pH 조절 약품이 제공된 슬러지의 상기 수소 이온 지수(pH)는 pH8 ~ pH10이다.In the wastewater treatment method using a water treatment plant sludge aeration, the hydrogen ion index (pH) of the sludge provided with the pH adjusting agent is pH 8 to pH 10.
본 발명에 의하면, 원수를 정수처리하는 과정에서 발생된 슬러지에 포함된 중금속 및 휘발성 유기물질을 동시에 손쉽게 제거할 뿐만 아니라, 부가적으로 슬러지 침강성이 향상되며, 시설 투자비 및 운영비가 적게 소요되고 시설을 설치하기 위한 공간을 최소화할 수 있는 효과를 갖는다.According to the present invention, not only can the heavy metal and volatile organic substances contained in the sludge generated during the water treatment process be easily removed at the same time, but also the sludge settling property is improved, and facility investment cost and operation cost are low, It has the effect of minimizing the space for installation.
도 1은 본 발명의 일실시예에 따른 정수장 슬러지 폭기를 이용한 배출수 처리 방법을 도시한 순서도이다.1 is a flowchart illustrating a wastewater treatment method using sludge aeration water treatment plant according to an embodiment of the present invention.
도 2는 도 1의 정수장 슬러지 폭기를 이용한 배출수 처리 방법을 구현하기 위한 배출수 처리 설비를 도시한 블럭도이다.FIG. 2 is a block diagram illustrating a wastewater treatment facility for implementing the wastewater treatment method using the water treatment plant sludge aeration of FIG. 1.
도 3은 도 1에 따른 정수장 슬러지 폭기를 이용한 배출수 처리 방법에 의한 공기량에 따른 슬러지 부피 변화를 도시한 그래프이다.3 is a graph showing the sludge volume change according to the amount of air by the wastewater treatment method using the water treatment plant sludge aeration according to FIG.
도 4는 도 3에서 공기량에 따른 망간 농도 변화를 도시한 그래프이다.4 is a graph showing a change in manganese concentration according to the amount of air in FIG.
도 5는 공기량을 최적화한 상태에서 공기 공급 시간에 따른 슬러지의 부피 변화를 도시한 그래프이다.5 is a graph showing the volume change of the sludge according to the air supply time in the optimized air amount.
도 6은 도 5의 공기 공급 시간에 따른 상징수 망간 농도를 도시한 그래프이다.FIG. 6 is a graph illustrating symbol manganese concentration according to the air supply time of FIG. 5.
도 7은 도 5의 공기 공급 시간에 따른 상징수 클로로포름의 농도를 도시한 그래프이다.FIG. 7 is a graph showing the concentration of supernatant chloroform according to the air supply time of FIG. 5.
도 8은 도 5의 공기 공급 및 pH 조정에 따른 상징수 망간농도를 도시한 그래프이다.FIG. 8 is a graph showing symbolic manganese concentration according to air supply and pH adjustment of FIG. 5.
하기의 설명에서는 본 발명의 실시 예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding the embodiments of the present invention will be described, it should be noted that the description of other parts will be omitted so as not to distract from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors are appropriate to the concept of terms in order to explain their invention in the best way. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.
도 1은 본 발명의 일실시예에 따른 정수장 슬러지 폭기를 이용한 배출수 처리 방법을 도시한 순서도이다. 도 2는 도 1에 도시된 정수장 슬러지 폭기를 이용한 배출수 처리 방법을 구현하기 위한 정수장 배출수 처리 설비를 도시한 블럭도이다.1 is a flowchart illustrating a wastewater treatment method using sludge aeration water treatment plant according to an embodiment of the present invention. FIG. 2 is a block diagram illustrating a wastewater treatment plant for implementing the wastewater treatment method using the wastewater treatment plant sludge aeration shown in FIG. 1.
도 1 및 도 2를 참조하면, 정수장(600)에서 정수 처리 시설(100)이 원수를 정수하는 과정에서 발생된 다량의 슬러지(10)는 배출수 처리 설비(500)의 배슬러지지(100)로 제공된다. (단계 S10)1 and 2, a large amount of sludge 10 generated in the process of purifying raw water by the purified water treatment plant 100 in the water purification plant 600 is discharged to the sludge support 100 of the wastewater treatment facility 500. Is provided. (Step S10)
배슬러지지(100)로 제공된 슬러지는 다수의 유기물, 토사, 다수의 무기물들, 망간과 같은 중금속 및 휘발성 유기물질인 클로르포름 등을 다량 포함한다.The sludge provided as the slurry support 100 contains a large amount of organic matter, earth and sand, a plurality of inorganic materials, heavy metals such as manganese and chlorform, which is a volatile organic material.
배슬러지지(100)로 제공된 슬러지(10)의 체류 시간에 비례하여 슬러지(10)에 포함된 망간 농도는 크게 증가하는데 이는 슬러지(10)에 산소가 공급되지 않아 슬러지(10)의 혐기화가 진행되어 슬러지(10)에 포함된 산화 망간이 용존성 망간 형태로 환원되기 때문이다.The manganese concentration contained in the sludge 10 increases in proportion to the residence time of the sludge 10 provided as the sludge support 100, which does not supply oxygen to the sludge 10 so that anaerobicization of the sludge 10 proceeds. This is because the manganese oxide contained in the sludge 10 is reduced to the form of dissolved manganese.
또한 배슬러지지(100)로 제공된 슬러지(10)의 체류 시간에 비례하여 슬러지(10)에 포함된 휘발성 유기물질인 클로르포름의 농도 역시 증가된다.In addition, the concentration of chlorform, which is a volatile organic material included in the sludge 10, is increased in proportion to the residence time of the sludge 10 provided as the sludge support 100.
결론적으로 배슬러지지(100)로 제공된 슬러지(10)에 포함된 망간 및 클로르포름의 농도는 공통적으로 슬러지(10)에 산소가 공급되지 않음으로써 발생되는 혐기화 상태로 체류한 시간에 비례한다.In conclusion, the concentrations of manganese and chlorform contained in the sludge 10 provided as the sludge support 100 are in proportion to the time of staying in the anaerobic state generated by not supplying oxygen to the sludge 10 in common.
도 1을 다시 참조하면, 배슬러지지(200)에 제공된 슬러지(10)의 혐기화를 방지 및 슬러지(10)를 호기화 시켜 슬러지(10)에 포함된 망간 및 클로르포름의 농도를 감소시키기 위해 배슬러지지(200)에 제공된 슬러지(10)에는 산소를 포함하는 공기가 공급된다. (단계 S20)Referring back to FIG. 1, in order to prevent anaerobicization of the sludge 10 provided in the sludge support 200 and to aeration of the sludge 10 to reduce the concentration of manganese and chlorform contained in the sludge 10. Air containing oxygen is supplied to the sludge 10 provided in the slurry support 200. (Step S20)
배슬러지지(200)에 제공된 슬러지(10)에 산소를 포함하는 공기를 공급하기 위하여 배슬러지지(200)에는 도 2에 도시된 바와 같이 폭기 유닛(250)이 설치된다.In order to supply air containing oxygen to the sludge 10 provided in the slurry support 200, the aeration unit 250 is installed in the slurry support 200 as shown in FIG. 2.
폭기 유닛(250)은 배슬러지지(200)로 제공된 슬러지(10)에 산소를 포함하는 공기를 공급하여 슬러지(10)의 혐기화를 방지하면서 슬러지(10)를 호기화시켜 슬러지(10)에 포함되는 망간 농도 및 클로르포름의 농도를 기준치 이하로 감소시키며, 슬러지(10)의 침강성 역시 향상 시킬 수 있다.The aeration unit 250 supplies air containing oxygen to the sludge 10 provided as the sludge support 200 to aerobic the sludge 10 while preventing the anaerobicization of the sludge 10 to the sludge 10. To reduce the concentration of manganese and chlorform contained below the reference value, the sedimentation of the sludge 10 can also be improved.
도 2에 도시된 폭기 유닛(250)은 배슬러지지(200)의 내부에 배치되며, 폭기 유닛(250)은, 예를 들어, 산소를 포함하는 공기를 송풍하는 송풍기(220) 및 슬러지(10) 내부로 산소를 포함하는 공기를 분사하는 송풍관(240)을 포함할 수 있다.The aeration unit 250 shown in FIG. 2 is disposed in the interior of the sludge support 200, and the aeration unit 250 includes, for example, a blower 220 and a sludge 10 for blowing air containing oxygen. It may include a blower pipe 240 for injecting air containing oxygen into the.
송풍기(220)는 예비기를 포함한 2 대가 연결되며, 송풍관(240)은 송풍기(220)의 토출구에 연결된다. 각 송풍관(240)에는 기포를 발생시키는 산기판(245)들이 배치된다.Two blowers 220 are connected to each other including a spare device, and the blower pipe 240 is connected to the discharge port of the blower 220. Each blower tube 240 is provided with acid substrates 245 for generating bubbles.
송풍기(220), 송풍관(240) 및 산기판(245)들에 의하여 배슬러지지(200)의 내부로 제공된 슬러지(10)에 산소를 포함하는 공기가 공급됨에 따라 슬러지(10)가 호기화 되면서 슬러지(10)에 포함된 산화 망간의 환원을 방지하여 망간 농도를 크게 감소시킬 수 있으며 공급된 공기에 의한 탈기과정을 통하여 휘발성 유기물질인 클로르포름의 농도를 크게 감소시킬 수 있으며, 슬러지 균등화를 통한 공극률 감소로 침강성도 향상시킬 수 있다..As the sludge 10 is aerated as air containing oxygen is supplied to the sludge 10 provided into the sludge support 200 by the blower 220, the blower tube 240, and the acid substrate 245. It is possible to greatly reduce the concentration of manganese by preventing the reduction of manganese oxide contained in the sludge 10, and greatly reduce the concentration of chlorform, a volatile organic substance, through degassing by supplied air, and through sludge equalization Reduction in porosity can also improve sedimentation.
본 발명의 일실시예에서, 배슬러지지(200)의 슬러지(10)에 산소를 포함하는 공기를 약 12시간 공급함에 따라 슬러지(10)에 포함된 망간의 농도를 약 40% 정도 감소 시킬 수 있다.In one embodiment of the present invention, by supplying air containing oxygen to the sludge 10 of the sludge support 200 for about 12 hours can reduce the concentration of manganese contained in the sludge 10 by about 40% have.
배슬러지지(200)의 슬러지(10)에 산소를 포함하는 공기를 약 12시간 공급함에 따라 슬러지(10)에 포함된 클로르포름의 농도를 약 60% 감소 시키며, 배슬러지지(200)의 슬러지(10)에 산소를 포함하는 공기를 약 12시간 공급함에 따라 슬러지(10)의 총 부피를 약 35% 감소시킬 수 있다.As air containing oxygen is supplied to the sludge 10 of the sludge support 200 for about 12 hours, the concentration of chlorform contained in the sludge 10 is reduced by about 60%, and the sludge of the sludge support 200 is reduced. By supplying the air containing oxygen to (10) for about 12 hours, the total volume of the sludge 10 can be reduced by about 35%.
이하, 본 발명의 일실시예에 따라 배슬러지지(200)로 제공된 슬러지(10)에 공기를 공급하였을 때 발생되는 작용 및 효과를 실험 그래프를 통해 보다 구체적으로 설명하기로 한다.Hereinafter, the operation and effect generated when air is supplied to the sludge 10 provided as the sludge support 200 according to an embodiment of the present invention will be described in more detail through an experimental graph.
도 3은 도 1에 의한 정수장 슬러지 폭기를 이용한 배출수 처리 방법에서 슬러지 부피 변화를 도시한 그래프이다. 도 4는 도 3에서 공기 공급량에 따른 망간 농도 변화를 도시한 그래프이다.3 is a graph showing the sludge volume change in the wastewater treatment method using the sludge aeration plant according to FIG. 4 is a graph showing a change in manganese concentration according to the air supply amount in FIG.
도 3 및 도 4를 참조하면, 최적의 공기량 공급 조건(폭기량, 폭기시간)을 선정하기 위하여 먼저, 실험실에서 정수장에서 발생된 슬러지(10)는 약 20[L]씩 4개가 샘플링되었다.Referring to FIGS. 3 and 4, in order to select an optimum air amount supply condition (aeration amount, aeration time), four sludges 10 generated in a water treatment plant in a laboratory were sampled at about 20 [L].
최적의 공기량 제공 조건을 선정하기 위하여 실험실에서는 샘플링된 4개의 슬러지(10)들에는 각각 비폭기(공기를 제공하지 않음), 300mL/min, 600mL/min 및 900mL/min의 공기량으로 약 24시간 동안 공기가 공급(폭기)되었고, 이후 샘플링된 4개의 슬러지(10)들은 약 240시간 동안 농축(침강)되었다.In order to select the optimum air flow conditions, the laboratory sampled four sludges 10 each for about 24 hours with aeration (no air), 300 mL / min, 600 mL / min and 900 mL / min of air volume, respectively. Air was supplied (aerated) and then the four sludges 10 sampled were concentrated (sedimented) for about 240 hours.
도 3의 그래프를 참조하면, 슬러지(10)의 부피 측면에서, 약 300L/min의 공기량으로 약 24시간 공기를 제공한 후 약 24시간 농축 시켰을 때(도 3의 선 A), 슬러지(10)의 부피는 약 540mL/L이고 비폭기 슬러지(10)의 부피는 약 760mL/L로서, 300L/min의 공기량에서 슬러지(10)의 부피는 비폭기 슬러지(10)의 부피 대비 약 29% 감소되었다.Referring to the graph of FIG. 3, in terms of the volume of the sludge 10, when the air is supplied for about 24 hours at an air volume of about 300 L / min, and then concentrated for about 24 hours (line A of FIG. 3), the sludge 10 The volume of was about 540 mL / L and the volume of the aeration sludge 10 was about 760 mL / L. At a volume of air of 300 L / min, the volume of the sludge 10 was reduced by 29% compared to the volume of the aeration sludge 10. .
도 4을 참조하면, 상징수(슬러지가 침강된 후 슬러지 윗 부분의 맑은 물)의 망간 농도를 측정하였을 때, 비폭기 슬러지(10)의 망간 농도는 초기 약 6mg/L이지만 비폭기 슬러지(10)를 약 140시간 농축할 경우, 망간 농도는 약 6mg/L에서 약 10mg/L까지 급격히 상승하였다.Referring to Figure 4, when measuring the manganese concentration of the symbol water (clear water in the upper part of the sludge after the sludge settled), the manganese concentration of the non-aeration sludge (10) is initially about 6 mg / L but the non-aeration sludge (10 ), Concentration of manganese rose sharply from about 6 mg / L to about 10 mg / L.
이와 같은 망간 농도의 급격한 증가는 비폭기 슬러지(10)의 농축과정에서 슬러지(10)의 혐기화로 입자성 망간이 슬러지(10) 내로 재용출되었기 때문이다.This rapid increase in manganese concentration is due to the re-elution of particulate manganese into the sludge 10 by anaerobic sludge 10 during the concentration of non-aeration sludge 10.
도 4에서 비폭기 슬러지의 상징수에서 측정된 망간 농도 및 약 300mL/min, 약 600mL/min 및 약 900mL/min의 공기량을 제공한 슬러지(10)의 상징수에서의 망간 농도를 비교하면, 비폭기 슬러지(10)의 망간 농도는 약 8mg/L인 반면, 약 300mL/min, 약 600mL/min 및 약 900mL/min의 공기량을 제공한 슬러지(10)의 망간 농도는 약 3.12mg/L로서 비폭기 슬러지(10) 대비 약 61% 감소 되었다.Comparing the manganese concentration measured in the symbolic water of the non-aeration sludge in Figure 4 and the manganese concentration in the symbolic water of the sludge 10 provided air amounts of about 300 mL / min, about 600 mL / min and about 900 mL / min, The manganese concentration of the aeration sludge 10 is about 8 mg / L, while the manganese concentration of the sludge 10 which provides the air volumes of about 300 mL / min, about 600 mL / min and about 900 mL / min is about 3.12 mg / L. Compared to aeration sludge (10), the reduction was about 61%.
도 3을 다시 참조하면, 약 900mL/min의 공기량으로 공기를 슬러지(10)에 제공하였을 경우, 슬러지(10) 부피는 약 12% 감소되어 약 300mL/min의 공기량으로 공기를 슬러지(10)에 제공하였을 때 보다 슬러지(10)의 부피 감소 효율이 낮게 나타났다.Referring again to FIG. 3, when air is supplied to the sludge 10 at an air volume of about 900 mL / min, the volume of the sludge 10 is reduced by about 12% to provide air to the sludge 10 at an air volume of about 300 mL / min. The volume reduction efficiency of the sludge 10 was lower than when provided.
종합적으로 보았을 때, 슬러지(10)에 제공되는 공기량이 증가함에 따라 슬러지(10)의 부피 감소 효율, 망간 농도 감소가 비례하는 것은 아니며, 슬러지(10)의 부피 20[L]당 약 300mL/min의 공기량으로 공기를 슬러지(10)에 제공하는 것이 슬러지(10)의 부피 감소, 망간 농도 감소 및 클로르포름의 제거에 가장 좋았으며, 바람직하게 슬러지(10)에 제공되는 약 300mL/min의 공기량의 10%의 오차 범위인 270mL/min 내지 330mL/min의 범위에서 슬러지(10)의 부피 감소 효율, 망간 농도 감소 및 클로르포름의 제거 효율 역시 우수하다.Overall, as the amount of air provided to the sludge 10 increases, the volume reduction efficiency of the sludge 10 and the decrease of manganese concentration are not proportional, but about 300 mL / min per 20 [L] of the sludge 10. Providing air to the sludge 10 in the amount of air is the best for reducing the volume of the sludge 10, reducing the manganese concentration and the removal of chloroform, preferably of about 300 mL / min of the amount of air provided to the sludge 10 The volume reduction efficiency of the sludge 10, the manganese concentration reduction and the removal efficiency of chloroform are also excellent in the range of 270 mL / min to 330 mL / min, which is an error range of 10%.
최적의 공기량이 설정될 경우 슬러지(10)에 공기를 제공하는 송풍기를 과도하게 운전하지 않아도 되기 때문에 에너지 절약 측면에서도 매우 유리하다.When the optimal amount of air is set, it is very advantageous in terms of energy saving because it is not necessary to operate the blower that provides air to the sludge 10 excessively.
도 5는 공기량을 최적화한 상태에서 배슬러지지(200)에서의 폭기시간에 따른 슬러지의 부피 변화를 도시한 그래프이다.FIG. 5 is a graph showing the volume change of the sludge according to the aeration time in the sludge support 200 in an optimized air volume.
도 6은 도 5의 공기 공급에 따른 상징수 망간 농도를 도시한 그래프이다.FIG. 6 is a graph illustrating symbol manganese concentration according to the air supply of FIG. 5.
도 7은 도 5의 공기 공급에 따른 상징수 클로로포름의 농도를 도시한 그래프이다.7 is a graph showing the concentration of supernatant chloroform according to the air supply of FIG.
도 3 및 도 4에서 최적의 공기량인 약 300mL/min이 설정되면, 최적의 공기량을 기준으로 최적의 공기 공급 시간을 찾기 위하여 약 300mL/min(슬러지 20L 기준)의 공기량으로 공기 공급 시간에 따른 슬러지 침강성, 상징수 망간 농도 및 클로로포름의 농도를 도 5 , 도 6, 및 도 7에서 측정하였다.3 and 4, when the optimum air volume of about 300mL / min is set, the sludge according to the air supply time at about 300mL / min (20L of sludge) in order to find the optimal air supply time based on the optimal air volume Sedimentation, symbolic manganese concentration and chloroform concentration were measured in FIGS. 5, 6, and 7.
도 5, 도 6 및 도7을 참조하면, 약 12 시간 내지 약 24 시간 동안 공기를 공급하였을 때 슬러지(10)의 침강 부피 및 슬러지(10)의 상징수의 망간 농도 및 슬러지(10)의 상징수 클로로포름의 농도 감소율이 특히 우수하였다.5, 6, and 7, the manganese concentration of the sludge 10 and the symbol water of the sludge 10 and the symbol of the sludge 10 when air is supplied for about 12 hours to about 24 hours. The rate of decrease in concentration of water chloroform was particularly good.
약 300mL/min의 공기량으로 공기를 약 12시간 동안 슬러지(10)에 공급하였을 때 슬러지 침강 부피는 비폭기 슬러지(10)의 침강 부피 대비 약 35%가 감소되었는데 이는 약 300mL/min으로 슬러지(10)에 공기를 제공함으로써 슬러지(10)의 플록(floc) 입자의 균질화에 따라 공극이 감소되어 침강성이 개선되었기 때문이다.When air was supplied to the sludge 10 for about 12 hours at an air volume of about 300 mL / min, the sludge settling volume was reduced by about 35% compared to the settling volume of the non-aeration sludge 10, which was about 300 mL / min. This is because by providing air to the), the voids are reduced according to the homogenization of floc particles of the sludge 10, thereby improving the settling property.
도 6에서 막대 그래프 A는 비폭기시 상징수의 망간 농도를 나타내고, 막대 그래프 B는 2시간 동안 공기를 공급한 후 농축 시간별 상징수의 망간 농도를 나타내며, 그래프 C는 6시간 동안 공기를 공급한 후 농축 시간별 상징수의 망간 농도를 나타내며, 그래프 D는 12시간 동안 공기를 공급한 후 농축 시간별 상징수의 망간 농도를 나타내며, 그래프 E는 24시간 동안 공기를 공급한 후 농축 시간별 상징수의 망간 농도를 나타낸다.In FIG. 6, bar graph A represents manganese concentration of symbol water during non-aeration, bar graph B represents manganese concentration of symbol water by enrichment time after supplying air for 2 hours, and graph C supplying air for 6 hours. After the manganese concentration of symbol water by enrichment time, graph D shows the manganese concentration of symbol water by enrichment time after supplying air for 12 hours, and graph E shows the manganese concentration of symbol water by enrichment time after supplying air for 24 hours Indicates.
도 6에서 서로 다른 시간 동안 슬러지(10)에 공기를 공급한 후 약 24시간 동안 슬러지(10)를 침강시켰을 때, 비폭기에 대응하는 그래프 A에서 상징수의 망간 농도는 약 1.65mg/L인 반면 약 12시간 공기를 슬러지(10)에 공급한 그래프 D에서 상징수의 망간 농도는 약 0.98mg/L로 12시간 동안 공기가 공급된 슬러지(10)의 상징수의 망간 농도가 비폭기 슬러지(10) 대비 약 40% 저감되었다.In FIG. 6, when the sludge 10 was settled for about 24 hours after supplying air to the sludge 10 for different times, the manganese concentration of the symbol water in the graph A corresponding to non-aeration was about 1.65 mg / L. Manganese concentration of symbolic water in the graph D, which supplied air to the sludge 10 for about 12 hours, was about 0.98 mg / L, and manganese concentration of the symbolic water of the sludge 10 supplied with air for 12 hours was non-aeration sludge (10). ), About 40% reduction.
도 7에서 막대 그래프 A는 비폭기시 상징수 클로로포름의 농도를 나타내며, 그래프 B는 2시간 폭기시 상징수 클로로포름의 농도를 나타내고, 그래프 C는 6시간 폭기시 상징수 클로로포름의 농도를 나타내며, 그래프 D는 12시간 폭기시 상징수 클로로포름의 농도를 나타내고, 그래프 E는 24시간 폭기시 상징수 클로로포름의 농도를 나타낸다. 그래프 A 내지 그래프 D는 서로 다른 시간 폭기 후 24시간 침전시킨 후 측정한 농도이다.In FIG. 7, the bar graph A shows the concentration of the symbolic chloroform during non-aeration, the graph B shows the concentration of the symbolic chloroform after 2 hours of aeration, and the graph C shows the concentration of the symbolic chloroform after 6 hours of aeration, and the graph D. Is the concentration of symbolic chloroform at 12 hours aeration, and graph E represents the concentration of symbolic chloroform at 24 hours aeration. Graphs A to D are concentrations measured after 24 hours of precipitation after different time aerations.
비폭기에 대응하는 그래프 A의 클로로포름의 농도는 0.175mg/L인 반면 12시간 동안 슬러지(10)에 공기를 공급한 경우인 그래프 D의 상징수의 클로로포름의 농도는 약 0.067mg/L로 12시간 공기가 공급된 슬러지(10)의 상징수 클로로포름의 농도가 비폭기 슬러지(10) 대비 약 60% 저감되었다.The concentration of chloroform in graph A corresponding to non-aeration is 0.175 mg / L, whereas the concentration of chloroform in the symbolic water of graph D is about 0.067 mg / L for 12 hours when air is supplied to the sludge 10 for 12 hours. The concentration of the supernatant chloroform of the supplied sludge 10 was reduced by about 60% compared to the non-aeration sludge 10.
도 5, 도 6 및 도 7의 결과를 토대로 폭기 유닛(250)의 운영 조건은 전력비 등을 고려한 최적의 공기량은 약 300mL/min(슬러지 20[L] 당)이었으며, 최적 공기량을 기준으로 공기 제공 시간은 약 12 시간 내지 약 24시간인 것이 바람직하다. Based on the results of FIGS. 5, 6, and 7, the operating condition of the aeration unit 250 was about 300 mL / min (per 20 [L] of sludge) considering the power ratio, and the air was provided based on the optimum amount of air. The time is preferably about 12 hours to about 24 hours.
도 3 내지 도 7의 그래프를 기준으로, 실험실 뿐만 아니라 실제 도 2에 도시된 배슬러지지(200)에서 폭기를 수행하여도 유사한 결과를 구현할 수 있으며, 망간의 농도는 40%, 클로르포름의 농도 역시 약 60% 감소시킬 수 있으며, 슬러지(10) 침강성 또한 35% 감소 시킬수 있다..Based on the graphs of FIGS. 3 to 7, similar results can be realized by performing aeration in the laboratory as well as in the wandering support 200 shown in FIG. 2, and the concentration of manganese is 40% and the concentration of chlorform It can also reduce about 60% and the sludge 10 sedimentation rate can also be reduced by 35%.
본 발명의 일실시예에서, 배슬러지지(200)에 제공된 슬러지를 호기화하기 위해 배슬러지지(200)에 폭기 유닛(250)을 설치하여 슬러지(10)에 최적 공기량으로 공기를 최적 시간 동안 공급할 경우, 슬러지(10)에 포함된 망간을 포함한 중금속, 클로르포름과 같은 휘발성 유기물질의 농도, 뿐만 아니라 슬러지 침강성도 향상 시킬수 있다.In one embodiment of the present invention, by installing the aeration unit 250 in the sludge support 200 in order to aerobic the sludge provided in the sludge support 200, the air in the sludge 10 at the optimum amount of air for an optimal time When supplied, the concentration of volatile organic substances such as heavy metals and chloroform, including manganese contained in the sludge 10, as well as the sludge settling properties can be improved.
한편, 배슬러지(200)에 제공된 슬러지(10)에 공기를 공급하였다 하더라도, 하절기 장기 체류시 슬러지내로 망간이 재용출 되어 상징수의 망간 농도는 상승한다. 이 문제를 해결하기 위해서 배슬러지지(200)에는 배슬러지지(200)로 제공된 슬러지(10)의 수소 이온 지수(pH)를 조절하기 위해 pH 조절 유닛(260)에 의하여 제공된 pH 조절 약품을 슬러지(10)에 제공할 수 있는데, pH 조절 약품은 배슬러지지(200)에 슬러지(10)가 제공되는 단계 이후 슬러지(10)에 제공될 수 있다. On the other hand, even if air is supplied to the sludge 10 provided in the sludge 200, manganese is re-dissolved into the sludge during long-term stay in the summer, the manganese concentration of the symbol water increases. In order to solve this problem, the sludge support 200 is sludged with a pH adjusting chemical provided by the pH adjusting unit 260 to adjust the hydrogen ion index (pH) of the sludge 10 provided as the sludge support 200. It may be provided in (10), the pH adjusting agent may be provided to the sludge 10 after the step of providing the sludge 10 to the slurry support 200.
도 8은 배슬러지(200)에 제공된 슬러지(10)의 pH를 조절한 경우 상징수 망간농도를 침강시간별 상징수의 망간농도를 도시한 그래프이다.8 is a graph showing the manganese concentration of symbol water by sedimentation time when the pH of the sludge 10 provided in the sludge 200 is adjusted.
도 8에서 그래프 A는 비폭기시 침강시간별 상징수의 망간농도를 나타내며, 그래프 B는 300mL/min으로 pH 조정 없이 슬러지 자체를 상기 폭기량으로 12시간 폭기후 침강시간별 상징수의 망간농도를 나타낸다.In FIG. 8, graph A represents manganese concentration of symbol water by sedimentation time during non-aeration, and graph B shows manganese concentration of sedimentation time by sedimentation time after 12 hours of aeration with sludge itself without pH adjustment at 300mL / min.
도 8의 그래프 C는 pH 8로 조정후 상기 폭기량으로 12시간 폭기후 침강 시간별 상징수의 망간농도를 나타내며, 그래프 D는 pH 9로 조정후 상기 폭기량으로 12시간 폭기후 침강 시간별 상징수의 망간농도를 나타내고, 그래프 E는 pH 10으로 조정후 상기 폭기량으로 12시간 폭기후 침강 시간별 상징수의 망간농도를 나타낸다.Graph C of Figure 8 shows the manganese concentration of the symbolic water by sedimentation time after 12 hours aeration with the aeration amount after adjusting to pH 8, graph D shows the manganese concentration of sedimenting time by the sedimentation time after aeration with the aeration amount after adjusting to pH 9 The graph E shows the manganese concentration of the symbolic water according to the settling time after 12 hours of aeration after adjusting to pH 10.
도 8에서 그래프 B는 슬러지의 폭기에도 불구하고 48시간 침강 이후 상징수 망간농도는 급격히 증가하기 시작하며, 24시간 침강후 상징수 망간농도는 0.83mg/L 에서 144시간 침강후는 3.77mg/L로 4.5배로 급격히 증가하는 현상을 보인다.In FIG. 8, graph B shows that the symbolic manganese concentration sharply increases after 48 hours of sedimentation despite the sludge aeration, and the symbolic manganese concentration of 24 hours after sedimentation is 3.77mg / L after 144 hours of sedimentation. This shows a sharp increase of 4.5 times.
그러나 pH를 조절한 그래프 C, 그래프 D, 그래프 E를 참조하면 그래프 B 와 같은 망간 농도의 급격한 상승을 방지할 수 있으며, 현행 배출 허용 기준이 pH 8.5 이하인 점을 고려하여, pH 8로 조정 시 24시간 침강 후 상징수 망간농도는 0.39mg/L, 144시간 침강시 1.37mg/L로 수질의 안정성을 확보할 수 있다.However, referring to graph C, graph D, and graph E with pH adjustment, it is possible to prevent the sudden increase of manganese concentration like graph B, and considering that the current emission limit is pH 8.5 or lower, After settling time, the symbolic manganese concentration is 0.39mg / L, and 1.37mg / L after 144 hours of sedimentation can ensure the stability of water quality.
그래프 A에서 비폭기 슬러지(10)의 24시간 침강후 상징수 망간농도 대비 60% 제거할 수 있으며, 도 6을 참조하였을 때 pH 미조정시 40%의 망간 제거율을 60%로 향상시킬 수 있다.In graph A, 60% of the symbolic manganese concentration can be removed after 24 hours of sedimentation of the aeration sludge 10, and when the pH is not adjusted, the manganese removal rate of 40% can be improved to 60%.
본 발명의 일실시예에서, 배슬러지지(200)에 제공된 슬러지(10)의 수소 이온 지수(ph)는 약 pH6.5 내지 약 pH7.5이고, pH 조절 유닛(260)에 의하여 수소 이온 지수(ph)를 약 pH8 내지 pH10으로 조절할 경우 망간 농도를 60% 이상으로 감소시킬 수 있다.In one embodiment of the present invention, the hydrogen ion index (ph) of the sludge 10 provided in the slurry support 200 is from about pH6.5 to about pH7.5, by the pH control unit 260 When (ph) is adjusted to about pH8 to pH10, manganese concentration can be reduced to 60% or more.
도 1 및 도 2를 다시 참조하면, 배슬러지지(200)에서 약 12시간 내지 약 24시간 공기가 제공된 슬러지(10)는 배슬러지지(200)와 직렬 방식으로 연결된 슬러지 농축조(300)로 제공되어 농축된다. (단계 S30)Referring back to FIGS. 1 and 2, the sludge 10 provided with air from about 12 hours to about 24 hours in the sludge support 200 is provided to the sludge thickener 300 connected in series with the sludge support 200. And concentrated. (Step S30)
배슬러지지(200)에서 폭기된 슬러지를 슬러지 농축조(300)에서 농축한 후 발생된 상징수는 방류되는데, 이때 방류수는 배슬러지지(200)에서의 폭기에 의하여 규정된 망간 농도 및 클로르포름의 농도를 만족시킨다.The symbol water generated after condensing the sludge aerated in the sludge support 200 in the sludge thickening tank 300 is discharged, wherein the discharged water is the concentration of manganese and chlorform defined by the aeration in the sludge support 200 Satisfies the concentration.
이어서, 상징수가 방류되고 슬러지 농축조(300)에 남은 농축된 슬러지는 슬러지 농축조(300)와 인접하게 배치된 탈수조(400)에서 탈수된다. (단계 S40)Subsequently, the supernatant is discharged and the concentrated sludge remaining in the sludge thickening tank 300 is dewatered in the dewatering tank 400 disposed adjacent to the sludge thickening tank 300. (Step S40)
이상에서 상세하게 설명한 바에 의하면, 원수를 정수처리하는 과정에서 발생된 슬러지에 포함된 중금속 및 휘발성 유기물질을 동시에 손쉽게 제거할 뿐만 아니라, 슬러지 농축성을 향상시킬 수 있으며, 시설 투자비 및 운영비가 적게 소요되며 시설을 설치하기 위한 공간을 최소화할 수 있는 효과를 갖는다.As described in detail above, it is possible to easily remove heavy metals and volatile organic substances contained in the sludge generated during the raw water treatment, and improve sludge concentration, and require less facility investment and operation costs. It has the effect of minimizing the space for installing the facility.
한편, 본 도면에 개시된 실시예는 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.
본 발명은 정수장의 슬러지에 공기를 제공하여 슬러지에 포함된 망간의 농도를 감소 및 망간의 농도가 감소된 슬러지에 pH 조절 약품을 제공하여 시간의 경과에 따라 슬러지에 포함된 망간의 농도가 증가되지 않도록 정수장에서의 배출수 처리에 이용할 수 있다.The present invention provides air to the sludge of the water purification plant to reduce the concentration of manganese contained in the sludge and to provide a pH adjusting agent to the sludge with reduced manganese concentration does not increase the concentration of manganese contained in the sludge over time It can be used for the treatment of effluent from the water purification plant.

Claims (4)

  1. 유기물, 토사, 무기물, 망간 및 클로르포름을 포함하는 슬러지를 배슬러지지로 제공하는 단계;Providing sludge containing organics, soils, minerals, manganese and chloroform as a slurry;
    상기 배슬러지지에 제공된 상기 슬러지에 공기를 공급하여 상기 슬러지에 포함된 망간 및 상기 클로르포름의 농도를 감소시키는 단계;Supplying air to the sludge provided in the sludge support to reduce the concentrations of manganese and chlorform contained in the sludge;
    상기 배슬러지지에서 폭기된 상기 슬러지를 슬러지 농축조에서 농축시키는 단계; 및Concentrating the sludge aerated in the sludge support in a sludge thickening tank; And
    상기 농축조에서 농축된 상기 슬러지를 탈수조에서 탈수 시키는 단계를 포함하며,Dehydrating the sludge concentrated in the concentration tank in a dehydration tank,
    상기 슬러지를 상기 배슬러지지로 제공하는 단계 이후, 상기 공기에 의하여 농도가 감소된 상기 망간이 시간의 경과에 따라 혐기화 되어 상기 슬러지 내로 재용출 되어 상기 슬러지 내에서 상기 망간의 농도가 증가되는 것을 방지하기 위해 상기 슬러지에 수소 이온 지수(pH)를 조절하는 pH 조절 약품을 제공하는 단계를 포함하는 정수장 슬러지 폭기를 이용한 배출수 처리 방법.After providing the sludge to the sludge support, the manganese whose concentration has been reduced by the air is anaerobic over time and re-eluted into the sludge to prevent the concentration of the manganese in the sludge from increasing. A method of treating effluent water using a sludge aeration plant comprising the step of providing a pH adjusting agent for adjusting the hydrogen ion index (pH) to the sludge.
  2. 제1항에 있어서,The method of claim 1,
    상기 슬러지에 포함된 상기 망간 및 상기 클로르포름의 농도를 감소시키는 단계에서,In the step of reducing the concentration of the manganese and the chloroform contained in the sludge,
    상기 슬러지에 제공되는 공기량은 상기 슬러지 20[L]당 270mL/min 내지 330mL/min인 정수장 슬러지 폭기를 이용한 배출수 처리 방법.The amount of air provided to the sludge is 270 mL / min to 330 mL / min per 20 [L] of wastewater treatment wastewater treatment method using a sludge aeration plant.
  3. 제2항에 있어서,The method of claim 2,
    상기 슬러지에 포함된 상기 망간 및 상기 클로르포름의 농도를 감소시키는 단계에서,In the step of reducing the concentration of the manganese and the chloroform contained in the sludge,
    상기 슬러지에는 12 시간 내지 24 시간 동안 상기 공기가 공급되는 정수장 슬러지 폭기를 이용한 배출수 처리 방법.The sludge wastewater treatment method using a water treatment plant sludge aeration is supplied to the air for 12 to 24 hours.
  4. 제1항에 있어서,The method of claim 1,
    상기 슬러지의 수소 이온 지수(ph)는 pH6.5 내지 pH7.5이고, 상기 pH 조절 약품이 제공된 상기 슬러지의 상기 수소 이온 지수(pH)는 pH8 내지 pH10인 정수장 슬러지 폭기를 이용한 배출수 처리 방법.Hydrogen ion index (ph) of the sludge is pH 6.5 to pH7.5, and the hydrogen ion index (pH) of the sludge provided with the pH control agent is pH 8 to pH 10 Wastewater treatment method using a sludge aeration plant.
PCT/KR2014/009731 2013-10-30 2014-10-16 Method for treating drain-water using sludge aeration in water treatment plant WO2015064933A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130129807A KR101416756B1 (en) 2013-10-30 2013-10-30 Method of effluent treatment through processing sludge aeration in water treatment plant
KR10-2013-0129807 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015064933A1 true WO2015064933A1 (en) 2015-05-07

Family

ID=51741563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009731 WO2015064933A1 (en) 2013-10-30 2014-10-16 Method for treating drain-water using sludge aeration in water treatment plant

Country Status (2)

Country Link
KR (1) KR101416756B1 (en)
WO (1) WO2015064933A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217921A (en) * 2015-10-23 2016-01-06 上海市政工程设计研究总院(集团)有限公司 A kind of water for drainage slurry method
KR102022520B1 (en) 2017-12-01 2019-11-04 성균관대학교 산학협력단 treatment system for sludge and effluence using nitrate of water treatment plant and treatment method for same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000008002A (en) * 1998-07-09 2000-02-07 김갑성 System for treating drain water from water purification plant
JP2001079587A (en) * 1999-09-14 2001-03-27 Japan Organo Co Ltd Organic waste water treating device and method
KR20020009956A (en) * 2000-07-28 2002-02-02 김화지 Apparatus and method for waste water processing contain heavy metal and a pollutant non decomposition
KR20040027836A (en) * 2004-03-11 2004-04-01 서희동 Treatment method for electroless plating wastewater
KR20060087058A (en) * 2005-01-28 2006-08-02 강우식 Food waste leachate treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000008002A (en) * 1998-07-09 2000-02-07 김갑성 System for treating drain water from water purification plant
JP2001079587A (en) * 1999-09-14 2001-03-27 Japan Organo Co Ltd Organic waste water treating device and method
KR20020009956A (en) * 2000-07-28 2002-02-02 김화지 Apparatus and method for waste water processing contain heavy metal and a pollutant non decomposition
KR20040027836A (en) * 2004-03-11 2004-04-01 서희동 Treatment method for electroless plating wastewater
KR20060087058A (en) * 2005-01-28 2006-08-02 강우식 Food waste leachate treatment method

Also Published As

Publication number Publication date
KR101416756B1 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
KR101804555B1 (en) WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof
US20090272687A1 (en) Method of Deep Sewage Treatment without Sludge Discharge and Device Therefor
WO2013005913A1 (en) Composite microorganism reactor, and apparatus and method for water treatment using same
WO2013183965A1 (en) Membrane system and method for treating sewage and wastewater capable of automated removal/destruction of scum/foam with high energy efficiency, high flux and low operation costs and having process conversion method from constant level continuous batch reactor process
KR101368295B1 (en) Integrated waste water treatment apparatus
CN102795747A (en) Waste water treatment process
WO2013097461A1 (en) Sewage and sludge treatment system and treatment method thereof
WO2022108140A1 (en) Partial nitritation using sequencing batch reactor with filter media and wastewater treatment device and system for shortcut nitrogen removal using same
WO2017052167A1 (en) Wastewater treatment apparatus adopting biofiltration process for pretreatment of shortened nitrogen removal process
ES2720489T3 (en) Wastewater clarification method
WO2015064933A1 (en) Method for treating drain-water using sludge aeration in water treatment plant
CN106277553A (en) The processing method of the dense water of reverse osmosis (RO) and equipment
CN101343129B (en) Pretreatment technique for decolorization of wastewater at middle plate of paper-making pulping
CN106745744B (en) Sewage treatment method and sewage treatment system
CN217809127U (en) Kitchen garbage effluent disposal system
CN111977911A (en) Method for treating leachate wastewater in electrolytic aluminum slag yard
CN115072938A (en) Kitchen waste wastewater treatment system and treatment process thereof
CN110746037A (en) Pretreatment method of high-concentration organic wastewater
US20030150817A1 (en) Method and apparatus for treating wastewater
JP2008307494A (en) Sewage treating method and sewage treatment apparatus
WO2011059218A2 (en) Hybrid water treatment apparatus based on sbr and mbr
KR200197669Y1 (en) Waste water purifying system including secondary aeration chamber
CN110723865A (en) Combined treatment process for landfill leachate combined system
JP2008237958A (en) Sewage treatment method and apparatus
CN219792656U (en) Simple device for treating organic pesticide wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858505

Country of ref document: EP

Kind code of ref document: A1