WO2016180311A1 - Mems双层悬浮微结构的制作方法和mems红外探测器 - Google Patents

Mems双层悬浮微结构的制作方法和mems红外探测器 Download PDF

Info

Publication number
WO2016180311A1
WO2016180311A1 PCT/CN2016/081522 CN2016081522W WO2016180311A1 WO 2016180311 A1 WO2016180311 A1 WO 2016180311A1 CN 2016081522 W CN2016081522 W CN 2016081522W WO 2016180311 A1 WO2016180311 A1 WO 2016180311A1
Authority
WO
WIPO (PCT)
Prior art keywords
film body
layer
dielectric layer
mems
sacrificial layer
Prior art date
Application number
PCT/CN2016/081522
Other languages
English (en)
French (fr)
Inventor
荆二荣
Original Assignee
无锡华润上华半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华半导体有限公司 filed Critical 无锡华润上华半导体有限公司
Priority to EP16792161.8A priority Critical patent/EP3296254A4/en
Priority to US15/573,280 priority patent/US10093536B2/en
Publication of WO2016180311A1 publication Critical patent/WO2016180311A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • B81C1/00468Releasing structures
    • B81C1/00476Releasing structures removing a sacrificial layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0207Bolometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0108Sacrificial polymer, ashing of organics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling

Definitions

  • the present invention relates to the field of semiconductor device technologies, and in particular, to a method for fabricating a MEMS double-layer suspension microstructure and a MEMS infrared detector.
  • MEMS Micro Electro Mechanical Systems, Microelectromechanical Systems, is a micro-integrated system that uses integrated circuit fabrication technology and micromachining technology to fabricate microstructures, microsensors, microactuators, control processing circuits, and even interfaces and power supplies on one or more chips.
  • MEMS compared to traditional infrared detectors
  • the infrared detectors prepared by technology have obvious advantages in terms of volume, power consumption, weight and price.
  • infrared detectors fabricated using MEMS technology have been widely used in military and civilian applications. According to different working principles, infrared detectors are mainly divided into thermopiles, pyroelectric and thermistor detectors.
  • thermopile infrared detector converts the temperature change caused by infrared radiation into a voltage signal output through the Seebeck effect.
  • Pyroelectric infrared detectors measure the temperature change caused by infrared radiation by the accumulation of charge in a heated object.
  • the thermistor infrared detector measures the temperature change caused by infrared radiation by reading the change in resistance.
  • MEMS Infrared detectors generally use a single-layer suspension microstructure. Although this process is very simple, when the size of the infrared detector chip is reduced, the suspended absorption region (membrane-like absorption layer) used for infrared radiation absorption is correspondingly reduced. This will greatly reduce the infrared response rate of the infrared detector.
  • a method for fabricating a MEMS double-layer suspension microstructure comprising the steps of:
  • a portion of the substrate under the first film body is removed, and the sacrificial layer is removed to obtain a MEMS double-layer suspension microstructure.
  • the above method for fabricating the MEMS double-layer suspension microstructure can produce an infrared detector having a double-layered suspension microstructure and using the double-layer suspension microstructure (a suspension microstructure having a first membrane body and a second membrane body) Since the second film body does not need to be fabricated as a cantilever beam, the second film body can be made larger than the first film body, and thus can have a larger suspension absorption region than the single-layer floating microstructure infrared detector, thereby having a comparative High infrared response rate.
  • the suspension absorption region (second film body) used for infrared radiation absorption is correspondingly reduced, since the second film body does not need to be fabricated as a cantilever beam, the second film body can be made larger than the first film body, so that even when the size of the infrared detector chip is reduced, it can be more than the single-layer floating microstructure infrared detector. Large suspension absorption area, which will greatly improve the infrared response rate compared with the traditional single-layer suspension microstructure infrared detector.
  • FIG. 1 is a flow chart of a method for fabricating a MEMS double-layer floating microstructure according to an embodiment
  • FIG. 2 is a schematic side view showing the first dielectric layer
  • FIG. 3 is a schematic plan view showing the first dielectric layer after being patterned
  • FIG. 4 is a schematic side view of the sacrificial layer after being patterned
  • Figure 5 is a top plan view of the sacrificial layer after being patterned
  • Figure 6 is a side view showing the second dielectric layer
  • Figure 7 is a schematic diagram of a MEMS double layer suspension microstructure.
  • FIG. 1 is a flow chart of a method of fabricating a MEMS double-layer floating microstructure in an embodiment.
  • Step S100 Providing the substrate 100.
  • the substrate 100 may be a substrate having a circuit structure.
  • Step S300 The first dielectric layer 200 is patterned to form the first film body 210 and the cantilever beam 220 connecting the substrate 100 and the first film body 210.
  • the cantilever beam 220 is two, which are respectively located on two sides of the first film body 210.
  • the cantilever beam 220 is very small, and the contact area with the substrate 100 is much smaller than the infrared absorption region (here, the first film body 210), preventing infrared energy from being quickly absorbed by the substrate 100.
  • Step S400 forming a sacrificial layer 300 on the first dielectric layer 200.
  • the sacrificial layer 300 may be one of a polyimide layer and amorphous silicon. If it is a polyimide, the sacrificial layer 300 is formed by coating; if it is amorphous silicon, the sacrificial layer 300 is formed by a deposition process. The thickness of the sacrificial layer 300 is 500 nm to 3000 nm.
  • Step S500 The sacrificial layer 300 on the first film body 210 is patterned to form a recess 310 for forming a support structure, and the bottom of the recess 310 exposes the first film body 210. 4 and 5, the recess 310 is one in this embodiment, exposed above the first film body 210 and at an intermediate position of the sacrificial layer on the first film body 210. 4 is a schematic side view of the sacrificial layer after patterning; FIG. 5 is a top plan view of the sacrificial layer after patterning.
  • Step S600 depositing a second dielectric layer 400 on the sacrificial layer 300.
  • the thickness of the second dielectric layer 400 is 100 nm to 2000 nm, and the material of the second dielectric layer 400 may be silicon dioxide, silicon nitride, silicon oxynitride or a combination of two or two or three combinations. That is, the second dielectric layer 400 may be a single layer structure of a silicon dioxide layer, a silicon nitride layer, or a silicon oxynitride layer, or may be a combination of a silicon dioxide layer, a silicon nitride layer, and a silicon oxynitride layer. A combined non-monolayer structure. In this embodiment, it is silica.
  • Figure 6 is a side elevational view of the second dielectric layer.
  • Step S700 The second dielectric layer 400 is patterned to form a second film body 410 and a support structure 420, and the support structure 420 connects the first film body 210 and the second film body 410.
  • a dielectric layer deposited and patterned on the recess 310 of the sacrificial layer 300 serves as a support structure 420, and a region surrounding the support structure 420 forms a second film body 410.
  • the cantilever beam is not required to be formed on the second film body 410, the projected area of the second film body 410 in the horizontal direction can be made larger than the projected area of the first film body 210 in the horizontal direction.
  • the second film body 410 is fixed on the first film body 210 using the sacrificial layer 300.
  • Step S800 removing a portion of the substrate 110 under the first film body 210, removing the sacrificial layer 300, and obtaining a MEMS double-layer floating microstructure, as shown in FIG.
  • the sacrificial layer 300 is amorphous silicon
  • a portion of the substrate 110 and the sacrificial layer 300 under the first film body 210 may be etched by a dry etching process; if the sacrificial layer 300 is polyimide, dry etching may be employed.
  • the process first etches a portion of the substrate 110 under the first film body 210 from the back surface of the substrate 100, and then removes the sacrificial layer 300 by an oxygen ion dry etching process to obtain a MEMS double-layer floating microstructure.
  • the etching of the amorphous silicon or a portion of the substrate 110 under the first film body 210 may be removed by a vapor phase fluorination dry etching process (for example, xenon difluoride XeF2) or a deep reactive ion etching process (DRIE).
  • a vapor phase fluorination dry etching process for example, xenon difluoride XeF2
  • DRIE deep reactive ion etching process
  • the working principle of the oxygen ion dry etching process is to introduce a small amount of oxygen into the vacuum system, and to increase the voltage to ionize the oxygen, thereby forming a glow column of oxygen plasma.
  • Reactive oxygen can quickly oxidize the polyimide and form a volatile gas to achieve etching.
  • all materials that can be removed by a semiconductor etching process can replace polyimide as a sacrificial layer in the method, and the semiconductor etching process of course includes an etching process using ions, gas or light to etch. For example, an oxygen ion dry etching process.
  • the MEMS infrared detector fabricated by the above MEMS double-layer suspension microstructure, the first film body 210 and the second film body 410 can be used to absorb the infrared film-like absorption layer, and absorb the infrared light.
  • the energy converted electrical signal is transmitted through the cantilever beam 220 to the circuit structure of the substrate 100.
  • the invention also discloses a MEMS infrared detector, comprising a MEMS double-layer suspension microstructure fabricated by the above-mentioned MEMS double-layer suspension microstructure manufacturing method.
  • the MEMS infrared detector can be, for example, a thermistor infrared detector.
  • steps in the flowchart of FIG. 1 are sequentially displayed as indicated by the arrows, these steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and may be performed in other sequences. Moreover, at least some of the steps in FIG. 1 may include a plurality of sub-steps or stages, which are not necessarily performed at the same time, but may be executed at different times, and the order of execution thereof is not necessarily This may be performed in sequence, but may be performed alternately or alternately with other steps or at least a portion of the sub-steps or stages of the other steps.
  • the above method for fabricating the MEMS double-layer suspension microstructure can produce an infrared detector having a double-layered suspension microstructure and using the double-layer suspension microstructure (a suspension microstructure having a first membrane body and a second membrane body) Since the second film body does not need to be fabricated as a cantilever beam, the second film body can be made larger than the first film body, and thus can have a larger suspension absorption region than the single-layer floating microstructure infrared detector, thereby having a comparative High infrared response rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS双层悬浮微结构的制作方法,包括:提供基片(100);在基片(100)上形成第一介质层(200);将第一介质层(200)图形化以制作第一膜体(210)和连接第一膜体(210)的悬臂梁(220);在第一介质层(200)上形成牺牲层(300);将位于第一膜体(210)上的牺牲层(300)图形化以制作出用于形成支撑结构(420)的凹部(310),凹部(310)的底部暴露出第一膜体(210);在牺牲层(300)上形成第二介质层(400);将第二介质层(400)图形化以制作出第二膜体(410)和支撑结构(420),支撑结构(420)连接第一膜体(210)和第二膜体(410);及去除第一膜体(210)下的部分基片,去除牺牲层(300),得到MEMS双层悬浮微结构。此外,还公开一种MEMS红外探测器。

Description

MEMS双层悬浮微结构的制作方法和MEMS红外探测器
【技术领域】
本发明涉及半导体器件技术领域,特别涉及一种MEMS双层悬浮微结构的制作方法和MEMS红外探测器。
【背景技术】
MEMS(Micro Electro Mechanical Systems,微电子机械系统)是利用集成电路制造技术和微加工技术把微结构、微传感器、微执行器、控制处理电路甚至接口和电源等制造在一块或多块芯片上的微型集成系统。与传统红外探测器相比,采用MEMS 技术制备的红外探测器在体积、功耗、重量以及价格等方面有十分明显的优势。目前,利用MEMS技术制作的红外探测器已广泛用于军事和民用领域。按照工作原理的不同,红外探测器主要分为热电堆、热释电和热敏电阻探测器等。热电堆红外探测器通过塞贝克效应将红外辐射导致的温度变化转换为电压信号输出。热释电红外探测器是通过受热物体中的电荷堆积来测量红外辐射导致的温度变化。热敏电阻红外探测器通过读取电阻阻值的变化来测量红外辐射导致的温度变化。目前,MEMS 红外探测器一般都采用单层悬浮微结构,这种工艺虽很简单,但是当红外探测器芯片尺寸减小时,用作红外辐射吸收的悬浮吸收区域(膜状吸收层)相应地也会减小,这样会大大降低红外探测器的红外响应率。
【发明内容】
基于此,有必要提供一种MEMS双层悬浮微结构的制作方法,该MEMS双层悬浮微结构的制作方法可以制作出较高红外响应率的红外探测器。此外,还提供一种MEMS红外探测器。
一种MEMS双层悬浮微结构的制作方法,包括步骤:
提供基片;
在基片上形成第一介质层;
将所述第一介质层图形化以制作第一膜体和连接所述第一膜体的悬臂梁;
在所述第一介质层上形成牺牲层;
将位于所述第一膜体上的牺牲层图形化以制作出用于形成支撑结构的凹部,所述凹部的底部暴露出所述第一膜体;
在所述牺牲层上形成第二介质层;
将所述第二介质层图形化以制作出第二膜体和所述支撑结构,所述支撑结构连接所述第一膜体和所述第二膜体;及
去除所述第一膜体下的部分基片,去除所述牺牲层,得到MEMS双层悬浮微结构。
一种MEMS红外探测器,包括利用上述的MEMS双层悬浮微结构的制作方法制作出的MEMS双层悬浮微结构。
上述MEMS双层悬浮微结构的制作方法,可以制作出具有双层的悬浮微结构,用该双层悬浮微结构(具备第一膜体和第二膜体的悬浮微结构)制作的红外探测器,由于第二膜体不需要制作悬臂梁,所以第二膜体可以制作得比第一膜体大,因而可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,从而具备较高的红外响应率。当红外探测器芯片尺寸减小时,相对于传统的单层悬浮微结构的红外探测器来说,尽管用作红外辐射吸收的悬浮吸收区域(第二膜体)也相应地也会减小,但是由于第二膜体不需要制作悬臂梁,所以第二膜体可以制作得比第一膜体大,因而即使当红外探测器芯片尺寸减小时也可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,这样会较传统的单层悬浮微结构的红外探测器大大提高红外响应率。
【附图说明】
图1是一实施例MEMS双层悬浮微结构的制作方法的流程图;
图2是将第一介质层图形化后的侧面示意图;
图3是将第一介质层图形化后的俯视示意图;
图4是牺牲层图形化后的侧面示意图;
图5是牺牲层图形化后的俯视示意图;
图6是形成第二介质层后的侧面示意图;
图7是MEMS双层悬浮微结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图及具体实施方式对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1是一实施例MEMS双层悬浮微结构的制作方法的流程图。
一种MEMS双层悬浮微结构的制作方法,包括步骤:
步骤S100:提供基片100。基片100可以是已布有电路结构的基片。
步骤S200:在基片100上形成第一介质层200。采用淀积工艺形成第一介质层200,第一介质层200的厚度为100nm~2000nm。形成第一介质层200的材质可以为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。即第一介质层200可以为二氧化硅层、氮化硅层或氮氧化硅层的单层结构,也可以是二氧化硅层、氮化硅层、氮氧化硅层两两组合层叠或三种组合层叠的非单层结构。在本实施例为二氧化硅。图2是将第一介质层图形化后的侧面示意图;图3是将第一介质层图形化后的俯视示意图。
步骤S300:将第一介质层200图形化以制作第一膜体210和连接基片100和第一膜体210的悬臂梁220。见图3,在本实施例中悬臂梁220为两条,分别位于第一膜体210的两侧。悬臂梁220十分细小,与基底100的接触面积远小于红外吸收区域(此处为第一膜体210),防止红外能量快速被基片100吸收。
步骤S400:在第一介质层200上形成牺牲层300。牺牲层300可以是聚酰亚胺层和非晶硅中的一种。如果是聚酰亚胺,则用涂覆的方式形成牺牲层300;如果是非晶硅,则采用淀积工艺形成牺牲层300。牺牲层300的厚度为500nm~3000nm。
步骤S500:将位于第一膜体210上的牺牲层300图形化以制作出用于形成支撑结构的凹部310,凹部310的底部暴露出第一膜体210。见图4和图5,凹部310在本实施例中为一个,暴露在第一膜体210的上方且位于第一膜体210上的牺牲层的中间位置。图4是牺牲层图形化后的侧面示意图;图5是牺牲层图形化后的俯视示意图。
步骤S600:在牺牲层300上淀积形成第二介质层400。第二介质层400的厚度为100nm~2000nm,形成第二介质层400的材质可以为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。即第二介质层400可以为二氧化硅层、氮化硅层、氮氧化硅层的单层结构,也可以是二氧化硅层、氮化硅层、氮氧化硅层两两组合层叠或三种组合层叠的非单层结构。在本实施例为二氧化硅。图6是形成第二介质层后的侧面示意图。
步骤S700:将第二介质层400图形化以制作出第二膜体410和支撑结构420,支撑结构420连接第一膜体210和第二膜体410。在牺牲层300的凹部310上淀积并图形化的介质层作为支撑结构420,连接支撑结构420四周的区域形成第二膜体410。见图6,由于第二膜体410上不需要制作悬臂梁,所以第二膜体410在水平方向上的投影面积可以制作得比第一膜体210在水平方向上的投影面积大。使用牺牲层300使第二膜体410固定在第一膜体210上。
步骤S800:去除第一膜体210下的部分基片110,去除牺牲层300,得到MEMS双层悬浮微结构,见图7。如果牺牲层300是非晶硅,可以采用干法刻蚀工艺刻蚀掉第一膜体210下的部分基片110和牺牲层300;如果牺牲层300是聚酰亚胺,可以采用干法刻蚀工艺先从基片100背面刻蚀掉第一膜体210下的部分基片110,然后再利用氧离子干法刻蚀工艺去除牺牲层300,得到MEMS双层悬浮微结构。刻蚀非晶硅或者第一膜体210下的部分基片110,可以采用气相氟化氙干法刻蚀工艺(例如二氟化氙XeF2)或深反应离子刻蚀工艺(DRIE)去除。
氧离子干法刻蚀工艺其工作原理是在真空系统中通入少量氧气,加高电压使氧气电离,从而形成氧等离子的辉光柱。活性氧可以迅速将聚酰亚胺氧化并生成可挥发气体,从而实现刻蚀。在其他实施例中,所有能够通过半导体刻蚀工艺除去的材料都能够替代聚酰亚胺作为本方法中的牺牲层,半导体刻蚀工艺当然包括利用离子、气体或光来刻蚀的刻蚀工艺,例如氧离子干法刻蚀工艺。
用上述MEMS双层悬浮微结构制作的MEMS红外探测器,第一膜体210和第二膜体410(主要依靠第二膜体410)都可以用来吸收红外的膜状吸收层,吸收的红外能量转化的电信号通过悬臂梁220传到基片100的电路结构。
本发明还公开了一种MEMS红外探测器,包括利用上述的MEMS双层悬浮微结构的制作方法制作出的MEMS双层悬浮微结构。MEMS红外探测器例如可以是热敏电阻红外探测器。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
可以理解,上述MEMS双层悬浮微结构的制作方法,仅描述一些主要步骤,并不代表制作MEMS双层悬浮微结构方法的所有步骤。图2~图7中的图示也是对制作MEMS双层悬浮微结构的过程中器件的一些主要结构的简单示例,并不代表器件的全部结构。
上述MEMS双层悬浮微结构的制作方法,可以制作出具有双层的悬浮微结构,用该双层悬浮微结构(具备第一膜体和第二膜体的悬浮微结构)制作的红外探测器,由于第二膜体不需要制作悬臂梁,所以第二膜体可以制作得比第一膜体大,因而可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,从而具备较高的红外响应率。当红外探测器芯片尺寸减小时,相对于传统的单层悬浮微结构的红外探测器来说,尽管用作红外辐射吸收的悬浮吸收区域(第二膜体)也相应地也会减小,但是由于第二膜体不需要制作悬臂梁,所以第二膜体可以制作得比第一膜体大,因而即使当红外探测器芯片尺寸减小时也可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,这样会较传统的单层悬浮微结构的红外探测器大大提高红外响应率。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种MEMS双层悬浮微结构的制作方法,包括:
    提供基片;
    在基片上形成第一介质层;
    将所述第一介质层图形化以制作第一膜体和连接所述第一膜体的悬臂梁;
    在所述第一介质层上形成牺牲层;
    将位于所述第一膜体上的牺牲层图形化以制作出用于形成支撑结构的凹部,所述凹部的底部暴露出所述第一膜体;
    在所述牺牲层上形成第二介质层;
    将所述第二介质层图形化以制作出第二膜体和所述支撑结构,所述支撑结构连接所述第一膜体和所述第二膜体;及
    去除所述第一膜体下的部分基片,去除所述牺牲层,得到MEMS双层悬浮微结构。
  2. 根据权利要求1 所述的方法,其特征在于,采用干法刻蚀工艺去除所述第一膜体下的部分基片。
  3. 根据权利要求1 所述的方法,其特征在于,采用气相氟化氙干法刻蚀工艺或深反应离子刻蚀工艺去除所述第一膜体下的部分基片。
  4. 根据权利要求1 所述的方法,其特征在于,所述牺牲层为聚酰亚胺层,采用氧离子干法刻蚀工艺去除所述牺牲层;或
    所述牺牲层为非晶硅,采用干法刻蚀工艺去除所述牺牲层。
  5. 根据权利要求1所述的方法,其特征在于,所述牺牲层的厚度为500nm~3000nm。
  6. 根据权利要求1 所述的方法,其特征在于,所述第一介质层和第二介质层的厚度均为100nm~2000nm。
  7. 根据权利要求1所述的方法,其特征在于,形成所述第一介质层和第二介质层的材质为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。
  8. 根据权利要求1所述的方法,其特征在于,所述悬臂梁为两条,分别位于所述第一膜体的两侧。
  9. 根据权利要求1所述的方法,其特征在于,所述第二膜体在水平方向上的投影面积比所述第一膜体在水平方向上的投影面积大。
  10. 一种MEMS红外探测器,包括利用权利要求1所述的MEMS双层悬浮微结构的制作方法制作出的MEMS双层悬浮微结构。
PCT/CN2016/081522 2015-05-13 2016-05-10 Mems双层悬浮微结构的制作方法和mems红外探测器 WO2016180311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16792161.8A EP3296254A4 (en) 2015-05-13 2016-05-10 METHOD FOR PRODUCING A TWO-POINT MEMS SUSPENSION MICROSTRUCTURE AND MEMS INFRARED DETECTOR
US15/573,280 US10093536B2 (en) 2015-05-13 2016-05-10 MEMS double-layer suspension microstructure manufacturing method, and MEMS infrared detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510244071.0 2015-05-13
CN201510244071.0A CN106276776B (zh) 2015-05-13 2015-05-13 Mems双层悬浮微结构的制作方法和mems红外探测器

Publications (1)

Publication Number Publication Date
WO2016180311A1 true WO2016180311A1 (zh) 2016-11-17

Family

ID=57248808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081522 WO2016180311A1 (zh) 2015-05-13 2016-05-10 Mems双层悬浮微结构的制作方法和mems红外探测器

Country Status (4)

Country Link
US (1) US10093536B2 (zh)
EP (1) EP3296254A4 (zh)
CN (1) CN106276776B (zh)
WO (1) WO2016180311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800271A (zh) * 2017-01-24 2017-06-06 烟台睿创微纳技术股份有限公司 一种新型非制冷红外焦平面探测器像素结构及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394332B (zh) * 2021-06-15 2023-04-18 上海迷思科技有限公司 双层悬浮红外热电堆的制备方法
CN113394333B (zh) * 2021-06-15 2024-06-21 上海迷思科技有限公司 双层悬浮红外热电堆的制备方法
CN113394331A (zh) * 2021-06-15 2021-09-14 上海迷思科技有限公司 双层悬浮红外热电堆及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142237A (ja) * 1997-11-05 1999-05-28 Yokogawa Electric Corp 赤外線検出素子並びにこれを用いた赤外分光装置及び撮像素子
CN102829880A (zh) * 2012-08-23 2012-12-19 江苏物联网研究发展中心 基于黒硅的高性能mems热电堆红外探测器及其制备方法
CN102889933A (zh) * 2011-07-18 2013-01-23 苏州敏芯微电子技术有限公司 Mems热电堆红外探测器芯片、其内芯片及本身的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040356B2 (ja) * 1997-01-27 2000-05-15 三菱電機株式会社 赤外線固体撮像素子
US6329738B1 (en) * 1999-03-30 2001-12-11 Massachusetts Institute Of Technology Precision electrostatic actuation and positioning
JP3944465B2 (ja) * 2003-04-11 2007-07-11 三菱電機株式会社 熱型赤外線検出器及び赤外線フォーカルプレーンアレイ
WO2005079208A2 (en) * 2003-11-21 2005-09-01 Trustees Of Boston University Uncooled cantilever microbolometer focal plane array with mk temperature resolutions and method of manufacturing microcantilever
US8472100B2 (en) * 2008-03-12 2013-06-25 Texas Instruments Incorporated Multilayered deformable element with reduced memory properties in a MEMS device
US8097999B2 (en) * 2009-04-27 2012-01-17 University Of Seoul Industry Cooperation Foundation Piezoelectric actuator
JP5506031B2 (ja) * 2009-12-28 2014-05-28 富士フイルム株式会社 アクチュエータ素子の駆動方法、及びデバイス検査方法
CN102244190B (zh) * 2010-05-10 2013-07-10 中国科学院微电子研究所 一种热电堆红外探测器
US8436435B2 (en) * 2010-07-27 2013-05-07 National Tsing Hua University MEMS capacitive microphone
CN102386268B (zh) * 2010-08-30 2013-11-27 中国科学院微电子研究所 红外焦平面阵列器件及其制作方法
WO2012082801A2 (en) * 2010-12-13 2012-06-21 The Board Of Regents For Oklahoma State University Nanowire thermoelectric infrared detector
CN102901567B (zh) * 2011-07-29 2015-05-13 江苏物联网研究发展中心 热电堆红外探测器、阵列及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142237A (ja) * 1997-11-05 1999-05-28 Yokogawa Electric Corp 赤外線検出素子並びにこれを用いた赤外分光装置及び撮像素子
CN102889933A (zh) * 2011-07-18 2013-01-23 苏州敏芯微电子技术有限公司 Mems热电堆红外探测器芯片、其内芯片及本身的制造方法
CN102829880A (zh) * 2012-08-23 2012-12-19 江苏物联网研究发展中心 基于黒硅的高性能mems热电堆红外探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296254A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800271A (zh) * 2017-01-24 2017-06-06 烟台睿创微纳技术股份有限公司 一种新型非制冷红外焦平面探测器像素结构及其制备方法
CN106800271B (zh) * 2017-01-24 2018-06-26 烟台睿创微纳技术股份有限公司 一种非制冷红外焦平面探测器像素结构及其制备方法

Also Published As

Publication number Publication date
CN106276776A (zh) 2017-01-04
EP3296254A4 (en) 2019-01-09
US10093536B2 (en) 2018-10-09
US20180134548A1 (en) 2018-05-17
CN106276776B (zh) 2019-03-15
EP3296254A1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
WO2016180311A1 (zh) Mems双层悬浮微结构的制作方法和mems红外探测器
Xie et al. Post-CMOS processing for high-aspect-ratio integrated silicon microstructures
US6943448B2 (en) Multi-metal layer MEMS structure and process for making the same
EP2973657B1 (en) Surface roughening to reduce adhesion in an integrated mems device
Tseng et al. Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 µm CMOS MEMS process
WO2014044122A1 (zh) 硅的刻蚀方法
Chang et al. Micromachined inertial measurement unit fabricated by a SOI process with selective roughening under structures
WO2014063410A1 (zh) 弯折形弹性梁的电容式加速度传感器及制备方法
CN109182484B (zh) 一种dna碱基序列检测的纳米孔三明治结构及其制作方法
CN112484800B (zh) 热堆式气体质量流量传感器及其制备方法
CN112461312A (zh) 热堆式气体质量流量传感器及其制造方法
JP2002509808A (ja) 集積大面積ミクロ構造体およびミクロメカニカルデバイス
JP5975457B2 (ja) 三次元構造体及びセンサ
TWI398887B (zh) 可變平行電容板之製造方法
CN114323395B (zh) 一种基于soi工艺的mems六轴力传感器芯片及其制备方法
WO2016086690A1 (zh) Mems双层悬浮微结构的制作方法和mems红外探测器
Honer et al. Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry
CN102556943B (zh) 微机电传感器的形成方法
CN108447979B (zh) 压电薄膜传感器及其制备方法
WO2016180310A1 (zh) Mems基片的加工方法
Baltes CMOS micro electro mechanical systems
Fedder 2. Photolithographic microfabrication
CN111308126A (zh) 一种增大质量块的电容式三轴加速度计及其制作方法
Sanz-Velasco et al. Sensors and actuators based on SOI materials
CN111847372A (zh) 红外mems桥梁柱结构及工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15573280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE