WO2016180263A1 - 监控装置和监控方法 - Google Patents

监控装置和监控方法 Download PDF

Info

Publication number
WO2016180263A1
WO2016180263A1 PCT/CN2016/081066 CN2016081066W WO2016180263A1 WO 2016180263 A1 WO2016180263 A1 WO 2016180263A1 CN 2016081066 W CN2016081066 W CN 2016081066W WO 2016180263 A1 WO2016180263 A1 WO 2016180263A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
lubricating oil
capacitance detector
capacitance
dielectric constant
Prior art date
Application number
PCT/CN2016/081066
Other languages
English (en)
French (fr)
Inventor
孙英科
李靖远
皮埃尔·吉尼
菲利普·德威特
范亮
王东东
张乐平
Original Assignee
丹佛斯(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯(天津)有限公司 filed Critical 丹佛斯(天津)有限公司
Priority to US15/571,940 priority Critical patent/US10739327B2/en
Priority to DE112016002085.6T priority patent/DE112016002085T5/de
Publication of WO2016180263A1 publication Critical patent/WO2016180263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N19/00Lubricant containers for use in lubricators or lubrication systems
    • F16N19/003Indicating oil level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels

Definitions

  • the invention relates to the field of detection technology, and in particular to a monitoring device and a monitoring method for monitoring lubricating oil in a compressor.
  • a sufficient amount of lubricating oil is injected into the compressor to provide sufficient lubrication for the various components of the compressor.
  • the lubricating function of the lubricating oil in the compressor may be invalidated.
  • the indicators relating to the quality of the lubricating oil in the compressor include the dilution of the lubricating oil, the incorporation of foreign matter into the lubricating oil, the oxidation or carbonization of the lubricating oil, and the like.
  • the concentration of the lubricating oil in the compressor is too low, which may cause the viscosity of the lubricating oil to decrease.
  • the viscosity of the lubricating oil is reduced, it will cause severe wear on the bearings of the compressor. Therefore, once the dilution of the lubricant is above the warning level, the compressor must be stopped immediately or the dilution of the lubricant must be reduced.
  • the refrigerant mixed into the lubricating oil can be evaporated by heating the lubricating oil, so that the dilution of the lubricating oil can be reduced.
  • the lubricating oil is mixed with iron scraps which are detached from the compressor bearing, which may aggravate the wear of the compressor components. Once the iron filings are mixed into the lubricating oil, the compressor must be stopped immediately and the iron filings removed from the lubricating oil.
  • the lubricant If the lubricant is oxidized or carbonized, the lubricant will lose its lubricating function, which will result in The compressor wears out quickly and shortens the life of the compressor. Once the lubricant is oxidized or carbonized, the compressor must be stopped immediately and replaced with new lubricant.
  • the quality of the lubricating oil is generally monitored by measuring the viscosity, density or contaminants of the lubricating oil.
  • the cost of existing monitoring devices that monitor the quality of lubricating oil by measuring the viscosity, density or contaminants of lubricating oils is very high, and the price of monitoring devices ranges from 400,000 to 1.6 million RMB.
  • the installation of the existing monitoring device is very complicated, and it also requires processing a large amount of data, and the detection speed is slow.
  • this type of monitoring device is only suitable for laboratory testing and is not industrially usable.
  • a monitoring device for monitoring lubricating oil in a compressor comprising: a first capacitance detector disposed in the compressor and completely submerged in the compressor a lubricating unit; a calculating unit, calculating a relative dielectric constant ⁇ r of the lubricating oil in the compressor according to the first capacitance value C 11 detected by the first capacitance detector; and a determining unit, according to the calculation
  • the relative dielectric constant ⁇ r monitors whether the quality of the lubricating oil in the compressor is abnormal.
  • the monitoring device further includes: a second capacitance detector, the second capacitance detector being vertically disposed in the compressor, wherein the calculation unit is calculated according to the calculation Calculating the second dielectric value ⁇ r of the lubricating oil in the compressor and the second capacitance value C 21 detected by the second capacitance detector vertically disposed in the compressor
  • the capacitance detector is immersed in the depth H of the lubricating oil in the compressor; and the judging unit monitors whether the level of the lubricating oil in the compressor is lower than the safe level value based on the calculated depth H.
  • the relative dielectric constant ⁇ r of the lubricating oil in the compressor is calculated according to formula (1):
  • C 10 is a capacitance value detected when the first capacitance detector is in a vacuum.
  • the depth H of the second capacitance detector immersed in the lubricating oil is calculated according to formula (2):
  • C 20 is a capacitance value detected by the second capacitance detector in the air
  • L is the length of the second capacitance detector in the vertical direction.
  • the determining unit monitors whether the calculated relative dielectric constant ⁇ r is greater than a predetermined dielectric constant value, and if the calculated relative dielectric constant ⁇ r is greater than a predetermined dielectric constant a value, the determination unit determines that an abnormality occurs in the quality of the lubricating oil in the compressor; and/or the determining unit monitors whether the calculated depth H is smaller than a predetermined depth value, and if the calculated depth H is less than a predetermined depth And the determining unit determines that the liquid level of the lubricating oil in the compressor is lower than the safe liquid level value.
  • the first capacitance detector is a parallel plate type capacitance detector or a columnar capacitance detector
  • the second capacitance detector is a parallel plate type capacitance detector or a columnar capacitance detection Device.
  • the first capacitance detector is mounted substantially horizontally on a bottom wall of an oil sump within the compressor.
  • the second capacitance detector is vertically mounted on a sidewall of the oil sump within the compressor.
  • the lower end of the second capacitance detector is in contact with the bottom wall of the oil sump in the compressor.
  • the first capacitance detector and The second capacitance detector is physically separated from two components or integrated into one integral component.
  • a monitoring method for monitoring lubricating oil in a compressor comprising the steps of: detecting a first capacitance value C 11 according to a first capacitance detector completely immersed in the compressor, A relative dielectric constant ⁇ r of the lubricating oil in the compressor is calculated, and an abnormality in the quality of the lubricating oil in the compressor is monitored based on the calculated relative dielectric constant ⁇ r .
  • the method further includes the step of: determining a second capacitance value C 21 detected by a second capacitance detector vertically disposed in the compressor and calculating the inside of the compressor
  • the relative dielectric constant ⁇ r of the lubricating oil calculates the depth H of the second capacitance detector immersed in the lubricating oil in the compressor.
  • the relative dielectric constant ⁇ r of the lubricating oil in the compressor is calculated according to formula (1):
  • C 10 is a capacitance value detected when the first capacitance detector is in a vacuum.
  • the depth H of the second capacitance detector immersed in the lubricating oil is calculated according to formula (2):
  • C 20 is a capacitance value detected by the second capacitance detector in the air
  • L is the length of the second capacitance detector in the vertical direction.
  • the foregoing method further includes the step of: stopping when the calculated relative dielectric constant ⁇ r is greater than a predetermined dielectric constant value or when the calculated depth H is less than a predetermined depth value Said compressor.
  • the first capacitance detector is a parallel plate type capacitance detector or a columnar capacitance detector; and the second capacitance detector is a parallel plate type capacitance detection Or columnar capacitance detector.
  • the first capacitance detector is mounted substantially horizontally on a bottom wall of an oil sump within the compressor.
  • the second capacitance detector is vertically mounted on a sidewall of the oil sump in the compressor.
  • the lower end of the second capacitance detector is in contact with the bottom wall of the oil sump in the compressor.
  • the first capacitance detector and the second capacitance detector are physically separated components or integrated into one integral component.
  • the quality of the lubricating oil in the compressor can be conveniently and accurately monitored by the capacitance detector. Moreover, continuous real-time detection of the level of the lubricating oil can be performed to simultaneously detect the quality and liquid level of the lubricating oil.
  • the monitoring device reduces monitoring costs and improves monitoring accuracy.
  • FIG. 1 shows a schematic cross-sectional view of a compressor showing a first capacitance detector and a second capacitance detector, in accordance with an exemplary embodiment of the present invention
  • FIG. 2 is a perspective view showing the second capacitance detector of FIG. 1;
  • Figure 3 is a graph showing the detection level of the lubricating oil in the container and the true liquid level of the lubricating oil in the container detected by the first capacitance detector and the second capacitance detector of Figure 1;
  • Figure 4 is a graph showing the relationship between the dilution of the lubricating oil and the relative dielectric constant of the lubricating oil.
  • a monitoring device for monitoring lubricating oil in a compressor comprising: a first capacitance detector disposed in the compressor and completely immersed in the a lubricating unit in the compressor; a calculating unit, calculating a relative dielectric constant ⁇ r of the lubricating oil in the compressor according to the first capacitance value C 11 detected by the first capacitance detector; and a determining unit, according to The calculated relative dielectric constant ⁇ r monitors whether the quality of the lubricating oil in the compressor is abnormal.
  • the low level of the lubricating oil in the compressor will also affect the safe operation of the compressor. If the level of the lubricating oil in the compressor is too low, it will not be able to supply a sufficient amount of lubricating oil to the various components of the compressor, resulting in insufficient lubrication of the various components of the compressor, which will also accelerate the various components of the compressor. The wear and tear shortens the life of the compressor. Therefore, once the level of the lubricating oil in the compressor is lower than the warning level, the compressor must be stopped immediately and a sufficient amount of lubricating oil is injected into the compressor.
  • a differential pressure detector or a magnetic float is generally used to monitor the level of the lubricating oil in the compressor.
  • this can damage the differential pressure detector or the magnetic float due to pressures in the compressor of up to 45 bar.
  • due to the complexity of the internal operation of the compressor there will be foam, unstable temperature, large pressure fluctuations, and large density changes, which will cause the differential pressure detector or the magnetic float ball to accurately detect the lubricating oil in the compressor. Liquid level.
  • the foregoing monitoring apparatus further includes: a second capacitance detector, the second capacitance detector being vertically disposed in the compressor, wherein the calculation unit is configured according to Calculating the relative dielectric constant ⁇ r of the lubricating oil in the compressor and the second capacitance value C 21 detected by the second capacitance detector vertically disposed in the compressor
  • the second capacitance detector is immersed in the depth H of the lubricating oil in the compressor; and the judging unit monitors whether the liquid level of the lubricating oil in the compressor is lower than the safe liquid level value based on the calculated depth H.
  • a monitoring method for monitoring lubricating oil in a compressor comprising the steps of: detecting a first capacitance value C 11 according to a first capacitance detector completely immersed in the compressor, A relative dielectric constant ⁇ r of the lubricating oil in the compressor is calculated, and an abnormality in the quality of the lubricating oil in the compressor is monitored based on the calculated relative dielectric constant ⁇ r .
  • the foregoing monitoring method further includes the steps of: determining a second capacitance value C 21 detected by a second capacitance detector vertically disposed in the compressor, and calculating the calculated in the compressor Calculating a depth H of the second capacitance detector immersed in the lubricating oil in the compressor by the relative dielectric constant ⁇ r of the lubricating oil, and monitoring the liquid of the lubricating oil in the compressor according to the calculated depth H Whether the bit is below the safe level value.
  • FIG. 1 shows a schematic cross-sectional view of a compressor in which a first capacitance detector 100 and a second capacitance detector 200 are shown, in accordance with an exemplary embodiment of the present invention.
  • a monitoring device for monitoring lubricating oil 20 within compressor 10 is disclosed.
  • the monitoring device mainly includes a first capacitance detector 100, a second capacitance detector 200, a calculation unit (not shown), and a determination unit (not shown). .
  • the first capacitance detector 100 is disposed in the compressor 10 and completely submerged in the lubricating oil 20 in the compressor 10.
  • the calculation unit of the monitoring device can calculate the relative dielectric constant ⁇ r of the lubricating oil 20 in the compressor 10 based on the first capacitance value C 11 detected by the first capacitance detector 100.
  • the relative dielectric constant ⁇ r of the lubricating oil 20 in the compressor 10 can be calculated according to formula (1):
  • C 10 is the capacitance value detected by the first capacitance detector 100 in a vacuum.
  • the judging unit of the monitoring device monitors whether or not the quality of the lubricating oil 20 in the compressor 10 is abnormal based on the calculated relative dielectric constant ⁇ r .
  • indicators relating to the quality of the lubricating oil in the compressor include the dilution of the lubricating oil, the incorporation of foreign matter into the lubricating oil, the oxidation or carbonization of the lubricating oil, and the like.
  • the concentration of the lubricating oil in the compressor is too low, which may cause the viscosity of the lubricating oil to decrease. Once the viscosity of the lubricating oil is reduced, it will cause severe wear on the bearings of the compressor.
  • the relative dielectric constant of the refrigerant is much larger than the relative dielectric constant of the pure lubricating oil, the relative medium of the lubricating oil (or a mixture of the lubricating oil and the refrigerant) is mixed once the lubricating oil is mixed with too much refrigerant.
  • the electric constant will increase a lot, and the relative dielectric constant ⁇ r of the aforementioned lubricating oil detected on the line will be greater than the predetermined dielectric constant value (or referred to as the dielectric constant warning value), once the above-mentioned lubricating oil is detected online.
  • the monitoring device issues an alarm and immediately stops the compressor or reduces the dilution of the lubricating oil.
  • the lubricating oil mixed in the lubricating oil can be evaporated by heating the lubricating oil. Thereby, the dilution of the lubricating oil can be lowered, so that the relative dielectric constant ⁇ r of the lubricating oil is lowered below the warning value.
  • the lubricating oil is mixed with iron scraps which are detached from the compressor bearing, which may aggravate the wear of the compressor components. Since the relative dielectric constant of iron filings is much larger than the relative dielectric constant of pure lubricating oil, once the iron filings are mixed in the lubricating oil, the relative dielectric constant of the lubricating oil will increase a lot, resulting in the aforementioned lubrication detected online.
  • the relative dielectric constant ⁇ r of the oil will be greater than the predetermined dielectric constant value (or dielectric constant warning value). Once the relative dielectric constant ⁇ r of the lubricating oil detected on the line is greater than the warning value, the monitoring device will issue an alarm. And immediately stop the compressor, after the compressor is stopped, the iron scrap must be removed from the lubricating oil.
  • the lubricant If the lubricant is oxidized or carbonized, the lubricant loses its lubricating function, which causes the compressor to wear quickly.
  • the lubricating oil When the lubricating oil is oxidized or carbonized, its relative dielectric constant ⁇ r will increase sharply, resulting in the relative dielectric constant ⁇ r of the aforementioned lubricating oil detected on the line being greater than the predetermined dielectric constant value (or called dielectric constant warning). Value), once the relative dielectric constant ⁇ r of the aforementioned lubricating oil detected on the line is greater than the warning value, the monitoring device will give an alarm and immediately stop the compressor. After the compressor stops, it is necessary to replace the new lubricating oil.
  • the first capacitance detector 100 may be a parallel plate type capacitance detector having a pair of electrode plates that are parallel and opposite to each other.
  • Table 1 shows that the capacitance value is detected when the first capacitance detector 100 shown in Fig. 1 is immersed in a purely fat oil (the temperature of the fat oil is 18 ° C) and is calculated based on the detected capacitance value.
  • the relative dielectric constant of the fatty oil is 18 ° C.
  • the average value of the relative dielectric constant of the pure fat oil detected by the parallel plate type first capacitance detector 100 provided by the present invention is 3.1708.
  • the true relative dielectric constant of the pure fatty oil is 3.20. It can be seen that the detection result of the foregoing first capacitance detector 100 is substantially accurate and can be completely used for detecting the relative dielectric constant of the lubricating oil in the compressor.
  • FIG. 2 shows a perspective view of the second capacitance detector 200 of FIG.
  • the first capacitance detector 100 and the second capacitance detector 200 are both parallel plate type capacitance detectors.
  • the present invention is not limited to the illustrated embodiment, and the first capacitance detector 100 and the second capacitance detector 200 may be any other type of capacitance detector, for example, a columnar capacitance detector.
  • the second capacitance detector 200 has a pair of electrode plates 210, 220 that are parallel and opposite each other.
  • the second capacitance detector 200 has a length L and a width W, and a pitch between the pair of electrode plates 210 and 220 is d.
  • the second capacitance detector 200 is vertically disposed in the compressor 10, and the second capacitance detector 200 is submerged in the compressor 10.
  • the depth in the lubricating oil 20 inside is H, as shown in FIG.
  • the calculation unit of the monitoring device can calculate the second capacitance detector based on the calculated relative dielectric constant ⁇ r of the lubricating oil 20 in the compressor 10 and the second capacitance value C 21 detected by the second capacitance detector 200. 200 is immersed in the depth H of the lubricating oil 20 in the compressor 10.
  • the depth H of the second capacitance detector 200 immersed in the lubricating oil 20 is calculated according to the formula (2):
  • C 20 is the capacitance value detected by the second capacitance detector 200 in the air
  • L is the length of the second capacitance detector 200 in the vertical direction.
  • the judging unit of the monitoring device monitors whether the level of the lubricating oil 20 in the compressor 10 is lower than the safe level value based on the calculated depth H.
  • Figure 3 is a graph showing the detection level of a certain fat oil in a container and the true liquid level of the fat oil in the container detected by the first capacitance detector 100 and the second capacitance detector 200 of Figure 1. .
  • the abscissa is the capacitance value detected by the second capacitance detector 200, and the capacitance value detected by the second capacitance detector 200 increases as the liquid level of the fat oil in the container increases.
  • the ordinate is the detection of the fat oil in the container calculated based on the relative dielectric constant of the fat oil detected by the first capacitance detector 100 and the capacitance value detected by the second capacitance detector 200. Liquid level.
  • the first capacitance detector 100 is mounted substantially horizontally on the bottom wall of the oil sump within the compressor 10. In this way, To ensure that the first capacitance detector 100 is always completely submerged in the lubricating oil 20 within the compressor 10.
  • the second capacitance detector 200 is vertically mounted on the sidewall of the oil sump within the compressor 10. In this way, the second capacitance detector 200 can be conveniently installed vertically in the compressor 10.
  • the lower end surface of the second capacitance detector 200 is in contact with the bottom wall of the oil sump in the compressor 10.
  • the detected liquid level H is equal to the liquid level of the lubricating oil 20 in the compressor 10.
  • the present invention is not limited to the illustrated embodiment, and the lower end surface of the second capacitance detector 200 may also be higher than the bottom wall of the oil pool in the compressor 10, and is not in contact with the bottom wall of the oil pool in the compressor 10.
  • the detected liquid level H plus the gap distance between the lower end surface of the second capacitance detector 200 and the bottom wall of the oil pool in the compressor 10 is equal to the liquid level of the lubricating oil 20 in the compressor 10. .
  • first capacitance detector 100 and second capacitance detector 200 are two separate components that are physically separated.
  • the present invention is not limited to the illustrated embodiment, and the first capacitance detector 100 and the second capacitance detector 200 may also be integrated into one integral component.
  • a monitoring method for monitoring lubricating oil in a compressor including the following steps:
  • the monitoring method further includes:
  • the foregoing monitoring method may further include the steps of:
  • the compressor 10 is immediately stopped when the calculated relative dielectric constant ⁇ r is greater than a predetermined dielectric constant value or when the calculated depth H is less than a predetermined depth value.
  • an important indicator related to the quality of the lubricating oil in the compressor is the dilution of the lubricating oil. If the dilution of the lubricating oil in the compressor is too high, that is, if too much refrigerant is mixed into the lubricating oil in the compressor, the concentration of the lubricating oil in the compressor is too low, which may cause the viscosity of the lubricating oil to decrease. Once the viscosity of the lubricating oil is reduced, it will cause severe wear on the bearings of the compressor. Therefore, once the dilution of the lubricant is above the warning level, the compressor must be stopped immediately or the dilution of the lubricant must be reduced.
  • the dilution of the lubricating oil can be monitored online in real time.
  • the inventors of the present application have found that there is a certain functional relationship between the dilution of the lubricating oil and the relative dielectric constant of the lubricating oil based on a large number of tests. Therefore, the lubricating oil can be monitored by monitoring the relative dielectric constant of the lubricating oil. The dilution.
  • Figure 4 is a graph showing the relationship between the dilution of the lubricating oil and the relative dielectric constant of the lubricating oil.
  • the inventors of the present application found the relationship between the relative dielectric constant of the lubricating oil and the dilution of the lubricating oil under different working conditions on the basis of a large number of tests.
  • the relationship between the two can be expressed by the following functional relationship (x represents the dilution of the lubricating oil and y represents the relative dielectric constant of the lubricating oil):
  • the warning value of the relative dielectric constant of the lubricating oil can be calculated according to the known warning value of the dilution of the lubricating oil (the maximum value allowed for normal operation) and the functional relationship (3). If the electrical constant is higher than the calculated warning value, the compressor must be stopped immediately or the lubricating oil must be heated to reduce the dilution of the lubricating oil.
  • the dilution of the lubricating oil is only one of the parameters to measure the quality of the lubricating oil.
  • the lubricating oil can also be monitored for other parameters of the lubricating oil in the compressor (such as viscosity, density or pollutants).
  • the quality in order to determine the warning value of the relative dielectric constant.
  • the mass of the lubricating oil can be judged by measuring the relative dielectric constant of the lubricating oil and then based on the relative dielectric constant and the warning value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Compressor (AREA)

Abstract

提供了一种用于监控压缩机内的润滑油的监控装置,其包括第一电容检测器(100),计算单元和判断单元。第一电容检测器(100)设置在压缩机(10)中并完全地浸没在压缩机(10)内的润滑油(20)中,其用于检测第一电容值(C 11);计算单元根据第一电容检测器(100)检测到的第一电容值(C 11)计算压缩机内的润滑油的相对介电常数;判断单元根据计算出的相对介电常数监控压缩机(10)内润滑油(20)的质量是否出现异常。还提供了一种用于监控压缩机内的润滑油的质量的方法以及用于监控压缩机内的润滑油的液位的装置和方法。该监控装置和方法可以准确地监控压缩机内的润滑油的质量和液位,降低了监控成本,提高了监控准确性。

Description

监控装置和监控方法
相关申请的交叉引用
本申请要求于2015年5月8日递交中国专利局的、申请号为201510233934.4、名称为“监控装置和监控方法”的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明涉及检测技术领域,尤其涉及一种用于监控压缩机内的润滑油的监控装置和监控方法。
背景技术
在一些压缩机中,为了减少压缩机的磨损,延长压缩机的使用寿命,在压缩机中注入足量的润滑油,为压缩机的各个部件提供充分的润滑。但是,在实际应用中,如果压缩机内的润滑油的质量出现恶化,可能导致压缩机内的润滑油的润滑功能失效。
与压缩机内的润滑油的质量相关的指标包括润滑油的稀释度、润滑油中混入异物、润滑油被氧化或碳化等。
如果压缩机内的润滑油的稀释度过高,即,压缩机内的润滑油中混入过多的制冷剂,导致压缩机内的润滑油的浓度过低,这会导致润滑油的粘性降低,一旦润滑油的粘性降低,就会对压缩机的轴承造成严重磨损。因此,一旦润滑油的稀释度高于警戒程度,就必须立刻停止压缩机或降低润滑油的稀释度。在现有技术中,一般通过加热润滑油可以使混入润滑油中的制冷剂蒸发掉一些,从而能够降低润滑油的稀释度。
如果润滑油中混入异物,例如,润滑油中混入从压缩机轴承上脱落的铁屑,这会加重压缩机部件的磨损。一旦润滑油中混入铁屑,就必须立刻停止压缩机,从润滑油中取出铁屑。
如果润滑油被氧化或碳化,润滑油就会丧失润滑功能,这就导致 压缩机快速磨损,缩短了压缩机的使用寿命。一旦润滑油被氧化或碳化,就必须立刻停止压缩机,并更换新的润滑油。
综上所述,为了保证压缩机能够安全运转,必须在线实时地监控压缩机内的润滑油的质量。
对于压缩机内的润滑油的质量的在线实时监控,在现有技术中,一般通过测量润滑油的粘度、密度或污染物来监控润滑油的质量。但是,现有的通过测量润滑油的粘度、密度或污染物来监控润滑油质量的监控装置的成本非常高,监控装置的价格在40万至160万人民币。而且,现有的这种监控装置的安装非常复杂,而且还需要对大量的数据进行处理,检测速度慢。目前,这种监控装置仅适用于实验室测试,还不能工业化使用。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
本发明的一个目的在于提供一种用于在线实时监控压缩机内的润滑油的监控装置和监控方法,其能够方便和准确地监控压缩机内的润滑油的质量或质量和液位。
根据本发明的一个方面,提供一种监控装置,用于监控压缩机内的润滑油,所述监控装置包括:第一电容检测器,设置在压缩机中,并完全地浸没在所述压缩机内的润滑油中;计算单元,根据所述第一电容检测器检测到的第一电容值C11计算所述压缩机内的润滑油的相对介电常数εr;和判断单元,根据计算出的相对介电常数εr监控所述压缩机内的润滑油的质量是否出现异常。
根据本发明的一个实例性的实施例,所述监控装置还包括:第二电容检测器,所述第二电容检测器竖直地设置在所述压缩机中,其中,所述计算单元根据计算出的所述压缩机内的润滑油的相对介电常数εr和竖直地设置在所述压缩机中的所述第二电容检测器检测到的第二电容值C21计算所述第二电容检测器浸没在所述压缩机内的润滑油 中的深度H;并且所述判断单元根据计算出的深度H监控所述压缩机内的润滑油的液位是否低于安全液位值。
根据本发明的另一个实例性的实施例,所述压缩机内的润滑油的相对介电常数εr根据公式(1)计算:
Figure PCTCN2016081066-appb-000001
其中
C10为所述第一电容检测器在真空中时检测到的电容值。
根据本发明的另一个实例性的实施例,所述第二电容检测器浸没在所述润滑油中的深度H根据公式(2)计算:
Figure PCTCN2016081066-appb-000002
其中
C20为所述第二电容检测器在空气中时检测到的电容值,
L为所述第二电容检测器在竖直方向上的长度。
根据本发明的另一个实例性的实施例,所述判断单元监控计算出的相对介电常数εr是否大于预定介电常数值,并且如果计算出的相对介电常数εr大于预定介电常数值,则所述判断单元判定所述压缩机内的润滑油的质量出现异常;和/或所述判断单元监控计算出的深度H是否小于预定深度值,并且如果计算出的深度H小于预定深度值,则所述判断单元判定所述压缩机内的润滑油的液位低于安全液位值。
根据本发明的另一个实例性的实施例,所述第一电容检测器为平行板型电容检测器或柱状电容检测器;所述第二电容检测器为平行板型电容检测器或柱状电容检测器。
根据本发明的另一个实例性的实施例,所述第一电容检测器大致水平地安装在所述压缩机内的油池的底壁上。
根据本发明的另一个实例性的实施例,所述第二电容检测器竖直地安装在所述压缩机内的油池的侧壁上。
根据本发明的另一个实例性的实施例,所述第二电容检测器的下端与所述压缩机内的油池的底壁接触。
根据本发明的另一个实例性的实施例,所述第一电容检测器和所 述第二电容检测器为物理上分离的两个部件或者被集成为一个整体部件。
根据本发明的另一个方面,提供一种监控方法,用于监控压缩机内的润滑油,包括以下步骤:根据完全浸没在压缩机中的第一电容检测器检测的第一电容值C11,计算所述压缩机内的润滑油的相对介电常数εr,并根据计算出的相对介电常数εr监控所述压缩机内的润滑油的质量是否出现异常。
根据本发明的一个实例性的实施例,前述方法还包括步骤:根据竖直设置在所述压缩机中的第二电容检测器检测的第二电容值C21以及计算出的所述压缩机内的润滑油的相对介电常数εr计算所述第二电容检测器浸没在所述压缩机内的润滑油中的深度H。
根据本发明的另一个实例性的实施例,在前述方法中,根据公式(1)计算所述压缩机内的润滑油的相对介电常数εr
Figure PCTCN2016081066-appb-000003
其中
C10为所述第一电容检测器在真空中时检测到的电容值。
根据本发明的另一个实例性的实施例,在前述方法中,根据公式(2)计算所述第二电容检测器浸没在所述润滑油中的深度H:
Figure PCTCN2016081066-appb-000004
其中
C20为所述第二电容检测器在空气中时检测到的电容值,
L为所述第二电容检测器在竖直方向上的长度。
根据本发明的另一个实例性的实施例,在前述方法中,当计算出的相对介电常数εr大于预定介电常数值时,则判断所述压缩机内的润滑油的质量出现异常;和/或当计算出的深度H小于预定深度值时,则判断所述压缩机内的润滑油的液位低于安全液位。
根据本发明的另一个实例性的实施例,前述方法还包括步骤:当计算出的相对介电常数εr大于预定介电常数值时或当计算出的深度H小于预定深度值时,停止所述压缩机。
根据本发明的另一个实例性的实施例,在前述方法中,所述第一电容检测器为平行板型电容检测器或柱状电容检测器;所述第二电容检测器为平行板型电容检测器或柱状电容检测器。
根据本发明的另一个实例性的实施例,在前述方法中,所述第一电容检测器大致水平地安装在所述压缩机内的油池的底壁上。
根据本发明的另一个实例性的实施例,在前述方法中,所述第二电容检测器竖直地安装在所述压缩机内的油池的侧壁上。
根据本发明的另一个实例性的实施例,在前述方法中,所述第二电容检测器的下端与所述压缩机内的油池的底壁接触。
根据本发明的另一个实例性的实施例,在前述方法中,所述第一电容检测器和所述第二电容检测器为物理上分离的两个部件或者被集成为一个整体部件。
在本发明前述各个实例性的实施例的监控装置和监控方法中,通过电容检测器就可以方便和准确地监控压缩机内的润滑油的质量。而且,还可以对润滑油的液位进行连续的实时检测,实现同时检测润滑油的质量和液位。该监控装置降低了监控成本,并且提高了监控准确性。
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
图1显示根据本发明的一个实例性的实施例的压缩机的示意剖视图,其中显示出第一电容检测器和第二电容检测器;
图2显示图1中的第二电容检测器的立体示意图;
图3显示用图1中的第一电容检测器和第二电容检测器检测出的容器内的润滑油的检测液位和容器内的润滑油的真实液位的曲线图;
图4显示润滑油的稀释度与润滑油的相对介电常数之间的关系图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
如前所述,为了保证压缩机能够安全运转,必须在线实时地监控压缩机内的润滑油的质量。根据本发明的一个总体技术构思,提供一种监控装置,用于监控压缩机内的润滑油,所述监控装置包括:第一电容检测器,设置在压缩机中,并完全地浸没在所述压缩机内的润滑油中;计算单元,根据所述第一电容检测器检测到的第一电容值C11计算所述压缩机内的润滑油的相对介电常数εr;和判断单元,根据计算出的相对介电常数εr监控所述压缩机内的润滑油的质量是否出现异常。
在实际应用中,压缩机内的润滑油的液位过低也会影响压缩机的安全运转。如果压缩机内的润滑油的液位过低,将不能为压缩机的各个部件提供足量的润滑油,导致压缩机的各个部件得不到充分的润滑,这同样会加快压缩机的各个部件的磨损,缩短了压缩机的使用寿命。因此,一旦压缩机内的润滑油的液位低于警戒液位时,就必须立刻停止压缩机,并向压缩机中注入足量的润滑油。
对于压缩机内的润滑油的液位的在线实时监控,在现有技术中,一般采用压差检测器或磁浮球来监控压缩机内的润滑油的液位。但是,由于压缩机内的压力高达45bar,这会损坏压差检测器或磁浮球。此外,由于压缩机内部的运行情况非常复杂,会存在泡沫、温度不稳定、压力波动较大、密度变化大,这都会导致压差检测器或磁浮球不能精确地检测压缩机内的润滑油的液位。
有鉴于此,根据本发明的另一个技术构思,前述监控装置还包括:第二电容检测器,所述第二电容检测器竖直地设置在所述压缩机中,其中,所述计算单元根据计算出的所述压缩机内的润滑油的相对介电常数εr和竖直地设置在所述压缩机中的所述第二电容检测器检测到的第二电容值C21计算所述第二电容检测器浸没在所述压缩机内的润滑油中的深度H;并且所述判断单元根据计算出的深度H监控所述压缩机内的润滑油的液位是否低于安全液位值。
根据本发明的一个技术构思,提供一种监控方法,用于监控压缩机内的润滑油,包括以下步骤:根据完全浸没在压缩机中的第一电容检测器检测的第一电容值C11,计算所述压缩机内的润滑油的相对介电常数εr,并根据计算出的相对介电常数εr监控所述压缩机内的润滑油的质量是否出现异常。
根据本发明的另一个技术构思,前述监控方法还包括步骤:根据竖直设置在所述压缩机中的第二电容检测器检测的第二电容值C21以及计算出的所述压缩机内的润滑油的相对介电常数εr计算所述第二电容检测器浸没在所述压缩机内的润滑油中的深度H,并根据计算出的深度H监控所述压缩机内的润滑油的液位是否低于安全液位值。
图1显示根据本发明的一个实例性的实施例的压缩机的示意剖视图,其中显示出第一电容检测器100和第二电容检测器200。
在本发明的一个实例性的实施例中,公开了一种用于监控压缩机10内的润滑油20的监控装置。如图1所示,在图示的实施例中,该监控装置主要包括一个第一电容检测器100、一个第二电容检测器200、计算单元(未图示)和判断单元(未图示)。
如图1所示,在本发明的一个实例性的实施例中,第一电容检测器100设置在压缩机10中,并完全地浸没在压缩机10内的润滑油20中。这样,监控装置的计算单元就可以根据第一电容检测器100检测到的第一电容值C11计算压缩机10内的润滑油20的相对介电常数εr。压缩机10内的润滑油20的相对介电常数εr可以根据公式(1)计算:
Figure PCTCN2016081066-appb-000005
其中
C10为第一电容检测器100在真空中时检测到的电容值。
在本发明的各个实施例中,监控装置的判断单元根据计算出的相对介电常数εr监控压缩机10内的润滑油20的质量是否出现异常。
下面将简单介绍根据计算出的润滑油的相对介电常数εr监控压缩机10内的润滑油20的质量是否出现异常的原理。
通常而言,与压缩机内的润滑油的质量相关的指标包括润滑油的稀释度、润滑油中混入异物、润滑油被氧化或碳化等。
如果压缩机内的润滑油的稀释度过高,即,压缩机内的润滑油中混入过多的制冷剂,导致压缩机内的润滑油的浓度过低,这会导致润滑油的粘性降低,一旦润滑油的粘性降低,就会对压缩机的轴承造成严重磨损。
由于制冷剂的相对介电常数远大于纯净的润滑油的相对介电常数,因此,一旦润滑油中混入过多的制冷剂,润滑油(或称为润滑油与制冷剂的混合物)的相对介电常数就会增大很多,导致在线检测到的前述润滑油的相对介电常数εr会大于预定介电常数值(或称为介电常数警戒值),一旦在线检测到的前述润滑油的相对介电常数εr大于预定介电常数值,监控装置就发出报警,并立刻停止压缩机或者降低润滑油的稀释度,例如,可以通过加热润滑油使混入润滑油中的制冷剂蒸发掉一些,从而能够降低润滑油的稀释度,使得润滑油的相对介电常数εr降低到警戒值以下。
如果润滑油中混入异物,例如,润滑油中混入从压缩机轴承上脱落的铁屑,这会加重压缩机部件的磨损。由于铁屑的相对介电常数远大于纯净的润滑油的相对介电常数,因此,一旦润滑油中混入铁屑,润滑油的相对介电常数就会增大很多,导致在线检测到的前述润滑油的相对介电常数εr会大于预定介电常数值(或称为介电常数警戒值),一旦在线检测到的前述润滑油的相对介电常数εr大于警戒值,监控装置就发出报警,并立刻停止压缩机,在压缩机停止后,必须从润滑油中取出铁屑。
如果润滑油被氧化或碳化,润滑油就会丧失润滑功能,这就导致压缩机快速磨损。润滑油被氧化或碳化后,其相对介电常数εr会急剧增大,导致在线检测到的前述润滑油的相对介电常数εr会大于预定介电常数值(或称为介电常数警戒值),一旦在线检测到的前述润滑油的相对介电常数εr大于警戒值,监控装置就发出报警,并立刻停止压缩机,在压缩机停止后,必须更换新的润滑油。
如图1所示,在图示的实施例中,第一电容检测器100可以为平行板型电容检测器,其具有相互平行并且相对的一对电极板。
下面的表1显示将图1所示的第一电容检测器100浸没在某种纯净的脂性油中(该脂性油的温度为18℃)中时检测到电容值和根据检测到的电容值计算出的该脂性油的相对介电常数。
表1
编号 1 2 3 4 5 6 7 8 9 10 平均值
检测到的电容值 11.714 11.708 11.721 11.712 11.754 11.712 11.734 11.75 11.772 11.763 11.734
计算出的相对介电常数 3.1498 3.1729 3.1576 3.2017 3.1842 3.1628 3.15515 3.169 3.162 3.193 3.1708
根据前述表1,可以清楚地看出,利用本发明提供的平行板型第一电容检测器100检测到的该纯净的脂性油的相对介电常数的平均值是3.1708。而该纯净的脂性油的真实的相对介电常数是3.20。由此可见,前述第一电容检测器100的检测结果是基本准确的,完全可以用于检测压缩机内的润滑油的相对介电常数。
图2显示图1中的第二电容检测器200的立体示意图。
如图1和图2所示,在图示的实施例中,第一电容检测器100和第二电容检测器200都是平行板型电容检测器。但是,请注意,本发明不局限于图示的实施例,第一电容检测器100和第二电容检测器200也可以是其它任何类型的电容检测器,例如,柱状电容检测器。
如图1和图2所示,在图示的实施例中,第二电容检测器200具有相互平行并且相对的一对电极板210、220。第二电容检测器200的长度为L,宽度为W,一对电极板210、220之间的间距为d。
如图1和图2所示,在图示的实施例中,第二电容检测器200竖直地设置在压缩机10中,并且第二电容检测器200浸没在压缩机10 内的润滑油20中的深度为H,如图1所示。
这样,监控装置的计算单元就可以根据计算出的压缩机10内的润滑油20的相对介电常数εr和第二电容检测器200检测到的第二电容值C21计算第二电容检测器200浸没在压缩机10内的润滑油20中的深度H。
第二电容检测器200浸没在润滑油20中的深度H根据公式(2)计算:
Figure PCTCN2016081066-appb-000006
其中
C20为第二电容检测器200在空气中时检测到的电容值,
L为第二电容检测器200在竖直方向上的长度。
在本发明的各个实施例中,监控装置的判断单元根据计算出的深度H监控压缩机10内的润滑油20的液位是否低于安全液位值。
图3显示用图1中的第一电容检测器100和第二电容检测器200检测出的一个容器内的某种脂性油的检测液位和该容器内的脂性油的真实液位的曲线图。
如图3所示,横坐标为第二电容检测器200检测到的电容值,第二电容检测器200检测到的电容值随着容器内的脂性油的液位的升高而增大。
如图3所示,纵坐标为根据第一电容检测器100检测到的该脂性油的相对介电常数和第二电容检测器200检测到的电容值计算出的容器内的该脂性油的检测液位。
根据图3,可以清楚地看出,利用图1中的第一电容检测器100和第二电容检测器200检测出的容器内的该脂性油的检测液位与真实液位之间的差值非常小,这说明利用图1中的第一电容检测器100和第二电容检测器200检测容器内的该脂性油的液位是准确可靠的,完全可以用于检测压缩机10内的润滑油20的液位。
在本发明的一个实例性的实施例中,如图1所示,第一电容检测器100大致水平地安装在压缩机10内的油池的底壁上。这样,就可 以确保第一电容检测器100总是完全地浸没在压缩机10内的润滑油20中。
在本发明的一个实例性的实施例中,如图1所示,第二电容检测器200竖直地安装在压缩机10内的油池的侧壁上。这样,能够方便地将第二电容检测器200竖直地安装在压缩机10中。
在本发明的一个实例性的实施例中,如图1所示,第二电容检测器200的下端面与压缩机10内的油池的底壁接触。这样,检测出的液位H就等于压缩机10内的润滑油20的液位。但是,本发明不局限于图示的实施例,第二电容检测器200的下端面也可以高于压缩机10内的油池的底壁,不与压缩机10内的油池的底壁接触,此时,检测出的液位H加上第二电容检测器200的下端面与压缩机10内的油池的底壁之间的间隙距离才等于压缩机10内的润滑油20的液位。
在图1所示的实施例中,第一电容检测器100和第二电容检测器200为物理上分离的两个独立部件。但是,本发明不局限于图示的实施例,第一电容检测器100和第二电容检测器200也可以被集成为一个整体部件。
在本发明的另一个实例性的实施例中,还公开了一种监控方法,用于监控压缩机内的润滑油,包括以下步骤:
根据第一电容检测器100检测到的第一电容值C11计算压缩机10内的润滑油20的相对介电常数εr,并根据计算出的相对介电常数εr监控压缩机10内的润滑油20的质量是否出现异常。
在本发明的实施方式中,该监控方法还包括:
根据计算出的压缩机10内的润滑油20的相对介电常数εr和竖直设置在压缩机10中的第二电容检测器200检测到的第二电容值C21计算第二电容检测器200浸没在压缩机10内的润滑油20中的深度H。
在本发明的另一个实例性的实施例中,前述监控方法还可以包括步骤:
当计算出的相对介电常数εr大于预定介电常数值时或当计算出的深度H小于预定深度值时,立刻停止压缩机10。
如前所述,与压缩机内的润滑油的质量相关的一个重要指标就是润滑油的稀释度。如果压缩机内的润滑油的稀释度过高,即,压缩机内的润滑油中混入过多的制冷剂,导致压缩机内的润滑油的浓度过低,这会导致润滑油的粘性降低,一旦润滑油的粘性降低,就会对压缩机的轴承造成严重磨损。因此,一旦润滑油的稀释度高于警戒程度,就必须立刻停止压缩机或降低润滑油的稀释度。
因此,可以在线实时地监控润滑油的稀释度。本申请的发明人在大量试验的基础上,发现润滑油的稀释度与润滑油的相对介电常数之间存在一定的函数关系,因此,可以通过监控润滑油的相对介电常数来监控润滑油的稀释度。
图4显示润滑油的稀释度与润滑油的相对介电常数之间的关系图。
如图4所示,本申请的发明人在大量试验的基础上,发现了在不同工况下润滑油的相对介电常数与润滑油的稀释度之间的关系。二者之间的关系可以用下面的函数关系式表示(x表示润滑油的稀释度,y表示润滑油的相对介电常数):
y=0.0003x2+0.0416x+2.8374        (3)
其中x的取值范围为0%-100%。
在图4所示的关系曲线中,可以看出随着润滑油的稀释度x的增加,润滑油的相对介电常数值y也相应地上升。因此,可以根据已知的润滑油的稀释度的警戒值(正常工作所允许的最大值)和函数关系式(3)计算出润滑油的相对介电常数的警戒值,一旦润滑油的相对介电常数高于计算出的警戒值,就必须立刻停止压缩机或加热润滑油以降低润滑油的稀释度。
但是,润滑油的稀释度只是衡量润滑油的质量的参数之一,在实际应用过程中,还可以对于压缩机内的润滑油的其他参数(比如粘度、密度或污染物等)来监控润滑油的质量,从而来确定出相对介电常数的警戒值。从而,可以通过测量润滑油的相对介电常数,然后根据相对介电常数与该警戒值来判断润滑油的质量。
本领域的技术人员可以理解,上面所描述的实施例都是示例性 的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本发明的范围。

Claims (21)

  1. 一种监控装置,用于监控压缩机内的润滑油,其中,所述监控装置包括:
    第一电容检测器(100),设置在压缩机(10)中,并完全地浸没在所述压缩机(10)内的润滑油(20)中,用于检测第一电容值C11
    计算单元,根据所述第一电容检测器(100)检测到的第一电容值C11计算所述压缩机(10)内的润滑油(20)的相对介电常数εr;和
    判断单元,根据计算出的相对介电常数εr监控所述压缩机(10)内的润滑油(20)的质量是否出现异常。
  2. 根据权利要求1所述的监控装置,其中,所述监控装置还包括:
    第二电容检测器(200),所述第二电容检测器(200)竖直地设置在所述压缩机(10)中,
    其中,
    所述计算单元根据计算出的所述压缩机(10)内的润滑油(20)的相对介电常数εr和竖直地设置在所述压缩机(10)中的所述第二电容检测器(200)检测到的第二电容值C21计算所述第二电容检测器(200)浸没在所述压缩机(10)内的润滑油(20)中的深度H。
  3. 根据权利要求2所述的监控装置,其中:
    所述压缩机(10)内的润滑油(20)的相对介电常数εr根据公式(1)计算:
    Figure PCTCN2016081066-appb-100001
    其中
    C10为所述第一电容检测器(100)在真空中时检测到的电容值。
  4. 根据权利要求3所述的监控装置,其中:
    所述第二电容检测器(200)浸没在所述润滑油(20)中的深度H根据公式(2)计算:
    Figure PCTCN2016081066-appb-100002
    其中
    C20为所述第二电容检测器(200)在空气中时检测到的电容值,
    L为所述第二电容检测器(200)在竖直方向上的长度。
  5. 根据权利要求4所述的监控装置,其中:
    所述判断单元监控计算出的相对介电常数εr是否大于预定介电常数值,并且如果计算出的相对介电常数εr大于预定介电常数值,则所述判断单元判定所述压缩机(10)内的润滑油(20)的质量出现异常;和/或
    所述判断单元监控计算出的深度H是否小于预定深度值,并且如果计算出的深度H小于预定深度值,则所述判断单元判定所述压缩机(10)内的润滑油(20)的液位低于安全液位值。
  6. 根据权利要求2所述的监控装置,其中:
    所述第一电容检测器(100)为平行板型电容检测器或柱状电容检测器;
    所述第二电容检测器(200)为平行板型电容检测器或柱状电容检测器。
  7. 根据权利要求1所述的监控装置,其中:
    所述第一电容检测器(100)大致水平地安装在所述压缩机(10)内的油池的底壁上。
  8. 根据权利要求2所述的监控装置,其中:
    所述第二电容检测器(200)竖直地安装在所述压缩机(10)内 的油池的侧壁上。
  9. 根据权利要求8所述的监控装置,其中:
    所述第二电容检测器(200)的下端与所述压缩机(10)内的油池的底壁接触。
  10. 根据权利要求2所述的监控装置,其中:
    所述第一电容检测器(100)和所述第二电容检测器(200)为物理上分离的两个部件或者被集成为一个整体部件。
  11. 一种监控方法,用于监控压缩机内的润滑油,包括以下步骤:
    根据完全浸没在压缩机(10)中的第一电容检测器(100)检测的第一电容值C11,计算所述压缩机(10)内的润滑油(20)的相对介电常数εr,并根据计算出的相对介电常数εr监控所述压缩机(10)内的润滑油(20)的质量是否出现异常。
  12. 根据权利要求11所述的监控方法,还包括步骤:
    根据竖直设置在所述压缩机(10)中的第二电容检测器(200)检测的第二电容值C21以及计算出的所述压缩机(10)内的润滑油(20)的相对介电常数εr计算所述第二电容检测器(200)浸没在所述压缩机(10)内的润滑油(20)中的深度H。
  13. 根据权利要求12所述的监控方法,其中:
    根据公式(1)计算所述压缩机(10)内的润滑油(20)的相对介电常数εr
    Figure PCTCN2016081066-appb-100003
    其中
    C10为所述第一电容检测器(100)在真空中时检测到的电容值。
  14. 根据权利要求13所述的监控方法,其中:
    根据公式(2)计算所述第二电容检测器(200)浸没在所述润滑油(20)中的深度H:
    Figure PCTCN2016081066-appb-100004
    其中
    C20为所述第二电容检测器(200)在空气中时检测到的电容值,
    L为所述第二电容检测器(200)在竖直方向上的长度。
  15. 根据权利要求14所述的监控方法,其中:
    当计算出的相对介电常数εr大于预定介电常数值时,则判断所述压缩机(10)内的润滑油(20)的质量出现异常;和/或
    当计算出的深度H小于预定深度值时,则判断所述压缩机(10)内的润滑油(20)的液位低于安全液位。
  16. 根据权利要求12所述的监控方法,还包括步骤:
    当计算出的相对介电常数εr大于预定介电常数值时或当计算出的深度H小于预定深度值时,停止所述压缩机(10)。
  17. 根据权利要求12所述的监控方法,其中:
    所述第一电容检测器(100)为平行板型电容检测器或柱状电容检测器;
    所述第二电容检测器(200)为平行板型电容检测器或柱状电容检测器。
  18. 根据权利要求12所述的监控方法,其中:
    所述第一电容检测器(100)大致水平地安装在所述压缩机(10)内的油池的底壁上。
  19. 根据权利要求12所述的监控方法,其中:
    所述第二电容检测器(200)竖直地安装在所述压缩机(10)内的油池的侧壁上。
  20. 根据权利要求19所述的监控方法,其中:
    所述第二电容检测器(200)的下端与所述压缩机(10)内的油池的底壁接触。
  21. 根据权利要求12所述的监控方法,其中:
    所述第一电容检测器(100)和所述第二电容检测器(200)为物理上分离的两个部件或者被集成为一个整体部件。
PCT/CN2016/081066 2015-05-08 2016-05-05 监控装置和监控方法 WO2016180263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/571,940 US10739327B2 (en) 2015-05-08 2016-05-05 Apparatus and method for monitoring the quality of a lubricant in a compressor
DE112016002085.6T DE112016002085T5 (de) 2015-05-08 2016-05-05 Überwachungsvorrichtung und Überwachungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510233934.4 2015-05-08
CN201510233934.4A CN106194738A (zh) 2015-05-08 2015-05-08 监控装置和监控方法

Publications (1)

Publication Number Publication Date
WO2016180263A1 true WO2016180263A1 (zh) 2016-11-17

Family

ID=57248623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081066 WO2016180263A1 (zh) 2015-05-08 2016-05-05 监控装置和监控方法

Country Status (4)

Country Link
US (1) US10739327B2 (zh)
CN (1) CN106194738A (zh)
DE (1) DE112016002085T5 (zh)
WO (1) WO2016180263A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120487B (zh) * 2017-12-11 2020-12-01 中国航发沈阳发动机研究所 一种滑油油量在线测量的补偿方法
DE102017223853A1 (de) * 2017-12-28 2019-07-04 Kautex Textron Gmbh & Co. Kg Verfahren zum Bestimmen einer Qulitätseigenschaft einer Betriebsflüssigkeit in einem Betriebsflüssigkeitsbehälter für ein Kraftfahrzeug und Betriebsflüssigkeitsbehälter zum Durchführen des Verfahrens
DE102019200703A1 (de) 2019-01-21 2020-07-23 Hawe Hydraulik Se Sensoreinheit, Fluidaggregat mit Sensoreinheit und Verfahren zur Messung von Parametern eines Fluids
CN112666339A (zh) * 2019-10-16 2021-04-16 中国石油化工股份有限公司 一种机组油站润滑油在线分析系统及方法
CN111442816B (zh) * 2020-02-19 2021-11-12 襄阳永力通机械有限公司 一种油箱安全检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201344A (zh) * 2007-12-06 2008-06-18 付强 发动机润滑油性能随机检测方法及检测传感器
US20090063060A1 (en) * 2007-09-05 2009-03-05 Yizhong Sun Methods for detecting oil deterioration and oil level
CN103293201A (zh) * 2013-04-27 2013-09-11 麦特汽车服务股份有限公司 一种基于油腔传感器的润滑油老化度检测方法
CN104165908A (zh) * 2014-09-09 2014-11-26 北京华盛立德科技有限公司 一种具有自动补偿功能的在线监测润滑油品质电容传感器
CN104458521A (zh) * 2014-11-21 2015-03-25 西安交通大学 一种在线监测油液的装置及方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849882A (en) * 1956-12-04 1958-09-02 Liquidometer Corp Capacitance-type liquid quantity measuring system with compensation for electrical leakage
US3182255A (en) * 1960-02-11 1965-05-04 Hopkins Mfg Corp Instrument for capacitively testing the condition of lubricating oil
US3226635A (en) * 1962-01-25 1965-12-28 F H Peavey And Company Testing apparatus and method for measuring dielectric constant of materials by null-balancing a tuned oscillator to a standard radio frequency
DE2545354A1 (de) 1975-10-09 1977-04-21 Linde Ag Vorrichtung zum nachweis von fluessigen bestandteilen in gasen
US4176553A (en) * 1978-12-21 1979-12-04 Ford Motor Company Liquid level measuring system
DE2941652C2 (de) * 1979-10-15 1986-02-20 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Vorrichtung zur kapazitiven Füllstandsmessung
JPS56101493A (en) 1980-01-16 1981-08-14 Mitsubishi Electric Corp Detecting device for lubricating oil in rotary machine
US4448072A (en) * 1982-02-03 1984-05-15 Tward 2001 Limited Fluid level measuring system
US4417473A (en) * 1982-02-03 1983-11-29 Tward 2001 Limited Multi-capacitor fluid level sensor
US4490988A (en) * 1983-05-31 1985-01-01 Emerson Electric Co. Degradation sensing and shut-down means for refrigeration motor-compressor units
IT1211347B (it) * 1987-07-31 1989-10-18 Fiat Auto Spa Dispositivo di misura del quantitativo di liquido contenuto all interno di un serbatoio
JP2772030B2 (ja) * 1989-04-28 1998-07-02 株式会社東芝 コンプレッサ
US5060156A (en) * 1989-07-20 1991-10-22 Ford Motor Company Method and apparatus for determining engine oil change intervals according to actual engine use
US5604441A (en) * 1995-03-14 1997-02-18 Detroit Diesel Corporation In-situ oil analyzer and methods of using same, particularly for continuous on-board analysis of diesel engine lubrication systems
DE19711880A1 (de) * 1997-03-21 1998-10-01 Man Nutzfahrzeuge Ag Verfahren zur Bestimmung des Zeitpunktes für Schmierölwechsel bei Fahrzeugen
US6237412B1 (en) * 1997-07-16 2001-05-29 Nitta Corporation Level sensor
US6131471A (en) * 1997-09-05 2000-10-17 American Standard Inc. Liquid level sensor
US6278282B1 (en) * 1999-10-07 2001-08-21 Detroit Diesel Corporation Method and system for determining oil quality
US6268737B1 (en) * 1999-10-07 2001-07-31 Detroit Diesel Corporation Method and system for determining oil quality
US6577112B2 (en) * 2001-03-09 2003-06-10 The Lubrizol Corporation Method and apparatus for on-line monitoring of quality and/or condition of highly resistive fluids
DE10131106A1 (de) * 2001-06-27 2003-01-23 Krones Ag Gefäßbehandlungsvorrichtung mit Sensor zur Ermittlung der Schmierölqualität
WO2003029802A1 (en) * 2001-09-28 2003-04-10 Ngk Spark Plug Co., Ltd. Oil deterioration sensor
US6590402B2 (en) * 2001-10-02 2003-07-08 Delphi Technologies, Inc. Engine oil contamination sensor
DE10225716A1 (de) * 2002-06-11 2004-01-08 Conti Temic Microelectronic Gmbh Verfahren zum Bestimmen des Ölwechselzeitpunktes bei einem Verbrennungsmotor
JP2004150375A (ja) * 2002-10-31 2004-05-27 Honda Motor Co Ltd エンジンオイルの劣化判定装置
US20040149032A1 (en) * 2003-01-31 2004-08-05 Sell Jeffrey A Liquid level sensor
US6847216B2 (en) * 2003-04-28 2005-01-25 Detroit Diesel Corporation Method and apparatus for stabilizing parasitic error capacitance in oil quality sensors
DE10325132A1 (de) * 2003-06-04 2004-12-23 Conti Temic Microelectronic Gmbh Verfahren zur Herstellung eines Bauteils, insbesondere eines Ölzustandssensors sowie nach einem solchen Verfahren hergestelltes Bauteil
DE10349741A1 (de) * 2003-10-23 2005-06-02 Ebro Electronic Gmbh & Co. Kg Verfahren zum Messen von Fetten oder Ölen sowie entsprechende Filtriereinrichtung und Messvorrichtung
EP1677083A1 (fr) * 2004-12-22 2006-07-05 Roxer Industries S.A. Capteur de niveau d'un liquide.
EP1677084A1 (fr) * 2004-12-22 2006-07-05 Roxer Industries S.A. Capteur de niveau d'un liquide et méthode d'estimation.
US7506541B2 (en) * 2006-01-09 2009-03-24 The United States Of America As Represented By The National Aeronautics And Space Administration System and method for wirelessly determining fluid volume
DE102006027436A1 (de) * 2006-06-12 2007-12-13 Conti Temic Microelectronic Gmbh Steuerung oder Regelung eines automatischen oder automatisierten Getriebes
US8340928B2 (en) * 2007-09-05 2012-12-25 Yizhong Sun Sensor and method for detecting oil deterioration and oil level
US8146421B2 (en) * 2008-02-08 2012-04-03 Pulstone Technologies, LLC Method and apparatus for sensing levels of insoluble fluids
US8161814B2 (en) * 2008-06-09 2012-04-24 Luna Labs, Inc. Self-calibrating capacitive transducer for determining level of fluent materials
CN101435788B (zh) 2008-12-17 2012-05-02 中国人民解放军国防科学技术大学 基于介电常数测量的在线油液监测传感器及其系统
WO2011065340A1 (ja) * 2009-11-25 2011-06-03 出光興産株式会社 潤滑油の劣化・変質度測定方法及びその測定装置
KR101452767B1 (ko) * 2010-04-01 2014-10-21 엘지전자 주식회사 압축기의 오일 레벨 감지수단
US8776595B2 (en) * 2012-03-06 2014-07-15 Christopher J. Milone Temperature compensated hydrostatic liquid level sensor
US9341187B2 (en) * 2013-08-30 2016-05-17 Emerson Climate Technologies, Inc. Compressor assembly with liquid sensor
KR102073011B1 (ko) * 2013-12-18 2020-03-02 삼성전자주식회사 오일 검출 장치, 그를 가지는 압축기 및 압축기의 제어 방법
CN104296832A (zh) * 2014-11-06 2015-01-21 上海雷尼威尔技术有限公司 Lng储罐液位测量方法及设备
KR102342565B1 (ko) * 2014-12-30 2021-12-23 삼성전자주식회사 오일 레벨 검출 장치 및 그 제어방법, 오일 유동 검출 장치 및 그 제어방법, 오일 레벨 및 오일의 검출 결과를 이용한 오일 회수 운전 제어방법
US10125768B2 (en) * 2015-04-29 2018-11-13 Emerson Climate Technologies, Inc. Compressor having oil-level sensing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090063060A1 (en) * 2007-09-05 2009-03-05 Yizhong Sun Methods for detecting oil deterioration and oil level
CN101201344A (zh) * 2007-12-06 2008-06-18 付强 发动机润滑油性能随机检测方法及检测传感器
CN103293201A (zh) * 2013-04-27 2013-09-11 麦特汽车服务股份有限公司 一种基于油腔传感器的润滑油老化度检测方法
CN104165908A (zh) * 2014-09-09 2014-11-26 北京华盛立德科技有限公司 一种具有自动补偿功能的在线监测润滑油品质电容传感器
CN104458521A (zh) * 2014-11-21 2015-03-25 西安交通大学 一种在线监测油液的装置及方法

Also Published As

Publication number Publication date
US10739327B2 (en) 2020-08-11
CN106194738A (zh) 2016-12-07
DE112016002085T5 (de) 2018-02-15
US20180202989A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2016180263A1 (zh) 监控装置和监控方法
US10823638B2 (en) Monitoring method and monitoring apparatus for determining remaining life of a bearing
US9995344B2 (en) Capacitance measurement in a bearing
JP3997528B2 (ja) 転がり軸受の診断方法及び診断装置
CN106644781A (zh) 一种基于试件表面温度演化分析的金属疲劳寿命预测方法
JP2009074982A (ja) 転がり装置、転がり装置の異常検出装置および異常検出方法
US9588097B2 (en) Method and apparatus for determining an ageing state of a lubricant
CN117704054B (zh) 一种悬臂式掘进机截割减速器油液在线监测系统和方法
US9644684B2 (en) Capacitance measurement in a bearing housing
CN105723089B (zh) 用于感测压缩机中的油的方法及设备
WO2016180276A1 (zh) 测量润滑油稀释度的方法、传感器和检测油位的方法
US7940060B2 (en) Method for measuring the amount of air in a fluid
CN105423109A (zh) 一种减速器润滑油检测装置及其使用方法
Mauntz et al. New oil condition monitoring system, WearSens® enables continuous, online detection of critical operating conditions and wear damage
TWI806658B (zh) 軋延液之監測系統及監控方法
CN205208116U (zh) 一种减速器润滑油检测装置
CN106321440B (zh) 压缩机、制冷电器及压缩机的控制方法
JP2006097496A (ja) オイル劣化検知装置
CN103016699B (zh) 一种风电机组齿轮箱安装阀块
CN218156864U (zh) 一种内燃机设备状态检测装置
Fujita et al. Rolling Contact Fatigue of Thrust Ball Bearing under Low Lambda Condition
CN117056846B (zh) 一种基于人工智能的轴流泵转子运行稳定性预测系统及方法
Raadnui Used oil degradation detection sensor development
RU2301414C1 (ru) Способ оценки загрязненности механическими примесями моторного масла двигателя внутреннего сгорания
JP2016098996A (ja) 潤滑剤劣化検出方法並びに潤滑剤劣化検出手段を備える転動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002085

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15571940

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16792113

Country of ref document: EP

Kind code of ref document: A1