WO2016178938A1 - Resistance temperature detector with medium temperature coefficient and high linearity - Google Patents
Resistance temperature detector with medium temperature coefficient and high linearity Download PDFInfo
- Publication number
- WO2016178938A1 WO2016178938A1 PCT/US2016/029931 US2016029931W WO2016178938A1 WO 2016178938 A1 WO2016178938 A1 WO 2016178938A1 US 2016029931 W US2016029931 W US 2016029931W WO 2016178938 A1 WO2016178938 A1 WO 2016178938A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rtd
- conductive element
- resistance
- ppm
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/18—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
Definitions
- the present invention generally relates to temperature sensors, and more particularly, relates to temperature sensing with a Resistance Temperature Detector.
- a Resistance Temperature Detector senses an environmental temperature by detecting changes in the electrical characteristics of the sensing circuit in the RTD.
- the sensing circuit typically includes a metallic wire or metallic film with a known electrical resistance that changes depending on the temperature sensed by the RTD. This relationship between the electrical characteristics of the RTD and temperature change are known.
- Conventional RTDs include leads that are connected to an external device to provide an electrical signal to the RTD and to provide a conditioning circuit for electrical signal in response from the RTD so that it can be converted to a temperature measurement.
- the conditioning circuit is used to linearize the response signal, attenuate the response signal, or both linearize and attenuate the response signal to provide a readable signal that can be correlated to a temperature.
- Known RTDs produce a non-linear response or a have a large response to small inputs, which preclude direct reading of the output signal.
- the RTD of the present invention comprises a temperature sensing circuit having a conductive element that receives an input signal and outputs a signal that is a function of temperature.
- the preferred conductive element is formed from a metal having a temperature coefficient of resistance from about 10 ppm/°F to about 1000 ppm/°F.
- Figure 1A illustrates a perspective view of a film RTD in accordance with the invention
- Figure IB illustrates a perspective view of the film RTD of Fig. 1 fixed to a substrate
- FIG. 2 illustrates a perspective view of another RTD in accordance with an embodiment of this invention
- Figure 3A illustrates a top plan view of an RTD circuit in accordance with an embodiment of this invention.
- Figure 3B illustrates a top view of another RTD circuit in accordance with an embodiment of this invention.
- the RTD 100 has a conductive element 102 that is a metal film formed by known methods; however, the metal is a pure metal or an alloy having the electrical properties discussed below.
- the RTD 100 has connection pads or points 104 that are electrically associated with leads 106.
- One of the leads 106 transmits an input signal, for example a first voltage to the conductive element 102, and the lead 106 transmits an output signal, for example a second voltage which has been modified by the resistance of conductive element 102.
- the conductive film 102 can be formed by known methods on one surface 108 of a substrate 110.
- the substrate 110 can be a film or a plate, which is adapted to be fixed to a test article.
- the second surface 112 of the substrate 110 can be adapted for fixing the substrate 110 to a test article for temperature detection, such as by an adhesive agent, such as glue, or welding, or with mechanical attachment elements, such as threaded fasteners or rivets, as may be required by the environment.
- an RTD 200 comprising a conductive element or conductive film 202 that is formed in the serpentine pattern or circuit 216 shown on a first surface 208 of the substrate 210.
- the illustrated pattern or circuit 216 can be formed using known methods.
- the connection pads or points 204 are electrically associated with leads 206.
- the circuit 216, in the desired conductive element or conductive film 202, is one surface of the substrate 210, which is similar to substrate 110 in its function and attachment to a test article.
- RTD 300 includes a metal wire conductive element 302 formed in a serpentine circuit or path 316 with a major axis aligned with the longitudinal axis 308 of the RTD 300.
- RTD 301 includes a circuit 318 of a metal wire 302 with a major axis aligned with the longitudinal axis 310 of the RTD 301.
- the wire 302 has a portion that is wound around a support 312.
- the metal wire 302 is wound helically around the support 312.
- support 312 can structurally support and separate the coils of the circuit 318 and is suitable for use at the required operating temperature range, typically from about -320 °F to about 450 °F.
- the conductive element has electrical terminations as previously discussed that are arranged for the desired end use.
- the conductive elements 102, 202, and 302, in each of the illustrated embodiments of the invention are formed from a pure metal or a metallic alloy having a temperature coefficient of resistance (TCR) that is between about 10 ppm/°F and 1,000 ppm/°F.
- TCR temperature coefficient of resistance
- This TCR range differs significantly from the TCR range associated with conventional RTDs.
- the TCR of the conductive element of conventional RTDs formed from pure platinum metal is about 2100 ppm/°F.
- Other conventional RTDs have conductive elements formed from pure nickel that has a TCR of about 3300 ppm/°F.
- the conductive element of this invention can have a TCR of two orders of magnitude less than the conductive elements in known RTDs.
- a select metal has a sufficiently linear resistance response to temperature change to yield accurate temperature measurements without a conditioning circuit to linearize the response signal.
- a select metal has a linearity between about 0% and about 0.01% over a temperature range from about -40 °F to about 248 °F.
- the disclosed RTD can be electrically coupled directly to a strain channel of a data acquisition instrument and the temperature sensed by the RTD can be read directly by the instrument. Because the response signal is significantly less than that from a conventional RTD, an attenuation circuit is not necessary.
- the select metals include alloys of nickel and chromium (NiCr) which have been produced with a TCR of approximately 50 ppm/°F, and alloys of iron, nickel, and chromium (FeNiCr) and platinum and tungsten (PtW) both of which have been produced with a TCR of approximately 250 ppm/°F.
- NiCr alloys with an approximate composition of 80% Ni and 20% Cr, FeNiCr alloys with an approximate composition of 36% Ni, 57% Fe, and 7% Cr, and PtW alloys with an approximate composition of 92% Pt and 8% W have been observed to have TCRs within the specified range.
- these alloys also appear to have an approximately linear resistance response to temperature change (e.g., approximately 0% to 0.01%) over a temperature range from about -40 °F to about 248 °F.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermistors And Varistors (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP20175421.5A EP3734245A1 (en) | 2015-05-01 | 2016-04-29 | Resistance temperature detector with medium temperature coefficient and high linearity |
| EP16725960.5A EP3289324A1 (en) | 2015-05-01 | 2016-04-29 | Resistance temperature detector with medium temperature coefficient and high linearity |
| HK18108986.9A HK1249578A1 (zh) | 2015-05-01 | 2016-04-29 | 具有中等温度系数和高线性度的电阻温度检测器 |
| CN201680032294.3A CN107667277A (zh) | 2015-05-01 | 2016-04-29 | 具有中等温度系数和高线性度的电阻温度检测器 |
| JP2018508619A JP2018514793A (ja) | 2015-05-01 | 2016-04-29 | 温度係数が中程度で、線形性の高い抵抗温度検出器 |
| IL255369A IL255369A0 (en) | 2015-05-01 | 2017-11-01 | Resistance temperature detector with moderate temperature coefficient and high linearity |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/702,262 | 2015-05-01 | ||
| US14/702,262 US10247619B2 (en) | 2015-05-01 | 2015-05-01 | Resistance temperature detector with medium temperature coefficient and high linearity |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016178938A1 true WO2016178938A1 (en) | 2016-11-10 |
Family
ID=56087500
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/029931 Ceased WO2016178938A1 (en) | 2015-05-01 | 2016-04-29 | Resistance temperature detector with medium temperature coefficient and high linearity |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US10247619B2 (enExample) |
| EP (2) | EP3734245A1 (enExample) |
| JP (1) | JP2018514793A (enExample) |
| CN (1) | CN107667277A (enExample) |
| HK (1) | HK1249578A1 (enExample) |
| IL (1) | IL255369A0 (enExample) |
| WO (1) | WO2016178938A1 (enExample) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11371892B2 (en) * | 2019-06-28 | 2022-06-28 | Fluke Corporation | Platinum resistance temperature sensor having floating platinum member |
| JP7602953B2 (ja) * | 2021-03-31 | 2024-12-19 | Tdk株式会社 | 歪抵抗膜および圧力センサ |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1245604A (en) * | 1967-12-16 | 1971-09-08 | Degussa | A flexible resistance thermometer |
| GB1578830A (en) * | 1976-06-08 | 1980-11-12 | Electro Resistance | Method of manufacturing electric resistors from metal sheets or films and the resistors obtained thereby |
| DE102004063207A1 (de) * | 2004-12-23 | 2006-07-13 | E.G.O. Elektro-Gerätebau GmbH | Temperatursensor |
| US8305186B1 (en) * | 2010-08-24 | 2012-11-06 | Minco Products, Inc. | Resistive temperature detector assembly |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4037463A (en) * | 1974-07-10 | 1977-07-26 | Showa Denko Kabushiki Kaisha | Temperature-detecting element |
| US3991613A (en) * | 1975-03-10 | 1976-11-16 | Corning Glass Works | Sensing element for flow meter |
| US4841273A (en) * | 1987-12-18 | 1989-06-20 | Therm-O-Disc, Incorporated | High temperature sensing apparatus |
| JP3175890B2 (ja) * | 1993-12-27 | 2001-06-11 | 日本碍子株式会社 | 温度センサ |
| JPH08219900A (ja) * | 1995-02-15 | 1996-08-30 | Murata Mfg Co Ltd | 白金温度センサ |
| US6354736B1 (en) * | 1999-03-24 | 2002-03-12 | Honeywell International Inc. | Wide temperature range RTD |
| JP4586413B2 (ja) * | 2004-05-17 | 2010-11-24 | Nok株式会社 | 燃料電池 |
| JP5331495B2 (ja) * | 2009-01-21 | 2013-10-30 | Jx日鉱日石エネルギー株式会社 | ヒーターユニット、改質装置、及び被加熱体の加熱方法 |
| WO2011116303A1 (en) * | 2010-03-19 | 2011-09-22 | Micropen Technologies Corporation | Thermocouple device |
| US8651737B2 (en) * | 2010-06-23 | 2014-02-18 | Honeywell International Inc. | Sensor temperature sensing device |
| US9103731B2 (en) * | 2012-08-20 | 2015-08-11 | Unison Industries, Llc | High temperature resistive temperature detector for exhaust gas temperature measurement |
| US20150346037A1 (en) * | 2014-05-29 | 2015-12-03 | Infineon Technologies Ag | Integrated temperature sensor |
-
2015
- 2015-05-01 US US14/702,262 patent/US10247619B2/en active Active
-
2016
- 2016-04-29 WO PCT/US2016/029931 patent/WO2016178938A1/en not_active Ceased
- 2016-04-29 JP JP2018508619A patent/JP2018514793A/ja active Pending
- 2016-04-29 HK HK18108986.9A patent/HK1249578A1/zh unknown
- 2016-04-29 CN CN201680032294.3A patent/CN107667277A/zh active Pending
- 2016-04-29 EP EP20175421.5A patent/EP3734245A1/en not_active Withdrawn
- 2016-04-29 EP EP16725960.5A patent/EP3289324A1/en not_active Ceased
-
2017
- 2017-11-01 IL IL255369A patent/IL255369A0/en unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1245604A (en) * | 1967-12-16 | 1971-09-08 | Degussa | A flexible resistance thermometer |
| GB1578830A (en) * | 1976-06-08 | 1980-11-12 | Electro Resistance | Method of manufacturing electric resistors from metal sheets or films and the resistors obtained thereby |
| DE102004063207A1 (de) * | 2004-12-23 | 2006-07-13 | E.G.O. Elektro-Gerätebau GmbH | Temperatursensor |
| US8305186B1 (en) * | 2010-08-24 | 2012-11-06 | Minco Products, Inc. | Resistive temperature detector assembly |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107667277A (zh) | 2018-02-06 |
| JP2018514793A (ja) | 2018-06-07 |
| US10247619B2 (en) | 2019-04-02 |
| EP3734245A1 (en) | 2020-11-04 |
| EP3289324A1 (en) | 2018-03-07 |
| IL255369A0 (en) | 2017-12-31 |
| US20160320251A1 (en) | 2016-11-03 |
| HK1249578A1 (zh) | 2018-11-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101806490B1 (ko) | 센서 엘리먼트 | |
| Lavenuta | Negative temperature coefficient thermistors | |
| EP3295139B1 (en) | High gage factor strain gage | |
| US3211001A (en) | Temperature sensing device | |
| US20130022075A1 (en) | Temperature sensor having means for in-situ calibration | |
| GB2167186A (en) | Welded edge bourdon strip thermometer-manometer | |
| US10247619B2 (en) | Resistance temperature detector with medium temperature coefficient and high linearity | |
| EP1553383B1 (en) | Precision dendrometer | |
| JP2018514793A5 (enExample) | ||
| Desmarais et al. | How to select and use the right temperature sensor | |
| US2910650A (en) | Boddy | |
| JP2014167436A (ja) | 4導線式極最小型測温抵抗素子 | |
| US3328209A (en) | Noble metal thermocouple having base metal compensating leads | |
| EP4176288A1 (en) | Self-powered nuclear radiation detector and method of correcting a temperature-related change of an output signal of same | |
| Karimov | Digital enhancement of analog measurement systems for temperature compensation of strain gages | |
| JPS60501721A (ja) | 温度測定用プロ−ブ | |
| Mazzini et al. | Metrological characterization of a new textile sensor for temperature measurements and a comparison with a Pt100 sensor | |
| KR101921379B1 (ko) | 밴딩 측정이 가능한 온도센서 | |
| King | Resistance Elements and RTD’s | |
| Gupta | Strain gauge load cells | |
| Goodman | Characteristics and Behavior of Bonded Wire Resistance Strain Gages in Thermal Coefficient of Expansion Measurements. Part I. SR-4 Paper Bonded A-7 and Bakelite Bonded AB-19 Gages | |
| JPH0447359B2 (enExample) | ||
| Gobi et al. | A novel pressure sensor using eddy current principle for harsh environment | |
| GAGE | STRAIN GAGE TECHNICAL DATA | |
| Kieffer | Resistance temperature detector for direct connection to strain instrumentation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16725960 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2018508619 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 255369 Country of ref document: IL |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |