WO2016178501A1 - 저온 수중 플라즈마 발생 장치 - Google Patents

저온 수중 플라즈마 발생 장치 Download PDF

Info

Publication number
WO2016178501A1
WO2016178501A1 PCT/KR2016/004657 KR2016004657W WO2016178501A1 WO 2016178501 A1 WO2016178501 A1 WO 2016178501A1 KR 2016004657 W KR2016004657 W KR 2016004657W WO 2016178501 A1 WO2016178501 A1 WO 2016178501A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
low
temperature plasma
plasma generating
water
Prior art date
Application number
PCT/KR2016/004657
Other languages
English (en)
French (fr)
Inventor
김정일
전용구
Original Assignee
김정일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55651541&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016178501(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 김정일 filed Critical 김정일
Priority to US15/313,901 priority Critical patent/US9840427B2/en
Priority to CN201680026118.9A priority patent/CN107592855A/zh
Publication of WO2016178501A1 publication Critical patent/WO2016178501A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/42Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/475Filamentary electrodes

Definitions

  • the present invention relates to a low temperature plasma generating apparatus, and more particularly, to an apparatus capable of sterilizing contaminated water using a low temperature plasma.
  • Plasma is an ionized gas, which is the fourth state of matter following solids, liquids, and gases. Plasma is composed of electrons, cations and neutrals in a basic or excited state. From a macro perspective, the plasma is electrically neutral, and the plasma contains free charged holes and is electrically conductive.
  • Plasma When energy is applied to a gaseous substance, electrons are separated from atoms or molecules, resulting in a plasma state in which electrons and cations exist.
  • Plasma is a chemically highly reactive redox medium. Depending on how the plasma is activated and the operating energy, a low or high temperature environment can be created, which is classified as a low temperature plasma or a high thermal plasma, respectively. This wide range of temperature variations allows plasma technology to be used in a variety of applications, including surface coating, gas treatment, waste removal, chemical redox reactions, new material synthesis, and mechanical work.
  • the conventional method uses an expensive filtration system, ozone, ultraviolet light, or the like or a chemical agent such as chlorine in an easy method.
  • ballast water treatment technology mainly includes electrolysis, ozone treatment, ultraviolet disinfection and electrolysis. These methods require expensive equipment and high energy power consumption.
  • Chlorine used for chlorine sterilization uses chlorine gas in large pools and sodium hypochlorite in small pools.
  • the introduction of chlorine has the advantage of complete disinfection effect and easy disinfection of a large amount of water.
  • chlorine input is difficult because chlorine has low solubility in water and needs to be reinserted every four hours.
  • the UV irradiation method frequently changes the irradiation lamp, decreases the expiration date and effective irradiation distance due to the attachment of polysaccharide to the crystal tube wall of the lamp, and the wavelength causing substance enclosed in the crystal tube is easily exposed due to the damage of the tube. This is a serious disadvantage.
  • An object of the present invention is to provide a low temperature plasma generating apparatus.
  • Another object of the present invention is to provide a low-temperature plasma generating apparatus that is easy to install.
  • a low temperature plasma generating apparatus comprising: a tubular first electrode, a second electrode disposed inside the first electrode and forming bubbles in water flowing into the first electrode; And an insulator formed between the first electrode and the second electrode.
  • the insulating material is an inorganic oxide or a high polymer.
  • the apparatus further includes a tube in which the first electrode and the second electrode are accommodated.
  • the apparatus may further include a power supply device for applying a voltage between the first electrode and the second electrode, wherein the applied voltage is equal to or greater than a voltage for generating a plasma between the first electrode and the second electrode and is insulated from the insulator. It is below the voltage causing breakdown.
  • the first electrode and the second electrode maintain a constant distance.
  • the tube wall of the first electrode is meshed or perforated.
  • the first electrode includes titanium (Ti) and is coated with a transition metal.
  • the second electrode distributes water flowing into the first electrode to generate bubbles.
  • the second electrode is coupled at a plurality of predetermined angles at regular intervals, and the unit electrode is spiral.
  • FIG. 1 is a block diagram of a low-temperature plasma generating apparatus according to an embodiment of the present invention.
  • FIGS. 2A and 2B illustrate a first electrode of a low temperature plasma generating apparatus according to an embodiment of the present invention.
  • 3 and 4 illustrate a second electrode of a low temperature plasma generating apparatus according to an embodiment of the present invention.
  • FIG. 5 illustrates a unit electrode of a second electrode in a low temperature plasma generating apparatus according to an embodiment of the present invention.
  • Activation electrons are generated between the two electrodes so that the electrons collide with the water molecule, which is a medium, to generate new electrons in the water molecule, creating another new electron in succession.
  • Chlorine (Cl 2 ) is also completely converted to oxidizing hypochlorous acid (HOCl) to maximize the bactericidal effect. Because of this, it is possible to improve the effect of sterilization in a single passage through the maximization of the contaminated water sterilization effect.
  • the low temperature plasma generator 100 includes a tubular first electrode 110, a second electrode 120, and an insulator 130.
  • the low temperature plasma generating apparatus 100 may further include a tube 140 and a power applying device 150.
  • the first electrode 110 and the second electrode 120 maintain a constant distance. This keeps the plasma discharge reaction distance constant, so that plasma can be generated continuously.
  • the second electrode 120 is disposed inside the first electrode 110 to form bubbles in water flowing into the first electrode 110 and maximize the reaction area.
  • the generation of bubbles generates bubbles by distributing water flowing into the first electrode 110 from the second electrode 120.
  • the insulator 130 is formed between the first electrode 110 and the second electrode 120.
  • the insulator 130 may be insulated from the first electrode 120 to be coupled to the second electrode 110.
  • the insulator 130 may be insulated from the second electrode 120 at regular intervals by maintaining a constant charging distance between the first electrode 110 and the second electrode 120. This can accurately maintain the charging distance of the two electrodes to maximize the plasma generation by the discharge.
  • the insulator 130 may include an inorganic oxide oxide or a polymer having excellent insulation.
  • the inorganic oxide may be aluminum oxide (Al 2 O 3 ), and the polymer may be an epoxy resin.
  • the low temperature plasma generator 100 may be treated with an insulator 130 between electrodes in water due to the characteristics of the plasma generator.
  • the tube 140 is accommodated by the first electrode 110 and the second electrode 120.
  • the tube 140 protects the first electrode 110 and the second electrode 120 from the outside, and makes it easy to manufacture integrally. Therefore, the low temperature plasma generator 100 can be used regardless of the place, and in particular, it is possible to sterilize water without having to provide a separate space by connecting with a pipe in which water flows.
  • the power applying device 150 applies a voltage between the first electrode 110 and the second electrode 120.
  • the voltage applied to the first electrode 110 and the second electrode 120 is applied from the power supply device 150 through the conductive wires 151a and 151b, one end of the conductive wires 151a and 151b is supplied to the power supply device 150.
  • the other ends of the conductive wires 151a and 151b may be connected to one ends of the first electrode 110 and the second electrode 120, respectively.
  • the applied voltage may be greater than or equal to a voltage that generates a plasma between the first electrode 110 and the second electrode 120 and less than or equal to a voltage that causes breakdown of the insulator 130.
  • the voltage applied to the first electrode 110 and the second electrode 120 converts the voltage and the current at the electrode according to the size of the first electrode and the second electrode and the capacity of the treated water so that a safe low temperature underwater plasma is generated.
  • the low temperature plasma generator 100 may be directly connected to a pipe through which water flows, so that contaminated water may be sterilized at a low cost without requiring a separate space.
  • the first electrode 110 may have a cylindrical tubular shape.
  • the tube wall of the first electrode 110 may be perforated (110a) or mesh (110b), thereby maintaining a constant distance from the second electrode (120, Figure 1) and maximize the charge discharge and reaction area Can be.
  • the first electrode 110 may include titanium (Ti).
  • the first electrode 110 may be coated with a transition metal, and may include titanium (Ti) coated with a transition metal.
  • the transition metal may be iridium (Ir), and iridium (Ir) may have a catalyst effect in plasma generation, and may extend the lifespan of the first electrode 110 and the second electrode 120.
  • the second electrode 120 may include a plurality of unit electrodes 121, and the plurality of unit electrodes may be coupled at a predetermined angle at predetermined intervals.
  • the predetermined angle may be 90 degrees.
  • the plurality of unit electrodes 121 preferably have a predetermined length. This is to generate bubbles in a mechanical manner and maximize the reaction area by continuously distributing water flowing into the first electrode 110. Since plasma is advantageously generated in the gaseous state, it is preferable to form a bubble in water and form a plasma using a gas of water molecules present in the bubble.
  • the unit electrode 121 may be spiral or planar.
  • the spiral shape accelerates the distribution of water further, maximizes the chemical reaction area by repeatedly crossing and separating water, and maximizes sterilization effect by easily generating low temperature plasma activated electrons by charge electrode discharge by water bubble generation.
  • the water treatment capacity of the low temperature plasma generator is 5 m 3 / hr when the diameter of the tube is 50 mm and the electrode is 1000 mm.
  • Power consumption is about 400 W
  • tube diameter is 200 mm
  • electrode length is 3000 to 5000 mm
  • water treatment capacity of low temperature plasma generator is 300 to 400 m 3 / hr
  • power consumption is minimum and The maximum ranges from about 2.0 to 4.5 kW.
  • the water treatment capacity of the low temperature plasma generator is 600 to 1000 m 3 / hr and the power consumption is in the range of minimum and maximum of 4.0 to 6.5 kW.

Abstract

본 발명은 저온 수중 플라즈마 발생 장치에 관한 것이다. 본 발명의 플라즈마 발생 장치는 관형의 제1 전극과, 상기 제1 전극의 내부에 배치되고 상기 제1 전극에 유입되는 물에 버블을 형성하는 제2 전극과, 상기 제1 전극과 제2 전극 사이에 형성되는 절연체를 포함하고, 이 장치의 수중 전기장 형성에 의한 저온 수중 플라스마 발생 시킬 전원 인가 장치이다. 본 발명에 따르면, 저온 플라즈마를 발생하여 오염된 물을 살균하며 집약형 관형 저온 플라즈마 발생장치를 구현하는 효과가 있다.

Description

저온 수중 플라즈마 발생 장치
본 발명은 저온 플라즈마 발생 장치에 관한 것으로서, 더욱 상세하게는 오염된 물을 저온 플라즈마를 이용하여 살균할 수 있는 장치에 관한 것이다.
플라즈마는 이온화 된 기체로서, 이는 고체, 액체 및 기체에 이어 물질의 4번째 상태이다. 플라즈마는 기본상태 혹은 여기 활성화(activated)상태의 전자, 양이온 및 중성 물질로 이루어진다. 거시적인 관점에서 볼 때 플라즈마는 전기적으로 중성이며, 플라즈마는 자유 대전 정공을 포함하며 전기 전도성이 있다.
기체 상태의 물질에 에너지를 가해주면 원자나 분자에서 전자가 분리되어 전자와 양이온들이 존재하는 플라즈마 상태가 된다. 플라즈마는 화학적으로 산화 환원 반응성이 큰 매개체이다. 플라즈마의 활성화(activated) 되는 방법과 작동 에너지에 따라 낮거나 혹은 높은 온도의 환경을 만들어낼 수 있으며, 각각 저온 플라즈마 또는 높은 열 플라즈마로 구분된다. 이러한 넓은 온도 변화 폭으로 인해 플라즈마 기술은 표면 코팅, 가스 처리, 폐기물 제거, 화학적인 산화 환원반응과 새로운 물질 합성, 기계작업 등의 다양한 분야에서 응용이 가능하다.
한편, 수 처리에 있어서 종래 방법은 고가의 여과 시스템이나, 오존, 자외선 등을 사용하거나 쉬운 방법으로 염소 등 화학제를 사용하였다.
선박에 사용하는 평형수의 경우, 선박 평형수 주입·배출에 따라 해수 내의 유해 수중생물이 이동하게 된다. 선박 평형수를 따라 외래해양생물체가 다른 나라에 유입되어 해양생태계를 파괴하는 문제점 방지하고자, 현재 상용화된 선박 평형수 처리기술은 주로 전기분해, 오존처리, 자외선소독 및 전기분해 등의 방법이 있다. 이러한 방법들은 고비용 장치와 고에너지 전력 소모를 필요로 한다.
수영장에 사용되는 물의 살균의 경우, 보통 순환 여과와 염소로 멸균을 한다. 보통 1일 3 내지 4회의 염소 투입과 순환 여과를 한다. 염소 멸균에 사용하는 염소로는 큰 수영장에서는 염소 가스를 사용하고, 작은 수영장에서는 하이포아염소산소다를 사용한다. 염소의 투입은 소독효과가 완전하고 대량의 물에 대하여도 쉽게 소독할 수 있는 이점이 있다. 하지만 염소 투입은 염소가 물에서 용해도가 낮아 4시간 마다 재투입해야하는 어려움이 있다.
수중 염소 투입에 의한 수 처리 기술은 과다한 염소 투입으로 환경 오염, 인체 등 많은 부작용으로 대두하고 있다. 또한 오존처리방식은 설치비용과 관리비용에 비하여 효율성의 문제점이 대두하고 있다. 자외선조사 방식은 잦은 조사램프의 교체, 램프의 수정관 벽에 수중 다당체 부착으로 인한 유효기간과 유효조사 거리의 감소, 수정관에 봉입된 파장 원인물질이 관이 파손되어 노출되기 쉬우며 노출된 물질의 유해성이 심각하다는 단점이 있다.
또한, 저온 플라즈마를 이용하여 수 처리 장치 및 방법이 소개되고 있으나, 물의 액체 단일 상에서 보다 액체와 기체상이 공존하는 별도의 버블발생장치가 구비되어야 하며, 그로 인하여 장치가 대형화되고, 별도의 설치공간이 필요로 하였다. 또한, 공간의 제약으로 인하여 종래의 저온 플라즈마를 이용한 수 처리는 제한적으로만 이용되었다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허공보 제10-1191146호
본 발명은 저온 플라즈마 발생 장치를 제공하는 것을 일 목적으로 한다.
또한 본 발명은 설치가 용이한 저온 플라즈마 발생 장치를 제공하는 것을 다른 목적으로 한다.
또한 본 발명은 저온 플라즈마를 이용하여 오염된 물을 살균하는 장치를 제공하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위한 본 발명은 저온 플라즈마 발생 장치에 있어서, 관형의 제1 전극과, 상기 제1 전극의 내부에 배치되고 상기 제1 전극에 유입되는 물에 버블을 형성하는 제2 전극과, 상기 제1 전극과 제2 전극 사이에 형성되는 절연체를 포함하는 것을 특징으로 한다. 상기 절연물질은 산화무기물 또는 고분자 폴리머이다.
바람직하게는, 상기 제1 전극과 제2 전극이 수용되는 관을 더 포함한다. 또한 상기 제1 전극과 상기 제2 전극 사이에 전압을 인가하는 전원 인가 장치를 더 포함하고, 상기 인가 전압은 상기 제1 전극과 상기 제2 전극 사이에서 플라즈마를 발생시키는 전압 이상이고 상기 절연체의 절연 파괴를 일으키는 전압 이하이다.
바람직하게는, 상기 제1 전극과 제2 전극은 일정한 거리를 유지한다. 상기 제1 전극의 관 벽은 망형 또는 타공형이다. 상기 제1 전극은 티타늄(Ti)을 포함하며, 전이금속으로 코팅한다.
바람직하게는, 상기 제2 전극은 상기 제1 전극에 유입되는 물을 분배하여 버블을 발생시킨다. 상기 제2 전극은 일정 간격으로 다수개의 소정 각도로 결합되며, 상기 단위 전극은 나선형이다.
상기와 같은 본 발명에 따르면, 저온 수중 플라즈마를 발생하여 수 처리 하며 소형의 저온 플라즈마 발생장치를 구현함으로써, 선박 평형수 및 수영장 등에서 오염된 물의 살균에 사용하는 염소 살균방법을 대체할 수 있는 친환경적이고, 오염된 물 살균효과의 극대화하며 소형화로 인하여 설치가 용이한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 저온 플라즈마 발생 장치의 구성도이다.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 저온 플라즈마 발생 장치의 제1 전극을 도시한 것이다.
도 3 및 도4는 본 발명의 일 실시예에 따른 저온 플라즈마 발생 장치의 제2 전극을 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 저온 플라즈마 발생 장치에서 제2 전극의 단위전극을 도시한 것이다.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 후술되어 있는 상세한 설명을 통하여 보다 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.
수중 플라즈마의 형성은 대응하고 있는 양 전극 사이에 강한 자기장이 형성되어야 한다. 양 전극 사이에서 활성화 전자(e-)를 발생시켜 전자가 매질인 물 분자에 충돌하여 물 분자에서 새로운 전자를 생성해서 연속적으로 또 다른 새로운 전자를 생성하고, 이러한 폭발적인 활성화 전자의 생성으로 적은 량의 염소(Cl2)로도 산화제인 차아염소산(HOCl)로 완전히 전환시켜 살균 효과를 극대화한다. 이로 인하여, 오염된 물 살균 효과의 극대화로 인해 1회의 관 통과로 살균의 효과를 향상시킬 수 있다.
이하, 첨부된 도면들을 함께 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 저온 수중 플라즈마 발생 장치의 구성도이다. 도 1을 참조하면, 저온 플라즈마 발생 장치(100)는 관형의 제1 전극(110)과, 제2 전극(120)과, 절연체(130)를 포함한다. 저온 플라즈마 발생 장치(100)는 관(140) 및 전원 인가 장치(150)를 더 포함할 수 있다.
제1 전극(110)과 제2 전극(120)은 일정한 거리를 유지한다. 이는 플라즈마 방전 반응 거리를 일정하게 유지하여, 플라즈마를 지속적으로 발생시킬 수 있다.
제2 전극(120)은 제1 전극(110)의 내부에 배치되고 제1 전극(110)에 유입되는 물에 버블을 형성하고 반응 면적을 극대화한다. 버블의 발생은 제2 전극(120)이 제1 전극(110)에 유입되는 물을 분배하여 버블을 발생한다.
절연체(130)는 제1 전극(110)과 제2 전극(120) 사이에 형성된다. 절연체(130)는 제1 전극(120)에 절연 처리하여 제2 전극(110)과 결합할 수 있다. 제1 전극(110)과 제2 전극(120) 사이의 일정한 대전 거리를 유지하도록 하여 절연체(130)는 제2 전극(120)에 일정한 간격으로 절연처리 할 수 있다. 이는 두 전극의 대전 거리를 정밀하게 유지하여 방전에 의한 플라즈마 생성을 극대화 할 수 있다. 절연체(130)는 절연성이 우수한 산화무기물 또는 고분자 폴리머를 포함할 수 있다. 산화무기물은 산화알루미늄(Al2O3)일 수 있으며, 고분자 폴리머는 에폭시 수지일 수 있다.저온 플라즈마 발생 장치(100)는 물에서 플라즈마 발생 장치의 특성 상 전극사이에 절연체(130)로 처리하여 물에서 직접 전류가 통전하지 않고 안전하고 친환경적인 플라즈마를 발생하도록 하고, 집중된(concentrate)된 전기장(electric field)을 얻을 수 있다. 이는 물 유전상수(dielectric constant)가 아주 크므로 금속에 가까운 성질이므로 전극 사이에 절연시켜서 강한 전기장을 형성하여야 한다. 이 전극 사이에서 활성화 전자(e-)를 발생시켜 전자가 매질인 물 분자에 충돌하여 물 분자에서 새로운 전자를 생성해서 폭발적으로 다른 새로운 전자를 생성하여야 살균 효과가 있다.
관(140)은 제1 전극(110)과 제2 전극(120)이 수용한다. 관(140)은 제1 전극(110)과 제2 전극(120)을 외부로부터 보호하며, 이를 일체형으로 용이하게 제작가능하게 한다. 따라서, 저온 플라즈마 발생장치(100)를 장소에 구애받지 않고 사용할 수 있으며, 특히 물이 흐르는 파이프 관과 연결하여 별도의 공간을 구비할 필요 없이 물의 살균이 가능하다.
전원 인가 장치(150)는 제1 전극(110)과 제2 전극(120) 사이에 전압을 인가한다. 제1 전극(110)과 제2 전극(120)에 인가되는 전압은 전원 인가 장치(150)으로부터 도선(151a, 151b)를 통하여 인가되면, 도선(151a, 151b)의 일단은 전원 인가 장치(150)에 연결되고, 도선(151a, 151b)의 타단은 제1 전극(110) 및 제2 전극(120)의 일단에 각각 연결될 수 있다. 인가 전압은 제1 전극(110)과 제2 전극(120) 사이에서 플라즈마를 발생시킬 정도의 전압 이상이고 절연체(130)의 절연 파괴를 일으키는 전압 이하일 수 있다. 절열 파괴를 일으키는 전압 이상을 인가하는 경우, 오염된 물 내에서 전기가 통전으로 발생하여 본 발명이 해결하고자 하는 플라즈마가 발생되지 않으면 물의 살균하는 효과를 달성하기가 어렵다. 제1 전극(110)과 제2 전극(120)에 인가되는 전압은 제1 전극 및 제2 전극의 크기와 처리 물의 용량에 따라 전극에서 전압과 전류를 변환하여 안전한 저온 수중 플라즈마가 생성되도록 한다.
저온 플라즈마 발생장치(100)는 물이 흐르는 파이프에 직접 연결할 수 있는 바, 별도의 공간을 필요로 하지 않고 낮은 비용으로 오염된 물을 살균할 수 있다.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 저온 플라즈마 발생 장치의 제1 전극을 도시한 것이다. 도 2a 및 도 2b를 참조하면, 제1 전극(110)은 원통의 관 형상일 수 있다. 제1 전극(110)의 관 벽은 타공형(110a) 또는 망형(110b)일 수 있으며, 이로 인하여 제2 전극(120, 도1)과의 일정거리를 유지하고 대전 방전 및 반응 면적을 최대화 할 수 있다. 제1 전극(110)은 티타늄(Ti)를 포함할 수 있다. 제1 전극(110)은 전이금속으로 코팅될 수 있으며, 전이금속으로 코팅된 티타늄(Ti)을 포함할 수 있다. 전이금속은 이리듐(Ir)일 수 있으며, 이리듐(Ir)은 플라즈마 발생시 촉매의 효과가 있으며, 제1 전극(110) 및 제2 전극(120)의 수명을 연장시킬 수 있다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 저온 플라즈마 발생 장치의 제2 전극을 도시한 것이다. 도 3 및 도 4를 참조하면, 제2 전극(120)은 다수개의 단위 전극(121)으로 구성되며, 일정 간격으로 다수개의 단위전극이 소정의 각도로 결합될 수 있다. 상기 소정의 각도는 90도 일 수 있다. 다수개의 단위전극(121)은 각각 일정한 길이를 가지는 것이 바람직하다. 이는 제1 전극(110)에 유입되는 물을 연속 분배하여 기계적인 방법으로 버블을 발생하고 반응 면적을 극대하기 위함이다. 플라즈마는 기체상태에서 발생하기 유리하므로, 물 내에서 버블을 형성하여, 버블 내에 존재하는 물 분자의 기체를 이용하여 플라즈마를 형성하는 것이 바람직하다.
도 5는 본 발명의 일 실시예에 따른 저온 플라즈마 발생 장치에서 제2 전극의 단위전극을 도시한 것이다. 도 4를 참조하면, 단위전극(121)은 나선형 또는 평면일 수 있다. 나선형의 형상은 물의 분배를 더욱 가속시키며 물을 반복적으로 교차하고 분리하여 화학 반응 면적을 최대화 할 수 있고, 물의 버블 생성에 의한 대전 전극 방전에 의한 저온 플라즈마 활성화 전자생성이 용이하여 살균효과를 극대화할 수 있다. 제1 전극(110)과의 일정거리 유지 및 플라즈마 형성 표면적을 증가시킨다.
본 발명의 다른 실시예에 따른 저온 플라즈마 발생 장치를 이용하여 오염된 물을 살균하는데 있어, 관의 직경이 50 mm이고 전극 1000 mm일 때 저온 플라즈마 발생 장치의 수 처리 능력은 5 m3/hr이며, 전력 소모량은 약 400 W이며, 관의 직경이 200 mm 이고 전극의 길이가 3000 내지 5000 mm 일 때, 저온 플라즈마 발생 장치의 수 처리 능력은 300 내지 400 m3/hr이며, 전력 소모량은 최소와 최대는 약 2.0 내지 4.5 kW의 범위이다. 관의 직경이 300 mm이고 전극 길이가 4000 내지 5000 mm 일 때, 저온 플라즈마 발생 장치의 수 처리 능력은 600 내지 1000 m3/hr이며 전력 소모량은 최소와 최대는 4.0 내지 6.5 kW의 범위이다.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
[부호의 설명]
100 : 저온 플라즈마 발생 장치 110 : 제1 전극
120 : 제2 전극 130 : 절연체
140 : 관 150 : 전원 인가 장치

Claims (11)

  1. 관의 형태를 갖는 제1 전극과,
    상기 제1 전극의 내부에 배치되고 상기 제1 전극에 유입되는 물에 버블을 발생시키는 제2 전극과,
    상기 제1 전극과 제2 전극 사이에 배치되는 절연체를
    포함하는 것을 특징으로 하는 저온 플라즈마 발생 장치.
  2. 제 1 항에 있어서,
    상기 제1 전극과 제2 전극이 수용되는 관을 더 포함하는 것을 특징으로 하는 저온 플라즈마 발생 장치.
  3. 제 1 항에 있어서,
    상기 제1 전극과 제2 전극 사이에 전압을 인가하는 전원 인가 장치를 더 포함하고,
    상기 인가 전압은 상기 제1 전극과 제2 전극 사이에서 플라즈마를 발생시키는 전압 이상이고 상기 절연체의 절연 파괴를 일으키는 전압 이하인 것을 특징으로 하는 저온 플라즈마 발생 장치.
  4. 제 1 항에 있어서,
    상기 제1 전극과 제2 전극은 일정한 거리를 유지하는 것을 특징으로 하는 저온 플라즈마 발생 장치.
  5. 제 1 항에 있어서,
    상기 제1 전극의 관은 망형 또는 타공형인 것을 특징으로 하는 저온 플라즈마 발생 장치.
  6. 제 1 항에 있어서,
    상기 제1 전극은 티타늄(Ti)을 포함하는 것을 특징으로 하는 저온 플라즈마 발생 장치.
  7. 제 6 항에 있어서,
    상기 제1 전극은 전이금속으로 코팅되는 것을 특징으로 하는 저온 플라즈마 발생 장치.
  8. 제 1 항에 있어서,
    상기 제2 전극은 상기 제1 전극에 유입되는 물을 분배하여 버블을 발생시키는 것을 특징으로 하는 저온 플라즈마 발생 장치.
  9. 제 8 항에 있어서,
    상기 제2 전극은 일정 간격으로 다수개의 단위전극이 소정 각도로 결합되는 것을 특징으로 하는 저온 플라즈마 발생 장치.
  10. 제 9 항에 있어서,
    상기 단위전극은 나선형인 것을 특징으로 하는 저온 플라즈마 발생 장치.
  11. 제 1 항에 있어서,
    상기 절연체는 산화무기물 또는 고분자 폴리머로 형성되는 것을 특징으로 하는 저온 플라즈마 발생 장치.
PCT/KR2016/004657 2015-05-04 2016-05-03 저온 수중 플라즈마 발생 장치 WO2016178501A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/313,901 US9840427B2 (en) 2015-05-04 2016-05-03 Low-temperature underwater plasma generating device
CN201680026118.9A CN107592855A (zh) 2015-05-04 2016-05-03 低温水中等离子体发生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0062713 2015-05-04
KR1020150062713A KR101605070B1 (ko) 2015-05-04 2015-05-04 저온 수중 플라즈마 발생 장치

Publications (1)

Publication Number Publication Date
WO2016178501A1 true WO2016178501A1 (ko) 2016-11-10

Family

ID=55651541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004657 WO2016178501A1 (ko) 2015-05-04 2016-05-03 저온 수중 플라즈마 발생 장치

Country Status (4)

Country Link
US (1) US9840427B2 (ko)
KR (1) KR101605070B1 (ko)
CN (1) CN107592855A (ko)
WO (1) WO2016178501A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680522B1 (ko) 2016-06-22 2016-11-29 한주호 수처리용 자율기포생성 플라즈마 유닛
KR101942668B1 (ko) * 2017-11-24 2019-04-11 홍종화 선박 평형수 처리 관형 플라즈마 처리 장치
CN108235554A (zh) * 2018-01-18 2018-06-29 大连民族大学 一种水下介质阻挡放电装置
US20210253452A1 (en) * 2018-08-08 2021-08-19 Commonwealth Scientific And Industrial Research Organisation Electrochemical flow reactor
US11246955B2 (en) * 2018-10-29 2022-02-15 Phoenixaire, Llc Method and system for generating non-thermal plasma
WO2020145434A1 (ko) * 2019-01-09 2020-07-16 홍종화 선박 평형수 처리 관형 플라즈마 처리 장치
KR102522284B1 (ko) 2020-02-28 2023-04-17 (주)황산 플라즈마 방전 반응식 나노버블 수질 정화 장치
US20210346565A1 (en) * 2020-05-08 2021-11-11 airPHX Method and system for generating non-thermal plasma
KR102411449B1 (ko) * 2020-05-11 2022-06-21 두산에너빌리티 주식회사 수중 플라즈마 방전장치 및 이를 포함하는 해수 담수화 시스템
KR20220120351A (ko) 2021-02-23 2022-08-30 주식회사 플라즈텍 저온 플라즈마 살균장치
KR20230159020A (ko) 2022-05-13 2023-11-21 (주)지디티 플라즈마 발생 장치 및 이와 오존 발생 장치를 포함하는 고도 산화 공법 수처리 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040010895A (ko) * 2002-07-25 2004-02-05 사단법인 고등기술연구원 연구조합 플라즈마와 흡착제를 이용한 정화장치
KR20080108767A (ko) * 2007-06-11 2008-12-16 삼성에스디아이 주식회사 전극 단자부 코팅재 및 이를 구비한 플라즈마 디스플레이패널
KR20090097340A (ko) * 2008-03-11 2009-09-16 주식회사 다원시스 Dbd 플라즈마 방전을 이용한 오폐수 정화방법
KR20140141798A (ko) * 2013-05-31 2014-12-11 이동환 저온 플라즈마 살균시스템
KR101500420B1 (ko) * 2012-07-13 2015-03-10 주식회사 에스피텍 전극상에 도전체 돌출부를 갖는 유전체장벽 방전 방식의 플라즈마 발생 전극 구조체

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052600B2 (en) * 1999-03-05 2006-05-30 Enproamerica, Inc. Apparatus for treating water
GB0310409D0 (en) * 2003-05-07 2003-06-11 Koninkl Philips Electronics Nv Object sensing
JP5405296B2 (ja) * 2007-03-05 2014-02-05 オーニット株式会社 低温プラズマ発生体
KR101254902B1 (ko) * 2010-07-02 2013-04-18 가부시끼가이샤 히다찌 하이테크 인스트루먼츠 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101191146B1 (ko) 2010-07-30 2012-10-15 한국기계연구원 마이크로 버블을 이용한 플라즈마 방전 반응식 선박 평형수 살균 처리장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040010895A (ko) * 2002-07-25 2004-02-05 사단법인 고등기술연구원 연구조합 플라즈마와 흡착제를 이용한 정화장치
KR20080108767A (ko) * 2007-06-11 2008-12-16 삼성에스디아이 주식회사 전극 단자부 코팅재 및 이를 구비한 플라즈마 디스플레이패널
KR20090097340A (ko) * 2008-03-11 2009-09-16 주식회사 다원시스 Dbd 플라즈마 방전을 이용한 오폐수 정화방법
KR101500420B1 (ko) * 2012-07-13 2015-03-10 주식회사 에스피텍 전극상에 도전체 돌출부를 갖는 유전체장벽 방전 방식의 플라즈마 발생 전극 구조체
KR20140141798A (ko) * 2013-05-31 2014-12-11 이동환 저온 플라즈마 살균시스템

Also Published As

Publication number Publication date
US9840427B2 (en) 2017-12-12
KR101605070B1 (ko) 2016-03-24
CN107592855A (zh) 2018-01-16
US20170197849A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2016178501A1 (ko) 저온 수중 플라즈마 발생 장치
US9352984B2 (en) Fluid treatment using plasma technology
JP6588425B2 (ja) 高電圧放電及びオゾンによる水システムの処理方法
KR100932377B1 (ko) 고밀도 수중 플라즈마 토치를 이용한 수질정화방법
KR100924649B1 (ko) 고밀도 수중 플라즈마 토치의 발생장치 및 방법
KR102109641B1 (ko) 고 전압 방전 및 오존을 가진 용수 시스템들을 처리하기 위한 시스템 및 방법
US8926914B2 (en) Liquid medium plasma discharge generating apparatus
CN211570217U (zh) 一种圆筒型dbd等离子体有机废液处理装置
KR101497591B1 (ko) 방전을 이용한 수처리장치
JP2009106910A (ja) 流体処理装置
US10343940B1 (en) Systems and methods for treating industrial feedwater
US8491762B2 (en) Water purification apparatus and process for purifying water
JP2010137212A (ja) プラズマ発生装置
KR101481327B1 (ko) 복극식 전기분해 반응기
CN201499364U (zh) 新型等离子发生装置
KR20100073320A (ko) 액체상에서의 플라즈마 방전장치
JP7130626B2 (ja) 電気化学的水処理のための構成
Zhang et al. Formation of active species by bipolar pulsed discharge in water
EP2692694B1 (en) Device for removing organic and chemical microbic pollutants from water
KR101016435B1 (ko) 코로나 방전식 오존발생장치
US6949184B2 (en) Electrical metal ion generating device
KR20130119131A (ko) 광촉매 및 고전압 펄스를 이용한 살균장치 및 살균방법
KR101206480B1 (ko) 고전압 글로우 방전을 이용한 중수 처리장치
KR19990014588A (ko) 고전압 방전을 이용한 폐수처리 장치
NL1042661B1 (en) Method and device for producing ozone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15313901

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789607

Country of ref document: EP

Kind code of ref document: A1