WO2016178397A1 - Manufacturing method for optical semiconductor elements having phosphor layers and sealing layers - Google Patents

Manufacturing method for optical semiconductor elements having phosphor layers and sealing layers Download PDF

Info

Publication number
WO2016178397A1
WO2016178397A1 PCT/JP2016/063216 JP2016063216W WO2016178397A1 WO 2016178397 A1 WO2016178397 A1 WO 2016178397A1 JP 2016063216 W JP2016063216 W JP 2016063216W WO 2016178397 A1 WO2016178397 A1 WO 2016178397A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
optical semiconductor
phosphor
sealing
layer
Prior art date
Application number
PCT/JP2016/063216
Other languages
French (fr)
Japanese (ja)
Inventor
広希 河野
恭也 大薮
逸旻 周
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016087030A external-priority patent/JP2016213451A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016178397A1 publication Critical patent/WO2016178397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Definitions

  • the present invention relates to a method for producing a phosphor layer-encapsulating layer-attached optical semiconductor element, and more specifically, to a method for producing an optical semiconductor element, a phosphor layer, and a phosphor layer-encapsulating layer-attached optical semiconductor element. .
  • a light-emitting device including a light-emitting element, a wavelength conversion member that covers the upper surface of the light-emitting element, a side surface of the light-emitting element and a side surface of the wavelength conversion member, and a sealing member that contains a light-reflective material is known. ing.
  • the light leaking from the side surface of the light emitting element and the side surface of the wavelength conversion member is reflected by the sealing member to improve the light emission efficiency.
  • the following method has been proposed as a method for manufacturing such a light emitting device (see, for example, Patent Document 1). That is, first, a plurality of light emitting elements are flip-chip mounted on a wiring board, and then each of a plurality of wavelength conversion members is laminated on each of the plurality of light emitting elements. Subsequently, the resin constituting the sealing member is screen-printed. Specifically, the resin is spread with a squeegee, and the surface of the sealing member is formed along the surface of the light emitting surface (surface) of the wavelength conversion member. Thereafter, the sealing member between the plurality of light emitting elements and between the plurality of wavelength conversion members is cut out by dicing.
  • the present invention provides an element arranging step of arranging a plurality of optical semiconductor elements on one side in the thickness direction of the phosphor sheet at intervals, and the phosphor sheet between the plurality of optical semiconductor elements, A first cutting step of forming each of the plurality of phosphor layers corresponding to each of the plurality of optical semiconductor elements by cutting so as to form a gap penetrating the phosphor sheet in the thickness direction; A sheet forming step for forming a stop sheet so as to fill the gap and cover a side surface of the optical semiconductor element; and cutting the sealing sheet along a thickness direction, and the plurality of optical semiconductors And a second cutting step of forming each of the plurality of sealing layers corresponding to each of the elements and each of the plurality of phosphor layers, and a phosphor layer-optical semiconductor device with a sealing layer It is a manufacturing method.
  • the phosphor sheet between the plurality of optical semiconductor elements can be cut and the gap can be reliably formed with a desired dimension, so that the dimensional accuracy of the gap can be improved.
  • the sealing sheet is filled in the gaps between the plurality of phosphor layers, and then in the second cutting step, the sealing sheet is surely cut to a desired size, so that the gap is filled.
  • the dimensional accuracy of the sealing layer can be improved. Therefore, an optical semiconductor element with a phosphor layer-sealing layer that is excellent in light extraction efficiency can be manufactured.
  • this method is excellent in manufacturing efficiency because the phosphor sheet and the sealing sheet are cut.
  • each of the plurality of optical semiconductor elements includes an electrode surface on which an electrode is provided, a light emitting surface facing the electrode surface and provided with a light emitting layer, and the electrode surface and the light emitting surface.
  • the side surface connecting peripheral edges, and in the element arranging step, the light emitting surface is arranged on the phosphor sheet, and the sheet forming step fills the gap with the sealing sheet, and the side surface And an electrode surface covering step to be formed so as to cover the electrode surface, and a removing step of removing one end in the thickness direction of the sealing sheet to expose the electrode surface.
  • the sealing sheet in the electrode surface covering step, can be reliably filled in the gap, and the side surface of the optical semiconductor element can be reliably covered with the sealing sheet. Further, in the removing step, the electrode surface can be exposed and reliably connected to the substrate.
  • one end portion in the thickness direction of the sealing sheet can be easily removed.
  • the sealing sheet of the B stage is disposed so as to fill the gap and cover the side surface, after the sheet arranging step, and
  • This is a method for producing an optical semiconductor element with a phosphor layer-sealing layer.
  • the gap can be easily filled and the side surfaces can be easily covered with the B-stage sealing sheet in the sheet arranging step. Further, in the C-stage forming process, the B-stage sealing sheet is converted to the C-stage, and then the second cutting process is performed, so that the C-stage sealing sheet can be cut with excellent dimensional accuracy.
  • both the first cutting step and the second cutting step are performed using a cutting blade, and in the first cutting step, the cutting blade is disposed on one side in the thickness direction of the phosphor sheet.
  • the cutting blade is brought into contact with the phosphor sheet from one side in the thickness direction, and in the second cutting step, the cutting blade is arranged on one side in the thickness direction of the sealing sheet, and the cutting blade.
  • the contact direction of the cutting blade with respect to the phosphor sheet in the first cutting step and the contact direction of the cutting blade with respect to the sealing sheet in the second cutting step are the same direction. Therefore, the first cutting step and the second cutting step can be performed easily and uniformly.
  • the optical semiconductor element and the phosphor layer are provided after the temporary fixing step of temporarily fixing the phosphor sheet to the temporary fixing sheet and the second cutting step before the element arranging step.
  • a phosphor layer including the sealing layer-a peeling step of peeling the optical semiconductor element with the sealing layer from the temporary fixing sheet is provided after the temporary fixing step of temporarily fixing the phosphor sheet to the temporary fixing sheet and the second cutting step before the element arranging step.
  • the phosphor sheet is temporarily fixed to the temporary fixing sheet, and then the element placement step is performed, and then the first cutting step and the second cutting step are sequentially performed. Therefore, each cutting process of a 1st cutting process and a 2nd cutting process can be reliably implemented with respect to each of the fluorescent substance sheet and the sealing sheet which were temporarily fixed to the temporarily fixing sheet. Therefore, a phosphor layer-sealing layer-attached optical semiconductor element including a phosphor layer and a sealing layer with excellent dimensional accuracy can be manufactured. As a result, it is possible to manufacture an optical semiconductor element with a phosphor layer-sealing layer that is more excellent in light extraction efficiency.
  • the light reflection component can be contained in the sealing layer, and therefore, the light emitted from the side surface of the optical semiconductor element can be reflected. Therefore, an optical semiconductor element with a phosphor layer-sealing layer that is more excellent in light extraction efficiency can be manufactured.
  • an optical semiconductor element with a phosphor layer-sealing layer that is excellent in light extraction efficiency can be efficiently manufactured.
  • FIG. 1A to 1D are process diagrams of a first embodiment of a method of manufacturing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention.
  • FIG. 1A is a temporary fixing process.
  • FIG. 1B is an element placement process.
  • FIG. 1C shows a first heating step, and
  • FIG. 1D shows a first cutting step.
  • 2E to 2G are process diagrams of the first embodiment of the method for manufacturing the optical semiconductor element with the phosphor layer-sealing layer of the present invention, following FIG. 1D, and FIG. FIG. 2G shows a removal process.
  • 3H and FIG. 3I are process diagrams of the first embodiment of the method for manufacturing an optical semiconductor element with a phosphor layer-sealing layer of the present invention, following FIG.
  • FIGS. 4A to 4C are a part of process diagrams of the second embodiment of the method for manufacturing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention
  • FIG. 4A is a sheet arrangement process
  • FIG. 4B is a removal process.
  • Process drawing 4C shows a C-staging process.
  • 5A and 5A are process diagrams of a third embodiment of the method for manufacturing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention.
  • FIG. 5A is a first cutting process
  • FIG. 5B is a sheet arrangement.
  • a process is shown.
  • 6C and 6D are process diagrams of the third embodiment of the method for manufacturing the optical semiconductor element with the phosphor layer-sealing layer of the present invention, following FIG. 5B, and FIG. 6D shows a removal process.
  • FIG. 7E and FIG. 7F are process diagrams of the third embodiment of the method for manufacturing an optical semiconductor element with a phosphor layer-sealing layer of the present invention, following FIG. 6D, and FIG. 7F shows a peeling process
  • FIG. 7G shows a process for manufacturing an optical semiconductor device using the optical semiconductor element with phosphor layer-sealing layer shown in FIG. 7F.
  • the vertical direction of the paper surface is the vertical direction (first direction, one example of the thickness direction)
  • the upper side of the paper surface is the upper side (one side in the first direction, the one thickness direction)
  • the lower side of the paper surface is the lower side ( The other side in the first direction and the other side in the thickness direction).
  • the left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction)
  • the left side on the paper surface is the left side (second side in the second direction)
  • the right side on the paper surface is the right side (the other side in the second direction).
  • the paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (the other side in the third direction). is there. Specifically, it conforms to the direction arrow in each figure.
  • the first embodiment of the method for producing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention includes a temporary fixing step (see FIG. 1A), an element placement step (see FIG. 1B), and a first heating step (FIG. 1). 1C), a first cutting step (see FIG. 1D), a sheet placement step (see FIG. 2E) as an example of an electrode surface covering step, a C-staging step (see FIG. 2F), and a removal step (FIG. 2G). Reference), a second cutting step (see FIG. 3H), and a peeling step (see FIG. 3I).
  • a temporary fixing step, an element placement step, a first heating step, a first cutting step, a sheet placement step, a C-staging step, a removal step, a second cutting step, A peeling process is implemented in order.
  • each process is explained in detail.
  • Temporary Fixing Step As shown in FIG. 1A, in order to perform the temporary fixing step, first, a temporary fixing sheet 2 is prepared, and then the phosphor sheet 3 is temporarily fixed to the surface of the temporary fixing sheet 2.
  • the temporary fixing sheet 2 includes a support plate 4 and a pressure-sensitive adhesive layer 5 disposed on the support plate 4.
  • the temporary fixing sheet 2 preferably includes only the support plate 4 and the pressure-sensitive adhesive layer 5.
  • the support plate 4 has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction.
  • the support plate 4 is made of, for example, a hard material. Examples of such materials include glass, ceramics, and various metals.
  • the support plate 4 may be a polymer film such as a polyolefin film (such as a polyethylene film) or a polyester film (such as PET).
  • the thickness of the support plate 4 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the pressure sensitive adhesive layer 5 is disposed on the upper surface of the support plate 4.
  • the pressure-sensitive adhesive layer 5 has a sheet shape on the upper surface of the support plate 4.
  • the pressure sensitive adhesive layer 5 is formed from, for example, a pressure sensitive adhesive having excellent heat resistance.
  • the thickness of the pressure-sensitive adhesive layer 5 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the length in the front-rear direction and the length in the left-right direction of the pressure-sensitive adhesive layer 5 are smaller than or equal to those of the support plate 4.
  • the phosphor sheet 3 is prepared. As shown by the phantom lines in FIG. 1A, the phosphor sheet 3 is provided on the phosphor member 7.
  • the phosphor member 7 includes a first release sheet 6 and a phosphor sheet 3 supported by the first release sheet 6.
  • the phosphor member 7 includes only the first release sheet 6 and the phosphor sheet 3.
  • the first release sheet 6 has a layer (flat plate) shape continuous in the front-rear direction and the left-right direction.
  • the first release sheet 6 is made of, for example, a flexible material. Examples of such a material include polymers such as polyolefin (polyethylene and the like) and polyester film (PET and the like).
  • the first release sheet 6 may be a glass plate, a ceramic sheet, or various metal foils.
  • the thickness of the 1st peeling sheet 6 is 1 micrometer or more, for example, Preferably, it is 10 micrometers or more, for example, is 2,000 micrometers or less, Preferably, it is 1,000 micrometers or less.
  • the phosphor sheet 3 is disposed on the lower surface of the first release sheet 6 and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction.
  • the phosphor sheet 3 is formed from, for example, a B-stage phosphor composition containing a phosphor and a curable resin.
  • the phosphor composition is preferably composed of a phosphor and a curable resin.
  • the phosphor converts the wavelength of light emitted from the optical semiconductor element 10 (see FIG. 1B).
  • Examples of the phosphor include a yellow phosphor that can convert blue light into yellow light, and a red phosphor that can convert blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the phosphor is preferably a yellow phosphor, more preferably a garnet phosphor.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. But there is.
  • Fluorescent substances can be used alone or in combination.
  • the blending ratio of the phosphor is, for example, 5% by mass or more, preferably 10% by mass or more, and for example, 80% by mass or less, preferably 70% by mass or less with respect to the phosphor composition.
  • the curable resin is a matrix in which the phosphor is uniformly dispersed in the phosphor composition, and can be in a B-stage state, so that the phosphor sheet 3 is bonded to the pressure-sensitive adhesive layer 5 and the optical semiconductor element 10.
  • Examples thereof include curable resins that are pressure-sensitively bonded to (see FIG. 1B).
  • Examples of the curable resin include a thermosetting resin and an active energy ray curable resin, and a thermosetting resin is preferable.
  • thermosetting resin examples include a two-stage reaction curable resin and a one-stage reaction curable resin.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage.
  • a semi-solid or solid state that is smaller than the elastic modulus of the state.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction.
  • Such a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state.
  • thermosetting resin is a thermosetting resin that can be in a B-stage state.
  • thermosetting resin examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • a thermosetting resin Preferably, a silicone resin and an epoxy resin are mentioned, More preferably, a silicone resin is mentioned.
  • thermosetting resin may be the same type or a plurality of types.
  • silicone resin examples include silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance.
  • silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance.
  • an addition reaction curable silicone resin composition is used.
  • Silicone resins may be used alone or in combination.
  • the addition reaction curable silicone resin composition is a one-stage reaction curable resin composition and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • the addition reaction curable silicone resin composition is preferably an alkenyl group-containing polysiloxane which may contain a phenyl group in the molecule (for example, vinyl group-containing diphenylsiloxane, vinyl group-containing methylphenylsiloxane and vinyl group-containing dimethyl).
  • a phenyl silicone resin composition containing a hydrosilyl group-containing polysiloxane containing dimethylsiloxane as a monomer and a hydrosilylation catalyst.
  • the phenyl silicone resin composition at least one of the alkenyl group-containing polysiloxane and the hydrosilyl group-containing polysiloxane contains a phenyl group.
  • the refractive index of a phenyl-type silicone resin composition is 1.45 or more, for example, Furthermore, it is 1.50 or more.
  • the above-mentioned addition reaction curable silicone resin composition is prepared and used as an A stage (liquid) state by first blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • the addition reaction curable silicone resin composition undergoes a hydrosilylation addition reaction between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane by heating under a desired condition, and then The hydrosilylation addition reaction stops once. As a result, the A stage state can be changed to the B stage (semi-cured) state.
  • the addition reaction curable silicone resin composition is completed by restarting the hydrosilylation addition reaction described above by further heating under desired conditions.
  • the B stage state can be changed to the C stage (fully cured) state.
  • the condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like. 1 to 8 condensation / addition reaction curable silicone resin compositions, for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A.
  • the condensation / addition reaction curable silicone resin composition is solid and has both thermoplasticity and thermosetting properties.
  • thermosetting resin is in a solid state at least when it is in the B stage (semi-cured) state. And such a thermosetting resin has both thermoplasticity and thermosetting property. That is, the thermosetting resin is once plasticized by heating and then completely cured. More specifically, the thermosetting resin gradually decreases in viscosity as the temperature rises, and then gradually increases as the temperature rises.
  • the blending ratio of the thermosetting resin is the balance of the blending ratio of the phosphor (and the light reflection component and / or additive described below).
  • the fluorescent composition can contain a light reflection component (described later) and / or an additive in an appropriate ratio.
  • the phosphor member 7 is prepared. Specifically, first, a fluorescent composition is prepared. In order to prepare the fluorescent composition, a varnish of the fluorescent composition is prepared by blending the above-described phosphor, a thermosetting resin, and a light reflection component and / or additive blended as necessary. Subsequently, the varnish is applied to the surface of the first release sheet 6. Thereafter, the fluorescent composition is heated (baked).
  • the heating (baking) condition is appropriately set so that the storage shear modulus G ′ in the dynamic viscoelasticity measurement in the phosphor sheet 3 is in a desired range.
  • the heating temperature is appropriately set depending on the composition of the thermosetting resin in the fluorescent composition, and specifically, for example, 50 ° C. or higher, preferably 70 ° C. or higher, and for example, 120 ° C. or lower, preferably Is 100 ° C. or lower.
  • the heating time is, for example, 2.5 minutes or more, preferably 5.5 minutes or more, and for example, 4 hours or less, preferably 1 hour or less.
  • the phosphor sheet 3 in the B stage state is formed on the surface of the first release sheet 6.
  • the temperature T at such a minimum value is in the range of 40 ° C. or more and 200 ° C. or less
  • the storage shear modulus G ′ at the above-mentioned minimum value is, for example, 1,000 Pa or more, preferably Is in the range of 10,000 Pa or more, more preferably 20,000 Pa or more, further preferably 30,000 Pa or more, and for example, 90,000 Pa or less, preferably 70,000 Pa or less.
  • the phosphor sheet 3 has a fine tack property (pressure-sensitive adhesive property).
  • the thickness of the phosphor sheet 3 is, for example, 40 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the phosphor sheet 3 of the phosphor member 7 is transferred to the temporarily fixed sheet 2. Specifically, the lower surface of the phosphor sheet 3 is brought into contact with the upper surface of the pressure-sensitive adhesive layer 5, and then the first release sheet 6 is peeled from the phosphor sheet 3. Thereby, the phosphor sheet 3 is temporarily fixed to the temporary fixing sheet 2.
  • Element Arrangement Step As shown in FIG. 1B, in the element arrangement step, a plurality of optical semiconductor elements 10 are arranged on the upper surface (an example of one side surface in the thickness direction) of the phosphor sheet 3 with an interval between each other.
  • the element arranging step first, a plurality of optical semiconductor elements 10 are prepared.
  • the optical semiconductor element 10 is, for example, an LED or LD that converts electrical energy into light energy.
  • the optical semiconductor element 10 is a blue LED (light emitting diode element) that emits blue light.
  • the optical semiconductor element 10 does not include a rectifier (semiconductor element) such as a transistor having a technical field different from that of the optical semiconductor element.
  • the optical semiconductor element 10 has a substantially flat plate shape along the front-rear direction and the left-right direction.
  • the optical semiconductor element 10 has a substantially rectangular shape in plan view.
  • the optical semiconductor element 10 has an electrode surface 11, a light emitting surface 12, and a peripheral side surface 13 as an example of a side surface.
  • the electrode surface 11 is the upper surface of the optical semiconductor element 10 and the surface on which the electrode 14 is formed.
  • the electrode 14 has a shape that slightly protrudes upward from the electrode surface 11.
  • the light emitting surface 12 is the lower surface of the optical semiconductor element 10, and is opposed to the electrode surface 11 with a gap therebetween.
  • the light emitting surface 12 has a flat shape.
  • the light emitting surface 12 is provided with a light emitting layer 9 disposed below the optical semiconductor element 10.
  • the peripheral side surface 13 connects the peripheral edge of the electrode surface 11 and the peripheral edge of the light emitting surface 12.
  • the thickness (height) T0 is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and, for example, 500 ⁇ m or less.
  • the thickness is preferably 200 ⁇ m or less.
  • the length L1 in the front-rear direction and / or the left-right direction of the optical semiconductor element 10 is, for example, 0.2 mm or more, preferably 0.5 mm or more, and, for example, 3.00 mm or less, preferably 2.00 mm. It is as follows.
  • a plurality of optical semiconductor elements 10 are arranged on the phosphor sheet 3 at intervals in the front-rear direction and the left-right direction.
  • the light emitting surfaces 12 of the plurality of optical semiconductor elements 10 are pressure-sensitively bonded to the upper surface of the phosphor sheet 3 so as to ensure the interval L0 and the pitch L2 described below.
  • the plurality of optical semiconductor elements 10 are pressure-sensitive bonded to the phosphor sheet 3 so that the electrodes 14 face upward.
  • the interval (interval in the front-rear direction and / or left-right direction) L0 between the optical semiconductor elements 10 adjacent to each other is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1.50 mm or less. Preferably, it is 0.80 mm or less.
  • the pitch L2 of the optical semiconductor elements 10 adjacent to each other, specifically, the sum (L1 + L0) of the length L1 and the interval L0 described above is, for example, 0.25 mm or more, preferably 0.60 mm or more. For example, it is 3.00 mm or less, preferably 2.00 mm or less.
  • a first gap 15 is formed between the optical semiconductor elements 10 adjacent to each other.
  • the first gap 15 has a dimension corresponding to the distance L0 and is not shown in FIG. 1B, but has a substantially grid shape in plan view. From the first gap 15, the upper surface of the phosphor sheet 3 is exposed.
  • the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10 are placed in, for example, an oven 17 and heated. Thereby, the fluorescent composition of the phosphor sheet 3 is C-staged (completely cured).
  • the heating temperature is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, and for example, 200 ° C. or lower, preferably 160 ° C. or lower.
  • the heating time is, for example, 10 minutes or longer, preferably 30 minutes or longer, and for example, 480 minutes or shorter, preferably 300 minutes or shorter. Note that the heating can be performed a plurality of times at different temperatures.
  • thermosetting resin (C stage). That is, the thermosetting resin is completely reacted to produce a product.
  • the hydrosilyl addition reaction between the alkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane is further accelerated. Thereafter, the alkenyl group or the hydrosilyl group disappears and the hydrosilyl addition reaction is completed, whereby a C-stage silicone resin composition, that is, a product (or a cured product) is obtained. That is, by completing the hydrosilylation reaction, the silicone resin composition exhibits curability (specifically, thermosetting).
  • the light emitting surface 12 of the optical semiconductor element 10 adheres to the upper surface of the phosphor sheet 3.
  • the light emitting surface 12 is in direct contact with the upper surface of the phosphor sheet 3. That is, the optical semiconductor element 10 is fixed to the phosphor sheet 3.
  • the phosphor sheet 3 exposed from the first gap 15 is cut.
  • a cutting device including a cutting blade for example, a cutting device including a laser irradiation source is used.
  • a cutting device provided with a cutting blade for example, a dicing device provided with a disc-shaped dicing saw (dicing blade) 18, for example, a cutting device provided with a cutter may be mentioned.
  • Examples of the cutting device provided with a laser irradiation source include a laser irradiation device.
  • a cutting device provided with a cutting blade more preferably a dicing device is used.
  • the blade thickness T1 of the dicing saw 18 is the same from the radially inner side to the outer side.
  • the blade thickness T1 of the dicing saw 18 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 700 ⁇ m or less, preferably 500 ⁇ m or less.
  • the temporary fixing sheet 2 the phosphor sheet 3 and the plurality of optical semiconductor elements 10 are diced by the phosphor sheet 3. It is installed in the cutting device so as to face the saw 18. Subsequently, a cutting blade (preferably a dicing saw 18) is brought into contact with the phosphor sheet 3 from the upper side of the phosphor sheet 3. That is, the cutting blade (dicing saw 18) is lowered and the lower end portion of the cutting blade (dicing saw 18) is applied to the upper surface of the phosphor sheet 3.
  • a cutting blade preferably a dicing saw 18
  • the lower end of the cutting blade (dicing saw 18) reaches the lower surface of the phosphor sheet 3 so that the lower end of the cutting blade (dicing saw 18) penetrates the phosphor sheet 3 in the thickness direction.
  • the phosphor sheet 3 is moved along the front-rear direction.
  • the cutting blade (dicing saw 18) is raised.
  • the same operation as described above is performed along the left-right direction. Note that the phosphor sheet 3 can be cut in the left-right direction and in the front-rear direction in order.
  • the lower end of the cutting blade (dicing saw 18) reaches the lower surface of the phosphor sheet 3 and contacts the upper surface of the pressure-sensitive adhesive layer 5. It does not penetrate deeply into the pressure bonding layer 5.
  • a second gap 16 having a substantially grid-like shape in plan view along the front-rear direction and the left-right direction (substantially a cross-girder shape, not shown in FIG. 1D) is formed. Further, the second gap 16 passes through the thickness direction of the phosphor sheet 3. The second gap 16 communicates with the first gap 15 in the thickness direction. The second gap 16 has a size included in the first gap 15 when projected in the thickness direction. Specifically, the second gap 16 has a smaller size than the first gap 15.
  • the width L4 of the second gap 16 corresponds to the size of the cutting device, specifically the cutting blade, preferably the dicing saw 18 (specifically, the blade thickness T1).
  • the width L4 of the second gap 16 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and, for example, 700 ⁇ m or less, preferably 500 ⁇ m or less.
  • the phosphor sheet 3 forms a plurality of phosphor layers 24 by forming the second gap 16. That is, each of the plurality of phosphor layers 24 corresponds to each of the plurality of optical semiconductor elements 10, and specifically, is formed on the lower surface of each of the plurality of optical semiconductor elements 10. Each of the plurality of phosphor layers 24 has a substantially rectangular shape in plan view including the optical semiconductor element 10 when projected in the thickness direction. The phosphor layer 24 has a side surface 22 that faces the second gap 16.
  • a B-stage sealing sheet 19 is prepared. As shown in FIG. 2E, the sealing sheet 19 is provided on the sealing member 21.
  • the sealing member 21 includes a second release sheet 20 and a sealing sheet 19 supported by the second release sheet 20.
  • the sealing member 21 includes only the second release sheet 20 and the sealing sheet 19.
  • the second release sheet 20 is made of the same material as the support plate 4 described above and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction.
  • the thickness of the 2nd peeling sheet 20 is 1 micrometer or more, for example, Preferably, it is 10 micrometers or more, for example, is 2,000 micrometers or less, Preferably, it is 1,000 micrometers or less.
  • the sealing sheet 19 is formed on the lower surface of the second release sheet 20 and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction.
  • the sealing sheet 19 is prepared from, for example, a B-stage sealing composition containing a curable resin.
  • the curable resin is the same as the curable resin exemplified for the fluorescent composition.
  • the sealing composition can further contain, for example, a light reflection component.
  • Examples of the light reflecting component include light reflecting particles such as inorganic particles and organic particles.
  • oxides such as titanium oxide, zinc oxide, zirconium oxide, composite inorganic oxide particles (glass and the like), for example, lead white (basic lead carbonate), carbonates such as calcium carbonate, for example, Examples include clay minerals such as kaolin.
  • an oxide is used.
  • organic particles examples include acrylic resin particles, styrene resin particles, acrylic-styrene resin particles, silicone resin particles, polycarbonate resin particles, benzoguanamine resin particles, polyolefin resin particles, polyester resin particles, and polyamides. Resin particles, polyimide resin particles, and the like. Preferably, acrylic resin particles are used.
  • the content ratio of the light reflection component is, for example, 1% by mass or more, preferably 3% by mass or more, and, for example, 80% by mass or less, preferably 75% by mass or less with respect to the sealing composition. is there.
  • sealing composition may contain an additive in an appropriate ratio.
  • the sealing sheet 19 for example, first, a curable resin and a light reflection component and / or an additive that are added as necessary are blended to prepare a varnish of the sealing composition. Subsequently, the varnish is applied to the surface of the second release sheet 20. Thereafter, the sealing composition is B-staged (semi-cured). Specifically, the sealing composition is heated.
  • the heating temperature is, for example, 50 ° C. or more, preferably 70 ° C. or more, and for example, 120 ° C. or less, preferably 100 ° C. or less.
  • the heating time is, for example, 5 minutes or more, preferably 10 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less.
  • the sealing sheet 19 is formed.
  • the B-stage sealing sheet 19 is formed on the surface of the sealing sheet 19.
  • the melt viscosity at 60 ° C. of the sealing sheet 19 is, for example, 40 Pa ⁇ s or more, for example, 1,000 Pa ⁇ s or less, preferably 300 Pa ⁇ s or less.
  • the melt viscosity is measured using an E-type viscometer.
  • the B-stage sealing sheet 19 is pressure-bonded to the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10 (compression molding). ).
  • the temporary fixing sheet 2, the phosphor sheet 3 and the plurality of optical semiconductor elements 10 and the sealing member 21 are pressed so that the sealing sheet 19 and the optical semiconductor element 10 face each other in the thickness direction. Set them in the machine and hot press them, for example.
  • the temperature of the hot press is 60 ° C. or higher, preferably 70 ° C. or higher, and 200 ° C. or lower, preferably 180 ° C. or lower.
  • the pressure of the hot press is, for example, 0.01 MPa or more, preferably 0.10 MPa or more, and for example, 10.00 MPa or less, preferably 5.00 MPa or less.
  • the time for hot pressing is, for example, 1 minute or more, preferably 3 minutes or more, and for example, 60 minutes or less, preferably 30 minutes or less.
  • the hot press can be performed a plurality of times.
  • the first gap 15 and the second gap 16 are filled with the sealing sheet 19 (sealing composition) by this hot pressing.
  • sealing sheet 19 Since the sealing sheet 19 is filled in the second gap 16, it covers the peripheral side surface 13 and the electrode surface 11 of the optical semiconductor element 10.
  • the sealing sheet 19 embeds the electrode 14 and covers the side surface and the upper surface of the electrode 14.
  • the sealing sheet 19 is filled in the first gap 15, the side surface 22 is covered.
  • Such a sealing sheet 19 has a flat upper surface 23 along the front-rear direction and the left-right direction.
  • the upper surface 23 is spaced above the upper surface of the electrode 14 with a gap therebetween.
  • the sealing sheet 19 is heated to be cured (completely cured).
  • the temporarily fixing sheet 2 the phosphor layer 24, the optical semiconductor element 10, and the sealing sheet 19 are put into the oven 17.
  • the heating temperature is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 200 ° C. or less, preferably 150 ° C. or less.
  • the heating time is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 180 minutes or less, preferably 120 minutes or less.
  • Removal Step As shown in FIG. 2G, in the removal step, the upper end portion (an example of one end portion in the thickness direction) of the sealing sheet 19 is removed.
  • the upper surface 23 of the sealing sheet 19 is wiped with a solvent.
  • a solvent capable of completely or partially dissolving the C-stage sealing sheet 19 is selected.
  • the solvent include organic solvents and aqueous solvents.
  • the organic solvent include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as toluene, and ethers such as tetrahydrofuran.
  • the aqueous solvent include water.
  • the solvent is preferably an organic solvent, more preferably an alcohol or an aromatic hydrocarbon, and still more preferably an alcohol.
  • the solvent is absorbed by the cloth, and the upper surface 23 of the sealing sheet 19 is wiped with the cloth.
  • the upper end portion of the sealing sheet 19 is removed. Specifically, the portion of the sealing sheet 19 that was located immediately above the electrode surface 11 of the optical semiconductor element 10 is removed. More specifically, in the sealing sheet 19, a portion that covers the electrode surface 11 and covers the upper surface and the side surface of the electrode 14 and a portion that is located above the first gap 15 are removed.
  • the upper surface and the side surface of the electrode 14 are exposed, and then the electrode surface 11 is exposed.
  • the sealing sheet 19 is not disposed immediately above the electrode surface 11 of the optical semiconductor element 10, but is filled in the first gap 15 and the second gap 16, and the side surfaces 22 of the plurality of phosphor layers 24, It forms in the pattern which coat
  • the upper surface 23 of the sealing sheet 19 is flush with the electrode surface 11 (electrode surface 11 exposed from the electrode 14) of the optical semiconductor element 10 in the front-rear direction and the left-right direction. That is, the upper surface 23 of the sealing sheet 19 and the electrode surface 11 of the optical semiconductor element 10 form the same plane along the front-rear direction and the left-right direction.
  • the electrode 14 protrudes upward from the plane described above.
  • the sheet forming step is a step of forming the sealing sheet 19 so as to fill the second gap 16 and cover the peripheral side surface 13 of the optical semiconductor element 10.
  • the sheet forming step is also a step of forming the sealing sheet 19 from which the upper end portion is removed by converting the sealing sheet 19 into a C stage (completely cured).
  • Second Cutting Step As shown in FIG. 3H, in the second cutting step, the sealing sheet 19 is cut along the thickness direction.
  • the sealing sheet 19 filled in the first gap 15 and the second gap 16 is cut. Thereby, each of the plurality of sealing layers 25 corresponding to each of the plurality of optical semiconductor elements 10 and each of the plurality of phosphor layers 24 is formed.
  • the blade thickness T2 of the dicing saw 27 is thinner than the blade thickness T1 of the dicing saw 18 in the first cutting step.
  • the blade thickness T1 is, for example, 95% or less, preferably 90% or less, more preferably. Is 80% or less and 5% or more.
  • the blade thickness T2 of the dicing saw 27 is the same from the radially inner side to the outer side.
  • the blade thickness T2 of the dicing saw 27 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. .
  • the second cutting step in order to cut the sealing sheet 19 with a cutting device (preferably a dicing device) provided with a cutting blade, first, the temporary fixing sheet 2, the phosphor sheet 3, the optical semiconductor element 10, and the sealing sheet 19 is installed in a cutting device, and then a cutting blade (preferably a dicing saw 27) is brought into contact with the sealing sheet 19 from the upper side of the sealing sheet 19. That is, the cutting blade (dicing saw 27) is lowered and the lower end portion of the cutting blade (dicing saw 27) is applied to the upper surface of the sealing sheet 19. Subsequently, the lower end portion of the cutting blade (dicing saw 27) is made to reach the lower surface of the sealing sheet 19 so that the lower end portion penetrates the sealing sheet 19 in the thickness direction.
  • a cutting blade preferably a dicing saw 27
  • the sealing sheet 19 is moved along the front-rear direction. Thereafter, the cutting blade (dicing saw 27) is raised. Thereafter, the same operation as described above is performed along the left-right direction.
  • disconnection of the front-back direction can also be implemented in order.
  • the lower end portion of the cutting blade (dicing saw 27) reaches the lower surface of the sealing sheet 19 and contacts the upper surface of the pressure-sensitive adhesive layer 5, but deeply in the pressure-sensitive adhesive layer 5. Do not enter.
  • the sealing sheet 19 Due to the cutting of the sealing sheet 19, the sealing sheet 19 is aligned in the front-rear direction and the left-right direction between the adjacent optical semiconductor elements 1 and between the adjacent phosphor layers 24.
  • a gap 26 is formed.
  • the third gap 26 penetrates the sealing sheet 19 in the thickness direction.
  • the third gap 26 has a substantially grid pattern in plan view.
  • the width W1 of the third gap 26 corresponds to a cutting device, specifically a cutting blade, preferably a blade thickness T2 of the dicing saw 27.
  • the width W1 of the third gap 26 is narrower than the width L4 (see FIG. 1D) of the second gap 16, and is, for example, 95% or less, preferably 90% or less, relative to the width L4 of the second gap 16. More preferably, it is 80% or less, and 5% or more.
  • the width W1 of the third gap 26 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • this allows one optical semiconductor element 10, one phosphor layer 24 covering the light emitting surface 12 of the optical semiconductor element 10, the side surface 22 of the phosphor layer 24, and the optical semiconductor element 10.
  • a plurality of phosphor layer-sealing layer-attached optical semiconductor elements 1 each including one sealing layer 25 covering the peripheral side surface 13 are obtained in a state of being temporarily fixed to the temporary fixing sheet 2.
  • the plurality of phosphor layer-sealing layer-attached optical semiconductor elements 1 are arranged in an arrangement spaced apart from each other in the front-rear direction and the left-right direction while temporarily fixed to the temporary fixing sheet 2. Has been.
  • the phosphor layer-sealing layer-attached optical semiconductor element 1 is peeled from the temporary fixing sheet 2. Specifically, the lower surface of the sealing layer 25 and the lower surface of the phosphor layer 24 are separated from the upper surface of the pressure-sensitive adhesive layer 5.
  • a pickup device (not shown) including a collet and a suction pump connected thereto is used.
  • a phosphor layer-sealing layer-attached optical semiconductor device 1 including one optical semiconductor element 10, one phosphor layer 24, and one sealing layer 25 is obtained.
  • the phosphor layer-sealing layer-attached optical semiconductor element 1 includes only one optical semiconductor element 10, one phosphor layer 24, and one sealing layer 25.
  • the lower surface of the phosphor layer 24 and the lower surface of the sealing layer 25 are flush with each other in the front-rear direction and the left-right direction.
  • the electrode surface 11 of the optical semiconductor element 10 is flush with the upper surface of the sealing layer 25 in the front-rear direction and the left-right direction.
  • the peripheral side surface 13 of the optical semiconductor element 10 and the peripheral end portion and the side surface of the upper surface of the phosphor layer 24 are covered with a sealing layer 25.
  • the phosphor layer-sealing layer-attached optical semiconductor element 1 has the same planar view shape (specifically, substantially rectangular shape) as the planar view shape (specifically, the outer shape of a substantially rectangular frame shape) of the sealing layer 25. Shape) and external dimensions.
  • the sealing layer 25 has a shape and size in plan view larger than that of the phosphor layer 24.
  • the width W3 of the portion located outside the phosphor layer 24 in plan view is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 600 ⁇ m or less, preferably 400 ⁇ m or less. is there.
  • the distance W2 between the side surface 22 of the phosphor layer 24 and the peripheral side surface 13 of the optical semiconductor element 10 in a plan view is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and, for example, 500 ⁇ m or less.
  • the thickness is preferably 300 ⁇ m or less.
  • the width W4 of the portion located outside the optical semiconductor element 10 in the sealing layer 25 is the sum (W2 + W3) of W2 and W3, for example, 15 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 1000 ⁇ m or less. Preferably, it is 600 ⁇ m or less.
  • the phosphor layer-sealing layer-attached optical semiconductor element 1 is not the optical semiconductor device 30 (see FIG. 3J) described below, that is, does not include the substrate 28 provided in the optical semiconductor device 30. That is, in the optical semiconductor element 1 with the phosphor layer-sealing layer, the electrode 14 of the optical semiconductor element 10 is not electrically connected to the terminal 29 provided on the substrate 28. That is, the phosphor layer-sealing layer-attached optical semiconductor element 1 is a component of the optical semiconductor device 30, that is, a component for manufacturing the optical semiconductor device 30, and the component alone is distributed and can be used industrially. It is a device.
  • the electrode 14 of the optical semiconductor element 1 with phosphor layer-sealing layer is electrically connected to a terminal 29 provided on the upper surface of the substrate 28. More specifically, the phosphor layer-sealing layer-attached optical semiconductor element 1 is turned upside down and then flip-chip mounted on the substrate 28.
  • the optical semiconductor device 30 includes the substrate 28, the optical semiconductor element 10 mounted on the substrate 28, the phosphor layer 24 disposed on the upper surface of the optical semiconductor element 10, the peripheral side surface 13 of the optical semiconductor element 10, and the fluorescence. And a sealing layer 25 that covers the side surface 22 of the body layer 24 and exposes the electrode surface 11 of the optical semiconductor element 10.
  • the optical semiconductor device 30 includes only the substrate 28, the optical semiconductor element 10, the phosphor layer 24, and the sealing layer 25.
  • the light emitting layer 9 is in contact with the phosphor layer 24. Further, the upper surface of the phosphor layer 24 is exposed upward from the sealing layer 25.
  • another sealing layer can be filled so that the electrode 14 and the terminal 29 are embedded between the sealing layer 25 and the phosphor layer 24 and the substrate 28. .
  • the phosphor sheet 3 between the plurality of optical semiconductor elements 10 is cut to form the second gap 16 with a desired dimension. Since it can form reliably, the dimensional accuracy of the 2nd clearance gap 16 can be improved. Further, in the sheet forming step, as shown in FIG. 2E, the sealing sheet 19 is filled into the second gap 16, and subsequently, in the second cutting step, as shown in FIG. Since it cuts reliably by a dimension, the dimensional accuracy of the sealing layer 25 with which the 2nd clearance gap 16 was filled can be improved. Therefore, the phosphor layer-sealing layer-attached optical semiconductor element 1 having excellent light extraction efficiency can be manufactured.
  • this method is excellent in manufacturing efficiency because the phosphor sheet 3 and the sealing sheet 19 are cut as shown in FIGS. 1D and 3H.
  • the sealing sheet 19 is surely filled into the second gap 16, and the sealing sheet 19 reliably secures the peripheral side surface 13 of the optical semiconductor element 10. Can be coated. Further, as shown in FIG. 2G, in the removing step, the electrode surface 11 can be exposed, and thereafter, as shown in FIG. 3J, it can be reliably electrically connected to the terminal 29 of the substrate 28.
  • the upper end portion of the sealing sheet 19 can be easily removed by wiping the upper surface of the sealing sheet 19 with a solvent.
  • the second gap 16 can be easily filled and the peripheral side surface 13 can be easily covered with the sealing sheet 19 of the B stage in the sheet arranging step.
  • the B-stage sealing sheet 19 is converted to the C-stage, and then the second cutting process shown in FIG. Can be cut with excellent dimensional accuracy.
  • the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D and the contact direction of the cutting blade with respect to the sealing sheet 19 in the second cutting step shown in FIG. are the same direction, that is, the direction from the upper side to the lower side. Therefore, the first cutting step and the second cutting step can be performed easily and uniformly.
  • the phosphor sheet 3 is temporarily fixed to the temporary fixing sheet 2, and then the element placement step shown in FIG. 1B is performed.
  • the first cutting step shown in FIG. 1D and the second cutting step shown in FIG. 3H are sequentially performed. Therefore, each cutting process of a 1st cutting process and a 2nd cutting process can be reliably implemented with respect to each of the fluorescent substance sheet 3 and the sealing sheet 19 which were temporarily fixed to the temporary fixing sheet 2.
  • FIG. Therefore, the phosphor layer-sealing layer-attached optical semiconductor element 1 including the phosphor layer 24 having excellent dimensional accuracy and the sealing layer 25 having excellent dimensional accuracy can be manufactured.
  • the light reflection component can be contained in the sealing layer 25, so that the light emitted from the peripheral side surface 13 of the optical semiconductor element 10 can be reflected. Therefore, the phosphor layer-sealing layer-attached optical semiconductor element 1 having excellent light extraction efficiency can be manufactured.
  • the lower end portion of the cutting blade does not enter the pressure-sensitive adhesive layer 5 deeply.
  • the pressure-sensitive adhesive layer 5 can be penetrated deeply.
  • the lower end portion of the cutting blade does not enter deeply into the pressure-sensitive adhesive layer 5.
  • the pressure-sensitive adhesive layer 5 can be penetrated deeply.
  • the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D (from the upper side to the lower side) and the sealing of the cutting blade in the second cutting step shown in FIG. 3H is the same direction, but is not limited to this and may be a different direction.
  • the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D is changed from the upper side to the lower side
  • the contact direction of the cutting blade with respect to the sealing sheet 19 in the second cutting step is changed from the lower side to the upper side. It can also be. In that case, as shown in FIG.
  • the temporary fixing sheet 2 and the sealing sheet 19 are moved from the lower side to the upper side by the cutting blade (preferably the dicing saw 27). Cut in order. As a result, the sealing sheet 19 is cut together with the temporarily fixed sheet 2 into individual pieces.
  • the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D and the contact of the cutting blade with the sealing sheet 19 in the second cutting step shown in FIG. 3H. make the direction the same.
  • the cutting blade has only to be arranged in one direction with respect to the phosphor sheet 3 and the sealing sheet 19, specifically, only on the upper side. Can be simplified. Further, since the temporarily fixed sheet 2 is not cut, it is possible to prevent the handling property of the temporarily fixed sheet 2 from being deteriorated.
  • the light emitting surface 12 of the optical semiconductor element 10 is brought into contact with the phosphor sheet 3 in the element arranging step, but the present invention is not limited to this.
  • the electrode surface 11 of the optical semiconductor element 10 can be brought into contact with the phosphor sheet 3. In that case, although not shown, the light emitting surface 12 is exposed in the removing step (see FIG. 2G).
  • the upper surface 23 of the sealing sheet 19 is wiped with a solvent in the removing step shown in FIG. 2G.
  • the upper end portion of the sealing sheet 19 can be etched and grinded, for example.
  • grinding may damage the electrode 14, it is preferably etched.
  • the upper surface 23 of the sealing sheet 19 is wiped with a solvent. According to this method, the upper end portion of the sealing sheet 19 can be removed, and the upper surface and the side surface of the electrode 14 can be reliably, quickly and easily exposed.
  • the upper end portion of the sealing sheet 19 can be removed by a pressure-sensitive adhesive sheet (not shown). Specifically, the pressure-sensitive adhesive sheet is pressure-bonded to the upper surface 23 of the sealing sheet 19 wiped with a solvent, and then the pressure-sensitive adhesive sheet is peeled off.
  • the upper end portion of the sealing sheet 19 can be removed with a cloth such as a buff, for example, a brush or a polishing member such as a water blast.
  • the B-stage sealing sheet 19 provided in the sealing member 21 is compression-molded to form the first gap 15 and the second gap. 16 is filled.
  • the sheet arrangement process is not limited to the above.
  • transfer molding may be performed using a B-stage sealing composition.
  • the A-stage sealing composition varnish can be applied or dripped (potted) onto the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10.
  • coating, and dropping preferably, coating and dropping are used.
  • the A-stage varnish applied and dripped onto the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10 is made into a B-stage to form the sealing sheet 19. .
  • the sheet placement step (see FIG. 2E) and the removal step (see FIG. 2G) are performed.
  • a sheet forming step of forming the sealing sheet 19 so as to fill the second gap 16 and cover the peripheral side surface 13 of the optical semiconductor element 10 can also be performed.
  • the sheet placement process for covering the electrode surface 11 and the upper and side surfaces of the electrode 14 with the sealing sheet 19 is not performed, and FIG. 2G is referred to.
  • the sealing sheet 19 is filled in the first gap 15 and the second gap 16 so that the electrode surface 11 and the upper and side surfaces of the electrode 14 are exposed and the peripheral side surface 13 and the side surface 22 are covered.
  • the varnish first gap 15 and the second gap 16 of the A stage are dropped.
  • a sheet placement step (see FIG. 2E) and a removal step (see FIG. 2G) are performed.
  • the phosphor sheet 3 is changed from the first release sheet 6 to the temporarily fixed sheet 2.
  • the present invention is not limited to this, and the phosphor sheet 3 can be directly formed on the surface of the temporary fixing sheet 2 (specifically, the upper surface of the pressure-sensitive adhesive layer 5).
  • the varnish of the fluorescent composition is applied to the surface of the temporary fixing sheet 2, and then this is B-staged. With this method, it is not necessary to use the first release sheet 6, so that the phosphor sheet 3 can be easily formed.
  • the phosphor sheet 3 is temporarily fixed to the temporary fixing sheet 2, and then, as shown in FIG. 3H, the optical semiconductor with the phosphor layer-sealing layer is provided.
  • the element 1 is peeled from the temporary fixing sheet 2.
  • the phosphor layer-sealing layer-attached optical semiconductor element 1 can be manufactured without using the temporary fixing sheet 2.
  • the phosphor layer-sealing layer-attached optical semiconductor element 1 is manufactured using the temporary fixing sheet 2.
  • the respective cutting processes of the first cutting step and the second cutting step are performed on each of the phosphor sheet 3 and the sealing sheet 19 temporarily fixed to the temporary fixing sheet 2. It can be implemented reliably.
  • the B-stage phosphor sheet 3 is prepared as shown by the phantom lines in FIG. 1A.
  • the C-stage phosphor sheet 3 is prepared and temporarily prepared. It can also be temporarily fixed to the fixing sheet 2.
  • the C-stage phosphor sheet 3 is temporarily fixed on the temporary fixing sheet 2, and then, as shown in FIG. 1B, on the upper surface of the phosphor sheet 3, for example, An adhesive layer (not shown in FIG. 1B) made of a thermosetting resin or the like is provided. Thereafter, the optical semiconductor element 10 is temporarily fixed to the upper surface of the phosphor sheet 3 of the C stage. Thereafter, as shown in FIG. 1C, they are put into an oven 17, the adhesive layer is heated and cured, and the optical semiconductor element 10 is bonded to the upper surface of the phosphor sheet 3 by the adhesive layer. It is also possible to provide an adhesive layer on the upper surface of the phosphor sheet 3 in advance, and then temporarily fix the C-stage phosphor sheet 3 provided with the adhesive layer to the temporarily fixing sheet 2.
  • the above-described adhesive layer is not provided, and the optical semiconductor element 10 is placed on the upper surface of the phosphor sheet 3 based on the tackiness described above. Then, as shown in FIG. 1C, the phosphor sheet 3 is further heated to bond the optical semiconductor element 10 to the upper surface of the phosphor sheet 3.
  • the phosphor sheet 3 is formed from a B-stage or C-stage phosphor composition containing a phosphor and a curable resin.
  • the phosphor sheet 3 is formed from phosphor ceramics. You can also.
  • Such a phosphor sheet 3 is a phosphor ceramic plate formed in a plate shape from the above-described phosphor ceramic (fired body).
  • the phosphor sheet 3 described above is temporarily fixed on the temporary fixing sheet 2, and then an adhesive layer made of, for example, a thermosetting resin is provided on the upper surface of the phosphor sheet 3. Thereafter, as shown in FIG. 1C, they are put into an oven 17, the adhesive layer is heated and cured, and the optical semiconductor element 10 is bonded to the upper surface of the phosphor sheet 3 by the adhesive layer.
  • an adhesive layer made of, for example, a thermosetting resin
  • the removal process and the C stage process are sequentially performed. Specifically, as shown in FIG. 4B, first, a removal process is performed, and then a C-staging process is performed as shown in FIG. 4C.
  • the removing step the upper end portion of the B-stage sealing sheet 19 is removed.
  • a method using a pressure-sensitive adhesive sheet, a method using a solvent, and a method using an abrasive member are employed. These are used alone or in combination.
  • the removal process can be performed before and after the C-stage process. For example, first, the upper end of the B-stage sealing sheet 19 is wiped with a solvent, and then the sealing sheet 19 is made into a C-stage, and then the remaining portion at the upper end of the sealing sheet 19 is pressure-sensitive bonded. Remove by sheet.
  • a dicing saw 18 (an example of a cutting device) having the same blade thickness T1 from the radially inner side toward the outer side in “4.
  • First cutting step Use to cut the phosphor layer 26. That is, the side surface 22 has a flat surface along the thickness direction.
  • the second dicing saw (dicing blade, cutting device of the cutting device) in which the blade thickness becomes narrower from the radially inner side toward the outer side.
  • the phosphor sheet 3 is cut.
  • the second dicing saw 32 is narrower toward the outer side in the radial direction, and is connected to the two tapered surfaces 33 and 34 facing in the left-right direction and the outer radial edges (circumferential edge) of the two tapered surfaces. It has the end surface 35 continuously.
  • the slopes of the two tapered surfaces 33 and 34 are, for example, the same.
  • the angle ⁇ 1 of each of the two tapered surfaces 33 and 34 with respect to the virtual plane S2 along the radial direction is, for example, 10 degrees or more, preferably 30 degrees or more, and, for example, 60 degrees or less, preferably 80 Less than or equal to degrees.
  • the angle ⁇ 1 is a value obtained by subtracting 90 degrees (right angle) from an angle ⁇ formed by either one of the two tapered surfaces 33 and 34 and the peripheral end surface 35 of the second dicing saw 32 ( ⁇ 90). ).
  • the length in the width direction (length in the left-right direction in FIG. 5A) T6 of the peripheral end surface 35 is smaller than the width T7 of the center of the second dicing saw 32. Further, the width direction length T6 of the peripheral end surface 35 of the second dicing saw 32 is adjusted to a length capable of forming a third gap 26 (see FIG. 7E), which will be described later, in the sealing layer 25. 3 It is smaller than the width W1 of the gap 26 (the blade thickness T2 of the dicing saw 27).
  • the width direction length T6 of the peripheral end surface 35 of the second dicing saw 32 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 600 ⁇ m or less, preferably 400 ⁇ m or less. Further, the width direction length T6 of the peripheral end face 35 of the second dicing saw 32 is smaller than the interval L0 between the adjacent optical semiconductor elements 10, and specifically, for example, 90% or less, preferably about the interval L0. 80% or less, for example, 1% or more, specifically, for example, 600 ⁇ m or less, preferably 400 ⁇ m or less, for example, 10 ⁇ m or more.
  • the second gap 16 having a smaller opening cross-sectional area is formed toward the lower side.
  • the second gap 16 has a shape corresponding to the two tapered surfaces 33 and 34 of the second dicing saw 32.
  • the second gap 16 has a shape in which the opening cross-sectional area becomes smaller as it goes downward. Specifically, the second gap 16 has a shape in which the distance between the two side surfaces 22 extending along the thickness direction becomes narrower as viewed in a cross-sectional view.
  • An interval L4 between the lower end portions of the two side surfaces 22 facing one second gap 16 is substantially the same as the above-described width direction length T6 of the peripheral end surface 35 of the second dicing saw 32, specifically, For example, it is 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 600 ⁇ m or less, preferably 400 ⁇ m or less.
  • the blade thickness T2 of the dicing saw 27 is smaller than the interval L4 (see FIG. 5A) described above, and is, for example, 95% or less, preferably 90% with respect to the interval L4. % Or less, for example, 5% or more.
  • the blade thickness T2 of the dicing saw 27 is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, and, for example, 10 ⁇ m or more.
  • the width of the portion located outside the lower end edge of the side surface 22 of the phosphor layer 24 in plan view W3 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 600 ⁇ m or less, preferably 400 ⁇ m or less.
  • the interval W2 between the upper edge of the side surface 22 of the phosphor layer 24 and the peripheral side surface 13 of the optical semiconductor element 10 in plan view is, for example, It is 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the width W4 of the portion located between the peripheral side surface 13 of the optical semiconductor element 10 and the side surface of the sealing layer 25 in plan view is the thickness T3 of the phosphor layer 24, It is expressed by a formula.
  • W4 W2 + W3 + (T3 ⁇ tan ⁇ 2)
  • ⁇ 2 is an angle ⁇ 2 (see an enlarged view of FIG. 7F) formed by the side surface 22 of the phosphor layer 24 and the virtual plane S1 along the thickness direction of the phosphor layer 24, and the second dicing saw 32 (FIG. 5A) described above.
  • the angle ⁇ 1 is the same as one of the two tapered surfaces 33 and 34 with respect to the virtual plane along the radial direction.
  • the width W4 of the upper end portion of the sealing layer 25 is, for example, 20 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 600 ⁇ m or less.
  • the phosphor layer 24 is cut using the second dicing saw 32, and a substantially trapezoidal cross section having an upper base longer than the lower base
  • the second gap 16 having the following is formed.
  • the side surface 22 of the phosphor layer 24 can be easily tapered.
  • the side surface 22 of the phosphor layer 24 is the above-described tapered surface. As compared with the first embodiment (see FIG. 3J) that is a flat surface along the surface, it can be increased.
  • the method for manufacturing an optical semiconductor element with a phosphor layer-sealing layer is used for manufacturing an optical semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

This manufacturing method for optical semiconductor elements having phosphor layers and sealing layers, comprises: an element arrangement step for arranging a plurality of optical semiconductor elements at one side in the thickness direction of a phosphor sheet so as to be spaced from one another; a first cutting step for cutting the phosphor sheet between the plurality of optical semiconductor elements so as to form gaps penetrating the phosphor sheet in the thickness direction, to form a plurality of phosphor layers corresponding to the plurality of optical semiconductor elements, respectively; a sheet forming step for forming a sealing sheet so as to fill the gaps and cover side surfaces of the optical semiconductor elements; and a second cutting step for cutting the sealing sheet in the thickness direction to form a plurality of sealing layers corresponding to the plurality of optical semiconductor elements and the plurality of phosphor layers, respectively.

Description

蛍光体層-封止層付光半導体素子の製造方法Method for manufacturing optical semiconductor element with phosphor layer-sealing layer
 本発明は、蛍光体層-封止層付光半導体素子の製造方法、詳しくは、光半導体素子、蛍光体層および封止層を備える蛍光体層-封止層付光半導体素子の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a phosphor layer-encapsulating layer-attached optical semiconductor element, and more specifically, to a method for producing an optical semiconductor element, a phosphor layer, and a phosphor layer-encapsulating layer-attached optical semiconductor element. .
 従来、発光素子と、発光素子の上面を被覆する波長変換部材と、発光素子の側面および波長変換部材の側面を被覆し、光反射性材料を含有する封止部材とを備える発光装置が知られている。 Conventionally, a light-emitting device including a light-emitting element, a wavelength conversion member that covers the upper surface of the light-emitting element, a side surface of the light-emitting element and a side surface of the wavelength conversion member, and a sealing member that contains a light-reflective material is known. ing.
 このような発光装置では、発光素子の側面および波長変換部材の側面から漏れ出た光を、封止部材によって反射させて、発光効率を向上させている。 In such a light emitting device, the light leaking from the side surface of the light emitting element and the side surface of the wavelength conversion member is reflected by the sealing member to improve the light emission efficiency.
 そのような発光装置の製造方法として、以下の方法が提案されている(例えば、特許文献1参照。)。すなわち、まず、複数の発光素子を配線基板上にフリップチップ実装し、次いで、複数の波長変換部材のそれぞれを複数の発光素子のそれぞれの上に積層する。続いて、封止部材を構成する樹脂をスクリーン印刷する。具体的には、樹脂をスキージで押し広げて、封止部材の表面を、波長変換部材の発光面(表面)の面上に沿うように形成する。その後、複数の発光素子の間、および、複数の波長変換部材の間における封止部材を、ダイシングにより切り出している。 The following method has been proposed as a method for manufacturing such a light emitting device (see, for example, Patent Document 1). That is, first, a plurality of light emitting elements are flip-chip mounted on a wiring board, and then each of a plurality of wavelength conversion members is laminated on each of the plurality of light emitting elements. Subsequently, the resin constituting the sealing member is screen-printed. Specifically, the resin is spread with a squeegee, and the surface of the sealing member is formed along the surface of the light emitting surface (surface) of the wavelength conversion member. Thereafter, the sealing member between the plurality of light emitting elements and between the plurality of wavelength conversion members is cut out by dicing.
国際公開2009/069671International Publication 2009/069671
 しかし、特許文献1に記載の方法では、複数の波長変換部材のそれぞれを、複数の発光素子のそれぞれに対応して、1つずつ積層するので、優れた製造効率で発光装置を製造することができないという不具合がある。 However, in the method described in Patent Document 1, since each of the plurality of wavelength conversion members is stacked one by one corresponding to each of the plurality of light emitting elements, a light emitting device can be manufactured with excellent manufacturing efficiency. There is a bug that you can not.
 また、特許文献1に記載の方法では、発光素子に対する波長変換部材の位置精度が低下し易い。そのため、発光装置における光の取出効率を十分に向上させることができないという不具合がある。 In the method described in Patent Document 1, the positional accuracy of the wavelength conversion member with respect to the light emitting element is likely to be lowered. Therefore, there is a problem that the light extraction efficiency in the light emitting device cannot be sufficiently improved.
 本発明の目的は、蛍光体層の光半導体素子に対する位置精度を向上させて、光の取出効率に優れる蛍光体層-封止層付光半導体素子を、優れた製造効率で製造することのできる、蛍光体層-封止層付光半導体素子の製造方法を提供することにある。 An object of the present invention is to improve the positional accuracy of a phosphor layer with respect to an optical semiconductor element, and to produce an optical semiconductor element with a phosphor layer-sealing layer having excellent light extraction efficiency with excellent manufacturing efficiency. Another object of the present invention is to provide a method for producing an optical semiconductor element with a phosphor layer-sealing layer.
 [1]本発明は、複数の光半導体素子を、蛍光体シートの厚み方向一方側に、互いに間隔を隔てて配置する素子配置工程と、前記複数の光半導体素子間の前記蛍光体シートを、前記蛍光体シートを厚み方向に貫通する隙間が形成されるように、切断して、前記複数の光半導体素子のそれぞれに対応する複数の蛍光体層のそれぞれを形成する第1切断工程と、封止シートを、前記隙間を充填し、かつ、前記光半導体素子の側面を被覆するように、形成するシート形成工程と、前記封止シートを厚み方向に沿って切断して、前記複数の光半導体素子のそれぞれおよび前記複数の蛍光体層のそれぞれに対応する、複数の封止層のそれぞれを形成する第2切断工程とを備えることを特徴とする、蛍光体層-封止層付光半導体素子の製造方法である。 [1] The present invention provides an element arranging step of arranging a plurality of optical semiconductor elements on one side in the thickness direction of the phosphor sheet at intervals, and the phosphor sheet between the plurality of optical semiconductor elements, A first cutting step of forming each of the plurality of phosphor layers corresponding to each of the plurality of optical semiconductor elements by cutting so as to form a gap penetrating the phosphor sheet in the thickness direction; A sheet forming step for forming a stop sheet so as to fill the gap and cover a side surface of the optical semiconductor element; and cutting the sealing sheet along a thickness direction, and the plurality of optical semiconductors And a second cutting step of forming each of the plurality of sealing layers corresponding to each of the elements and each of the plurality of phosphor layers, and a phosphor layer-optical semiconductor device with a sealing layer It is a manufacturing method.
 この方法によれば、第1切断工程において、複数の光半導体素子間の蛍光体シートを切断して、隙間を所望の寸法で確実に形成できるので、隙間の寸法精度を向上させることができる。また、シート形成工程において、封止シートを複数の蛍光体層間の隙間に充填し、続いて、第2切断工程において、封止シートを所望の寸法で確実に切断するので、隙間に充填された封止層の寸法精度を向上させることができる。そのため、光の取出効率に優れる蛍光体層-封止層付光半導体素子を製造することができる。 According to this method, in the first cutting step, the phosphor sheet between the plurality of optical semiconductor elements can be cut and the gap can be reliably formed with a desired dimension, so that the dimensional accuracy of the gap can be improved. Further, in the sheet forming step, the sealing sheet is filled in the gaps between the plurality of phosphor layers, and then in the second cutting step, the sealing sheet is surely cut to a desired size, so that the gap is filled. The dimensional accuracy of the sealing layer can be improved. Therefore, an optical semiconductor element with a phosphor layer-sealing layer that is excellent in light extraction efficiency can be manufactured.
 また、この方法は、蛍光体シートおよび封止シートを切断するので、製造効率に優れる。 In addition, this method is excellent in manufacturing efficiency because the phosphor sheet and the sealing sheet are cut.
 [2]本発明は、前記複数の光半導体素子のそれぞれは、電極が設けられる電極面、前記電極面に対向し、発光層が設けられる発光面、および、前記電極面と前記発光面との周端縁を連結する前記側面を有し、前記素子配置工程では、前記発光面を前記蛍光体シートに配置し、前記シート形成工程は、前記封止シートを、前記隙間を充填し、前記側面および前記電極面を被覆するように、形成する電極面被覆工程と、前記封止シートの厚み方向一方側端部を除去して、前記電極面を露出させる除去工程とを備えることを特徴とする、上記[1]に記載の蛍光体層-封止層付光半導体素子の製造方法である。 [2] In the present invention, each of the plurality of optical semiconductor elements includes an electrode surface on which an electrode is provided, a light emitting surface facing the electrode surface and provided with a light emitting layer, and the electrode surface and the light emitting surface. The side surface connecting peripheral edges, and in the element arranging step, the light emitting surface is arranged on the phosphor sheet, and the sheet forming step fills the gap with the sealing sheet, and the side surface And an electrode surface covering step to be formed so as to cover the electrode surface, and a removing step of removing one end in the thickness direction of the sealing sheet to expose the electrode surface. The method for producing an optical semiconductor element with a phosphor layer-sealing layer according to [1] above.
 この方法によれば、電極面被覆工程において、封止シートを隙間に確実に充填し、封止シートにより光半導体素子の側面を確実に被覆することができる。また、除去工程において、電極面を露出させて、これを基板と確実に電気的に接続させることができる。 According to this method, in the electrode surface covering step, the sealing sheet can be reliably filled in the gap, and the side surface of the optical semiconductor element can be reliably covered with the sealing sheet. Further, in the removing step, the electrode surface can be exposed and reliably connected to the substrate.
 [3]本発明は、前記除去工程では、前記封止シートの前記厚み方向一方面を溶媒で拭くことを特徴とする、上記[2]に記載の蛍光体層-封止層付光半導体素子の製造方法である。 [3] The phosphor layer-sealing layer-attached optical semiconductor element according to the above [2], wherein in the removing step, the one surface in the thickness direction of the sealing sheet is wiped with a solvent in the removing step It is a manufacturing method.
 この方法によれば、除去工程において、封止シートの厚み方向一方側端部を簡単に除去することができる。 According to this method, in the removing step, one end portion in the thickness direction of the sealing sheet can be easily removed.
 [4]本発明は、前記シート形成工程は、Bステージの前記封止シートを、前記隙間を充填し、前記側面を被覆するように、配置するシート配置工程と、前記シート配置工程後、かつ、前記第2切断工程の前に、前記Bステージの封止シートをCステージ化するCステージ化工程とを備えることを特徴とする、上記[1]~[3]のいずれか一項に記載の蛍光体層-封止層付光半導体素子の製造方法である。 [4] In the present invention, in the sheet forming step, the sealing sheet of the B stage is disposed so as to fill the gap and cover the side surface, after the sheet arranging step, and The method according to any one of [1] to [3], further comprising a C-stage forming step of converting the B-stage sealing sheet into a C-stage before the second cutting step. This is a method for producing an optical semiconductor element with a phosphor layer-sealing layer.
 この方法によれば、シート配置工程において、Bステージの封止シートによって、隙間を簡単に充填し、側面を簡単に被覆することができる。また、Cステージ化工程において、Bステージの封止シートを、Cステージ化し、その後、第2切断工程を実施するので、Cステージの封止シートを優れた寸法精度で切断することができる。 According to this method, the gap can be easily filled and the side surfaces can be easily covered with the B-stage sealing sheet in the sheet arranging step. Further, in the C-stage forming process, the B-stage sealing sheet is converted to the C-stage, and then the second cutting process is performed, so that the C-stage sealing sheet can be cut with excellent dimensional accuracy.
 [5]本発明は、前記第1切断工程および前記第2切断工程を、ともに、切断刃を用いて実施し、前記第1切断工程では、前記切断刃を前記蛍光体シートの厚み方向一方側に配置し、前記切断刃を前記厚み方向一方側から前記蛍光体シートに当接させ、前記第2切断工程では、前記切断刃を前記封止シートの厚み方向一方側に配置し、前記切断刃を前記厚み方向一方側から前記封止シートに当接させることを特徴とする、上記[1]~[4]のいずれか一項に記載の蛍光体層-封止層付光半導体素子の製造方法である。 [5] In the present invention, both the first cutting step and the second cutting step are performed using a cutting blade, and in the first cutting step, the cutting blade is disposed on one side in the thickness direction of the phosphor sheet. The cutting blade is brought into contact with the phosphor sheet from one side in the thickness direction, and in the second cutting step, the cutting blade is arranged on one side in the thickness direction of the sealing sheet, and the cutting blade The method for producing an optical semiconductor element with a phosphor layer-sealing layer according to any one of the above [1] to [4], wherein the material is brought into contact with the sealing sheet from one side in the thickness direction Is the method.
 この方法によれば、第1切断工程における切断刃の蛍光体シートに対する当接方向と、第2切断工程における切断刃の封止シートに対する当接方向とが、同一方向である。そのため、第1切断工程および第2切断工程を簡易かつ画一的に実施することができる。 According to this method, the contact direction of the cutting blade with respect to the phosphor sheet in the first cutting step and the contact direction of the cutting blade with respect to the sealing sheet in the second cutting step are the same direction. Therefore, the first cutting step and the second cutting step can be performed easily and uniformly.
 [6]本発明は、前記素子配置工程の前に、前記蛍光体シートを、仮固定シートに仮固定する仮固定工程と、前記第2切断工程の後に、前記光半導体素子、前記蛍光体層および前記封止層を備える蛍光体層-封止層付光半導体素子を前記仮固定シートから剥離する剥離工程とをさらに備えることを特徴とする、上記[1]~[5]のいずれか一項に記載の蛍光体層-封止層付光半導体素子の製造方法である。 [6] In the present invention, the optical semiconductor element and the phosphor layer are provided after the temporary fixing step of temporarily fixing the phosphor sheet to the temporary fixing sheet and the second cutting step before the element arranging step. And [1] to [5], further comprising: a phosphor layer including the sealing layer-a peeling step of peeling the optical semiconductor element with the sealing layer from the temporary fixing sheet. The method for producing a phosphor layer-sealing layer-attached optical semiconductor device according to the item.
 この方法によれば、仮固定工程において、蛍光体シートを仮固定シートに仮固定し、その後、素子配置工程を実施し、続いて、第1切断工程および第2切断工程を順にする。そのため、第1切断工程および第2切断工程のそれぞれの切断処理を、仮固定シートに仮固定された蛍光体シートおよび封止シートのそれぞれに対して確実に実施することができる。そのため、寸法精度に優れる蛍光体層および封止層を備える蛍光体層-封止層付光半導体素子を製造することができる。その結果、光の取出効率により一層優れる蛍光体層-封止層付光半導体素子を製造することができる。 According to this method, in the temporary fixing step, the phosphor sheet is temporarily fixed to the temporary fixing sheet, and then the element placement step is performed, and then the first cutting step and the second cutting step are sequentially performed. Therefore, each cutting process of a 1st cutting process and a 2nd cutting process can be reliably implemented with respect to each of the fluorescent substance sheet and the sealing sheet which were temporarily fixed to the temporarily fixing sheet. Therefore, a phosphor layer-sealing layer-attached optical semiconductor element including a phosphor layer and a sealing layer with excellent dimensional accuracy can be manufactured. As a result, it is possible to manufacture an optical semiconductor element with a phosphor layer-sealing layer that is more excellent in light extraction efficiency.
 [7]本発明は、前記封止シートが、光反射成分を含有することを特徴とする、上記[1]~[6]のいずれか一項に記載の蛍光体層-封止層付光半導体素子の製造方法である。 [7] The phosphor layer-light with sealing layer according to any one of [1] to [6], wherein the sealing sheet contains a light reflecting component. It is a manufacturing method of a semiconductor element.
 この方法によれば、封止層に光反射成分を含有させることができ、そのため、光半導体素子の側面から発光された光を反射させることができる。そのため、光の取出効率により一層優れる蛍光体層-封止層付光半導体素子を製造することができる。 According to this method, the light reflection component can be contained in the sealing layer, and therefore, the light emitted from the side surface of the optical semiconductor element can be reflected. Therefore, an optical semiconductor element with a phosphor layer-sealing layer that is more excellent in light extraction efficiency can be manufactured.
 本発明によれば、光の取出効率に優れる蛍光体層-封止層付光半導体素子を効率よく製造することができる。 According to the present invention, an optical semiconductor element with a phosphor layer-sealing layer that is excellent in light extraction efficiency can be efficiently manufactured.
図1A~図1Dは、本発明の蛍光体層-封止層付光半導体素子の製造方法の第1実施形態の工程図であり、図1Aは、仮固定工程図1Bは、素子配置工程、図1Cは、第1加熱工程、図1Dは、第1切断工程を示す。1A to 1D are process diagrams of a first embodiment of a method of manufacturing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention. FIG. 1A is a temporary fixing process. FIG. 1B is an element placement process. FIG. 1C shows a first heating step, and FIG. 1D shows a first cutting step. 図2E~図2Gは、図1Dに引き続き、本発明の蛍光体層-封止層付光半導体素子の製造方法の第1実施形態の工程図であり、図2Eは、シート配置工程、図2Fは、Cステージ化工程、図2Gは、除去工程を示す。2E to 2G are process diagrams of the first embodiment of the method for manufacturing the optical semiconductor element with the phosphor layer-sealing layer of the present invention, following FIG. 1D, and FIG. FIG. 2G shows a removal process. 図3Hおよび図3Iは、図2Gに引き続き、本発明の蛍光体層-封止層付光半導体素子の製造方法の第1実施形態の工程図であり、図3Hは、第2切断工程、図3Iは、剥離工程を示し、図3Jは、図3Iに示す蛍光体層-封止層付光半導体素子を用いて光半導体装置を製造する工程を示す。3H and FIG. 3I are process diagrams of the first embodiment of the method for manufacturing an optical semiconductor element with a phosphor layer-sealing layer of the present invention, following FIG. 2G, and FIG. 3H is a second cutting process, 3I shows a peeling step, and FIG. 3J shows a step of manufacturing an optical semiconductor device using the optical semiconductor element with phosphor layer-sealing layer shown in FIG. 3I. 図4A~図4Cは、本発明の蛍光体層-封止層付光半導体素子の製造方法の第2実施形態の工程図の一部であり、図4Aは、シート配置工程図4Bは、除去工程図4Cは、Cステージ化工程を示す。FIGS. 4A to 4C are a part of process diagrams of the second embodiment of the method for manufacturing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention, FIG. 4A is a sheet arrangement process, and FIG. 4B is a removal process. Process drawing 4C shows a C-staging process. 図5Aおよび図5Aは、本発明の蛍光体層-封止層付光半導体素子の製造方法の第3実施形態の工程図であり、図5Aは、第1切断工程、図5Bは、シート配置工程を示す。5A and 5A are process diagrams of a third embodiment of the method for manufacturing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention. FIG. 5A is a first cutting process, and FIG. 5B is a sheet arrangement. A process is shown. 図6Cおよび図6Dは、図5Bに引き続き、本発明の蛍光体層-封止層付光半導体素子の製造方法の第3実施形態の工程図であり、図6Cは、Cステージ化工程、図6Dは、除去工程を示す。6C and 6D are process diagrams of the third embodiment of the method for manufacturing the optical semiconductor element with the phosphor layer-sealing layer of the present invention, following FIG. 5B, and FIG. 6D shows a removal process. 図7Eおよび図7Fは、図6Dに引き続き、本発明の蛍光体層-封止層付光半導体素子の製造方法の第3実施形態の工程図であり、図7Eは、第2切断工程、図7Fは、剥離工程を示し、図7Gは、図7Fに示す蛍光体層-封止層付光半導体素子を用いて光半導体装置を製造する工程を示す。FIG. 7E and FIG. 7F are process diagrams of the third embodiment of the method for manufacturing an optical semiconductor element with a phosphor layer-sealing layer of the present invention, following FIG. 6D, and FIG. 7F shows a peeling process, and FIG. 7G shows a process for manufacturing an optical semiconductor device using the optical semiconductor element with phosphor layer-sealing layer shown in FIG. 7F.
 図1A~図3Jにおいて、紙面上下方向は、上下方向(第1方向、厚み方向の一例)であり、紙面上側が上側(第1方向一方側、厚み方向一方側)、紙面下側が下側(第1方向他方側、厚み方向他方側)である。紙面左右方向は、左右方向(第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。 In FIG. 1A to FIG. 3J, the vertical direction of the paper surface is the vertical direction (first direction, one example of the thickness direction), the upper side of the paper surface is the upper side (one side in the first direction, the one thickness direction), and the lower side of the paper surface is the lower side ( The other side in the first direction and the other side in the thickness direction). The left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction), the left side on the paper surface is the left side (second side in the second direction), and the right side on the paper surface is the right side (the other side in the second direction). The paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (the other side in the third direction). is there. Specifically, it conforms to the direction arrow in each figure.
  <第1実施形態>
 本発明の蛍光体層-封止層付光半導体素子の製造方法の第1実施形態は、仮固定工程(図1A参照)と、素子配置工程(図1B参照)と、第1加熱工程(図1C参照)と、第1切断工程(図1D参照)と、電極面被覆工程の一例としてのシート配置工程(図2E参照)と、Cステージ化工程(図2F参照)と、除去工程(図2G参照)と、第2切断工程(図3H参照)と、剥離工程(図3I参照)とを備える。この第1実施形態では、仮固定工程と、素子配置工程と、第1加熱工程と、第1切断工程と、シート配置工程と、Cステージ化工程と、除去工程と、第2切断工程と、剥離工程とが、順に実施される。以下、各工程を詳説する。
<First Embodiment>
The first embodiment of the method for producing a phosphor layer-sealing layer-attached optical semiconductor device of the present invention includes a temporary fixing step (see FIG. 1A), an element placement step (see FIG. 1B), and a first heating step (FIG. 1). 1C), a first cutting step (see FIG. 1D), a sheet placement step (see FIG. 2E) as an example of an electrode surface covering step, a C-staging step (see FIG. 2F), and a removal step (FIG. 2G). Reference), a second cutting step (see FIG. 3H), and a peeling step (see FIG. 3I). In the first embodiment, a temporary fixing step, an element placement step, a first heating step, a first cutting step, a sheet placement step, a C-staging step, a removal step, a second cutting step, A peeling process is implemented in order. Hereinafter, each process is explained in detail.
 1. 仮固定工程
 図1Aに示すように、仮固定工程を実施するには、まず、仮固定シート2を用意し、次いで、蛍光体シート3を仮固定シート2の表面に仮固定する。
1. Temporary Fixing Step As shown in FIG. 1A, in order to perform the temporary fixing step, first, a temporary fixing sheet 2 is prepared, and then the phosphor sheet 3 is temporarily fixed to the surface of the temporary fixing sheet 2.
 仮固定シート2は、支持板4と、支持板4の上に配置される感圧接着層5とを備えている。仮固定シート2は、好ましくは、支持板4と感圧接着層5とのみからなる。 The temporary fixing sheet 2 includes a support plate 4 and a pressure-sensitive adhesive layer 5 disposed on the support plate 4. The temporary fixing sheet 2 preferably includes only the support plate 4 and the pressure-sensitive adhesive layer 5.
 支持板4は、前後方向および左右方向に連続する層(平板)形状を有している。支持板4は、例えば、硬質の材料から形成されている。そのような材料としては、例えば、ガラス、セラミックス、例えば、各種金属などが挙げられる。また、支持板4は、例えば、ポリオレフィンフィルム(ポリエチレンフィルムなど)、ポリエステルフィルム(PETなど)などのポリマーフィルムであってもよい。支持板4の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。 The support plate 4 has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction. The support plate 4 is made of, for example, a hard material. Examples of such materials include glass, ceramics, and various metals. The support plate 4 may be a polymer film such as a polyolefin film (such as a polyethylene film) or a polyester film (such as PET). The thickness of the support plate 4 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 2,000 μm or less, preferably 1,000 μm or less.
 感圧接着層5は、支持板4の上面に配置されている。感圧接着層5は、支持板4の上面において、シート形状を有している。感圧接着層5は、例えば、耐熱性に優れる感圧接着剤から形成されている。感圧接着層5の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、1,000μm以下、好ましくは、500μm以下である。感圧接着層5の前後方向長さおよび左右方向長さは、支持板4のそれらに対して小さいかまたはそれらと同じ大きさである。 The pressure sensitive adhesive layer 5 is disposed on the upper surface of the support plate 4. The pressure-sensitive adhesive layer 5 has a sheet shape on the upper surface of the support plate 4. The pressure sensitive adhesive layer 5 is formed from, for example, a pressure sensitive adhesive having excellent heat resistance. The thickness of the pressure-sensitive adhesive layer 5 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 1,000 μm or less, preferably 500 μm or less. The length in the front-rear direction and the length in the left-right direction of the pressure-sensitive adhesive layer 5 are smaller than or equal to those of the support plate 4.
 蛍光体シート3を仮固定シート2の表面に仮固定するには、まず、蛍光体シート3を用意する。図1Aの仮想線で示すように、蛍光体シート3は、蛍光体部材7に備えられている。 In order to temporarily fix the phosphor sheet 3 to the surface of the temporarily fixing sheet 2, first, the phosphor sheet 3 is prepared. As shown by the phantom lines in FIG. 1A, the phosphor sheet 3 is provided on the phosphor member 7.
 蛍光体部材7は、第1剥離シート6と、第1剥離シート6に支持される蛍光体シート3とを備える。好ましくは、蛍光体部材7は、第1剥離シート6と蛍光体シート3とのみからなる。 The phosphor member 7 includes a first release sheet 6 and a phosphor sheet 3 supported by the first release sheet 6. Preferably, the phosphor member 7 includes only the first release sheet 6 and the phosphor sheet 3.
 第1剥離シート6は、前後方向および左右方向に連続する層(平板)形状を有している。第1剥離シート6は、例えば、可撓性の材料から形成されている。そのような材料としては、例えば、ポリオレフィン(ポリエチレンなど)、ポリエステルフィルム(PETなど)などのポリマーが挙げられる。また、第1剥離シート6は、ガラス板、セラミックスシート、各種金属箔であってもよい。第1剥離シート6の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。 The first release sheet 6 has a layer (flat plate) shape continuous in the front-rear direction and the left-right direction. The first release sheet 6 is made of, for example, a flexible material. Examples of such a material include polymers such as polyolefin (polyethylene and the like) and polyester film (PET and the like). The first release sheet 6 may be a glass plate, a ceramic sheet, or various metal foils. The thickness of the 1st peeling sheet 6 is 1 micrometer or more, for example, Preferably, it is 10 micrometers or more, for example, is 2,000 micrometers or less, Preferably, it is 1,000 micrometers or less.
 蛍光体シート3は、第1剥離シート6の下面に配置されており、前後方向および左右方向に連続する層(平板)形状を有している。蛍光体シート3は、例えば、蛍光体および硬化性樹脂を含有するBステージの蛍光組成物から形成されている。蛍光組成物は、好ましくは、蛍光体および硬化性樹脂からなる。 The phosphor sheet 3 is disposed on the lower surface of the first release sheet 6 and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction. The phosphor sheet 3 is formed from, for example, a B-stage phosphor composition containing a phosphor and a curable resin. The phosphor composition is preferably composed of a phosphor and a curable resin.
 蛍光体は、光半導体素子10(図1B参照)から発光される光を波長変換する。蛍光体としては、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。 The phosphor converts the wavelength of light emitted from the optical semiconductor element 10 (see FIG. 1B). Examples of the phosphor include a yellow phosphor that can convert blue light into yellow light, and a red phosphor that can convert blue light into red light.
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。 Examples of the yellow phosphor include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca-α-SiAlON.
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 蛍光体として、好ましくは、黄色蛍光体、より好ましくは、ガーネット型蛍光体が挙げられる。 The phosphor is preferably a yellow phosphor, more preferably a garnet phosphor.
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。 Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下でもある。 The average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 200 μm or less, preferably 100 μm or less. But there is.
 蛍光体は、単独使用または併用することができる。 Fluorescent substances can be used alone or in combination.
 蛍光体の配合割合は、蛍光組成物に対して、例えば、5質量%以上、好ましくは、10質量%以上であり、また、例えば、80質量%以下、好ましくは、70質量%以下である。 The blending ratio of the phosphor is, for example, 5% by mass or more, preferably 10% by mass or more, and for example, 80% by mass or less, preferably 70% by mass or less with respect to the phosphor composition.
 硬化性樹脂は、蛍光組成物において蛍光体を均一に分散させるマトリクスであって、また、Bステージ状態となることができ、それによって、蛍光体シート3が感圧接着層5および光半導体素子10(図1B参照)に対して感圧接着する硬化性樹脂が挙げられる。硬化性樹脂としては、例えば、熱硬化性樹脂、活性エネルギー線硬化性樹脂などが挙げられ、好ましくは、熱硬化性樹脂が挙げられる。 The curable resin is a matrix in which the phosphor is uniformly dispersed in the phosphor composition, and can be in a B-stage state, so that the phosphor sheet 3 is bonded to the pressure-sensitive adhesive layer 5 and the optical semiconductor element 10. Examples thereof include curable resins that are pressure-sensitively bonded to (see FIG. 1B). Examples of the curable resin include a thermosetting resin and an active energy ray curable resin, and a thermosetting resin is preferable.
 熱硬化性樹脂としては、例えば、2段反応硬化性樹脂、1段反応硬化性樹脂が挙げられる。 Examples of the thermosetting resin include a two-stage reaction curable resin and a one-stage reaction curable resin.
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の弾性率よりも小さい半固体または固体状態である。 The two-stage reaction curable resin has two reaction mechanisms. In the first stage reaction, the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained. To C-stage (complete curing). That is, the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions. The B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage. A semi-solid or solid state that is smaller than the elastic modulus of the state.
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。このような1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂である。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。そのため、1段反応硬化性樹脂は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する硬化性樹脂を含まない。 The first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction. Such a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state. It is a thermosetting resin that can be C-staged (completely cured) from the B-stage state when the reaction is resumed. That is, such a thermosetting resin is a thermosetting resin that can be in a B-stage state. Therefore, the first-stage reaction curable resin cannot be controlled to stop in the middle of the first-stage reaction, that is, cannot enter the B-stage state, and is changed from the A-stage state to the C-stage (completely cured). ) Does not contain curable resin.
 要するに、熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。 In short, the thermosetting resin is a thermosetting resin that can be in a B-stage state.
 熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。熱硬化性樹脂としては、好ましくは、シリコーン樹脂、エポキシ樹脂が挙げられ、より好ましくは、シリコーン樹脂が挙げられる。 Examples of the thermosetting resin include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin. As a thermosetting resin, Preferably, a silicone resin and an epoxy resin are mentioned, More preferably, a silicone resin is mentioned.
 上記した熱硬化性樹脂は、同一種類または複数種類のいずれでもよい。 The above-mentioned thermosetting resin may be the same type or a plurality of types.
 シリコーン樹脂としては、透明性、耐久性、耐熱性、耐光性の観点から、例えば、付加反応硬化型シリコーン樹脂組成物、縮合・付加反応硬化型シリコーン樹脂組成物などのシリコーン樹脂組成物が挙げられ、好ましくは、付加反応硬化型シリコーン樹脂組成物が挙げられる。シリコーン樹脂は、単独で使用してもよく、あるいは、併用することもできる。 Examples of the silicone resin include silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance. Preferably, an addition reaction curable silicone resin composition is used. Silicone resins may be used alone or in combination.
 付加反応硬化型シリコーン樹脂組成物は、1段反応硬化性樹脂組成物であって、例えば、アルケニル基含有ポリシロキサンと、ヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有する。付加反応硬化型シリコーン樹脂組成物として、好ましくは、分子中にフェニル基を含有していてもよいアルケニル基含有ポリシロキサン(例えば、ビニル基含有ジフェニルシロキサン、ビニル基含有メチルフェニルシロキサンおよびビニル基含有ジメチルシロキサンをモノマーとして含有するビニル基含有ポリシロキサン)と、分子中にフェニル基を含有していてもよいヒドロシリル基含有ポリシロキサン(例えば、ヒドロシリル基含有ジフェニルシロキサン、ヒドロシリル基含有メチルフェニルシロキサンおよびヒドロシリル基含有ジメチルシロキサンをモノマーとして含有するヒドロシリル基含有ポリシロキサン)と、ヒドロシリル化触媒とを含有するフェニル系シリコーン樹脂組成物が挙げられる。但し、フェニル系シリコーン樹脂組成物中、アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンのうち、少なくとも一方は、フェニル基を含有する。なお、フェニル系シリコーン樹脂組成物の屈折率は、例えば、1.45以上、さらには、1.50以上である。 The addition reaction curable silicone resin composition is a one-stage reaction curable resin composition and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst. The addition reaction curable silicone resin composition is preferably an alkenyl group-containing polysiloxane which may contain a phenyl group in the molecule (for example, vinyl group-containing diphenylsiloxane, vinyl group-containing methylphenylsiloxane and vinyl group-containing dimethyl). Vinyl group-containing polysiloxane containing siloxane as a monomer) and hydrosilyl group-containing polysiloxane which may contain a phenyl group in the molecule (for example, hydrosilyl group-containing diphenylsiloxane, hydrosilyl group-containing methylphenylsiloxane and hydrosilyl group-containing) And a phenyl silicone resin composition containing a hydrosilyl group-containing polysiloxane containing dimethylsiloxane as a monomer and a hydrosilylation catalyst. However, in the phenyl silicone resin composition, at least one of the alkenyl group-containing polysiloxane and the hydrosilyl group-containing polysiloxane contains a phenyl group. In addition, the refractive index of a phenyl-type silicone resin composition is 1.45 or more, for example, Furthermore, it is 1.50 or more.
 上記した付加反応硬化型シリコーン樹脂組成物は、まず、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を配合することによって、Aステージ(液体)状態として調製されて使用される。 The above-mentioned addition reaction curable silicone resin composition is prepared and used as an A stage (liquid) state by first blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
 付加反応硬化型シリコーン樹脂組成物は、所望条件の加熱により、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化付加反応を生じ、その後、ヒドロシリル化付加反応が、一旦、停止する。これによって、Aステージ状態からBステージ(半硬化)状態となることができる。 The addition reaction curable silicone resin composition undergoes a hydrosilylation addition reaction between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane by heating under a desired condition, and then The hydrosilylation addition reaction stops once. As a result, the A stage state can be changed to the B stage (semi-cured) state.
 その後、付加反応硬化型シリコーン樹脂組成物は、さらなる所望条件の加熱により、上記したヒドロシリル化付加反応が再開されて、完結する。これによって、Bステージ状態からCステージ(完全硬化)状態となることができる。 Thereafter, the addition reaction curable silicone resin composition is completed by restarting the hydrosilylation addition reaction described above by further heating under desired conditions. As a result, the B stage state can be changed to the C stage (fully cured) state.
 縮合・付加反応硬化型シリコーン樹脂組成物は、2段反応硬化性樹脂であって、具体的には、例えば、特開2010-265436号公報、特開2013-187227号公報などに記載される第1~第8の縮合・付加反応硬化型シリコーン樹脂組成物、例えば、特開2013-091705号公報、特開2013-001815号公報、特開2013-001814号公報、特開2013-001813号公報、特開2012-102167号公報などに記載されるかご型オクタシルセスキオキサン含有シリコーン樹脂組成物などが挙げられる。なお、縮合・付加反応硬化型シリコーン樹脂組成物は、固体状であって、熱可塑性および熱硬化性を併有する。 The condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like. 1 to 8 condensation / addition reaction curable silicone resin compositions, for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A. The condensation / addition reaction curable silicone resin composition is solid and has both thermoplasticity and thermosetting properties.
 そして、上記した熱硬化性樹脂は、少なくともBステージ(半硬化)状態にあるときは、固体状である。そして、このような熱硬化性樹脂は、熱可塑性および熱硬化性を併有する。つまり、熱硬化性樹脂は、加熱により、一旦、可塑化した後、完全硬化する。より具体的には、熱硬化性樹脂は、昇温とともに、粘度が次第に下降し、その後、昇温を継続すると、粘度が次第に上昇する。 The above-mentioned thermosetting resin is in a solid state at least when it is in the B stage (semi-cured) state. And such a thermosetting resin has both thermoplasticity and thermosetting property. That is, the thermosetting resin is once plasticized by heating and then completely cured. More specifically, the thermosetting resin gradually decreases in viscosity as the temperature rises, and then gradually increases as the temperature rises.
 熱硬化性樹脂の配合割合は、蛍光体(および次に説明する光反射成分および/または添加剤)の配合割合の残部である。 The blending ratio of the thermosetting resin is the balance of the blending ratio of the phosphor (and the light reflection component and / or additive described below).
 蛍光組成物には、光反射成分(後述)および/または添加剤を、適宜の割合で含有することができる。 The fluorescent composition can contain a light reflection component (described later) and / or an additive in an appropriate ratio.
 この方法では、まず、蛍光体部材7を用意する。具体的には、まず、蛍光組成物を調製する。蛍光組成物を調製するには、上記した蛍光体と、熱硬化性樹脂と、必要により配合される光反射成分および/または添加剤とを配合して、蛍光組成物のワニスを調製する。続いて、ワニスを、第1剥離シート6の表面に塗布する。その後、蛍光組成物を、加熱(ベイク)する。 In this method, first, the phosphor member 7 is prepared. Specifically, first, a fluorescent composition is prepared. In order to prepare the fluorescent composition, a varnish of the fluorescent composition is prepared by blending the above-described phosphor, a thermosetting resin, and a light reflection component and / or additive blended as necessary. Subsequently, the varnish is applied to the surface of the first release sheet 6. Thereafter, the fluorescent composition is heated (baked).
 加熱(ベイク)条件は、蛍光体シート3において動的粘弾性測定における貯蔵剪断弾性率G’が所望の範囲となるように、適宜設定される。 The heating (baking) condition is appropriately set so that the storage shear modulus G ′ in the dynamic viscoelasticity measurement in the phosphor sheet 3 is in a desired range.
 つまり、加熱温度は、蛍光組成物における熱硬化性樹脂の組成によって適宜設定され、具体的には、例えば、50℃以上、好ましくは、70℃以上であり、また、例えば、120℃以下、好ましくは、100℃以下である。 That is, the heating temperature is appropriately set depending on the composition of the thermosetting resin in the fluorescent composition, and specifically, for example, 50 ° C. or higher, preferably 70 ° C. or higher, and for example, 120 ° C. or lower, preferably Is 100 ° C. or lower.
 加熱時間は、例えば、2.5分以上、好ましくは、5.5分以上であり、また、例えば、4時間以下、好ましくは、1時間以下である。 The heating time is, for example, 2.5 minutes or more, preferably 5.5 minutes or more, and for example, 4 hours or less, preferably 1 hour or less.
 これにより、Bステージ状態の蛍光体シート3が、第1剥離シート6の表面に形成される。 Thereby, the phosphor sheet 3 in the B stage state is formed on the surface of the first release sheet 6.
 そして、このような蛍光体シート3を、周波数1Hzおよび昇温速度20℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線は、極小値を有し、そのような極小値における温度Tが、40℃以上、200℃以下の範囲にあり、上記した極小値における貯蔵剪断弾性率G’が、例えば、1,000Pa以上、好ましくは、10,000Pa以上、より好ましくは、20,000Pa以上、さらに好ましくは、30,000Pa以上、また、例えば、90,000Pa以下、好ましくは、70,000Pa以下の範囲にある。 And the curve which shows the relationship between the storage shear elastic modulus G 'and temperature T which are obtained by carrying out the dynamic viscoelasticity measurement of such a fluorescent substance sheet 3 on conditions with a frequency of 1 Hz and a temperature increase rate of 20 degreeC / min. And having a minimum value, the temperature T at such a minimum value is in the range of 40 ° C. or more and 200 ° C. or less, and the storage shear modulus G ′ at the above-mentioned minimum value is, for example, 1,000 Pa or more, preferably Is in the range of 10,000 Pa or more, more preferably 20,000 Pa or more, further preferably 30,000 Pa or more, and for example, 90,000 Pa or less, preferably 70,000 Pa or less.
 また、この蛍光体シート3は、微タック性(感圧接着性)を有している。 The phosphor sheet 3 has a fine tack property (pressure-sensitive adhesive property).
 蛍光体シート3の厚みは、例えば、40μm以上、好ましくは、50μm以上であり、また、例えば、500μm以下、好ましくは、300μm以下である。 The thickness of the phosphor sheet 3 is, for example, 40 μm or more, preferably 50 μm or more, and, for example, 500 μm or less, preferably 300 μm or less.
 次いで、蛍光体部材7の蛍光体シート3を、仮固定シート2に転写する。具体的には、蛍光体シート3の下面を、感圧接着層5の上面に接触させ、次いで、第1剥離シート6を蛍光体シート3から剥離する。これによって、蛍光体シート3を仮固定シート2に仮固定する。 Next, the phosphor sheet 3 of the phosphor member 7 is transferred to the temporarily fixed sheet 2. Specifically, the lower surface of the phosphor sheet 3 is brought into contact with the upper surface of the pressure-sensitive adhesive layer 5, and then the first release sheet 6 is peeled from the phosphor sheet 3. Thereby, the phosphor sheet 3 is temporarily fixed to the temporary fixing sheet 2.
 2. 素子配置工程
 図1Bに示すように、素子配置工程では、複数の光半導体素子10を、蛍光体シート3の上面(厚み方向一方側面の一例)に、互いに間隔を隔てて配置する。
2. Element Arrangement Step As shown in FIG. 1B, in the element arrangement step, a plurality of optical semiconductor elements 10 are arranged on the upper surface (an example of one side surface in the thickness direction) of the phosphor sheet 3 with an interval between each other.
 素子配置工程では、まず、複数の光半導体素子10を用意する。 In the element arranging step, first, a plurality of optical semiconductor elements 10 are prepared.
 光半導体素子10は、例えば、電気エネルギーを光エネルギーに変換するLEDやLDである。好ましくは、光半導体素子10は、青色光を発光する青色LED(発光ダイオード素子)である。一方、光半導体素子10は、光半導体素子とは技術分野が異なるトランジスタなどの整流器(半導体素子)を含まない。 The optical semiconductor element 10 is, for example, an LED or LD that converts electrical energy into light energy. Preferably, the optical semiconductor element 10 is a blue LED (light emitting diode element) that emits blue light. On the other hand, the optical semiconductor element 10 does not include a rectifier (semiconductor element) such as a transistor having a technical field different from that of the optical semiconductor element.
 光半導体素子10は、前後方向および左右方向に沿う略平板形状を有している。また、光半導体素子10は、平面視略矩形状を有している。光半導体素子10は、電極面11と、発光面12と、側面の一例としての周側面13とを有している。 The optical semiconductor element 10 has a substantially flat plate shape along the front-rear direction and the left-right direction. The optical semiconductor element 10 has a substantially rectangular shape in plan view. The optical semiconductor element 10 has an electrode surface 11, a light emitting surface 12, and a peripheral side surface 13 as an example of a side surface.
 電極面11は、光半導体素子10における上面であって、電極14が形成されている面である。電極14は、電極面11から上側にわずかに突出する形状を有している。 The electrode surface 11 is the upper surface of the optical semiconductor element 10 and the surface on which the electrode 14 is formed. The electrode 14 has a shape that slightly protrudes upward from the electrode surface 11.
 発光面12は、光半導体素子10における下面であって、電極面11に対して下側に間隔を隔てて対向配置されている。発光面12は、平坦な形状を有している。発光面12には、光半導体素子10の下部に配置される発光層9が設けられている。 The light emitting surface 12 is the lower surface of the optical semiconductor element 10, and is opposed to the electrode surface 11 with a gap therebetween. The light emitting surface 12 has a flat shape. The light emitting surface 12 is provided with a light emitting layer 9 disposed below the optical semiconductor element 10.
 周側面13は、電極面11の周端縁と、発光面12の周端縁とを連結している。 The peripheral side surface 13 connects the peripheral edge of the electrode surface 11 and the peripheral edge of the light emitting surface 12.
 光半導体素子10の寸法は、適宜設定されており、具体的には、厚み(高さ)T0が、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。光半導体素子10の前後方向および/または左右方向における長さL1は、例えば、0.2mm以上、好ましくは、0.5mm以上であり、また、例えば、3.00mm以下、好ましくは、2.00mm以下である。 The dimensions of the optical semiconductor element 10 are appropriately set. Specifically, the thickness (height) T0 is, for example, 0.1 μm or more, preferably 0.2 μm or more, and, for example, 500 μm or less. The thickness is preferably 200 μm or less. The length L1 in the front-rear direction and / or the left-right direction of the optical semiconductor element 10 is, for example, 0.2 mm or more, preferably 0.5 mm or more, and, for example, 3.00 mm or less, preferably 2.00 mm. It is as follows.
 素子配置工程では、図1Bに示すように、複数の光半導体素子10を、前後方向および左右方向に互いに間隔を隔てて、蛍光体シート3の上に配置する。具体的には、複数の光半導体素子10の発光面12を、次に述べる間隔L0およびピッチL2が確保されるように、蛍光体シート3の上面に感圧接着する。また、複数の光半導体素子10を、電極14が上側に向かうように、蛍光体シート3に感圧接着する。 In the element arranging step, as shown in FIG. 1B, a plurality of optical semiconductor elements 10 are arranged on the phosphor sheet 3 at intervals in the front-rear direction and the left-right direction. Specifically, the light emitting surfaces 12 of the plurality of optical semiconductor elements 10 are pressure-sensitively bonded to the upper surface of the phosphor sheet 3 so as to ensure the interval L0 and the pitch L2 described below. Further, the plurality of optical semiconductor elements 10 are pressure-sensitive bonded to the phosphor sheet 3 so that the electrodes 14 face upward.
 互いに隣接する光半導体素子10の間の間隔(前後方向および/または左右方向における間隔)L0は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1.50mm以下、好ましくは、0.80mm以下である。互いに隣接する光半導体素子10のピッチL2、具体的には、上記した長さL1および間隔L0の和(L1+L0)は、例えば、0.25mm以上、好ましくは、0.60mm以上であり、また、例えば、3.00mm以下、好ましくは、2.00mm以下である。 The interval (interval in the front-rear direction and / or left-right direction) L0 between the optical semiconductor elements 10 adjacent to each other is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1.50 mm or less. Preferably, it is 0.80 mm or less. The pitch L2 of the optical semiconductor elements 10 adjacent to each other, specifically, the sum (L1 + L0) of the length L1 and the interval L0 described above is, for example, 0.25 mm or more, preferably 0.60 mm or more. For example, it is 3.00 mm or less, preferably 2.00 mm or less.
 これにより、複数の光半導体素子10を、蛍光体シート3に支持させる。また、互いに隣接する光半導体素子10の間には、第1隙間15が形成される。 Thereby, the plurality of optical semiconductor elements 10 are supported on the phosphor sheet 3. A first gap 15 is formed between the optical semiconductor elements 10 adjacent to each other.
 第1隙間15は、間隔L0に対応する寸法を有し、図1Bにおいて図示されないが、平面視において、略碁盤目形状を有している。第1隙間15から、蛍光体シート3の上面が露出している。 The first gap 15 has a dimension corresponding to the distance L0 and is not shown in FIG. 1B, but has a substantially grid shape in plan view. From the first gap 15, the upper surface of the phosphor sheet 3 is exposed.
 3. 第1加熱工程
 図1Cに示すように、第1加熱工程では、仮固定シート2、蛍光体シート3および複数の光半導体素子10を、例えば、オーブン17に投入して、加熱する。これにより蛍光体シート3の蛍光組成物が、Cステージ化(完全硬化)する。
3. First Heating Step As shown in FIG. 1C, in the first heating step, the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10 are placed in, for example, an oven 17 and heated. Thereby, the fluorescent composition of the phosphor sheet 3 is C-staged (completely cured).
 加熱温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、160℃以下である。また、加熱時間が、例えば、10分以上、好ましくは、30分以上であり、また、例えば、480分以下、好ましくは、300分以下である。なお、加熱を、異なる温度で複数回実施することもできる。 The heating temperature is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, and for example, 200 ° C. or lower, preferably 160 ° C. or lower. The heating time is, for example, 10 minutes or longer, preferably 30 minutes or longer, and for example, 480 minutes or shorter, preferably 300 minutes or shorter. Note that the heating can be performed a plurality of times at different temperatures.
 これによって、熱硬化性樹脂を硬化(Cステージ化)させる。すなわち、熱硬化性樹脂を完全に反応させて生成物を生成する。 This cures the thermosetting resin (C stage). That is, the thermosetting resin is completely reacted to produce a product.
 とりわけ、シリコーン樹脂組成物の反応(Cステージ化反応)では、アルケニル基含有ポリシロキサンのアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル付加反応がさらに促進される。その後、アルケニル基、あるいは、ヒドロシリル基が消失して、ヒドロシリル付加反応が完結することによって、Cステージのシリコーン樹脂組成物、つまり、生成物(あるいは硬化物)が得られる。つまり、ヒドロシリル付加反応の完結により、シリコーン樹脂組成物において、硬化性(具体的には、熱硬化性)を発現する。 In particular, in the reaction of the silicone resin composition (C-stage reaction), the hydrosilyl addition reaction between the alkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane is further accelerated. Thereafter, the alkenyl group or the hydrosilyl group disappears and the hydrosilyl addition reaction is completed, whereby a C-stage silicone resin composition, that is, a product (or a cured product) is obtained. That is, by completing the hydrosilylation reaction, the silicone resin composition exhibits curability (specifically, thermosetting).
 これによって、光半導体素子10の発光面12が蛍光体シート3の上面に対して接着する。発光面12が蛍光体シート3の上面に直接接触する。つまり、光半導体素子10が蛍光体シート3に固定される。 Thereby, the light emitting surface 12 of the optical semiconductor element 10 adheres to the upper surface of the phosphor sheet 3. The light emitting surface 12 is in direct contact with the upper surface of the phosphor sheet 3. That is, the optical semiconductor element 10 is fixed to the phosphor sheet 3.
 4. 第1切断工程
 図1Dに示すように、複数の光半導体素子10間の蛍光体シート3を、隙間の一例としての第2隙間16が形成されるように、切断する。
4). 1st cutting process As shown to FIG. 1D, the fluorescent substance sheet 3 between the some optical semiconductor elements 10 is cut | disconnected so that the 2nd clearance gap 16 as an example of a clearance gap may be formed.
 つまり、第1隙間15から露出する蛍光体シート3を切断する。蛍光体シート3を切断するには、例えば、切断刃を備える切断装置、例えば、レーザー照射源を備える切断装置が用いられる。 That is, the phosphor sheet 3 exposed from the first gap 15 is cut. In order to cut the phosphor sheet 3, for example, a cutting device including a cutting blade, for example, a cutting device including a laser irradiation source is used.
 切断刃を備える切断装置としては、例えば、円盤状のダイシングソー(ダイシングブレード)18を備えるダイシング装置、例えば、カッターを備えるカッティング装置が挙げられる。 As a cutting device provided with a cutting blade, for example, a dicing device provided with a disc-shaped dicing saw (dicing blade) 18, for example, a cutting device provided with a cutter may be mentioned.
 レーザー照射源を備える切断装置としては、レーザー照射装置などが挙げられる。 Examples of the cutting device provided with a laser irradiation source include a laser irradiation device.
 好ましくは、切断刃を備える切断装置、より好ましくは、ダイシング装置が用いられる。ダイシングソー18の刃厚T1は、径方向内側から外側に向かって同一である。ダイシングソー18の刃厚T1は、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、700μm以下、好ましくは、500μm以下である。 Preferably, a cutting device provided with a cutting blade, more preferably a dicing device is used. The blade thickness T1 of the dicing saw 18 is the same from the radially inner side to the outer side. The blade thickness T1 of the dicing saw 18 is, for example, 10 μm or more, preferably 20 μm or more, and for example, 700 μm or less, preferably 500 μm or less.
 切断刃を備える切断装置(好ましくは、ダイシング装置)で蛍光体シート3を切断するには、まず、仮固定シート2、蛍光体シート3および複数の光半導体素子10を、蛍光体シート3がダイシングソー18に対向配置されるように、切断装置内に設置する。続いて、切断刃(好ましくは、ダイシングソー18)を、蛍光体シート3の上側から蛍光体シート3に当接させる。つまり、切断刃(ダイシングソー18)を降下させて、切断刃(ダイシングソー18)の下端部を蛍光体シート3の上面にあてがう。続いて、切断刃(ダイシングソー18)を下端部が蛍光体シート3を厚み方向を貫通するように、切断刃(ダイシングソー18)の下端部を蛍光体シート3の下面に到達させる。次いで、蛍光体シート3を前後方向に沿って、移動させる。その後、切断刃(ダイシングソー18)を上昇させる。続いて、上記と同様の操作を左右方向に沿って実施する。なお、蛍光体シート3に対して、左右方向の切断と、前後方向の切断とを順に実施することもできる。 In order to cut the phosphor sheet 3 with a cutting device (preferably a dicing device) having a cutting blade, first, the temporary fixing sheet 2, the phosphor sheet 3 and the plurality of optical semiconductor elements 10 are diced by the phosphor sheet 3. It is installed in the cutting device so as to face the saw 18. Subsequently, a cutting blade (preferably a dicing saw 18) is brought into contact with the phosphor sheet 3 from the upper side of the phosphor sheet 3. That is, the cutting blade (dicing saw 18) is lowered and the lower end portion of the cutting blade (dicing saw 18) is applied to the upper surface of the phosphor sheet 3. Subsequently, the lower end of the cutting blade (dicing saw 18) reaches the lower surface of the phosphor sheet 3 so that the lower end of the cutting blade (dicing saw 18) penetrates the phosphor sheet 3 in the thickness direction. Next, the phosphor sheet 3 is moved along the front-rear direction. Thereafter, the cutting blade (dicing saw 18) is raised. Subsequently, the same operation as described above is performed along the left-right direction. Note that the phosphor sheet 3 can be cut in the left-right direction and in the front-rear direction in order.
 なお、第1切断工程において、図1Dに示すように、切断刃(ダイシングソー18)の下端部は、蛍光体シート3の下面に到達し、感圧接着層5の上面に接触するが、感圧接着層5内に深く進入しない。 In the first cutting step, as shown in FIG. 1D, the lower end of the cutting blade (dicing saw 18) reaches the lower surface of the phosphor sheet 3 and contacts the upper surface of the pressure-sensitive adhesive layer 5. It does not penetrate deeply into the pressure bonding layer 5.
 これによって、前後方向および左右方向に沿う平面視略碁盤目状(略井桁状、図1Dにおいて図示されず。)を有する第2隙間16が形成される。また、第2隙間16は、蛍光体シート3の厚み方向を貫通している。第2隙間16は、第1隙間15と厚み方向に互いに連通している。第2隙間16は、厚み方向に投影したときに、第1隙間15に含まれる寸法を有している。具体的には、第2隙間16は、第1隙間15より小さい寸法を有している。第2隙間16の幅L4は、切断装置、具体的には、切断刃、好ましくは、ダイシングソー18の寸法(具体的には、刃厚T1)に対応しており、光半導体素子10の間の間隔(第1隙間15の幅)L0に対して、例えば、95%以下、好ましくは、90%以下であり、また、例えば、5%以上である。具体的には、第2隙間16の幅L4は、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、700μm以下、好ましくは、500μm以下である。 Thereby, a second gap 16 having a substantially grid-like shape in plan view along the front-rear direction and the left-right direction (substantially a cross-girder shape, not shown in FIG. 1D) is formed. Further, the second gap 16 passes through the thickness direction of the phosphor sheet 3. The second gap 16 communicates with the first gap 15 in the thickness direction. The second gap 16 has a size included in the first gap 15 when projected in the thickness direction. Specifically, the second gap 16 has a smaller size than the first gap 15. The width L4 of the second gap 16 corresponds to the size of the cutting device, specifically the cutting blade, preferably the dicing saw 18 (specifically, the blade thickness T1). Is, for example, 95% or less, preferably 90% or less, and, for example, 5% or more with respect to L0 (the width of the first gap 15). Specifically, the width L4 of the second gap 16 is, for example, 10 μm or more, preferably 20 μm or more, and, for example, 700 μm or less, preferably 500 μm or less.
 これにより、第2隙間16から感圧接着層5が露出する。 Thereby, the pressure-sensitive adhesive layer 5 is exposed from the second gap 16.
 また、蛍光体シート3は、第2隙間16が形成されることにより、複数の蛍光体層24を形成する。つまり、複数の蛍光体層24のそれぞれは、複数の光半導体素子10のそれぞれに対応しており、具体的には、複数の光半導体素子10のそれぞれの下面に形成されている。複数の蛍光体層24のそれぞれは、厚み方向に投影したときに、光半導体素子10を含む平面視略矩形状を有している。蛍光体層24は、第2隙間16に面する側面22を有している。 Moreover, the phosphor sheet 3 forms a plurality of phosphor layers 24 by forming the second gap 16. That is, each of the plurality of phosphor layers 24 corresponds to each of the plurality of optical semiconductor elements 10, and specifically, is formed on the lower surface of each of the plurality of optical semiconductor elements 10. Each of the plurality of phosphor layers 24 has a substantially rectangular shape in plan view including the optical semiconductor element 10 when projected in the thickness direction. The phosphor layer 24 has a side surface 22 that faces the second gap 16.
 5. シート配置工程
 図2Eに示すように、シート配置工程では、Bステージの封止シート19を、第2隙間16を充填し、周側面13を被覆するように、配置する。
5. Sheet Arrangement Step As shown in FIG. 2E, in the sheet arrangement step, the B-stage sealing sheet 19 is arranged so as to fill the second gap 16 and cover the peripheral side surface 13.
 このシート配置工程では、まず、Bステージの封止シート19を用意する。図2Eに示すように、封止シート19は、封止部材21に備えられている。 In this sheet arranging step, first, a B-stage sealing sheet 19 is prepared. As shown in FIG. 2E, the sealing sheet 19 is provided on the sealing member 21.
  封止部材21は、第2剥離シート20と、第2剥離シート20に支持される封止シート19とを備える。好ましくは、封止部材21は、第2剥離シート20と封止シート19とのみからなる。 The sealing member 21 includes a second release sheet 20 and a sealing sheet 19 supported by the second release sheet 20. Preferably, the sealing member 21 includes only the second release sheet 20 and the sealing sheet 19.
 第2剥離シート20は、上記した支持板4と同一の材料からなり、前後方向および左右方向に連続する層(平板)形状を有している。第2剥離シート20の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。 The second release sheet 20 is made of the same material as the support plate 4 described above and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction. The thickness of the 2nd peeling sheet 20 is 1 micrometer or more, for example, Preferably, it is 10 micrometers or more, for example, is 2,000 micrometers or less, Preferably, it is 1,000 micrometers or less.
 封止シート19は、第2剥離シート20の下面に形成されており、前後方向および左右方向に連続する層(平板)形状を有している。封止シート19は、例えば、硬化性樹脂を含有するBステージの封止組成物から調製されている。 The sealing sheet 19 is formed on the lower surface of the second release sheet 20 and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction. The sealing sheet 19 is prepared from, for example, a B-stage sealing composition containing a curable resin.
 硬化性樹脂は、蛍光組成物で例示した硬化性樹脂と同一である。 The curable resin is the same as the curable resin exemplified for the fluorescent composition.
 また、封止組成物は、例えば、光反射成分をさらに含有することができる。 Moreover, the sealing composition can further contain, for example, a light reflection component.
 光反射成分としては、例えば、無機粒子、有機粒子などの光反射粒子が挙げられる。 Examples of the light reflecting component include light reflecting particles such as inorganic particles and organic particles.
 無機粒子としては、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、複合無機酸化物粒子(ガラスなど)などの酸化物、例えば、鉛白(塩基性炭酸鉛)、炭酸カルシウムなどの炭酸塩、例えば、カオリンなどの粘土鉱物などが挙げられる。好ましくは、酸化物が挙げられる。 As the inorganic particles, for example, oxides such as titanium oxide, zinc oxide, zirconium oxide, composite inorganic oxide particles (glass and the like), for example, lead white (basic lead carbonate), carbonates such as calcium carbonate, for example, Examples include clay minerals such as kaolin. Preferably, an oxide is used.
 有機粒子としては、例えば、アクリル系樹脂粒子、スチレン系樹脂粒子、アクリル-スチレン系樹脂粒子、シリコーン系樹脂粒子、ポリカーボネート系樹脂粒子、ベンゾグアナミン系樹脂粒子、ポリオレフィン系樹脂粒子、ポリエステル系樹脂粒子、ポリアミド系樹脂粒子、ポリイミド系樹脂粒子などが挙げられる。好ましくは、アクリル系樹脂粒子が挙げられる。 Examples of the organic particles include acrylic resin particles, styrene resin particles, acrylic-styrene resin particles, silicone resin particles, polycarbonate resin particles, benzoguanamine resin particles, polyolefin resin particles, polyester resin particles, and polyamides. Resin particles, polyimide resin particles, and the like. Preferably, acrylic resin particles are used.
 光反射成分の含有割合は、封止組成物に対して、例えば、1質量%以上、好ましくは、3質量%以上であり、また、例えば、80質量%以下、好ましくは、75質量%以下である。 The content ratio of the light reflection component is, for example, 1% by mass or more, preferably 3% by mass or more, and, for example, 80% by mass or less, preferably 75% by mass or less with respect to the sealing composition. is there.
 また、封止組成物には、添加剤を、適宜の割合で含有することもできる。 In addition, the sealing composition may contain an additive in an appropriate ratio.
 封止シート19を形成するには、例えば、まず、硬化性樹脂と、必要により添加される光反射成分および/または添加剤とを配合して、封止組成物のワニスを調製する。続いて、ワニスを、第2剥離シート20の表面に塗布する。その後、封止組成物を、Bステージ化する(半硬化させる)。具体的には、封止組成物を、加熱する。 In order to form the sealing sheet 19, for example, first, a curable resin and a light reflection component and / or an additive that are added as necessary are blended to prepare a varnish of the sealing composition. Subsequently, the varnish is applied to the surface of the second release sheet 20. Thereafter, the sealing composition is B-staged (semi-cured). Specifically, the sealing composition is heated.
 加熱温度は、例えば、50℃以上、好ましくは、70℃以上であり、また、例えば、120℃以下、好ましくは、100℃以下である。加熱時間は、例えば、5分以上、好ましくは、10分以上であり、また、例えば、20分以下、好ましくは、15分以下である。 The heating temperature is, for example, 50 ° C. or more, preferably 70 ° C. or more, and for example, 120 ° C. or less, preferably 100 ° C. or less. The heating time is, for example, 5 minutes or more, preferably 10 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less.
 これにより、封止シート19を形成する。好ましくは、Bステージ状態の封止シート19を、封止シート19の表面に形成する。 Thereby, the sealing sheet 19 is formed. Preferably, the B-stage sealing sheet 19 is formed on the surface of the sealing sheet 19.
 封止シート19の60℃における溶融粘度は、例えば、40Pa・s以上であり、例えば、1,000Pa・s以下、好ましくは、300Pa・s以下である。溶融粘度は、E型粘度計を用いて測定される。 The melt viscosity at 60 ° C. of the sealing sheet 19 is, for example, 40 Pa · s or more, for example, 1,000 Pa · s or less, preferably 300 Pa · s or less. The melt viscosity is measured using an E-type viscometer.
 次いで、シート配置工程では、図2Eの矢印で示すように、Bステージの封止シート19を、仮固定シート2、蛍光体シート3および複数の光半導体素子10に対して、圧着する(コンプレッション成形)。 Next, in the sheet arranging step, as shown by the arrow in FIG. 2E, the B-stage sealing sheet 19 is pressure-bonded to the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10 (compression molding). ).
 具体的には、仮固定シート2、蛍光体シート3および複数の光半導体素子10と、封止部材21とを、封止シート19と光半導体素子10とが厚み方向に対向するように、プレス機にセットして、それらを、例えば、熱プレスする。 Specifically, the temporary fixing sheet 2, the phosphor sheet 3 and the plurality of optical semiconductor elements 10 and the sealing member 21 are pressed so that the sealing sheet 19 and the optical semiconductor element 10 face each other in the thickness direction. Set them in the machine and hot press them, for example.
 熱プレスの温度は、60℃以上、好ましくは、70℃以上であり、また、200℃以下、好ましくは、180℃以下である。熱プレスの圧力は、例えば、0.01MPa以上、好ましくは、0.10MPa以上であり、また、例えば、10.00MPa以下、好ましくは、5.00MPa以下である。熱プレスの時間は、例えば、1分以上、好ましくは、3分以上であり、また、例えば、60分以下、好ましくは、30分以下である。また、熱プレスは、複数回実施することができる。 The temperature of the hot press is 60 ° C. or higher, preferably 70 ° C. or higher, and 200 ° C. or lower, preferably 180 ° C. or lower. The pressure of the hot press is, for example, 0.01 MPa or more, preferably 0.10 MPa or more, and for example, 10.00 MPa or less, preferably 5.00 MPa or less. The time for hot pressing is, for example, 1 minute or more, preferably 3 minutes or more, and for example, 60 minutes or less, preferably 30 minutes or less. Moreover, the hot press can be performed a plurality of times.
 この熱プレスによって、封止シート19(封止組成物)が第1隙間15および第2隙間16に充填される。 The first gap 15 and the second gap 16 are filled with the sealing sheet 19 (sealing composition) by this hot pressing.
 封止シート19は、第2隙間16に充填されているので、光半導体素子10の周側面13および電極面11を被覆している。また、封止シート19は、電極14を埋設して、電極14の側面および上面を被覆している。 Since the sealing sheet 19 is filled in the second gap 16, it covers the peripheral side surface 13 and the electrode surface 11 of the optical semiconductor element 10. The sealing sheet 19 embeds the electrode 14 and covers the side surface and the upper surface of the electrode 14.
 さらに、封止シート19は、第1隙間15に充填されているので、側面22を被覆している。 Furthermore, since the sealing sheet 19 is filled in the first gap 15, the side surface 22 is covered.
 このような封止シート19は、前後方向および左右方向に沿う平坦な上面23を有している。上面23は、電極14の上面に対して、上側に間隔を隔てて配置されている。 Such a sealing sheet 19 has a flat upper surface 23 along the front-rear direction and the left-right direction. The upper surface 23 is spaced above the upper surface of the electrode 14 with a gap therebetween.
 その後、第2剥離シート20を封止シート19から剥離する。 Thereafter, the second release sheet 20 is peeled from the sealing sheet 19.
 6. Cステージ化工程
 図2Fに示すように、Cステージ化工程では、Bステージの封止シート19をCステージ化する。
6). C-Stage Process As shown in FIG. 2F, in the C-stage process, the B-stage sealing sheet 19 is converted to the C-stage.
 具体的には、封止シート19の硬化性樹脂が熱硬化性樹脂である場合には、封止シート19を、加熱して硬化(完全硬化)させる。封止シート19を加熱するには、例えば、仮固定シート2、蛍光体層24、光半導体素子10および封止シート19を、オーブン17に投入する。 Specifically, when the curable resin of the sealing sheet 19 is a thermosetting resin, the sealing sheet 19 is heated to be cured (completely cured). In order to heat the sealing sheet 19, for example, the temporarily fixing sheet 2, the phosphor layer 24, the optical semiconductor element 10, and the sealing sheet 19 are put into the oven 17.
 加熱温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。また、加熱時間が、例えば、10分以上、好ましくは、30分以上であり、また、例えば、180分以下、好ましくは、120分以下である。 The heating temperature is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 200 ° C. or less, preferably 150 ° C. or less. The heating time is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 180 minutes or less, preferably 120 minutes or less.
 7. 除去工程
 図2Gに示すように、除去工程では、封止シート19の上端部(厚み方向一方側端部の一例)を除去する。
7). Removal Step As shown in FIG. 2G, in the removal step, the upper end portion (an example of one end portion in the thickness direction) of the sealing sheet 19 is removed.
 封止シート19の上端部を除去するには、まず、封止シート19の上面23を溶媒で拭く。 In order to remove the upper end portion of the sealing sheet 19, first, the upper surface 23 of the sealing sheet 19 is wiped with a solvent.
 溶媒としては、例えば、Cステージの封止シート19(封止組成物)を完全または部分的に溶解することができる溶媒が選択される。具体的には、溶媒としては、有機溶媒、水系溶媒が挙げられる。有機溶媒としては、例えば、メタノール、エタノールなどのアルコール、例えば、アセトン、メチルエチルケトンなどのケトン、例えば、ヘキサンなどの脂肪族炭化水素、例えば、トルエンなどの芳香族炭化水素、例えば、テトラヒドロフランなどのエーテルなどが挙げられる。水系溶媒としては、例えば、水などが挙げられる。溶媒として、好ましくは、有機溶媒、より好ましくは、アルコール、芳香族炭化水素、さらに好ましくは、アルコールが挙げられる。 As the solvent, for example, a solvent capable of completely or partially dissolving the C-stage sealing sheet 19 (sealing composition) is selected. Specifically, examples of the solvent include organic solvents and aqueous solvents. Examples of the organic solvent include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as toluene, and ethers such as tetrahydrofuran. Is mentioned. Examples of the aqueous solvent include water. The solvent is preferably an organic solvent, more preferably an alcohol or an aromatic hydrocarbon, and still more preferably an alcohol.
 封止シート19の上面23を溶媒で拭くには、溶媒を布に吸収させ、その布によって、封止シート19の上面23を拭く。 In order to wipe the upper surface 23 of the sealing sheet 19 with a solvent, the solvent is absorbed by the cloth, and the upper surface 23 of the sealing sheet 19 is wiped with the cloth.
 これにより、封止シート19の上端部が除去される。具体的には、封止シート19において、光半導体素子10の電極面11の直上に位置していた部分が除去される。より詳しくは、封止シート19において、電極面11を被覆し、電極14の上面および側面を被覆していた部分と、第1隙間15の上側に位置していた部分とが、除去される。 Thereby, the upper end portion of the sealing sheet 19 is removed. Specifically, the portion of the sealing sheet 19 that was located immediately above the electrode surface 11 of the optical semiconductor element 10 is removed. More specifically, in the sealing sheet 19, a portion that covers the electrode surface 11 and covers the upper surface and the side surface of the electrode 14 and a portion that is located above the first gap 15 are removed.
 そうすると、電極14の上面および側面が露出し、続いて、電極面11が露出する。 Then, the upper surface and the side surface of the electrode 14 are exposed, and then the electrode surface 11 is exposed.
 これにより、封止シート19は、光半導体素子10の電極面11の直上に配置されず、第1隙間15および第2隙間16に充填され、複数の蛍光体層24のそれぞれの側面22と、複数の光半導体素子10のそれぞれの周側面13とを被覆するパターンに形成される。封止シート19の上面23は、光半導体素子10の電極面11(電極14から露出する電極面11)と、前後方向および左右方向に面一となる。つまり、封止シート19の上面23と、光半導体素子10の電極面11とは、前後方向および左右方向に沿う同一平面を形成する。なお、電極14は、上記した平面から上側に向かって突出している。 Thereby, the sealing sheet 19 is not disposed immediately above the electrode surface 11 of the optical semiconductor element 10, but is filled in the first gap 15 and the second gap 16, and the side surfaces 22 of the plurality of phosphor layers 24, It forms in the pattern which coat | covers each peripheral side surface 13 of the some optical semiconductor element 10. FIG. The upper surface 23 of the sealing sheet 19 is flush with the electrode surface 11 (electrode surface 11 exposed from the electrode 14) of the optical semiconductor element 10 in the front-rear direction and the left-right direction. That is, the upper surface 23 of the sealing sheet 19 and the electrode surface 11 of the optical semiconductor element 10 form the same plane along the front-rear direction and the left-right direction. The electrode 14 protrudes upward from the plane described above.
 上記したシート配置工程(図2E参照)と、Cステージ化工程(図2F参照)と、除去工程(図2G参照)とは、本発明のシート形成工程に含まれる。つまり、シート形成工程は、封止シート19を、第2隙間16を充填し、かつ、光半導体素子10の周側面13を被覆するように、形成する工程である。また、シート形成工程は、封止シート19をCステージ化(完全硬化)し、上端部が除去された封止シート19を形成する工程でもある。 The above-described sheet arranging step (see FIG. 2E), C-stage forming step (see FIG. 2F), and removing step (see FIG. 2G) are included in the sheet forming step of the present invention. That is, the sheet forming step is a step of forming the sealing sheet 19 so as to fill the second gap 16 and cover the peripheral side surface 13 of the optical semiconductor element 10. The sheet forming step is also a step of forming the sealing sheet 19 from which the upper end portion is removed by converting the sealing sheet 19 into a C stage (completely cured).
 8. 第2切断工程
 図3Hに示すように、第2切断工程では、封止シート19を厚み方向に沿って切断する。
8). Second Cutting Step As shown in FIG. 3H, in the second cutting step, the sealing sheet 19 is cut along the thickness direction.
 第2切断工程では、第1隙間15および第2隙間16に充填された封止シート19を切断する。これにより、複数の光半導体素子10のそれぞれ、および、複数の蛍光体層24のそれぞれに対応する、複数の封止層25のそれぞれを形成する。 In the second cutting step, the sealing sheet 19 filled in the first gap 15 and the second gap 16 is cut. Thereby, each of the plurality of sealing layers 25 corresponding to each of the plurality of optical semiconductor elements 10 and each of the plurality of phosphor layers 24 is formed.
 第2切断工程では、上記した第1切断工程で例示した切断装置および方法と同様の切断装置および方法が用いられる。ダイシングソー27の刃厚T2は、第1切断工程におけるダイシングソー18の刃厚T1に対して薄く、例えば、刃厚T1に対して、例えば、95%以下、好ましくは、90%以下、より好ましくは、80%以下であり、また、5%以上である。また、ダイシングソー27の刃厚T2は、径方向内側から外側に向かって同一である。ダイシングソー27の刃厚T2は、具体的には、ダイシングソー27の刃厚T2は、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。 In the second cutting step, the same cutting device and method as those exemplified in the first cutting step described above are used. The blade thickness T2 of the dicing saw 27 is thinner than the blade thickness T1 of the dicing saw 18 in the first cutting step. For example, the blade thickness T1 is, for example, 95% or less, preferably 90% or less, more preferably. Is 80% or less and 5% or more. Further, the blade thickness T2 of the dicing saw 27 is the same from the radially inner side to the outer side. Specifically, the blade thickness T2 of the dicing saw 27 is, for example, 10 μm or more, preferably 20 μm or more, for example, 200 μm or less, preferably 100 μm or less. .
 第2切断工程において、切断刃を備える切断装置(好ましくは、ダイシング装置)で封止シート19を切断するには、まず、仮固定シート2、蛍光体シート3、光半導体素子10および封止シート19を、切断装置に設置し、続いて、切断刃(好ましくは、ダイシングソー27)を、封止シート19の上側から封止シート19に当接させる。つまり、切断刃(ダイシングソー27)を降下させて、切断刃(ダイシングソー27)の下端部を封止シート19の上面にあてがう。続いて、切断刃(ダイシングソー27)を下端部が封止シート19を厚み方向を貫通するように、切断刃(ダイシングソー27)の下端部を封止シート19の下面に到達させる。続いて、封止シート19を前後方向に沿って、移動させる。その後、切断刃(ダイシングソー27)を上昇させる。その後、上記と同様の操作を左右方向に沿って実施する。なお、封止シート19に対して、左右方向の切断と、前後方向の切断とを順に実施することもできる。 In the second cutting step, in order to cut the sealing sheet 19 with a cutting device (preferably a dicing device) provided with a cutting blade, first, the temporary fixing sheet 2, the phosphor sheet 3, the optical semiconductor element 10, and the sealing sheet 19 is installed in a cutting device, and then a cutting blade (preferably a dicing saw 27) is brought into contact with the sealing sheet 19 from the upper side of the sealing sheet 19. That is, the cutting blade (dicing saw 27) is lowered and the lower end portion of the cutting blade (dicing saw 27) is applied to the upper surface of the sealing sheet 19. Subsequently, the lower end portion of the cutting blade (dicing saw 27) is made to reach the lower surface of the sealing sheet 19 so that the lower end portion penetrates the sealing sheet 19 in the thickness direction. Subsequently, the sealing sheet 19 is moved along the front-rear direction. Thereafter, the cutting blade (dicing saw 27) is raised. Thereafter, the same operation as described above is performed along the left-right direction. In addition, with respect to the sealing sheet 19, the cutting | disconnection of the left-right direction and the cutting | disconnection of the front-back direction can also be implemented in order.
 なお、第2切断工程において、切断刃(ダイシングソー27)の下端部は、封止シート19の下面に到達し、感圧接着層5の上面に接触するが、感圧接着層5内に深く進入しない。 In the second cutting step, the lower end portion of the cutting blade (dicing saw 27) reaches the lower surface of the sealing sheet 19 and contacts the upper surface of the pressure-sensitive adhesive layer 5, but deeply in the pressure-sensitive adhesive layer 5. Do not enter.
 封止シート19の切断によって、封止シート19には、互いに隣接する光半導体素子1の間、および、互いに隣接する蛍光体層24の間において、前後方向および左右方向に沿って整列する第3隙間26が形成される。第3隙間26は、封止シート19を厚み方向に貫通している。第3隙間26は、図3Hにおいて図示されないが、平面視において、略碁盤目形状を有している。第3隙間26の幅W1は、切断装置、具体的には、切断刃、好ましくは、ダイシングソー27の刃厚T2に対応している。 Due to the cutting of the sealing sheet 19, the sealing sheet 19 is aligned in the front-rear direction and the left-right direction between the adjacent optical semiconductor elements 1 and between the adjacent phosphor layers 24. A gap 26 is formed. The third gap 26 penetrates the sealing sheet 19 in the thickness direction. Although not shown in FIG. 3H, the third gap 26 has a substantially grid pattern in plan view. The width W1 of the third gap 26 corresponds to a cutting device, specifically a cutting blade, preferably a blade thickness T2 of the dicing saw 27.
 第3隙間26の幅W1は、第2隙間16の幅L4(図1D参照)に対して狭く、第2隙間16の幅L4に対して、例えば、95%以下、好ましくは、90%以下、より好ましくは、80%以下であり、また、5%以上である。第3隙間26の幅W1は、具体的には、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。 The width W1 of the third gap 26 is narrower than the width L4 (see FIG. 1D) of the second gap 16, and is, for example, 95% or less, preferably 90% or less, relative to the width L4 of the second gap 16. More preferably, it is 80% or less, and 5% or more. Specifically, the width W1 of the third gap 26 is, for example, 10 μm or more, preferably 20 μm or more, and for example, 200 μm or less, preferably 100 μm or less.
 図3Iに示すように、これにより、1つの光半導体素子10と、光半導体素子10の発光面12を被覆する1つの蛍光体層24と、蛍光体層24の側面22および光半導体素子10の周側面13を被覆する1つの封止層25とを備える蛍光体層-封止層付光半導体素子1を、仮固定シート2に仮固定された状態で、複数得る。また、図3Hに示すように、複数の蛍光体層-封止層付光半導体素子1は、仮固定シート2に仮固定された状態で、前後方向および左右方向に互いに間隔を隔てて整列配置されている。 As shown in FIG. 3I, this allows one optical semiconductor element 10, one phosphor layer 24 covering the light emitting surface 12 of the optical semiconductor element 10, the side surface 22 of the phosphor layer 24, and the optical semiconductor element 10. A plurality of phosphor layer-sealing layer-attached optical semiconductor elements 1 each including one sealing layer 25 covering the peripheral side surface 13 are obtained in a state of being temporarily fixed to the temporary fixing sheet 2. In addition, as shown in FIG. 3H, the plurality of phosphor layer-sealing layer-attached optical semiconductor elements 1 are arranged in an arrangement spaced apart from each other in the front-rear direction and the left-right direction while temporarily fixed to the temporary fixing sheet 2. Has been.
 9. 剥離工程
 図3Hの矢印で示すように、剥離工程では、蛍光体層-封止層付光半導体素子1を仮固定シート2から剥離する。具体的には、封止層25の下面、および、蛍光体層24の下面を、感圧接着層5の上面から離間させる。
9. Peeling Step As shown by the arrows in FIG. 3H, in the peeling step, the phosphor layer-sealing layer-attached optical semiconductor element 1 is peeled from the temporary fixing sheet 2. Specifically, the lower surface of the sealing layer 25 and the lower surface of the phosphor layer 24 are separated from the upper surface of the pressure-sensitive adhesive layer 5.
 蛍光体層-封止層付光半導体素子1を仮固定シート2から剥離するには、例えば、コレットおよびそれに接続される吸引ポンプを備えるピックアップ装置(図示せず)などを用いる。 In order to peel the phosphor layer-sealing layer-attached optical semiconductor element 1 from the temporary fixing sheet 2, for example, a pickup device (not shown) including a collet and a suction pump connected thereto is used.
 これによって、図3Iに示すように、1つの光半導体素子10と、1つの蛍光体層24と、1つの封止層25とを備える蛍光体層-封止層付光半導体素子1を得る。好ましくは、蛍光体層-封止層付光半導体素子1は、1つの光半導体素子10と、1つの蛍光体層24と、1つの封止層25とのみからなる。 As a result, as shown in FIG. 3I, a phosphor layer-sealing layer-attached optical semiconductor device 1 including one optical semiconductor element 10, one phosphor layer 24, and one sealing layer 25 is obtained. Preferably, the phosphor layer-sealing layer-attached optical semiconductor element 1 includes only one optical semiconductor element 10, one phosphor layer 24, and one sealing layer 25.
 蛍光体層-封止層付光半導体素子1において、蛍光体層24の下面と、封止層25の下面とは、前後方向および左右方向に面一となっている。また、光半導体素子10の電極面11は、封止層25の上面と、前後方向および左右方向に面一となっている。光半導体素子10の周側面13と、蛍光体層24の上面の周端部および側面とは、封止層25によって被覆されている。 In the phosphor layer-sealing layer-attached optical semiconductor element 1, the lower surface of the phosphor layer 24 and the lower surface of the sealing layer 25 are flush with each other in the front-rear direction and the left-right direction. The electrode surface 11 of the optical semiconductor element 10 is flush with the upper surface of the sealing layer 25 in the front-rear direction and the left-right direction. The peripheral side surface 13 of the optical semiconductor element 10 and the peripheral end portion and the side surface of the upper surface of the phosphor layer 24 are covered with a sealing layer 25.
 蛍光体層-封止層付光半導体素子1は、封止層25の平面視形状(具体的には、略矩形枠形状の外形形状)と同一の平面視形状(具体的には、略矩形形状)、および、外形寸法を有している。 The phosphor layer-sealing layer-attached optical semiconductor element 1 has the same planar view shape (specifically, substantially rectangular shape) as the planar view shape (specifically, the outer shape of a substantially rectangular frame shape) of the sealing layer 25. Shape) and external dimensions.
 封止層25は、蛍光体層24より大きい平面視形状および寸法を有している。封止層25において、平面視で蛍光体層24より外側に位置する部分の幅W3は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、600μm以下、好ましくは、400μm以下である。封止層25において、平面視で蛍光体層24の側面22と光半導体素子10の周側面13との間隔W2は、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、500μm以下、好ましくは、300μm以下である。封止層25において光半導体素子10より外側に位置する部分の幅W4は、W2およびW3の総和(W2+W3)であり、例えば、15μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、600μm以下である。 The sealing layer 25 has a shape and size in plan view larger than that of the phosphor layer 24. In the sealing layer 25, the width W3 of the portion located outside the phosphor layer 24 in plan view is, for example, 10 μm or more, preferably 50 μm or more, and for example, 600 μm or less, preferably 400 μm or less. is there. In the sealing layer 25, the distance W2 between the side surface 22 of the phosphor layer 24 and the peripheral side surface 13 of the optical semiconductor element 10 in a plan view is, for example, 1 μm or more, preferably 10 μm or more, and, for example, 500 μm or less. The thickness is preferably 300 μm or less. The width W4 of the portion located outside the optical semiconductor element 10 in the sealing layer 25 is the sum (W2 + W3) of W2 and W3, for example, 15 μm or more, preferably 50 μm or more, and, for example, 1000 μm or less. Preferably, it is 600 μm or less.
 この蛍光体層-封止層付光半導体素子1は、次に説明する光半導体装置30(図3J参照)ではなく、つまり、光半導体装置30に備えられる基板28を含まない。つまり、蛍光体層-封止層付光半導体素子1では、光半導体素子10の電極14が、基板28に設けられる端子29と電気的に接続されていない。つまり、蛍光体層-封止層付光半導体素子1は、光半導体装置30の一部品、すなわち、光半導体装置30を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。 The phosphor layer-sealing layer-attached optical semiconductor element 1 is not the optical semiconductor device 30 (see FIG. 3J) described below, that is, does not include the substrate 28 provided in the optical semiconductor device 30. That is, in the optical semiconductor element 1 with the phosphor layer-sealing layer, the electrode 14 of the optical semiconductor element 10 is not electrically connected to the terminal 29 provided on the substrate 28. That is, the phosphor layer-sealing layer-attached optical semiconductor element 1 is a component of the optical semiconductor device 30, that is, a component for manufacturing the optical semiconductor device 30, and the component alone is distributed and can be used industrially. It is a device.
 10. 光半導体装置の製造
 その後、図3Jに示すように、蛍光体層-封止層付光半導体素子1の電極14を、基板28の上面に設けられた端子29に電気的に接続する。具体的には、蛍光体層-封止層付光半導体素子1を上下反転し、その後、それを基板28にフリップチップ実装する。
10. Production of Optical Semiconductor Device Thereafter, as shown in FIG. 3J, the electrode 14 of the optical semiconductor element 1 with phosphor layer-sealing layer is electrically connected to a terminal 29 provided on the upper surface of the substrate 28. More specifically, the phosphor layer-sealing layer-attached optical semiconductor element 1 is turned upside down and then flip-chip mounted on the substrate 28.
 これによって、蛍光体層-封止層付光半導体素子1と、基板28とを備える光半導体装置30を得る。つまり、光半導体装置30は、基板28と、基板28に実装される光半導体素子10と、光半導体素子10の上面に配置される蛍光体層24と、光半導体素子10の周側面13および蛍光体層24の側面22を被覆し、光半導体素子10の電極面11を露出する封止層25とを備える。好ましくは、光半導体装置30は、基板28と、光半導体素子10と、蛍光体層24と、封止層25とのみからなる。光半導体装置30では、発光層9が、蛍光体層24に接触している。また、蛍光体層24の上面は、封止層25から上方に露出している。 Thereby, an optical semiconductor device 30 including the phosphor layer-sealing layer-attached optical semiconductor element 1 and the substrate 28 is obtained. That is, the optical semiconductor device 30 includes the substrate 28, the optical semiconductor element 10 mounted on the substrate 28, the phosphor layer 24 disposed on the upper surface of the optical semiconductor element 10, the peripheral side surface 13 of the optical semiconductor element 10, and the fluorescence. And a sealing layer 25 that covers the side surface 22 of the body layer 24 and exposes the electrode surface 11 of the optical semiconductor element 10. Preferably, the optical semiconductor device 30 includes only the substrate 28, the optical semiconductor element 10, the phosphor layer 24, and the sealing layer 25. In the optical semiconductor device 30, the light emitting layer 9 is in contact with the phosphor layer 24. Further, the upper surface of the phosphor layer 24 is exposed upward from the sealing layer 25.
 なお、図3Jで図示しないが、別の封止層を、封止層25および蛍光体層24と、基板28との間に、電極14および端子29を埋設するように、充填することもできる。 Although not shown in FIG. 3J, another sealing layer can be filled so that the electrode 14 and the terminal 29 are embedded between the sealing layer 25 and the phosphor layer 24 and the substrate 28. .
 11. 作用効果
 そして、上記の方法によれば、図1Dに示すように、第1切断工程において、複数の光半導体素子10間の蛍光体シート3を切断して、第2隙間16を所望の寸法で確実に形成できるので、第2隙間16の寸法精度を向上させることができる。また、シート形成工程において、図2Eに示すように、封止シート19を第2隙間16に充填し、続いて、図3Hに示すように、第2切断工程において、封止シート19を所望の寸法で確実に切断するので、第2隙間16に充填された封止層25の寸法精度を向上させることができる。そのため、光の取出効率に優れる蛍光体層-封止層付光半導体素子1を製造することができる。
11. Action and Effect According to the above method, as shown in FIG. 1D, in the first cutting step, the phosphor sheet 3 between the plurality of optical semiconductor elements 10 is cut to form the second gap 16 with a desired dimension. Since it can form reliably, the dimensional accuracy of the 2nd clearance gap 16 can be improved. Further, in the sheet forming step, as shown in FIG. 2E, the sealing sheet 19 is filled into the second gap 16, and subsequently, in the second cutting step, as shown in FIG. Since it cuts reliably by a dimension, the dimensional accuracy of the sealing layer 25 with which the 2nd clearance gap 16 was filled can be improved. Therefore, the phosphor layer-sealing layer-attached optical semiconductor element 1 having excellent light extraction efficiency can be manufactured.
 また、この方法は、図1Dおよび図3Hに示すように、蛍光体シート3および封止シート19を切断するので、製造効率に優れる。 Further, this method is excellent in manufacturing efficiency because the phosphor sheet 3 and the sealing sheet 19 are cut as shown in FIGS. 1D and 3H.
 また、この方法によれば、図2Eに示すように、シート配置工程において、封止シート19を第2隙間16に確実に充填し、封止シート19により光半導体素子10の周側面13を確実に被覆することができる。また、図2Gに示すように、除去工程において、電極面11を露出させ、その後、図3Jに示すように、これを基板28の端子29と確実に電気的に接続させることができる。 In addition, according to this method, as shown in FIG. 2E, in the sheet arranging step, the sealing sheet 19 is surely filled into the second gap 16, and the sealing sheet 19 reliably secures the peripheral side surface 13 of the optical semiconductor element 10. Can be coated. Further, as shown in FIG. 2G, in the removing step, the electrode surface 11 can be exposed, and thereafter, as shown in FIG. 3J, it can be reliably electrically connected to the terminal 29 of the substrate 28.
 また、この方法によれば、図2Gに示すように、除去工程において、封止シート19の上面を溶媒で拭けば、封止シート19の上端部を簡単に除去することができる。 Moreover, according to this method, as shown in FIG. 2G, in the removing step, the upper end portion of the sealing sheet 19 can be easily removed by wiping the upper surface of the sealing sheet 19 with a solvent.
 また、この方法によれば、図2Eに示すように、シート配置工程において、Bステージの封止シート19によって、第2隙間16を簡単に充填し、周側面13を簡単に被覆することができる。また、図2Fに示すように、Cステージ化工程において、Bステージの封止シート19を、Cステージ化し、その後、図3Hに示す第2切断工程を実施するので、Cステージの封止シート19を優れた寸法精度で切断することができる。 Further, according to this method, as shown in FIG. 2E, the second gap 16 can be easily filled and the peripheral side surface 13 can be easily covered with the sealing sheet 19 of the B stage in the sheet arranging step. . Further, as shown in FIG. 2F, in the C-stage forming process, the B-stage sealing sheet 19 is converted to the C-stage, and then the second cutting process shown in FIG. Can be cut with excellent dimensional accuracy.
 また、この方法によれば、図1Dに示す第1切断工程における切断刃の蛍光体シート3に対する当接方向と、図3Hに示す第2切断工程における切断刃の封止シート19に対する当接方向とが同一方向、つまり、上側から下側に向かう方向である。そのため、第1切断工程および第2切断工程を簡易かつ画一的に実施することができる。 Moreover, according to this method, the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D and the contact direction of the cutting blade with respect to the sealing sheet 19 in the second cutting step shown in FIG. Are the same direction, that is, the direction from the upper side to the lower side. Therefore, the first cutting step and the second cutting step can be performed easily and uniformly.
 また、この方法によれば、図1Aに示すように、仮固定工程において、蛍光体シート3を仮固定シート2に仮固定し、その後、図1Bに示す素子配置工程を実施し、続いて、図1Dに示す第1切断工程および図3Hに示す第2切断工程を順に実施する。そのため、第1切断工程および第2切断工程のそれぞれの切断処理を、仮固定シート2に仮固定された蛍光体シート3および封止シート19のそれぞれに対して確実に実施することができる。そのため、寸法精度に優れる蛍光体層24および寸法精度に優れる封止層25を備える蛍光体層-封止層付光半導体素子1を製造することができる。 Further, according to this method, as shown in FIG. 1A, in the temporary fixing step, the phosphor sheet 3 is temporarily fixed to the temporary fixing sheet 2, and then the element placement step shown in FIG. 1B is performed. The first cutting step shown in FIG. 1D and the second cutting step shown in FIG. 3H are sequentially performed. Therefore, each cutting process of a 1st cutting process and a 2nd cutting process can be reliably implemented with respect to each of the fluorescent substance sheet 3 and the sealing sheet 19 which were temporarily fixed to the temporary fixing sheet 2. FIG. Therefore, the phosphor layer-sealing layer-attached optical semiconductor element 1 including the phosphor layer 24 having excellent dimensional accuracy and the sealing layer 25 having excellent dimensional accuracy can be manufactured.
 また、この方法によれば、封止層25に光反射成分を含有させることができ、そのため、光半導体素子10の周側面13から発光された光を反射させることができる。そのため、光の取出効率に優れる蛍光体層-封止層付光半導体素子1を製造することができる。 Further, according to this method, the light reflection component can be contained in the sealing layer 25, so that the light emitted from the peripheral side surface 13 of the optical semiconductor element 10 can be reflected. Therefore, the phosphor layer-sealing layer-attached optical semiconductor element 1 having excellent light extraction efficiency can be manufactured.
 12. 変形例
 上記した第1実施形態では、第1切断工程において、図1Dに示すように、切断刃(ダイシングソー18)の下端部が、感圧接着層5内に深く進入していないが、例えば、図示しないが、感圧接着層5内に深く進入することもできる。
12 In the first embodiment described above, in the first cutting step, as shown in FIG. 1D, the lower end portion of the cutting blade (dicing saw 18) does not enter the pressure-sensitive adhesive layer 5 deeply. Although not shown, the pressure-sensitive adhesive layer 5 can be penetrated deeply.
 また、上記した第1実施形態では、第2切断工程において、図3Hに示すように、切断刃(ダイシングソー27)の下端部が、感圧接着層5内に深く進入していないが、例えば、図示しないが、感圧接着層5内に深く進入することもできる。 In the first embodiment described above, in the second cutting step, as shown in FIG. 3H, the lower end portion of the cutting blade (dicing saw 27) does not enter deeply into the pressure-sensitive adhesive layer 5. Although not shown, the pressure-sensitive adhesive layer 5 can be penetrated deeply.
 上記した第1実施形態では、図1Dに示す第1切断工程における切断刃の蛍光体シート3に対する当接方向(上側から下側)と、図3Hに示す第2切断工程における切断刃の封止シート19に対する当接方向(上側から下側)とが同一方向であるが、これに限定されず、異なる方向であってもよい。例えば、図1Dに示す第1切断工程における切断刃の蛍光体シート3に対する当接方向を上側から下側にし、第2切断工程における切断刃の封止シート19に対する当接方向を下側から上側にすることもできる。その場合には、図3Hが参照されるように、第2切断工程において、切断刃(好ましくは、ダイシングソー27)によって、仮固定シート2と封止シート19とを、下側から上側に向かって、順に切断する。これによって、封止シート19は、仮固定シート2とともに、切断されて、個片化される。 In the first embodiment described above, the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D (from the upper side to the lower side) and the sealing of the cutting blade in the second cutting step shown in FIG. 3H The contact direction with respect to the sheet 19 (from the upper side to the lower side) is the same direction, but is not limited to this and may be a different direction. For example, the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D is changed from the upper side to the lower side, and the contact direction of the cutting blade with respect to the sealing sheet 19 in the second cutting step is changed from the lower side to the upper side. It can also be. In that case, as shown in FIG. 3H, in the second cutting step, the temporary fixing sheet 2 and the sealing sheet 19 are moved from the lower side to the upper side by the cutting blade (preferably the dicing saw 27). Cut in order. As a result, the sealing sheet 19 is cut together with the temporarily fixed sheet 2 into individual pieces.
 好ましくは、第1実施形態では、図1Dに示す第1切断工程における切断刃の蛍光体シート3に対する当接方向と、図3Hに示す第2切断工程における切断刃の封止シート19に対する当接方向とを同一方向にする。 Preferably, in the first embodiment, the contact direction of the cutting blade with respect to the phosphor sheet 3 in the first cutting step shown in FIG. 1D and the contact of the cutting blade with the sealing sheet 19 in the second cutting step shown in FIG. 3H. Make the direction the same.
 2つの当接方向が異なる場合には、切断刃を蛍光体シート3および封止シート19に対して上下別々に配置する必要があり、製造工程が複雑となる。また、仮固定シート2を切断するので、蛍光体層-封止層付光半導体素子1の取扱性が低下する場合がある。 When the two contact directions are different, it is necessary to dispose the cutting blades separately on the top and bottom of the phosphor sheet 3 and the sealing sheet 19, which complicates the manufacturing process. Further, since the temporarily fixing sheet 2 is cut, the handling property of the optical semiconductor element 1 with the phosphor layer-sealing layer may be lowered.
 対して、2つの当接方向が同一である場合には、切断刃を蛍光体シート3および封止シート19に対して一方向、具体的には、上側のみに配置すればよいので、製造工程を簡易にすることができる。また、仮固定シート2を切断しないので、仮固定シート2の取扱性の低下を防止することができる。 On the other hand, when the two contact directions are the same, the cutting blade has only to be arranged in one direction with respect to the phosphor sheet 3 and the sealing sheet 19, specifically, only on the upper side. Can be simplified. Further, since the temporarily fixed sheet 2 is not cut, it is possible to prevent the handling property of the temporarily fixed sheet 2 from being deteriorated.
 また、上記した第1実施形態では、図1Bに示すように、素子配置工程では、光半導体素子10の発光面12を蛍光体シート3に接触させているが、これに限定されない。例えば、図示しないが、光半導体素子10の電極面11を蛍光体シート3に接触させることもできる。その場合には、図示しないが、除去工程(図2G参照)において、発光面12を露出させる。 In the first embodiment described above, as shown in FIG. 1B, the light emitting surface 12 of the optical semiconductor element 10 is brought into contact with the phosphor sheet 3 in the element arranging step, but the present invention is not limited to this. For example, although not shown, the electrode surface 11 of the optical semiconductor element 10 can be brought into contact with the phosphor sheet 3. In that case, although not shown, the light emitting surface 12 is exposed in the removing step (see FIG. 2G).
 また、上記した第1実施形態では、図2Gに示す除去工程において、封止シート19の上面23を溶媒で拭いている。しかし、これに限定されない。例えば、封止シート19の上端部を、例えば、エッチング、グラインド加工することもできる。なお、グラインド加工は、電極14を損傷させる場合があるので、好ましくは、エッチングする。 In the first embodiment described above, the upper surface 23 of the sealing sheet 19 is wiped with a solvent in the removing step shown in FIG. 2G. However, it is not limited to this. For example, the upper end portion of the sealing sheet 19 can be etched and grinded, for example. In addition, since grinding may damage the electrode 14, it is preferably etched.
 より好ましくは、封止シート19の上面23を溶媒で拭く。この方法であれば、封止シート19の上端部を除去して、電極14の上面および側面を確実、迅速、かつ、簡便に露出させることができる。 More preferably, the upper surface 23 of the sealing sheet 19 is wiped with a solvent. According to this method, the upper end portion of the sealing sheet 19 can be removed, and the upper surface and the side surface of the electrode 14 can be reliably, quickly and easily exposed.
 また、封止シート19の上面23を溶媒で拭いた後、封止シート19における所望の上端部(具体的には、電極14の上面および側面を被覆していた部分)が残存する場合には、さらに、図示しない感圧接着シートによって、封止シート19の上端部を除去することもできる。具体的には、溶媒で拭かれた封止シート19の上面23に、感圧接着シートを感圧接着させ、続いて、感圧接着シートを引き剥がす。 In addition, after wiping the upper surface 23 of the sealing sheet 19 with a solvent, when a desired upper end portion (specifically, a portion covering the upper surface and side surfaces of the electrode 14) remains in the sealing sheet 19 Furthermore, the upper end portion of the sealing sheet 19 can be removed by a pressure-sensitive adhesive sheet (not shown). Specifically, the pressure-sensitive adhesive sheet is pressure-bonded to the upper surface 23 of the sealing sheet 19 wiped with a solvent, and then the pressure-sensitive adhesive sheet is peeled off.
 あるいは、例えば、バフなどの布、例えば、ブラシ、例えば、ウォーターブラストなどの研磨部材によって、封止シート19の上端部を除去することもできる。 Alternatively, for example, the upper end portion of the sealing sheet 19 can be removed with a cloth such as a buff, for example, a brush or a polishing member such as a water blast.
 また、上記した第1実施形態では、図2Eに示すように、シート配置工程において、封止部材21に備えられるBステージの封止シート19をコンプレッション成形して、第1隙間15および第2隙間16に充填している。しかし、シート配置工程は、上記に限定されない。例えば、Bステージの封止組成物を用いてトランスファー成形することもできる。さらには、Aステージの封止組成物のワニスを仮固定シート2、蛍光体シート3および複数の光半導体素子10に対して塗布あるいは滴下(ポッティング)することもできる。トランスファー成形、塗布および滴下のうち、好ましくは、塗布および滴下が挙げられる。 In the first embodiment described above, as shown in FIG. 2E, in the sheet arranging step, the B-stage sealing sheet 19 provided in the sealing member 21 is compression-molded to form the first gap 15 and the second gap. 16 is filled. However, the sheet arrangement process is not limited to the above. For example, transfer molding may be performed using a B-stage sealing composition. Furthermore, the A-stage sealing composition varnish can be applied or dripped (potted) onto the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10. Of transfer molding, coating, and dropping, preferably, coating and dropping are used.
 塗布および滴下を用いる場合には、仮固定シート2、蛍光体シート3および複数の光半導体素子10に対して塗布および滴下されたAステージのワニスをBステージ化して、封止シート19を形成する。 When using application and dripping, the A-stage varnish applied and dripped onto the temporary fixing sheet 2, the phosphor sheet 3, and the plurality of optical semiconductor elements 10 is made into a B-stage to form the sealing sheet 19. .
 また、上記した第1実施形態では、シート配置工程(図2E参照)と、除去工程(図2G参照)とを実施しているが、例えば、シート配置工程(図2E参照)を実施することなく、図2Gに示すように、封止シート19を、第2隙間16を充填し、かつ、光半導体素子10の周側面13を被覆するように、形成するシート形成工程を実施することもできる。 In the first embodiment described above, the sheet placement step (see FIG. 2E) and the removal step (see FIG. 2G) are performed. For example, without performing the sheet placement step (see FIG. 2E). As shown in FIG. 2G, a sheet forming step of forming the sealing sheet 19 so as to fill the second gap 16 and cover the peripheral side surface 13 of the optical semiconductor element 10 can also be performed.
 すなわち、このシート形成工程では、封止シート19によって、電極面11と、電極14の上面および側面とを被覆するシート配置工程(図2E参照)を実施せず、図2Gが参照されるように、上記した封止シート19を、電極面11と、電極14の上面および側面とを露出し、周側面13および側面22を被覆するように、第1隙間15および第2隙間16に充填する。例えば、上記したAステージのワニス第1隙間15および第2隙間16に滴下する。 That is, in this sheet forming process, the sheet placement process (see FIG. 2E) for covering the electrode surface 11 and the upper and side surfaces of the electrode 14 with the sealing sheet 19 is not performed, and FIG. 2G is referred to. The sealing sheet 19 is filled in the first gap 15 and the second gap 16 so that the electrode surface 11 and the upper and side surfaces of the electrode 14 are exposed and the peripheral side surface 13 and the side surface 22 are covered. For example, the varnish first gap 15 and the second gap 16 of the A stage are dropped.
 好ましくは、簡便かつ確実な作業性を確保する観点から、シート配置工程(図2E参照)と、除去工程(図2G参照)とを実施する。 Preferably, from the viewpoint of ensuring simple and reliable workability, a sheet placement step (see FIG. 2E) and a removal step (see FIG. 2G) are performed.
 また、上記した第1実施形態では、図1Aに示すように、蛍光体シート3を第1剥離シート6の表面に形成した後、蛍光体シート3を第1剥離シート6から仮固定シート2に転写している。しかし、これに限定されず、蛍光体シート3を仮固定シート2の表面(具体的には、感圧接着層5の上面)に直接形成することもできる。その場合には、蛍光組成物のワニスを仮固定シート2の表面に塗布し、その後、これをBステージ化する。この方法であれば、第1剥離シート6を使用する必要がないので、蛍光体シート3を簡単に形成することができる。 In the first embodiment described above, as shown in FIG. 1A, after the phosphor sheet 3 is formed on the surface of the first release sheet 6, the phosphor sheet 3 is changed from the first release sheet 6 to the temporarily fixed sheet 2. Transcription. However, the present invention is not limited to this, and the phosphor sheet 3 can be directly formed on the surface of the temporary fixing sheet 2 (specifically, the upper surface of the pressure-sensitive adhesive layer 5). In that case, the varnish of the fluorescent composition is applied to the surface of the temporary fixing sheet 2, and then this is B-staged. With this method, it is not necessary to use the first release sheet 6, so that the phosphor sheet 3 can be easily formed.
 また、上記した第1実施形態では、図1Aに示すように、蛍光体シート3を仮固定シート2に仮固定し、その後、図3Hに示すように、蛍光体層-封止層付光半導体素子1を仮固定シート2から剥離している。しかし、仮固定シート2を用いることなく、蛍光体層-封止層付光半導体素子1を製造することもできる。 In the first embodiment described above, as shown in FIG. 1A, the phosphor sheet 3 is temporarily fixed to the temporary fixing sheet 2, and then, as shown in FIG. 3H, the optical semiconductor with the phosphor layer-sealing layer is provided. The element 1 is peeled from the temporary fixing sheet 2. However, the phosphor layer-sealing layer-attached optical semiconductor element 1 can be manufactured without using the temporary fixing sheet 2.
 好ましくは、仮固定シート2を用いて蛍光体層-封止層付光半導体素子1を製造する。この方法によれば、上記したように、第1切断工程および第2切断工程のそれぞれの切断処理を、仮固定シート2に仮固定された蛍光体シート3および封止シート19のそれぞれに対して確実に実施することができる。 Preferably, the phosphor layer-sealing layer-attached optical semiconductor element 1 is manufactured using the temporary fixing sheet 2. According to this method, as described above, the respective cutting processes of the first cutting step and the second cutting step are performed on each of the phosphor sheet 3 and the sealing sheet 19 temporarily fixed to the temporary fixing sheet 2. It can be implemented reliably.
 また、上記した第1実施形態では、図1Aの仮想線で示すように、Bステージの蛍光体シート3を用意しているが、例えば、Cステージの蛍光体シート3を用意し、これを仮固定シート2に仮固定することもできる。 In the first embodiment described above, the B-stage phosphor sheet 3 is prepared as shown by the phantom lines in FIG. 1A. For example, the C-stage phosphor sheet 3 is prepared and temporarily prepared. It can also be temporarily fixed to the fixing sheet 2.
 この方法では、図1Aに示すように、Cステージの蛍光体シート3を仮固定シート2の上に仮固定し、その後、図1Bが参照されるように、蛍光体シート3の上面に、例えば、熱硬化性樹脂などからなる接着層(図1Bにおいて図示せず)を設ける。その後、光半導体素子10をCステージの蛍光体シート3の上面に仮固定する。その後、図1Cに示すように、それらをオーブン17に投入して、接着層を加熱して硬化させ、かかる接着層によって光半導体素子10を蛍光体シート3の上面に接着する。なお、接着層を、予め、蛍光体シート3の上面に設け、次いで、接着層が設けられたCステージの蛍光体シート3を、仮固定シート2に仮固定することもできる。 In this method, as shown in FIG. 1A, the C-stage phosphor sheet 3 is temporarily fixed on the temporary fixing sheet 2, and then, as shown in FIG. 1B, on the upper surface of the phosphor sheet 3, for example, An adhesive layer (not shown in FIG. 1B) made of a thermosetting resin or the like is provided. Thereafter, the optical semiconductor element 10 is temporarily fixed to the upper surface of the phosphor sheet 3 of the C stage. Thereafter, as shown in FIG. 1C, they are put into an oven 17, the adhesive layer is heated and cured, and the optical semiconductor element 10 is bonded to the upper surface of the phosphor sheet 3 by the adhesive layer. It is also possible to provide an adhesive layer on the upper surface of the phosphor sheet 3 in advance, and then temporarily fix the C-stage phosphor sheet 3 provided with the adhesive layer to the temporarily fixing sheet 2.
 また、Cステージの蛍光体シート3がタック性(自己接着性)を有する場合には、上記した接着層を設けず、上記したタック性に基づいて、光半導体素子10を蛍光体シート3の上面に仮固定し、その後、図1Cに示すように、蛍光体シート3をさらに加熱することにより、光半導体素子10を蛍光体シート3の上面に接着する。 When the C-stage phosphor sheet 3 has tackiness (self-adhesiveness), the above-described adhesive layer is not provided, and the optical semiconductor element 10 is placed on the upper surface of the phosphor sheet 3 based on the tackiness described above. Then, as shown in FIG. 1C, the phosphor sheet 3 is further heated to bond the optical semiconductor element 10 to the upper surface of the phosphor sheet 3.
 また、上記した第1実施形態は、蛍光体シート3を、蛍光体および硬化性樹脂を含有するBステージまたはCステージの蛍光組成物から形成しているが、例えば、蛍光体セラミックスから形成することもできる。 In the first embodiment described above, the phosphor sheet 3 is formed from a B-stage or C-stage phosphor composition containing a phosphor and a curable resin. For example, the phosphor sheet 3 is formed from phosphor ceramics. You can also.
 そのような蛍光体シート3は、上記した蛍光体のセラミックス(焼成体)から板状に形成された蛍光体セラミックスプレートである。 Such a phosphor sheet 3 is a phosphor ceramic plate formed in a plate shape from the above-described phosphor ceramic (fired body).
 この方法では、上記した蛍光体シート3を、仮固定シート2の上に仮固定し、その後、蛍光体シート3の上面に、例えば、熱硬化性樹脂などからなる接着層を設ける。その後、図1Cに示すように、それらをオーブン17に投入して、接着層を加熱して硬化させて、接着層によって光半導体素子10を蛍光体シート3の上面に接着する。 In this method, the phosphor sheet 3 described above is temporarily fixed on the temporary fixing sheet 2, and then an adhesive layer made of, for example, a thermosetting resin is provided on the upper surface of the phosphor sheet 3. Thereafter, as shown in FIG. 1C, they are put into an oven 17, the adhesive layer is heated and cured, and the optical semiconductor element 10 is bonded to the upper surface of the phosphor sheet 3 by the adhesive layer.
 また、上記した複数の変形例を適宜組み合わせることができる。 Moreover, the above-described plural modifications can be combined as appropriate.
 <第2実施形態>
 第2実施形態において、第1実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
Second Embodiment
In the second embodiment, the same members and steps as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第2実施形態では、除去工程およびCステージ工程を順次実施する。具体的には、図4Bに示すように、まず、除去工程を実施し、その後、図4Cに示すように、Cステージ化工程を実施する。 In the second embodiment, the removal process and the C stage process are sequentially performed. Specifically, as shown in FIG. 4B, first, a removal process is performed, and then a C-staging process is performed as shown in FIG. 4C.
 図4Bに示すように、除去工程では、Bステージの封止シート19の上端部を除去する。この除去工程では、感圧接着シートを用いる方法、溶媒を用いる方法、研磨部材を用いる方法が採用される。これらは、単独使用または併用される。 As shown in FIG. 4B, in the removing step, the upper end portion of the B-stage sealing sheet 19 is removed. In this removing step, a method using a pressure-sensitive adhesive sheet, a method using a solvent, and a method using an abrasive member are employed. These are used alone or in combination.
 <第2実施形態の変形例>
 図示しないが、除去工程をCステージ化工程の前後にわたって実施することもできる。例えば、まず、溶媒で、Bステージの封止シート19の上端部を拭き、その後、封止シート19をCステージ化させ、その後、封止シート19の上端部において残存する部分を、感圧接着シートによって除去する。
<Modification of Second Embodiment>
Although not shown, the removal process can be performed before and after the C-stage process. For example, first, the upper end of the B-stage sealing sheet 19 is wiped with a solvent, and then the sealing sheet 19 is made into a C-stage, and then the remaining portion at the upper end of the sealing sheet 19 is pressure-sensitive bonded. Remove by sheet.
 <第3実施形態>
 第3実施形態において、第1および第2実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Third Embodiment>
In the third embodiment, the same members and steps as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 第1実施形態では、図1Dに示すように、「4. 第1切断工程」において、径方向内側から外側に向かうに従って、同一である刃厚T1を有するダイシングソー18(切断装置の一例)を用いて、蛍光体層26を切断する。つまり、側面22は、厚み方向に沿うフラット面を有する。 In the first embodiment, as shown in FIG. 1D, a dicing saw 18 (an example of a cutting device) having the same blade thickness T1 from the radially inner side toward the outer side in “4. First cutting step”. Use to cut the phosphor layer 26. That is, the side surface 22 has a flat surface along the thickness direction.
 1.第1切断工程
 しかし、第3実施形態の「第1切断工程」では、図5Aに示すように、径方向内側から外側に向かうに従って刃厚が狭くなる第2ダイシングソー(ダイシングブレード、切断装置の一例)32を用いて、蛍光体シート3を切断する。
1. First Cutting Step However, in the “first cutting step” of the third embodiment, as shown in FIG. 5A, the second dicing saw (dicing blade, cutting device of the cutting device) in which the blade thickness becomes narrower from the radially inner side toward the outer side. Example) Using 32, the phosphor sheet 3 is cut.
 第2ダイシングソー32は、径方向外側に向かって幅狭となり、左右方向に対向する2つのテーパー面33および34と、2つのテーパー面の径方向外端縁(周端縁)を連結する周端面35とを連続して有する。 The second dicing saw 32 is narrower toward the outer side in the radial direction, and is connected to the two tapered surfaces 33 and 34 facing in the left-right direction and the outer radial edges (circumferential edge) of the two tapered surfaces. It has the end surface 35 continuously.
 2つのテーパー面33および34の斜度は、例えば、同一である。 The slopes of the two tapered surfaces 33 and 34 are, for example, the same.
 2つのテーパー面33および34のそれぞれの、径方向に沿う仮想面S2に対する角度α1は、例えば、10度以上、好ましくは、30度以上であり、また、例えば、60度以下、好ましくは、80度以下である。 The angle α1 of each of the two tapered surfaces 33 and 34 with respect to the virtual plane S2 along the radial direction is, for example, 10 degrees or more, preferably 30 degrees or more, and, for example, 60 degrees or less, preferably 80 Less than or equal to degrees.
 なお、角度α1は、2つのテーパー面33および34のうちのいずれか一方と、第2ダイシングソー32の周端面35とのなす角βから、90度(直角)を差し引いた値(β-90)である。 The angle α1 is a value obtained by subtracting 90 degrees (right angle) from an angle β formed by either one of the two tapered surfaces 33 and 34 and the peripheral end surface 35 of the second dicing saw 32 (β−90). ).
 周端面35の幅方向長さ(図5Aにおける左右方向長さ)T6は、第2ダイシングソー32の中心の幅T7と比べて小さい。また、第2ダイシングソー32の周端面35の幅方向長さT6は、後述する第3隙間26(図7E参照)を封止層25に形成できる長さに調整されており、詳しくは、第3隙間26の幅W1(ダイシングソー27の刃厚T2)に比べて、小さい。具体的には、第2ダイシングソー32の周端面35の幅方向長さT6は、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、600μm以下、好ましくは、400μm以下である。また、第2ダイシングソー32の周端面35の幅方向長さT6は、隣接する光半導体素子10の間隔L0と比べて小さく、詳しくは、間隔L0に対して、例えば、90%以下、好ましくは、80%以下、例えば、1%以上であり、具体的には、例えば、600μm以下、好ましくは、400μm以下、例えば、10μm以上である。 The length in the width direction (length in the left-right direction in FIG. 5A) T6 of the peripheral end surface 35 is smaller than the width T7 of the center of the second dicing saw 32. Further, the width direction length T6 of the peripheral end surface 35 of the second dicing saw 32 is adjusted to a length capable of forming a third gap 26 (see FIG. 7E), which will be described later, in the sealing layer 25. 3 It is smaller than the width W1 of the gap 26 (the blade thickness T2 of the dicing saw 27). Specifically, the width direction length T6 of the peripheral end surface 35 of the second dicing saw 32 is, for example, 10 μm or more, preferably 20 μm or more, and for example, 600 μm or less, preferably 400 μm or less. Further, the width direction length T6 of the peripheral end face 35 of the second dicing saw 32 is smaller than the interval L0 between the adjacent optical semiconductor elements 10, and specifically, for example, 90% or less, preferably about the interval L0. 80% or less, for example, 1% or more, specifically, for example, 600 μm or less, preferably 400 μm or less, for example, 10 μm or more.
 第1切断工程によって、下側に向かうに従って、開口断面積が小さくなる第2隙間16が形成される。第2隙間16は、第2ダイシングソー32の2つのテーパー面33および34に対応する形状を有する。 In the first cutting step, the second gap 16 having a smaller opening cross-sectional area is formed toward the lower side. The second gap 16 has a shape corresponding to the two tapered surfaces 33 and 34 of the second dicing saw 32.
 第2隙間16は、開口断面積が下側に向かうに従って小さくなる形状を有する。具体的には、第2隙間16は、断面視において、厚み方向に沿って延びる2つの側面22間の間隔が下側に向かうに従って狭くなる形状を有する。 The second gap 16 has a shape in which the opening cross-sectional area becomes smaller as it goes downward. Specifically, the second gap 16 has a shape in which the distance between the two side surfaces 22 extending along the thickness direction becomes narrower as viewed in a cross-sectional view.
 1つの第2隙間16に臨む、2つの側面22の下端部の間の間隔L4は、第2ダイシングソー32の周端面35の上記した幅方向長さT6と略同一であり、具体的には、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、600μm以下、好ましくは、400μm以下である。 An interval L4 between the lower end portions of the two side surfaces 22 facing one second gap 16 is substantially the same as the above-described width direction length T6 of the peripheral end surface 35 of the second dicing saw 32, specifically, For example, it is 10 μm or more, preferably 20 μm or more, and for example, 600 μm or less, preferably 400 μm or less.
 2. 第2切断工程
 図7Eに示すように、ダイシングソー27の刃厚T2は、上記した間隔L4(図5A参照)に対して小さく、間隔L4に対して、例えば、95%以下、好ましくは、90%以下、また、例えば、5%以上である。具体的には、ダイシングソー27の刃厚T2は、例えば、200μm以下、好ましくは、100μm以下、また、例えば、10μm以上である。
2. Second Cutting Step As shown in FIG. 7E, the blade thickness T2 of the dicing saw 27 is smaller than the interval L4 (see FIG. 5A) described above, and is, for example, 95% or less, preferably 90% with respect to the interval L4. % Or less, for example, 5% or more. Specifically, the blade thickness T2 of the dicing saw 27 is, for example, 200 μm or less, preferably 100 μm or less, and, for example, 10 μm or more.
 仮固定シート2に仮固定されている蛍光体層-封止層付光半導体素子1の封止層25において、平面視で蛍光体層24の側面22の下端縁より外側に位置する部分の幅W3は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、600μm以下、好ましくは、400μm以下である。また、蛍光体層-封止層付光半導体素子1の封止層25において、平面視で蛍光体層24の側面22の上端縁と光半導体素子10の周側面13との間隔W2は、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、500μm以下、好ましくは、300μm以下である。封止層25において、平面視で光半導体素子10の周側面13と、封止層25の側面との間に位置する部分の幅W4は、蛍光体層24の厚みT3とする場合に、下記式で表される。 In the sealing layer 25 of the phosphor layer-sealing layer-attached optical semiconductor element 1 that is temporarily fixed to the temporarily fixing sheet 2, the width of the portion located outside the lower end edge of the side surface 22 of the phosphor layer 24 in plan view W3 is, for example, 10 μm or more, preferably 50 μm or more, and for example, 600 μm or less, preferably 400 μm or less. In the sealing layer 25 of the phosphor layer-sealing layer-attached optical semiconductor element 1, the interval W2 between the upper edge of the side surface 22 of the phosphor layer 24 and the peripheral side surface 13 of the optical semiconductor element 10 in plan view is, for example, It is 1 μm or more, preferably 10 μm or more, and for example, 500 μm or less, preferably 300 μm or less. In the sealing layer 25, when the width W4 of the portion located between the peripheral side surface 13 of the optical semiconductor element 10 and the side surface of the sealing layer 25 in plan view is the thickness T3 of the phosphor layer 24, It is expressed by a formula.
  W4=W2+W3+(T3×tanα2)
 α2は、蛍光体層24の側面22と、蛍光体層24の厚み方向に沿う仮想面S1との成す角度α2(図7Fの拡大図参照)であり、上記した第2ダイシングソー32(図5A参照)の2つのテーパー面33および34のうちのいずれか一方の、径方向に沿う仮想面に対する角度α1と同一である。
W4 = W2 + W3 + (T3 × tan α2)
α2 is an angle α2 (see an enlarged view of FIG. 7F) formed by the side surface 22 of the phosphor layer 24 and the virtual plane S1 along the thickness direction of the phosphor layer 24, and the second dicing saw 32 (FIG. 5A) described above. The angle α1 is the same as one of the two tapered surfaces 33 and 34 with respect to the virtual plane along the radial direction.
 具体的には、封止層25の上端部の幅W4は、例えば、20μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、600μm以下である。 Specifically, the width W4 of the upper end portion of the sealing layer 25 is, for example, 20 μm or more, preferably 50 μm or more, and for example, 1000 μm or less, preferably 600 μm or less.
 3. 第3実施形態の作用効果
 この方法によれば、図5Aに示すように、第2ダイシングソー32を用いて、蛍光体層24を切断して、下底より長い上底を有する断面略台形状を有する第2隙間16を形成する。これによって、蛍光体層24の側面22を、容易にテーパー面とすることができる。
3. Effects of Third Embodiment According to this method, as shown in FIG. 5A, the phosphor layer 24 is cut using the second dicing saw 32, and a substantially trapezoidal cross section having an upper base longer than the lower base The second gap 16 having the following is formed. As a result, the side surface 22 of the phosphor layer 24 can be easily tapered.
 また、この蛍光体層-封止層付光半導体素子1、および、光半導体装置30では、蛍光体層24の側面22が上記したテーパー面であるので、光取出し効率が、側面22が厚み方向に沿うフラット面である第1実施形態(図3J参照)と比較して、増加することができる。 In the phosphor layer-sealing layer-attached optical semiconductor element 1 and the optical semiconductor device 30, the side surface 22 of the phosphor layer 24 is the above-described tapered surface. As compared with the first embodiment (see FIG. 3J) that is a flat surface along the surface, it can be increased.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed as limiting. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
蛍光体層-封止層付光半導体素子の製造方法は、光半導体装置の製造に用いられる。 The method for manufacturing an optical semiconductor element with a phosphor layer-sealing layer is used for manufacturing an optical semiconductor device.
1     蛍光体層-封止層付光半導体素子
2     仮固定シート
3     蛍光体シート
8     光半導体素子
10   光半導体素子
11   電極面
12   発光面
13   周側面
14   電極
15   第1隙間
16   第2隙間
18   ダイシングソー
19   封止シート
24   蛍光体層
25   封止層
27   ダイシングソー
28   基板
30   光半導体装置
32   第2ダイシングソー
 
DESCRIPTION OF SYMBOLS 1 Phosphor layer-sealing layer-attached optical semiconductor element 2 Temporary fixing sheet 3 Phosphor sheet 8 Optical semiconductor element 10 Optical semiconductor element 11 Electrode surface 12 Light emitting surface 13 Peripheral side surface 14 Electrode 15 First gap 16 Second gap 18 Dicing saw 19 sealing sheet 24 phosphor layer 25 sealing layer 27 dicing saw 28 substrate 30 optical semiconductor device 32 second dicing saw

Claims (7)

  1.  複数の光半導体素子を、蛍光体シートの厚み方向一方側に、互いに間隔を隔てて配置する素子配置工程と、
     前記複数の光半導体素子間の前記蛍光体シートを、前記蛍光体シートを厚み方向に貫通する隙間が形成されるように、切断して、前記複数の光半導体素子のそれぞれに対応する複数の蛍光体層のそれぞれを形成する第1切断工程と、
     封止シートを、前記隙間を充填し、かつ、前記光半導体素子の側面を被覆するように、形成するシート形成工程と、
     前記封止シートを厚み方向に沿って切断して、前記複数の光半導体素子のそれぞれおよび前記複数の蛍光体層のそれぞれに対応する、複数の封止層のそれぞれを形成する第2切断工程と
    を備えることを特徴とする、蛍光体層-封止層付光半導体素子の製造方法。
    An element disposing step of disposing a plurality of optical semiconductor elements on the one side in the thickness direction of the phosphor sheet at an interval;
    The phosphor sheets between the plurality of optical semiconductor elements are cut so as to form a gap penetrating the phosphor sheet in the thickness direction, and a plurality of fluorescence corresponding to each of the plurality of optical semiconductor elements is formed. A first cutting step for forming each of the body layers;
    A sheet forming step of forming a sealing sheet so as to fill the gap and cover the side surface of the optical semiconductor element;
    A second cutting step of cutting the sealing sheet along the thickness direction to form each of the plurality of sealing layers corresponding to each of the plurality of optical semiconductor elements and each of the plurality of phosphor layers; A method for producing an optical semiconductor element with a phosphor layer-sealing layer, comprising:
  2.  前記複数の光半導体素子のそれぞれは、電極が設けられる電極面、前記電極面に対向し、発光層が設けられる発光面、および、前記電極面と前記発光面との周端縁を連結する前記側面を有し、
     前記素子配置工程では、前記発光面を前記蛍光体シートに配置し、
     前記シート形成工程は、
     前記封止シートを、前記隙間を充填し、前記側面および前記電極面を被覆するように、形成する電極面被覆工程と、
     前記封止シートの厚み方向一方側端部を除去して、前記電極面を露出させる除去工程と
    を備えることを特徴とする、請求項1に記載の蛍光体層-封止層付光半導体素子の製造方法。
    Each of the plurality of optical semiconductor elements includes an electrode surface on which an electrode is provided, a light emitting surface that faces the electrode surface, a light emitting layer is provided, and a peripheral edge between the electrode surface and the light emitting surface. Have sides,
    In the element arranging step, the light emitting surface is arranged on the phosphor sheet,
    The sheet forming step
    An electrode surface covering step for forming the sealing sheet so as to fill the gap and cover the side surface and the electrode surface;
    2. The phosphor layer-optical semiconductor element with a sealing layer according to claim 1, further comprising a removing step of removing one end in the thickness direction of the sealing sheet to expose the electrode surface. Manufacturing method.
  3.  前記除去工程では、前記封止シートの前記厚み方向一方面を溶媒で拭くことを特徴とする、請求項2に記載の蛍光体層-封止層付光半導体素子の製造方法。 The method for producing an optical semiconductor element with a phosphor layer-sealing layer according to claim 2, wherein in the removing step, one surface in the thickness direction of the sealing sheet is wiped with a solvent.
  4.  前記シート形成工程は、
      Bステージの前記封止シートを、前記隙間を充填し、前記側面を被覆するように、配置するシート配置工程と、
      前記シート配置工程後、かつ、前記第2切断工程の前に、前記Bステージの封止シートをCステージ化するCステージ化工程と
    を備えることを特徴とする、請求項1に記載の蛍光体層-封止層付光半導体素子の製造方法。
    The sheet forming step
    A sheet arranging step of arranging the sealing sheet of the B stage so as to fill the gap and cover the side surface;
    2. The phosphor according to claim 1, further comprising a C-stage forming step of converting the sealing sheet of the B stage into a C-stage after the sheet arranging step and before the second cutting step. For manufacturing an optical semiconductor element with a layer-sealing layer.
  5.  前記第1切断工程および前記第2切断工程を、ともに、切断刃を用いて実施し、
     前記第1切断工程では、前記切断刃を前記蛍光体シートの厚み方向一方側に配置し、前記切断刃を前記厚み方向一方側から前記蛍光体シートに当接させ、
     前記第2切断工程では、前記切断刃を前記封止シートの厚み方向一方側に配置し、前記切断刃を前記厚み方向一方側から前記封止シートに当接させることを特徴とする、請求項1に記載の蛍光体層-封止層付光半導体素子の製造方法。
    Both the first cutting step and the second cutting step are performed using a cutting blade,
    In the first cutting step, the cutting blade is disposed on one side in the thickness direction of the phosphor sheet, and the cutting blade is brought into contact with the phosphor sheet from the one side in the thickness direction,
    In the second cutting step, the cutting blade is disposed on one side in the thickness direction of the sealing sheet, and the cutting blade is brought into contact with the sealing sheet from the one side in the thickness direction. 2. The method for producing an optical semiconductor element with a phosphor layer-sealing layer according to 1.
  6.  前記素子配置工程の前に、前記蛍光体シートを、仮固定シートに仮固定する仮固定工程と、
     前記第2切断工程の後に、前記光半導体素子、前記蛍光体層および前記封止層を備える蛍光体層-封止層付光半導体素子を前記仮固定シートから剥離する剥離工程と
    をさらに備えることを特徴とする、請求項1に記載の蛍光体層-封止層付光半導体素子の製造方法。
    Prior to the element placement step, the phosphor sheet is temporarily fixed to the temporary fixing sheet; and
    After the second cutting step, the method further comprises: a phosphor layer comprising the optical semiconductor element, the phosphor layer and the sealing layer-a peeling step of peeling the optical semiconductor element with a sealing layer from the temporary fixing sheet. The method for producing an optical semiconductor element with a phosphor layer-sealing layer according to claim 1, wherein:
  7.  前記封止シートが、光反射成分を含有することを特徴とする、請求項1に記載の蛍光体層-封止層付光半導体素子の製造方法。 The method for producing an optical semiconductor element with a phosphor layer-sealing layer according to claim 1, wherein the sealing sheet contains a light reflecting component.
PCT/JP2016/063216 2015-05-01 2016-04-27 Manufacturing method for optical semiconductor elements having phosphor layers and sealing layers WO2016178397A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015093947 2015-05-01
JP2015-093947 2015-05-01
JP2016-087030 2016-04-25
JP2016087030A JP2016213451A (en) 2015-05-01 2016-04-25 Manufacturing method for optical semiconductor element with phosphor layer-sealing layer

Publications (1)

Publication Number Publication Date
WO2016178397A1 true WO2016178397A1 (en) 2016-11-10

Family

ID=57217887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063216 WO2016178397A1 (en) 2015-05-01 2016-04-27 Manufacturing method for optical semiconductor elements having phosphor layers and sealing layers

Country Status (1)

Country Link
WO (1) WO2016178397A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139285A (en) * 2016-12-21 2018-09-06 日亜化学工業株式会社 Method for manufacturing light-emitting device
JP6484745B1 (en) * 2018-02-27 2019-03-13 ルーメンス カンパニー リミテッド Method for manufacturing light emitting device package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222319A (en) * 2011-04-14 2012-11-12 Nitto Denko Corp Phosphor reflection sheet, light emitting diode device, and manufacturing method of the light emitting diode device
WO2013137356A1 (en) * 2012-03-13 2013-09-19 シチズンホールディングス株式会社 Semiconductor light emitting device and method for manufacturing same
JP2014130918A (en) * 2012-12-28 2014-07-10 Nitto Denko Corp Sealing layer coating optical semiconductor element, manufacturing method of the same, and optical semiconductor device
JP2014139979A (en) * 2013-01-21 2014-07-31 Citizen Holdings Co Ltd LED device
JP2014168033A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Reflection layer-phosphor layer covered led, manufacturing method of the same, led device, and manufacturing method of led device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222319A (en) * 2011-04-14 2012-11-12 Nitto Denko Corp Phosphor reflection sheet, light emitting diode device, and manufacturing method of the light emitting diode device
WO2013137356A1 (en) * 2012-03-13 2013-09-19 シチズンホールディングス株式会社 Semiconductor light emitting device and method for manufacturing same
JP2014168033A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Reflection layer-phosphor layer covered led, manufacturing method of the same, led device, and manufacturing method of led device
JP2014130918A (en) * 2012-12-28 2014-07-10 Nitto Denko Corp Sealing layer coating optical semiconductor element, manufacturing method of the same, and optical semiconductor device
JP2014139979A (en) * 2013-01-21 2014-07-31 Citizen Holdings Co Ltd LED device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139285A (en) * 2016-12-21 2018-09-06 日亜化学工業株式会社 Method for manufacturing light-emitting device
JP6484745B1 (en) * 2018-02-27 2019-03-13 ルーメンス カンパニー リミテッド Method for manufacturing light emitting device package
JP2019149533A (en) * 2018-02-27 2019-09-05 ルーメンス カンパニー リミテッド Manufacturing method of light-emitting element package

Similar Documents

Publication Publication Date Title
KR102541533B1 (en) Manufacturing method of an optical semiconductor element with a light reflection layer and an optical semiconductor element with a light reflection layer and a phosphor layer
JP2016213451A (en) Manufacturing method for optical semiconductor element with phosphor layer-sealing layer
JP6852401B2 (en) A phosphor sheet, a light emitter using the phosphor sheet, a light source unit, a display, and a method for manufacturing the light emitter.
JP5840377B2 (en) Reflective resin sheet and method for manufacturing light-emitting diode device
US8946983B2 (en) Phosphor-containing sheet, LED light emitting device using the same, and method for manufacturing LED
JP6287212B2 (en) Phosphor-containing resin sheet and light emitting device
TWI693730B (en) Manufacturing method of light-emitting device
WO2016148019A1 (en) Method for producing optical semiconductor element with light reflecting layer and method for producing optical semiconductor element with light reflecting layer and phosphor layer
US20140339582A1 (en) Resin sheet laminate, method for manufacturing the same and method for manufacturing led chip with phosphor-containing resin sheet
JP5862066B2 (en) Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
TW201401584A (en) Reflecting layer-phosphor layer-covered LED, producing method thereof, LED device, and producing method thereof
JP2014096491A (en) Semiconductor element covered with phosphor layer and method for manufacturing the same, and semiconductor device and method for manufacturing the same
TW201401576A (en) Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
JP2014116587A (en) Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
JP2017163105A (en) Optical semiconductor device covering sheet, adhesion layer-covering layer-attached optical semiconductor device and manufacturing method thereof, and method for manufacturing adhesion layer-attached optical semiconductor device
JP5953797B2 (en) Manufacturing method of semiconductor light emitting device
WO2017221606A1 (en) Optical semiconductor element having phosphor layer, and method for manufacturing optical semiconductor element
TW202027302A (en) Optical semiconductor element covered with phosphor layer and manufacturing method thereof
WO2016178397A1 (en) Manufacturing method for optical semiconductor elements having phosphor layers and sealing layers
WO2017221608A1 (en) Phosphor layer sheet, and manufacturing method of optical semiconductor element with phosphor layer
JP2018049864A (en) Method for manufacturing optical semiconductor element with functional layer and coating layer
JP2018120947A (en) Method for manufacturing optical semiconductor element with functional layer-coating layer
JP2018120944A (en) Method for manufacturing optical semiconductor element with functional layer-coating layer
JP2018101659A (en) Method of manufacturing optical semiconductor element with function layer-coating layer
WO2016143623A1 (en) Adhesive sheet, adhesive light semiconductor element production method and optical semiconductor device production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789533

Country of ref document: EP

Kind code of ref document: A1