WO2016177236A1 - 一种天线、天线圆极化方法和移动终端 - Google Patents

一种天线、天线圆极化方法和移动终端 Download PDF

Info

Publication number
WO2016177236A1
WO2016177236A1 PCT/CN2016/078447 CN2016078447W WO2016177236A1 WO 2016177236 A1 WO2016177236 A1 WO 2016177236A1 CN 2016078447 W CN2016078447 W CN 2016078447W WO 2016177236 A1 WO2016177236 A1 WO 2016177236A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
feed arm
adjustable
adjustable feed
turned
Prior art date
Application number
PCT/CN2016/078447
Other languages
English (en)
French (fr)
Inventor
郭志雷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177236A1 publication Critical patent/WO2016177236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present application relates to antenna technology, for example, to an antenna, an antenna circular polarization method, and a mobile terminal.
  • the implementation method of the circular polarization of the antenna of the mobile terminal is generally realized by the single-fed method.
  • the single-fed method is based on the cavity model theory, and the degenerate mode of the two orthogonal polarizations is generated by using the degenerate mode separation element.
  • the key to the design of the method is to determine the geometric perturbation, that is, select the size and position of the degenerate mode separation element, and the appropriate feed point.
  • the single-feed method is used to realize circular polarization of the antenna.
  • the antenna can only realize left circular polarization or right circular polarization, so that the antenna has a small application range.
  • an embodiment of the present invention is to provide an antenna, an antenna circular polarization method, and a mobile terminal, which can perform left circular polarization or right circular polarization according to requirements.
  • An embodiment of the present invention provides an antenna, the antenna includes: a feeding network disposed on one side of an uncoated metal layer of the dielectric substrate; and a radiating unit disposed on a side of the dielectric substrate coated with the metal layer; the feeding network includes a branch Unit and two adjustable feed arms;
  • the input signal is divided by the branching unit into two signals having equal current amplitudes, and the two signals having the same amplitude and amplitude are transmitted through different adjustable feed arms, and output mutually orthogonal output signals, the output A signal is coupled through the radiating element and the radiating element radiates the coupled signal.
  • the difference between the lengths of the two adjustable feed arms is Where n is a natural number and ⁇ is the wavelength of the input signal.
  • each adjustable feed arm comprises: a first feed arm, a switch group and a second feed arm;
  • the switch group is configured to select a feed arm from the first feed arm and the second feed arm to be connected to the switch group according to a control signal;
  • the switch group When the switch group is selected to be connected to the second feed arm, the switch group is further configured to connect an input end of the first feed arm and an output end of the second feed arm;
  • the second feed arm and the first feed arm are both configured to transmit the signal
  • An output of the first feed arm is coupled to an input of the radiating element.
  • the switch group includes a first switch, a second switch, and a third switch
  • the input end of the first switch is connected to the output end of the branch unit, the output end of the first switch is connected to the input end of the second feed arm, and the input end of the second switch is opposite to the second An output end of the feed arm is connected, an output end of the second switch is connected to an input end of the first feed arm; an input end of the third switch is connected to an output end of the branch unit, the third switch The output is connected to the input of the first feed arm.
  • the two adjustable feed arms comprise a first adjustable feed arm and a second adjustable feed arm, the first adjustable feed arm and the second adjustable feed arm
  • the angle is 90 degrees
  • control signal causes the first switch and the second switch of the first adjustable feed arm to be turned on, the third switch to be turned off, and the first of the second adjustable feed arms
  • the switch and the second switch are turned off, and the third switch is turned on
  • the signal flowing through the first adjustable feed arm flows through the first feed arm and the second feed of the first adjustable feed arm
  • a signal flowing through the second adjustable feed arm flows only through the first feed arm of the second adjustable feed arm
  • the control signal causes the first switch and the second switch of the first adjustable feed arm to be turned off
  • the third switch is turned on
  • the first switch of the second adjustable feed arm is When the second switch is turned on and the third switch is turned off, the signal flowing through the first adjustable feed arm flows only through the first feed arm of the first adjustable feed arm, and flows through the first A signal of the second adjustable feed arm flows through the first feed arm and the second feed arm of the second adjustable feed arm.
  • the first switch, the second switch, and the third switch are all MEMS switch MEMS switches.
  • the branching unit includes:
  • a T-bracket two symmetric ports of the three ports of the T-bracket as the branch unit
  • the radiating unit includes a square ring slit engraved on the metal layer of the dielectric substrate, and a cross groove centered at a center of the square ring slit and communicating with the square ring slot, the cross groove
  • the intersection of the radiation unit is connected to the output end of the adjustable feed arm; the four sides of the square ring slit are respectively parallel to the four sides of the dielectric substrate,
  • the cross groove and the square ring slit form a shape of a field.
  • the dielectric substrate is a multilayer printed circuit board having a size of 14 x 12 mm 2 , a thickness of 1 mm, and a dielectric constant of 4.4.
  • the square ring slit has an outer ring side length of 9.2 mm and an inner ring side length of 6.2 mm;
  • the cross groove is composed of two rectangular slots of the same shape perpendicularly intersecting each other, and the rectangular groove is long. It is 6.2 mm, the width is 1.4 mm, the length of the first feed arm is 5 mm, the length of the second feed arm is 2.5 mm, and the length of the MEMS switch is 1 mm.
  • the embodiment of the present invention further provides an antenna circular polarization method, which is applied to the antenna according to any one of claims 1 to 10, the method comprising:
  • Two mutually orthogonal output signals are coupled and the coupled signal is radiated.
  • the method before receiving the input signal, the method further includes:
  • the third switch is turned off, and the first switch and the second switch of the second adjustable feed arm are turned off, the third Determining, when the switch is turned on, the first adjustable feed arm includes a first feed arm and a second feed arm of the first adjustable feed arm, The second adjustable feed arm includes a first feed arm of the second adjustable feed arm;
  • the third switch is turned on, and the first switch and the second switch of the second adjustable feed arm are turned on, and the third switch is turned off
  • the first adjustable feed arm of the first adjustable feed arm includes a first feed arm
  • the second adjustable feed arm includes a first one of the first adjustable feed arm Feed arm and second noble feed arm.
  • an embodiment of the present invention further provides an antenna, where the antenna includes:
  • a receiving unit configured to receive an input signal and divide the input signal into two signals having equal current amplitudes
  • a transmission unit configured to transmit the two signals having the same amplitude of the current through the two adjustable feed arms, wherein the lengths of the two adjustable feed arms are adjusted according to a control signal, the two adjustable The difference in length of the feed arms causes the output signals of the two adjustable feed arms to be orthogonal to each other;
  • the radiating element is configured to couple two mutually orthogonal output signals and radiate the coupled signals.
  • the antenna further includes:
  • the receiving unit is further configured to receive a control signal
  • control unit configured to respectively control on and off of the first switch, the second switch, and the third switch of the two adjustable feed arms according to the control signal
  • the third switch is turned off, and the first switch and the second switch of the second adjustable feed arm are turned off, the third Determining, when the switch is turned on, the first adjustable feed arm includes a first feed arm and a second feed arm of the first adjustable feed arm, the second adjustable feed arm including the a first adjustable feed arm of the second adjustable feed arm;
  • the third switch is turned on, and the first switch and the second switch of the second adjustable feed arm are turned on, and the third switch is turned off
  • the first adjustable feed arm of the first adjustable feed arm includes a first feed arm
  • the second adjustable feed arm includes a first one of the first adjustable feed arm Feed arm and second noble feed arm.
  • an embodiment of the present invention further provides a mobile terminal, where the mobile terminal includes:
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions for performing the above antenna circular polarization method.
  • embodiments of the present invention also provide an apparatus including one or more processors, a memory, and one or more programs, the one or more programs being stored in a memory when being processed by one or more processors When executed, the above method of antenna circular polarization is performed.
  • Embodiments of the present invention provide an antenna and a mobile terminal, wherein an input signal flows through a branch unit of a feed network to perform shunting, and two signals having equal current amplitudes are obtained, and then the two signals are respectively input into two adjustable feeds.
  • the output signals of the two adjustable feed arms are orthogonal to each other, and the two mutually orthogonal output signals are coupled through the square ring slot of the radiating element and the cross slot to output the coupled signal.
  • the adjustable feed arm in the antenna provided by the embodiment of the present invention can change its own length according to the control signal, thereby changing the phase of the output signals of the two adjustable feed arms, so that the output signals are orthogonal to each other.
  • the left circular polarization or the right circular polarization of the antenna is achieved by advancing or delaying the phase of the output signal flowing through one adjustable feed arm to adjust the output signal of the feed arm. Therefore, the antenna of the embodiment of the present invention can implement left circular polarization or right circular polarization according to requirements.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a feed network of an antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an adjustable feed arm according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of current flow of an adjustable feed arm according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a radiating unit of an antenna according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 7 is a parameter diagram of an antenna S11 according to an embodiment of the present invention.
  • FIG. 8 is a radiation pattern of a left-hand circular polarization of an antenna according to an embodiment of the present invention.
  • FIG. 9 is a radiation pattern of a right-hand circular polarization of an antenna according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a method for circularly polarizing an antenna according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another antenna according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of still another antenna according to an embodiment of the present invention.
  • the antenna 10 may include: a feeding network 20 (shown by a dotted line in FIG. 1) disposed on a side of the uncoated metal layer of the dielectric substrate and disposed on the medium.
  • the substrate is coated with a radiating element 30 on one side of the metal layer (solid line as shown in FIG. 1).
  • the feed network 20 includes a branching unit 201 and two adjustable feed arms 202.
  • the branching unit 201 may be a bracket capable of splitting the input signal and maintaining the amplitude of the signal current after the shunting is equal.
  • the branching unit 201 may be a Y-shaped bracket or a T-shaped bracket or the like.
  • the input signal is divided into two signals of equal magnitude of current by the branching unit 201.
  • the signals of the two equal amplitudes are respectively transmitted through different adjustable feed arms 202, and the signals output by the feeding arms can be adjusted to each other.
  • the orthogonal output signals are then coupled by the radiating element 30 and the radiating element 30 radiates the coupled signals.
  • the branching unit 201 may include a T-shaped bracket, and two symmetric ports of the three ports of the T-shaped bracket (the left and right of the branching unit in FIG. 2)
  • ports other than the two symmetrical ports serve as the input ports of the branching unit 201.
  • the input signal is shunted through the T-branch branching point, and the shunted signal is transmitted through the same path, so that the current amplitudes of the signals output by the two output ports are equal.
  • the adjustable feed arm 202 can include a first feed arm 2021, a switch block 2022, and a second feed arm 2023.
  • the lengths of the feed arms of the two adjustable feed arms 202 on the left and right sides of the branch unit 201 are adjustable; when the difference between the lengths of the two adjustable feed arms 202 is adjusted, When the signals of the two adjustable feed arms are phase difference Quadrature output signal.
  • n is a positive integer and ⁇ is the wavelength of the input signal.
  • the input end of the switch group 2022 is connected to the output end of the branch unit 201, and the switch group 2022 is configured to select one feed arm and the switch group 2022 from the first feed arm 2021 and the second feed arm 2023 according to the control signal. Connected; the second feed arm 2023 and the first feed arm 2021 are arranged to transmit a split signal, and the output of the first feed arm 2021 is connected to the input of the radiating element 30.
  • the switch group 2022 is further arranged to connect the input end of the first feed arm 2021 and the output end of the second feed arm 2023.
  • the switch group 2022 includes three switches, a first switch K1, a second switch K2, and a third switch K3.
  • the input end of the first switch K1 is connected to the output end of the branch unit 201, the output end of the first switch K1 is connected to the input end of the second feed arm 2023, and the input end of the second switch K2 is connected to the second feed arm.
  • the output end of the second switch K2 is connected to the input end of the first feed arm 2021; the input end of the third switch K3 is connected to the output end of the branch unit 201, and the output end of the third switch K3 is first The input ends of the feed arms 2021 are connected.
  • the two adjustable feed arms 202 include a first adjustable feed arm 202A and a second adjustable feed arm 202B, and the angle between the first adjustable feed arm 202A and the second adjustable feed arm 202B is 90. degree.
  • the fourth indicator 4 indicates the flow of signals flowing through the first adjustable feed arm 202A and the second adjustable feed arm 202B, that is, the first adjustable
  • the signal of the feed arm 202A flows through the first feed arm 2021 and the second feed arm 2023 of the first adjustable feed arm 202A, and the signal flowing through the second adjustable feed arm 202B flows through the second only Adjusting the first feeding arm 2021 of the feeding arm 202B; when the control signal turns off the first switch K1 and the second switch K2 in the first adjustable feeding arm 202A, and the third switch K3 is turned on, so that the second When the first switch K1 and the second switch K2 in the regulating feed arm 202B are turned on and the third switch K3 is turned off, the signal flowing through the first adjustable feed arm flows only through the first adjustable feed.
  • the first feed arm 2021 of the arm flows through the first feed arm 2021 and the second feed arm 2023 of the second adjustable feed arm 202B.
  • the above signal will flow through the switch that is turned on by the adjustable feed arm.
  • the switches of the switch group are Micro-Electro-Mechanical System (MEMS) switches.
  • MEMS switches have ideal switching characteristics, high isolation, low power consumption, and easy integration.
  • the radiating unit 30 includes a square ring slit 301 engraved on the metal layer of the dielectric substrate, and a cross groove 302 centered on the center of the square ring slit 301 and connected to the square ring slit 301, the cross groove The intersection of 302 is connected to the output end of the adjustable feed arm 202 as the input end of the radiation unit 30; the four sides of the square ring slit 301 are respectively parallel to the four sides of the dielectric substrate, and the cross groove 302 and the square ring slit 301 form a field shape.
  • the square ring slit is a square slit opened on the metal layer of the dielectric substrate, and the square slit is parallel to the four sides of the dielectric plate, and the cross groove is a cross on the upper metal layer of the dielectric plate on the basis of the square ring gap.
  • Type groove located in the center of the square ring gap.
  • the width of the adjustable feed arm and the branch width of the T-branch are the same.
  • the multilayer printed circuit board having the dielectric constant of the present embodiment which is an optional dielectric constant and having a dielectric constant of about 4.4 can also be used as a dielectric substrate.
  • the adjustable feed arm of the antenna may change the length according to the control signal, thereby changing the phase of the output signals of the two adjustable feed arms, so that the output signals are orthogonal to each other, so that an adjustable The phase of the output signal of the feed arm is advanced or delayed by another adjustable feed arm
  • the signal is output, thereby realizing the left circular polarization or the right circular polarization of the antenna. Therefore, the antenna can be reconstructed to achieve left circular polarization or right circular polarization as required.
  • FIG. 6 is a schematic structural view of an antenna according to an embodiment of the present invention, comprising: a dielectric substrate 1 having a thickness of 1 mm and a size of 14 ⁇ 12 mm 2 ; one side of the dielectric substrate 1 is a metal layer engraved with a square ring slit 3 and a cross recess 2; The four sides of the square ring slit 3 are parallel to the four sides of the dielectric substrate 1, and the outer ring side length of the square ring slit 3 is 9.2 mm, and the inner ring side length is 6.2 mm.
  • the cross recess 2 is composed of two rectangular slots which are vertically intersected, and is located at the center of the square ring slot 3, and the four top ends are respectively communicated with the center of the side of the square ring slot 3, and the two rectangular slots have the same size, length and width are respectively 6.2 mm and 1.4 mm;
  • the other side of the dielectric substrate 1 is engraved with a T-branch 10 for input signal access, two first feed arms 4 and 15 and two second feed arms 7 and 13, distributed over the T-branch 2 switch groups on both sides of 10.
  • one switch group includes a MEMS switch 5, a MEMS switch 6, and a MEMS switch 8, and the other switch group includes a MEMS switch 11, a MEMS switch 12, and a MEMS switch 14.
  • the specific working process is as follows: It is assumed that the adjustable feed arm on the left side in FIG. 6 is the first adjustable feed arm, and the right side is the second adjustable feed arm.
  • the input signal is input from the input of the T-branch 10 and then split into two signals of equal magnitude.
  • the switch group controls two signals of equal magnitude of current to flow through the adjustable feed arm according to the control signal. .
  • Two signals of equal magnitude of current are output through the first adjustable feed arm or the second adjustable feed arm, and the output signals are orthogonal to each other, and two signals orthogonal to each other are coupled to the square ring gap 3 and the cross. Slot 2, which eventually radiates the coupled signal.
  • the cavity formed by the square ring slit 3 and the cross recess 2 can excite a plurality of resonance modes, and the antenna gains the most in the direction perpendicular to the plane of the square ring slit 3, that is, the main lobe of the antenna pattern points in this direction.
  • the first adjustable feed includes a first feed arm 4 and a second feed arm 7 of the first adjustable feed arm
  • the second adjustable feed arm includes a first feed arm 15 of the second adjustable feed arm, such that The phase of the output signal of the first adjustable feed arm is delayed by 90 degrees from the second adjustable feed arm, and the antenna is a left-handed circularly polarized antenna; when the control signal is detected to indicate a right-handed circularly polarized wave, Broken MEMS switch 5, MEMS switch 8 and MEMS switch 12, turn on MEMS switch 6, MEMS switch 11 and MEMS switch 14.
  • the second adjustable feed arm includes a first feed arm 15 and a second feed arm 13 of the second adjustable feed arm, the first adjustable feed arm including the first of the first adjustable feed arms
  • the feed arm 4 is such that the phase of the output signal of the first adjustable feed arm is advanced by 90 degrees from the second adjustable feed arm, at which time the antenna is a right-handed circularly polarized antenna. This achieves the reconstruction of the antenna.
  • the antenna specific structure geometric parameters are taken as an example to simulate the antenna:
  • 1a, 1b of Table 1 are the length and width of the dielectric substrate, and ra and rb are the outer ring side length and the inner ring side length of the square slit, st is the width of the cross groove, and d1 is the feed long arm end to The distance between the center of the ring, L1, W1 are the length and width of the feeding long arm, L2 is the length of the long side of the angle, L3 is the length of the MEMS switch, L4 is the length of the T-branch, and W2 is the T-branch The width of the input.
  • the antenna S11 parameter diagram is simulated as shown in Fig. 7.
  • the radiation pattern when left-handed circular polarization is as shown in Fig. 8 and the radiation pattern when left-hand circularly polarized is as shown in Fig. 9. It can be seen from the figure that the scheme proposed in this embodiment ensures that the antenna realizes circular polarization, and can also improve the standing wave ratio bandwidth and the circular polarization bandwidth, and suppress cross polarization.
  • the embodiment of the present invention provides an antenna circular polarization method, which is applied to the antenna according to the first embodiment. As shown in FIG. 10, the method may include:
  • Step 401 Receive an input signal, and divide the input signal into two signals with equal current amplitudes.
  • Step 402 transmitting two signals having the same amplitude of the current through two adjustable feed arms, wherein the lengths of the two adjustable feed arms are adjusted according to the control signal, and the difference between the lengths of the two adjustable feed arms is The output signals of the two adjustable feed arms are orthogonal to each other.
  • Step 403 Coupling two mutually orthogonal output signals, and radiating the coupled signals.
  • the adjustable feed arm in the antenna provided by the embodiment of the present invention can change its own length according to the control signal, thereby changing the phase of the output signals of the two adjustable feed arms, so that the output signals of the two adjustable feed arms
  • the phases are orthogonal to one another such that the left circular polarization or the right circular polarization of the antenna is achieved by either advancing the phase of the output signal flowing through an adjustable feed arm or laging the output signal of the other adjustable feed arm. . Therefore, the antenna of the embodiment of the present invention can implement left circular polarization or right circular polarization according to requirements.
  • the method further includes: receiving a control signal; controlling, according to the control signal, turning on and off the first switch, the second switch, and the third switch of the two adjustable feed arms;
  • the first switch and the second switch of the first adjustable feed arm are turned on, the third switch is turned off, and the first switch and the second switch of the second adjustable feed arm are turned off, and the third switch is turned on
  • the first adjustable feed arm includes a first feed arm and a second feed arm of the first adjustable feed arm
  • the second adjustable feed arm includes the second adjustable feed arm First feed arm;
  • the third switch is turned on, and the first switch and the second switch of the second adjustable feed arm are turned on, and the third switch is turned off
  • the first adjustable feed arm of the first adjustable feed arm includes a first feed arm
  • the second adjustable feed arm includes a first feed arm of the first adjustable feed arm and The second expensive feed arm.
  • an antenna 10 As shown in FIG. 11, the antenna 10 may include:
  • the receiving unit 501 is configured to receive an input signal and divide the input signal into two signals having equal current amplitudes.
  • the transmission unit 502 is configured to transmit the two signals having the same amplitude of the current through the two adjustable feed arms, wherein the lengths of the two adjustable feed arms are adjusted according to the control signal, and the two Adjusting the difference in length of the feed arms causes the output signals of the two adjustable feed arms to be orthogonal to each other.
  • a radiating unit 503 configured to couple two mutually orthogonal output signals and to couple the coupled signals Shoot it out.
  • the adjustable feed arm of the antenna provided by this embodiment can change the length according to the control signal, thereby changing the phase of the output signal flowing through the two adjustable feed arms, so that the phases of the output signals of the two adjustable feed arms are mutually Orthogonal, such that the phase of the output signal flowing through an adjustable feed arm leads or lags the other to adjust the output signal of the feed arm, thereby achieving left circular polarization or right circular polarization. Therefore, the antenna can be reconstructed to achieve left circular polarization or right circular polarization as required.
  • the receiving unit 501 is further configured to receive the control signal before receiving an input signal.
  • the control unit 504 is configured to respectively control the on and off of the first switch, the second switch, and the third switch of the two adjustable feed arms according to the control signal.
  • the third switch is turned off, and the first switch and the second switch of the second adjustable feed arm are turned off, the third Determining, when the switch is turned on, the first adjustable feed arm includes a first feed arm and a second feed arm of the first adjustable feed arm, the second adjustable feed arm including the a first adjustable feed arm of the second adjustable feed arm;
  • the third switch is turned on, and the first switch and the second switch of the second adjustable feed arm are turned on, and the third switch is turned off
  • the first adjustable feed arm of the first adjustable feed arm includes a first feed arm
  • the second adjustable feed arm includes a first one of the first adjustable feed arm Feed arm and second noble feed arm.
  • the receiving unit 501, the transmitting unit 502, the radiating unit 503, and the control unit 504 may each be a central processing unit (CPU), a microprocessor (Micro Processor Unit, MPU) located in the antenna 10. ), digital signal processor (DSP), or Field Programmable Gate Array (FPGA) implementation.
  • CPU central processing unit
  • MPU Micro Processor Unit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the embodiment of the present invention provides a mobile terminal 60, where the mobile terminal 60 includes:
  • the antenna 10 includes: a feeding network 20 disposed on one side of the uncoated metal layer of the dielectric substrate; and a surface engraved on the side of the dielectric substrate coated with the metal layer Shooting unit 30.
  • the feed network 20 includes a branching unit 201 and two adjustable feed arms 202.
  • the input end of the branching unit 201 is configured to receive an input signal, and the branching unit 201 is configured to divide the input signal into two signals having equal current amplitudes; two adjustable feed arms 202 and two of the branching units 201 respectively Connected to the output, the adjustable feed arm receives and transmits the signal, wherein the lengths of the two adjustable feed arms can be changed according to the control signal, and the lengths of the two adjustable feed arms are changed The difference is such that the output signals of the two adjustable feed arms are orthogonal to each other.
  • the radiating unit 30 includes a square ring slit 301 engraved on the metal layer of the dielectric substrate, and a center of the square ring slit 301 and a cross groove 302 that communicates with the square ring slot. The intersection of the cross groove 302 serves as radiation.
  • An input of unit 30 is coupled to an output of said adjustable feed arm 202; and a radiating element 30 is arranged to couple two mutually orthogonal output signals to radiate the coupled signal.
  • Embodiments of the present invention also provide a computer readable storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Two mutually orthogonal output signals are coupled and the coupled signal is radiated.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps in the above embodiments of the present invention may be implemented by a general computing device, which may be concentrated on a single computing device, or distributed over Optionally, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, The steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into an integrated circuit module, or a plurality of modules or steps thereof may be implemented as a single integrated circuit module.
  • the above are only examples of the invention and are not intended to limit the invention.
  • the antenna of the embodiment of the invention realizes the problem that the antenna can realize left circular polarization or right circular polarization according to requirements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种天线,包括:设置在介质基板未涂金属层一面的馈电网络和设置在所述介质基板涂有金属层一面的辐射单元;所述馈电网络包括分支单元和两个可调节馈电臂;输入信号通过所述分支单元分为两个电流幅值相等的信号,所述两个电流幅值相等的信号通过不同的可调节馈电臂传输,输出相互正交的输出信号后,所述输出信号通过所述辐射单元耦合,并且所述辐射单元将耦合后的信号辐射出去。。本发明实施例还公开了一种天线圆极化方法和移动终端。

Description

一种天线、天线圆极化方法和移动终端 技术领域
本申请涉及天线技术,例如涉及一种天线、天线圆极化方法和移动终端。
背景技术
目前,移动终端的天线圆极化的实现方法一般都为单馈法实现,单馈法基于空腔模型理论,利用简并模分离元产生两个辐射正交极化的简并模工作。其中,该方法设计的关键是确定几何微扰,即:选择简并模分离元的大小和位置、以及恰当的馈点。但是,采用单馈法实现天线圆极化,该天线只能实现左圆极化或者右圆极化,使得天线的适用范围较小。
发明内容
为解决上述技术问题,本发明实施例期望提供一种天线、天线圆极化方法和移动终端,该天线能够根据要求重构实现左圆极化或者右圆极化。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种天线,所述天线包括:设置在介质基板未涂金属层一面的馈电网络和设置在所述介质基板涂有金属层一面的辐射单元;所述馈电网络包括分支单元和两个可调节馈电臂;
输入信号通过所述分支单元分为两个电流幅值相等的信号,所述两个电流幅值相等的信号通过不同的可调节馈电臂传输后,输出相互正交的输出信号,所述输出信号通过所述辐射单元耦合,并且所述辐射单元将耦合后的信号辐射出去。
可选地,所述两个可调节馈电臂的长度之差为
Figure PCTCN2016078447-appb-000001
其中,n是自然数,λ是所述输入信号的波长。
可选地,每个可调节馈电臂包括:第一馈电臂、开关组和第二馈电臂;
所述开关组,设置为根据控制信号从所述第一馈电臂和所述第二馈电臂中选择出一个馈电臂与所述开关组相连;
所述开关组选择与所述第二馈电臂相连时,所述开关组还设置为将所述第一馈电臂的输入端和所述第二馈电臂的输出端相连;
所述第二馈电臂和所述第一馈电臂都设置为传输所述信号;
所述第一馈电臂的输出端与所述辐射单元的输入端相连。
可选地,所述开关组包括第一开关、第二开关和第三开关;
其中,第一开关的输入端与所述分支单元的输出端相连,所述第一开关的输出端与所述第二馈电臂的输入端相连;第二开关的输入端与所述第二馈电臂的输出端相连,所述第二开关的输出端与所述第一馈电臂的输入端相连;第三开关的输入端与所述分支单元的输出端相连,所述第三开关的输出端与所述第一馈电臂的输入端相连。
可选地,所述两个可调节馈电臂包括第一可调节馈电臂和第二可调节馈电臂,所述第一可调节馈电臂和所述第二可调节馈电臂的夹角成90度;
其中,当所述控制信号使所述第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且使所述第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,流经所述第一可调节馈电臂的信号流经所述第一可调节馈电臂的第一馈电臂和第二馈电臂,流经所述第二可调节馈电臂的信号只流经所述第二可调节馈电臂的第一馈电臂;
当所述控制信号使所述第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,且使所述第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,流经所述第一可调节馈电臂的信号只流经所述第一可调节馈电臂的第一馈电臂,流经所述第二可调节馈电臂的信号流经所述第二可调节馈电臂的第一馈电臂和第二馈电臂。
可选地,所述第一开关、第二开关和第三开关均是微机电系统MEMS开关。
可选地,所述分支单元包括:
T形支架,所述T型支架的三个端口中两个对称的端口作为所述分支单元 的两个输出端,除所述两个对称的端口之外的端口作为所述分支单元的输入端。
可选地,所述辐射单元包括刻在所述介质基板的金属层的方环缝隙,和中心与所述方环缝隙的中心重合并与所述方环缝隙连通的十字槽,所述十字槽的交叉部分作为所述辐射单元的输入端,所述辐射单元的输入端与所述可调节馈电臂的输出端相连;所述方环缝隙的四边分别与所述介质基板四边平行,所述十字槽和所述方环缝隙组成田字形状。
可选地,所述介质基板是多层印刷电路板,所述多层印刷电路板的尺寸是14x12mm2,厚度是1mm,介电常数是4.4。
可选地,所述方环缝隙的外环边长为9.2mm,内环边长为6.2mm;所述十字槽是由两个形状相同的矩形槽相互垂直交叉组成,所述矩形槽的长是6.2mm,宽是1.4mm,所述第一馈电臂的长度是5mm,所述第二馈电臂的长度是2.5mm;所述MEMS开关的长度1mm。
此外,本发明实施例还提供一种天线圆极化方法,应用于权利要求1至10任一项所述的天线,所述方法包括:
接收输入信号,并将所述输入信号分为两个电流幅值相等的信号;
分别通过两个可调节馈电臂传输所述两个电流幅值相等的信号,其中,所述两个可调节馈电臂的长度根据控制信号调节,所述两个可调节馈电臂的长度之差使所述两个可调节馈电臂的输出信号相互正交;
耦合两个相互正交的输出信号,并将耦合后的信号辐射出去。
可选地,在接收输入信号之前,所述方法还包括:
接收控制信号;
根据所述控制信号控制两个可调节馈电臂的第一开关、第二开关和第三开关的导通和关断;
其中,当第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,确定所述第一可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二馈电臂, 所述第二可调节馈电臂包括所述第二可调节馈电臂的第一馈电臂;
当第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,且第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,确定所述第一可调节馈电臂的第一可调节馈电臂包括第一馈电臂,所述第二可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二贵馈电臂。
此外,本发明实施例还提供一种天线,所述天线包括:
接收单元,设置为接收输入信号,并将所述输入信号分为两个电流幅值相等的信号;
传输单元,设置为分别通过两个可调节馈电臂传输所述两个电流幅值相等的信号,其中,所述两个可调节馈电臂的长度根据控制信号调节,所述两个可调节馈电臂的长度之差使所述两个可调节馈电臂的输出信号相互正交;
辐射单元,设置为耦合两个相互正交的输出信号,并将耦合后的信号辐射出去。
可选地,所述天线还包括:
所述接收单元,还设置为接收控制信号;
控制单元,设置为根据所述控制信号分别控制两个可调节馈电臂的第一开关、第二开关和第三开关的导通和关断;
其中,当第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,确定所述第一可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二馈电臂,所述第二可调节馈电臂包括所述第二可调节馈电臂的第一馈电臂;
当第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,且第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,确定所述第一可调节馈电臂的第一可调节馈电臂包括第一馈电臂,所述第二可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二贵馈电臂。
此外,本发明实施例还提供一种移动终端,所述移动终端包括:
上述任一种天线;
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述天线圆极化方法。
此外,本发明实施例还提供一种设备,该设备包括一个或多个处理器、存储器以及一个或多个程序,所述一个或多个程序存储在存储器中,当被一个或多个处理器执行时,执行上述天线圆极化方法。
本发明实施例提供了一种天线和移动终端,输入信号流经馈电网络的分支单元进行分流,得到两个电流幅值相等的信号,再将这两个信号分别输入两个可调节馈电臂,两个可调节馈电臂的输出信号相互正交,再将这两个相互正交的输出信号通过辐射单元的方环缝隙和十字槽进行耦合,输出耦合后的信号。这样一来,本发明实施例提供的天线中的可调节馈电臂可以根据控制信号改变自身长度,从而改变所述两个可调节馈电臂的输出信号的相位,使得输出信号相互正交,如此,通过使流经一个可调节馈电臂的输出信号的相位超前或者滞后另一个可调节馈电臂的输出信号,来实现天线的左圆极化或者右圆极化。因此,本发明实施例的天线能够根据要求重构实现左圆极化或者右圆极化。
附图说明
图1为本发明实施例提供的一种天线的结构示意图;
图2为本发明实施例提供的一种天线的馈电网络的结构示意图;
图3为本发明实施例提供的一种可调节馈电臂的结构示意图;
图4为本发明实施例提供的一种可调节馈电臂的电流流向示意图;
图5为本发明实施例提供的一种天线的辐射单元的的结构示意图;
图6为本发明实施例提供的另一种天线的结构示意图;
图7是本发明实施例提供的天线S11参数图;
图8是本发明实施例提供的天线左旋圆极化时辐射方向图;
图9是本发明实施例提供的天线右旋圆极化时辐射方向图;
图10是本发明实施例提供的一种天线圆极化方法的示意图;
图11是本发明实施例提供的另一种天线的结构示意图;
图12是本发明实施例提供的再一种天线的结构示意图。
实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例一
本发明实施例提供一种天线10,如图1所示,该天线10可以包括:设置在介质基板未涂金属层的一面的馈电网络20(如图1所示的虚线)和设置在介质基板涂有金属层的一面的辐射单元30(如图1所示的实线)。
如图2所示,馈电网络20包括:分支单元201和两个可调节馈电臂202。这里,分支单元201可以是能够将输入信号分流并保持分流后的信号电流幅值相等的支架,例如分支单元201可为Y形支架或T形支架等。
这里,输入信号通过分支单元201分为两个电流幅值相等的信号,该两个电流幅值相等的信号分别通过不同的可调节馈电臂202传输,可调节馈电臂输出的信号为相互正交的输出信号,之后,输出信号通过辐射单元30耦合,并且辐射单元30将耦合之后的信号辐射出去。
可选地,如图2所示,分支单元201(图2中虚线框内)可以包括T形支架,该T形支架的三个端口中两个对称的端口(图2中分支单元的左右两个端口)作为分支单元201的两个输出端口,除两个对称的端口之外的端口(图2中分支单元的下方端口)作为分支单元201的输入端口。这样,输入信号经过T形分支的分流点分流,分流后的信号再经过相同路径传输,这样就可以保证两个输出口输出的信号的电流幅值相等。
可选地,如图3所示,可调节馈电臂202可以包括第一馈电臂2021、开关组2022和第二馈电臂2023。这里,如图2所示,分支单元201左右两侧的两个可调节馈电臂202的馈电臂长度均是可以调节的;当调节到两个可调节馈电臂 202的长度之差为
Figure PCTCN2016078447-appb-000002
时,经过两个可调节馈电臂的信号为相位相差
Figure PCTCN2016078447-appb-000003
的正交输出信号。其中,n是正整数,λ是所述输入信号的波长。
其中,开关组2022的输入端与分支单元201的输出端相连,开关组2022设置为根据控制信号从第一馈电臂2021和第二馈电臂2023中选择出一个馈电臂与开关组2022相连;第二馈电臂2023和第一馈电臂2021设置为传输分流后的信号,第一馈电臂2021的输出端与辐射单元30的输入端相连。这里,当开关组2022选择与第二馈电臂2023相连时,开关组2022还设置为将第一馈电臂2021的输入端和第二馈电臂2023的输出端相连。
可选地,如图4所示,开关组2022包括三个开关,第一开关K1、第二开关K2和第三开关K3。
其中,第一开关K1的输入端与分支单元201的输出端相连,第一开关K1的输出端与第二馈电臂2023的输入端相连;第二开关K2的输入端与第二馈电臂2023的输出端相连第二开关K2的输出端与第一馈电臂2021的输入端相连;第三开关K3的输入端与分支单元201的输出端相连,第三开关K3的输出端与第一馈电臂2021的输入端相连。
假设两个可调节馈电臂202包括第一可调节馈电臂202A和第二可调节馈电臂202B,第一可调节馈电臂202A和第二可调节馈电臂202B的夹角成90度。
当控制信号使第一可调节馈电臂202A中的第一开关K1和第二开关K2导通、第三开关K3关断,使第二可调节馈电臂202B中的第一开关K1和第二开关K2关断、第三开关K3导通时,如图4中虚线表示流经第一可调节馈电臂202A和第二可调节馈电臂202B的信号流向,即流经第一可调节馈电臂202A的信号会流经第一可调节馈电臂202A的第一馈电臂2021和第二馈电臂2023,流经第二可调节馈电臂202B的信号只流经第二可调节馈电臂202B的第一馈电臂2021;当控制信号使第一可调节馈电臂202A中的第一开关K1和第二开关K2关断、第三开关K3导通,使第二可调节馈电臂202B中的第一开关K1和第二开关K2导通、第三开关K3关断时,流经第一可调节馈电臂的信号只流经第一可调节馈 电臂的第一馈电臂2021,流经第二可调节馈电臂202B的信号会流经第二可调节馈电臂202B的第一馈电臂2021和第二馈电臂2023。这里,上述信号会流经所在可调节馈电臂的导通的开关。
可选地,开关组的开关均是微机电系统(Micro-Electro-Mechanical System,MEMS)开关。这里,MEMS开关具有理想的开关特性,隔离度比较高、功耗低、易于集成。
如图5所示所述辐射单元30包括刻在介质基板的金属层的方环缝隙301,和中心与方环缝隙301的中心重合并与方环缝隙301连通的十字槽302,所述十字槽302的交叉部分作为辐射单元30的输入端与可调节馈电臂202的输出端相连;方环缝隙301的四边分别与介质基板四边平行,十字槽302和方环缝隙301组成田字形状。
这里,方环缝隙为开在介质基片金属层的一个方型缝隙,方型缝隙四边与介质板四边平行,十字槽为在方环缝隙的基础上在介质板的上金属层开的一个十字型的槽,位于方环缝隙的中心。这样,等效为引入阻抗匹配元件,使天线表面的电流路径弯曲,这样就增大了电流路径,相当于增大了辐射单元的有效长度,从而达到扩展频带的目的。
可选地,当介质基板的尺寸是14x12mm2,厚度是1mm,介电常数是4.4的多层印刷电路板时,方环缝隙的外环边长为9.2mm,内环边长为6.2mm;十字槽是由两个矩形槽相互垂直交叉组成,矩形槽的长是6.2mm,宽是1.4mm;第一馈电臂的长度是5mm,宽度是0.31mm,所述第二馈电臂的长度是2.5mm,T型分支的分支长度和是3.5mm,输入端的宽度是1.2mm。这里,可调节馈电臂的宽度和T型分支的分支宽度是相同的。
值得说明的是,本实施例提供的介电常数是可选的介电常数,介电常数是4.4左右的多层印刷电路板同样可以作为介质基板使用。
本实施例提供的天线的可调节馈电臂可以根据控制信号改变长度,从而改变所述两个可调节馈电臂的输出信号的相位,使得输出信号相互正交,这样,流经一个可调节馈电臂的输出信号的相位超前或者滞后另一个可调节馈电臂的 输出信号,从而实现了天线的左圆极化或者右圆极化。因此,该天线可以根据要求重构实现左圆极化或者右圆极化。
下面通过一个例子并结合图6对本发明实施例作详细的描述。图6是本发明实施例天线的结构示意图,包含有:厚度有1mm的介质基片1,尺寸为14x12mm2,介质基片1的一面是金属层,刻有方环缝隙3和十字槽2,方环缝隙3四边与介质基片1的四边平行,方环缝隙3的外环边长为9.2mm,内环边长为6.2mm。十字槽2由两个矩形槽垂直交叉组成,位于方环缝隙3的中心,4个顶端分别与方环缝隙3边长的中心处连通,两个矩形槽尺寸一样,长宽分别为6.2mm和1.4mm;介质基片1的另一面刻有用于输入信号接入的T型分支10、两个第一馈电臂4和15和两个第二馈电臂7和13、分布于T型分支10的两边的2个开关组。这里,一个开关组包括MEMS开关5、MEMS开关6和MEMS开关8,另一个开关组包括MEMS开关11、MEMS开关12和MEMS开关14。
具体工作过程如下:假设图6中左边的可调节馈电臂是第一可调节馈电臂,右边的是第二可调节馈电臂。输入信号从T型分支10的输入端输入,然后分成两个电流幅值相等的信号,与此同时,开关组根据控制信号控制着两个电流幅值相等的信号需要流经可调节馈电臂。两个电流幅值相等的信号再经过上述第一可调节馈电臂或第二可调节馈电臂输出,输出的信号相互正交,相互正交的两个信号耦合到方环缝隙3和十字槽2,最终将耦合后的信号辐射出去。这里,方环缝隙3和十字槽2形成的腔体可以激励出多个谐振模式,天线在垂直于方环缝隙3所在平面的方向上增益最大,即天线方向图主瓣指向这一方向。
可选地,当监测到控制信号指示左旋圆极化波时,导通MEMS开关5、MEMS开关8和MEMS开关12,关断MEMS开关6、MEMS开关11和MEMS开关14,第一可调节馈电臂包括第一可调节馈电臂的第一馈电臂4和第二馈电臂7,第二可调节馈电臂包括第二可调节馈电臂的第一馈电臂15,这样,第一可调节馈电臂的输出信号的相位就滞后第二可调节馈电臂90度,这时的天线是左旋圆极化天线;当监测到控制信号指示右旋圆极化波时,关断MEMS开关5、MEMS开关8和MEMS开关12,导通MEMS开关6、MEMS开关11和MEMS开关 14,第二可调节馈电臂包括第二可调节馈电臂的第一馈电臂15和第二馈电臂13,第一可调节馈电臂包括第一可调节馈电臂的第一馈电臂4,这样,第一可调节馈电臂的输出信号的相位就超前第二可调节馈电臂90度,这时天线是右旋圆极化天线。这样就实现了天线的重构。
本实施例以天线具体结构几何参数如下为例,仿真该天线:
1a(mm) 14 1b(mm) 12
ra(mm) 9.2 rb(mm) 6.2
st(mm) 1.4 d1(mm) 0.8
L1(mm) 5 L2(mm) 2.5
L3(mm) 1 L4(mm) 3.5
W1(mm) 0.31 W2(mm) 1.2
表1
其中,表1的1a、1b为介质基片的长度和宽度,ra和rb为方型缝隙的外环边长和内环边长,st为十字槽的宽度,d1为馈电长臂端到环缝中心的距离,L1、W1分别为馈电长臂的长度和宽度,L2为弯角的长边的长度,L3为MEMS开关的长度,L4为T型分支的长度,W2为T型分支的输入端的宽度。
根据上述参数仿真出天线S11参数图如图7所示、左旋圆极化时辐射方向图如图8所示和左旋圆极化时辐射方向图如图9所示。从图中可以看出本实施例提出的方案保证天线实现圆极化的同时,还可提高驻波比带宽及圆极化带宽,抑制交叉极化。
实施例二
本发明实施例提供一种天线圆极化方法,应用于实施例一所述的天线,如图10所示,该方法可以包括:
步骤401、接收输入信号,并将输入信号分为两个电流幅值相等的信号。
步骤402、分别通过两个可调节馈电臂传输两个电流幅值相等的信号其中,两个可调节馈电臂的长度根据控制信号调节,两个可调节馈电臂的长度之差使 两个可调节馈电臂的输出信号相互正交。
步骤403、耦合两个相互正交的输出信号,并将耦合后的信号辐射出去。
本发明实施例提供的天线中的可调节馈电臂可以根据控制信号改变自身长度,从而改变所述两个可调节馈电臂的输出信号的相位,使得两个可调节馈电臂的输出信号的相位相互正交,如此,通过使流经一个可调节馈电臂的输出信号的相位超前或者滞后另一个可调节馈电臂的输出信号,来实现天线的左圆极化或者右圆极化。因此,本发明实施例的天线能够根据要求重构实现左圆极化或者右圆极化。
可选地,在步骤401之前,所述方法还包括:接收控制信号;根据控制信号控制两个可调节馈电臂的第一开关、第二开关和第三开关的导通和关断;当第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,确定第一可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二馈电臂,第二可调节馈电臂包括所述第二可调节馈电臂的第一馈电臂;
当第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,且第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,确定第一可调节馈电臂的第一可调节馈电臂包括第一馈电臂,第二可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二贵馈电臂。
实施例三
本发明实施例提供一种天线10,如图11所示,该天线10可以包括:
接收单元501,设置为接收输入信号,并将所述输入信号分为两个电流幅值相等的信号。
传输单元502,设置为分别通过两个可调节馈电臂传输所述两个电流幅值相等的信号,其中,所述两个可调节馈电臂的长度根据控制信号调节,所述两个可调节馈电臂的长度之差使所述两个可调节馈电臂的输出信号相互正交。
辐射单元503,设置为耦合两个相互正交的输出信号,并将耦合后的信号辐 射出去。
本实施例提供的天线的可调节馈电臂可以根据控制信号改变长度,从而改变流经两个可调节馈电臂的输出信号的相位,使得两个可调节馈电臂的输出信号的相位相互正交,这样,流经一个可调节馈电臂的输出信号的相位超前或者滞后另一个可调节馈电臂的输出信号,从而实现了左圆极化或者右圆极化。因此,该天线可以根据要求重构实现左圆极化或者右圆极化。
可选地,如图12所示,所述接收单元501,还设置为在接收输入信号之前,接收所述控制信号。
控制单元504,设置为根据所述控制信号分别控制两个可调节馈电臂的第一开关、第二开关和第三开关的导通和关断。
其中,当第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,确定所述第一可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二馈电臂,所述第二可调节馈电臂包括所述第二可调节馈电臂的第一馈电臂;
当第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,且第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,确定所述第一可调节馈电臂的第一可调节馈电臂包括第一馈电臂,所述第二可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二贵馈电臂。
在实际应用中,所述接收单元501、传输单元502、辐射单元503,和控制单元504均可由位于天线10中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
实施例四
本发明实施例提供一种移动终端60,该移动终端60包括:
上述实施例一或实施例三提供的任一种天线10,该天线10包括:设置在介质基板未涂金属层的一面的馈电网络20和刻在介质基板涂有金属层的一面的辐 射单元30。
馈电网络20包括:分支单元201和两个可调节馈电臂202。
其中,分支单元201的输入端设置为接收输入信号,分支单元201设置为将所述输入信号分为两个电流幅值相等的信号;两个可调节馈电臂202分别与分支单元201的两个输出端相连,所述可调节馈电臂接收并传输所述信号,其中,所述两个可调节馈电臂的长度可以根据控制信号改变,改变后的两个可调节馈电臂的长度之差使所述两个可调节馈电臂的输出信号相互正交。
辐射单元30包括刻在介质基板的金属层的方环缝隙301,和中心与方环缝隙301的中心重合并与所述方环缝隙连通的十字槽302组成,该十字槽302的交叉部分作为辐射单元30的输入端与所述可调节馈电臂202的输出端相连;辐射单元30设置为耦合两个相互正交的输出信号,将耦合后的信号辐射出去。
实施例五
本发明的实施例还提供了一种计算机可读存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储有用于执行以下步骤的程序代码:
接收输入信号,并将所述输入信号分为两个电流幅值相等的信号;
分别通过两个可调节馈电臂传输所述两个电流幅值相等的信号,其中,所述两个可调节馈电臂的长度根据控制信号调节,所述两个可调节馈电臂的长度之差使所述两个可调节馈电臂的输出信号相互正交;
耦合两个相互正交的输出信号,并将耦合后的信号辐射出去。
可选地,在本实施例中,上述存储介质可但不限于包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等可以存储程序代码的计算机可读存储介质。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述本发明实施例中的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在 多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。以上仅为本发明的实施例而已,并不用于限制本发明。
工业实用性
本发明实施例的天线,实现了天线能够根据要求重构实现左圆极化或者右圆极化的问题。

Claims (15)

  1. 一种天线,包括:设置在介质基板未涂金属层一面的馈电网络和设置在所述介质基板涂有金属层一面的辐射单元;所述馈电网络包括分支单元和两个可调节馈电臂;
    输入信号通过所述分支单元分为两个电流幅值相等的信号,所述两个电流幅值相等的信号通过不同的可调节馈电臂传输后,输出相互正交的输出信号,所述输出信号通过所述辐射单元耦合,并且所述辐射单元将耦合后的信号辐射出去。
  2. 根据权利要求1所述的天线,其中,所述两个可调节馈电臂的长度之差为
    Figure PCTCN2016078447-appb-100001
    其中,n是自然数,λ是所述输入信号的波长。
  3. 根据权利要求2所述的天线,其中,每个可调节馈电臂包括:第一馈电臂、开关组和第二馈电臂;
    所述开关组,设置为根据控制信号从所述第一馈电臂和所述第二馈电臂中选择出一个馈电臂与所述开关组相连;
    所述开关组选择与所述第二馈电臂相连时,所述开关组还设置为将所述第一馈电臂的输入端和所述第二馈电臂的输出端相连;
    所述第二馈电臂和所述第一馈电臂都设置为传输所述信号;
    所述第一馈电臂的输出端与所述辐射单元的输入端相连。
  4. 根据权利要求3所述的天线,其中,所述开关组包括第一开关、第二开关和第三开关;
    其中,第一开关的输入端与所述分支单元的输出端相连,所述第一开关的输出端与所述第二馈电臂的输入端相连;第二开关的输入端与所述第二馈电臂的输出端相连,所述第二开关的输出端与所述第一馈电臂的输入端相连;第三开关的输入端与所述分支单元的输出端相连,所述第三开关的输出端与所述第一馈电臂的输入端相连。
  5. 根据权利要求4所述的天线,其中,所述两个可调节馈电臂包括第一可调节馈电臂和第二可调节馈电臂,所述第一可调节馈电臂和所述第二可调节馈 电臂的夹角成90度;
    当所述控制信号使所述第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且使所述第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,流经所述第一可调节馈电臂的信号流经所述第一可调节馈电臂的第一馈电臂和第二馈电臂,流经所述第二可调节馈电臂的信号只流经所述第二可调节馈电臂的第一馈电臂;
    当所述控制信号使所述第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,并且使所述第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,流经所述第一可调节馈电臂的信号只流经所述第一可调节馈电臂的第一馈电臂,流经所述第二可调节馈电臂的信号流经所述第二可调节馈电臂的第一馈电臂和第二馈电臂。
  6. 根据权利要求4所述的天线,其中,所述第一开关、第二开关和第三开关均是微机电系统MEMS开关。
  7. 根据权利要求1所述的天线,其中,所述分支单元包括:
    T形支架,所述T型支架的三个端口中两个对称的端口作为所述分支单元的两个输出端,除所述两个对称的端口之外的端口作为所述分支单元的输入端。
  8. 根据权利要求1所述的天线,其中,所述辐射单元包括刻在所述介质基板的金属层的方环缝隙,和中心与所述方环缝隙的中心重合并与所述方环缝隙连通的十字槽,所述十字槽的交叉部分作为所述辐射单元的输入端,所述辐射单元的输入端与所述可调节馈电臂的输出端相连;所述方环缝隙的四边分别与所述介质基板四边平行,所述十字槽和所述方环缝隙组成田字形状。
  9. 根据权利要求1所述的天线,其中,所述介质基板是多层印刷电路板,所述多层印刷电路板的尺寸是14x12mm2,厚度是1mm,介电常数是4.4。
  10. 根据权利要求9所述的天线,其中,所述方环缝隙的外环边长为9.2mm,内环边长为6.2mm;所述十字槽是由两个形状相同的矩形槽相互垂直交叉组成,所述矩形槽的长是6.2mm,宽是1.4mm,所述第一馈电臂的长度是5mm,所述第二馈电臂的长度是2.5mm;所述MEMS开关的长度1mm。
  11. 一种天线圆极化方法,应用于权利要求1至10任一项所述的天线,包括:
    接收输入信号,并将所述输入信号分为两个电流幅值相等的信号;
    分别通过两个可调节馈电臂传输所述两个电流幅值相等的信号,其中,所述两个可调节馈电臂的长度根据控制信号调节,所述两个可调节馈电臂的长度之差使所述两个可调节馈电臂的输出信号相互正交;
    耦合两个相互正交的输出信号,并将耦合后的信号辐射出去。
  12. 根据权利要求11所述的方法,在所述接收输入信号之前,所述方法还包括:
    接收控制信号;
    根据所述控制信号控制两个可调节馈电臂的第一开关、第二开关和第三开关的导通和关断;
    其中,当第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,确定所述第一可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二馈电臂,所述第二可调节馈电臂包括所述第二可调节馈电臂的第一馈电臂;
    当第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,且第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,确定所述第一可调节馈电臂的第一可调节馈电臂包括第一馈电臂,所述第二可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二贵馈电臂。
  13. 一种天线,包括:
    接收单元,设置为接收输入信号,并将所述输入信号分为两个电流幅值相等的信号;
    传输单元,设置为分别通过两个可调节馈电臂传输所述两个电流幅值相等的信号,其中,所述两个可调节馈电臂的长度根据控制信号调节,所述两个可调节馈电臂的长度之差使所述两个可调节馈电臂的输出信号相互正交;
    辐射单元,设置为耦合两个相互正交的输出信号,并将耦合后的信号辐射 出去。
  14. 根据权利要求13所述的天线,所述天线还包括:
    所述接收单元,还设置为在接收输入信号之前,接收控制信号;
    控制单元,设置为根据所述控制信号分别控制两个可调节馈电臂的第一开关、第二开关和第三开关的导通和关断;
    其中,当第一可调节馈电臂中的第一开关和第二开关导通、第三开关关断,且第二可调节馈电臂中的第一开关和第二开关关断、第三开关导通时,确定所述第一可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二馈电臂,所述第二可调节馈电臂包括所述第二可调节馈电臂的第一馈电臂;
    当第一可调节馈电臂中的第一开关和第二开关关断、第三开关导通,且第二可调节馈电臂中的第一开关和第二开关导通、第三开关关断时,确定所述第一可调节馈电臂的第一可调节馈电臂包括第一馈电臂,所述第二可调节馈电臂包括所述第一可调节馈电臂的第一馈电臂和第二贵馈电臂。
  15. 一种移动终端,包括:
    权利要求1至10任一项所述的任一种天线;
    或,权利要求13或14所述的任一种天线。
PCT/CN2016/078447 2015-08-06 2016-04-05 一种天线、天线圆极化方法和移动终端 WO2016177236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510477749.XA CN106450792A (zh) 2015-08-06 2015-08-06 一种天线、天线圆极化方法和移动终端
CN201510477749.X 2015-08-06

Publications (1)

Publication Number Publication Date
WO2016177236A1 true WO2016177236A1 (zh) 2016-11-10

Family

ID=57217542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078447 WO2016177236A1 (zh) 2015-08-06 2016-04-05 一种天线、天线圆极化方法和移动终端

Country Status (2)

Country Link
CN (1) CN106450792A (zh)
WO (1) WO2016177236A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492712B (zh) * 2017-06-27 2019-07-16 中国电子科技集团公司第三十八研究所 一种用于二维非对称宽角扫描的低剖面双圆极化微带天线阵
CN110911834B (zh) * 2019-12-02 2021-01-01 成都瑞迪威科技有限公司 一种可实现左右旋圆极化切换的相控阵天线
WO2021226755A1 (en) * 2020-05-09 2021-11-18 Huawei Technologies Co., Ltd. Antenna for a wireless communication device and such a device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332637A (zh) * 2011-08-31 2012-01-25 华南理工大学 一种双极化多系统兼容型天线
CN102394352A (zh) * 2011-07-14 2012-03-28 东南大学 双频宽带可重构微带天线
CN104466356A (zh) * 2013-09-23 2015-03-25 中兴通讯股份有限公司 一种天线及终端
CN104752842A (zh) * 2015-03-03 2015-07-01 林伟 宽频的天线收发阵列

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201435450Y (zh) * 2009-06-30 2010-03-31 华南理工大学 极化可重构射频识别圆极化阅读器天线
KR101444017B1 (ko) * 2013-04-02 2014-09-23 홍익대학교 산학협력단 편파 조절이 가능한 재구성 메타 물질 안테나
CN104103906A (zh) * 2014-08-01 2014-10-15 东南大学 一种多层pcb工艺的低成本微波毫米波圆极化天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394352A (zh) * 2011-07-14 2012-03-28 东南大学 双频宽带可重构微带天线
CN102332637A (zh) * 2011-08-31 2012-01-25 华南理工大学 一种双极化多系统兼容型天线
CN104466356A (zh) * 2013-09-23 2015-03-25 中兴通讯股份有限公司 一种天线及终端
CN104752842A (zh) * 2015-03-03 2015-07-01 林伟 宽频的天线收发阵列

Also Published As

Publication number Publication date
CN106450792A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106356644B (zh) 双端口双频双圆极化微带阵列天线
EP3462543B1 (en) Array antenna
US20220399653A1 (en) Millimeter-wave dual circularly polarized lens antenna and electronic equipment
WO2015027378A1 (zh) 宽带双极化阵列天线及基站
CN204375948U (zh) 圆极化天线及通信设备
WO2016177236A1 (zh) 一种天线、天线圆极化方法和移动终端
CN104157968A (zh) 一种新概念宽带圆极化天线
CN106058450A (zh) 平面贴片滤波天线
CN103872448A (zh) 宽带圆极化阵列天线
JP2004297796A (ja) ダイポール部材を備えているようなビーム幅調節可能型かつ方位角走査型アンテナ
CN107196053A (zh) 小尺寸低仰角全向辐射双圆极化天线
CN108123217A (zh) 一种宽带宽角双圆极化星载天线
CN104362437B (zh) S频段单脉冲自跟踪天线系统
WO2019019983A1 (en) SYSTEM AND METHOD FOR FORMING BEAMS USING A PHASE CONTROL NETWORK ANTENNA
JP2012124901A5 (zh)
JP6602165B2 (ja) 2周波共用円偏波平面アンテナおよびその軸比調整方法
CN103996900B (zh) 一种基于单片双面印刷电路板的宽带圆极化定向阵列天线
CN107317120A (zh) 一种紧凑型双极化多频天线、阵列及其构造方法
CN109216907A (zh) 一种双馈天线以及电子设备
RU2394319C2 (ru) Широкополосная симметричная антенна
CN207559073U (zh) 一种用于相控阵的宽扫描角s波段双圆极化微带天线及其阵列
CN104901007A (zh) 一种槽耦合圆极化微带天线
CN107196052A (zh) 小尺寸低仰角全向辐射圆极化天线
JP7064471B2 (ja) アンテナ装置
JP2018098647A (ja) 偏波共用アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789230

Country of ref document: EP

Kind code of ref document: A1