WO2015027378A1 - 宽带双极化阵列天线及基站 - Google Patents
宽带双极化阵列天线及基站 Download PDFInfo
- Publication number
- WO2015027378A1 WO2015027378A1 PCT/CN2013/082285 CN2013082285W WO2015027378A1 WO 2015027378 A1 WO2015027378 A1 WO 2015027378A1 CN 2013082285 W CN2013082285 W CN 2013082285W WO 2015027378 A1 WO2015027378 A1 WO 2015027378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- feed
- array antenna
- radiation patch
- metal
- Prior art date
Links
- 238000002955 isolation Methods 0.000 claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 28
- 230000005855 radiation Effects 0.000 claims description 25
- 230000010287 polarization Effects 0.000 claims description 24
- 239000002355 dual-layer Substances 0.000 abstract 4
- 239000010410 layer Substances 0.000 abstract 3
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
Definitions
- Embodiments of the present invention relate to wireless communication technologies, and in particular, to a broadband dual-polarized array antenna and a base station. Background technique
- the size and bandwidth of the antenna in the prior art are major obstacles to the miniaturization of the communication system.
- a reduction in the size of the antenna means other performance of the antenna, such as a reduction in bandwidth and efficiency. Therefore, the miniaturization design of communication systems requires a compromise between performance parameters of the antenna, such as directional coefficient, gain, radiation efficiency, polarization, and bandwidth, so that it is necessary to design a wide-band, high-performance array antenna. Summary of the invention
- the embodiments of the present invention provide a broadband dual-polarized array antenna and a base station, so as to realize broadbandization and high performance of the array antenna.
- an embodiment of the present invention provides a broadband dual-polarized array antenna, including an antenna unit and a metal reflector, and a metal isolation board, wherein the antenna unit is separated by the metal isolation board, wherein the antenna
- the unit includes a feed piece and a double layer radiating patch.
- the feeding end is disposed on the bottom radiating patch of the double-layer radiating patch to form a feeding point, and the second end is connected to the feeding structure to form a feeding port;
- the upper surface of the bottom layer radiation patch of the double-layer radiation patch is provided with a slot, and the first end of the feed piece is fixedly connected in the slotted range for forming a capacitive reactance.
- the slot is in a closed structure, and the first end of the feed piece is fixedly connected to the through hole of the closed structure in.
- the number of the feeding points in each of the antenna units is two; Two feed points are respectively disposed adjacent to the same side of the upper surface of the bottom radiation patch, and two feed points are on a diagonal of the bottom radiation patch to achieve ⁇ 45° polarization; or The two feed points are respectively disposed adjacent to adjacent sides of the upper surface of the bottom layer radiation patch, and the two feed points are on the central axis of the adjacent side edges to achieve horizontal vertical polarization.
- the locations of the feed points between the antenna elements are the same or different.
- any one of the first to the third possible implementation manners of the first aspect in a fourth possible implementation manner of the first aspect, at least one of the antenna units is disposed The metal separator.
- the spacing between the antenna units is unequal, and the number of the metal isolation boards is greater than that in the larger spacing.
- the metal isolating plate around each of the antenna elements encloses a square isolation space.
- the embodiment of the present invention provides a base station, comprising the broadband dual-polarized array antenna according to any one of the first aspects.
- a slot is formed on the upper surface of the underlying radiating patch of the array antenna and around the feeding point to achieve capacitive reactance, so that the resonance of each radiating patch in the double-layer radiating patch of the array antenna is easily realized, thereby
- the array antenna can be broadbandized, and the broadband performance is better, for example, the VSWR of the array antenna is reduced compared to before the slot is set.
- FIG. 1 is a schematic overall structural view of a first embodiment of a broadband dual-polarized array antenna according to the present invention
- FIG. 2 is a schematic structural view of an antenna unit in a first embodiment of a broadband dual-polarized array antenna according to the present invention
- 3 is a diagram showing an example of a 2*2 area array structure in the first embodiment of the broadband dual-polarized array antenna according to the present invention
- 4 is a view showing an example of a position of a feeding point on a bottom radiating patch in the first embodiment of the broadband dual-polarized array according to the present invention
- FIG. 5 is another exemplary diagram of the position of a feed point on the underlying radiation patch in the broadband dual-polarization array embodiment of the present invention.
- FIG. 6 is a graph showing a reflection coefficient of the first feeding port of the broadband dual-polarized array in the second embodiment of the present invention when the first feeding port is an input port;
- FIG. 7 is a graph showing the isolation of the first feeding port of the broadband dual-polarized array in the second embodiment of the present invention with the feeding ports of other adjacent antenna units when the first feeding port is an input port.
- Embodiments of the present invention provide a broadband dual-polarized array antenna that can be integrated in a base station.
- the antenna elements in the array antenna may be one or more, and the plurality of antenna units may be regularly arranged in a line array or an area array, or may be randomly arranged.
- an area array structure arranged by 2*2 antenna elements is taken as an example, as shown in FIG.
- the broadband dual-polarized array antenna includes an antenna unit 100, a metal reflector 200, and a metal isolation plate 300.
- Each antenna unit 100 is separated by a metal isolation plate 300, wherein each antenna unit 100 A feed sheet 110 and a double layer radiation patch 120 are included (as shown in FIG. 2, the double layer radiation patch 120 includes a top layer radiation patch 123 and an underlying radiation patch 121), and the first end of the power feeding sheet 110 is disposed at On the bottom radiating patch 121 of the double-layer radiating patch 120, a feeding point 111 (not shown) is formed, and the second end of the feeding sheet 110 is connected to a feeding structure (not shown) to form a feed.
- An electrical port (not shown); a top surface of the bottom radiating patch 121 of the double-layer radiating patch 120 is provided with a slot 122, and the first opening of the feeding piece 110 is opened in the range of the slot 122 End, used to form a capacitive reactance.
- the resonance of the array antenna can be equivalent to an LC resonant circuit.
- the present invention introduces a capacitive reactance by providing a slot 122 on the double-layer radiating patch 120, so that the resonance of the array antenna can be easily realized, and broadband can be realized. .
- a slot is formed on the upper surface of the underlying radiating patch of the array antenna and around the feeding point to achieve capacitive reactance, so that the resonance of each radiating patch in the double-layer radiating patch of the array antenna is easily realized, thereby
- the array antenna can be broadbandized, and the broadband performance is better, for example, the VSWR of the array antenna is reduced compared to before the slot is set.
- each layer of the radiation patch generally comprises a plate-like dielectric layer to which is attached a conductive layer, such as a copper layer.
- a conductive layer such as a copper layer.
- the slot of the underlying radiating patch can be opened in the conductive layer on the upper surface, that is, the slot only penetrates the conductive layer.
- the shape of the slot can be varied, and the position can be varied, and a suitable capacitive reactance can be formed on the radiation patch as needed.
- the slot is strip-shaped, round, located on the edge or inside of the radiating patch.
- the shape of the slot 122 is a closed structure, and the first end of the feed piece 110 is fixedly connected in the through hole of the closed structure.
- the slot 122 is positioned around the feed point 111 on the bottom radiating patch 121, and the inner wall of the slot 122 abuts the first end of the feed tab 110.
- the shape of the slit 122 may be a closed structure such as a circular ring or a rectangular ring, which is not limited herein.
- the number of the feeding points 111 in each antenna unit 100 is preferably two, and the two feeding points 111 are respectively disposed adjacent to the same side of the upper surface of the bottom radiating patch 121, and the two feeding points 111 are
- the bottom layer of the bottom radiating patch 121 is polarized to achieve ⁇ 45°; or, the two feeding points 111 are respectively disposed adjacent to adjacent sides of the upper surface of the bottom radiating patch 121, and two feeding points are respectively 111 is on the central axis of the two adjacent sides of the bottom radiating patch 121 to achieve horizontal vertical polarization.
- adjacent side setting that is, two feeding points are arranged along the same side.
- two feeding points 21 and 22 are arranged along the same side on the bottom radiating patch 20.
- Staggered settings Adjacent to the adjacent side, that is, each feeding point corresponds to one side, for example, is disposed at the center of the side, and the two sides are adjacent, for example, as shown in FIG. 5, two feeding points 31 And 32 respectively correspond to one side on the bottom radiating patch 30, staggered at the center of the side, and the two sides are adjacent to each other.
- a slot is arranged around the feeding point, and the two slots are mutually staggered, which can effectively increase the isolation of the dual polarization and avoid the dual polarization phase.
- Mutual interference can effectively increase the isolation of the dual polarization and avoid the dual polarization phase.
- the manner of polarization is determined by the position of the feed point, that is, the position of the feed point determines the polarization mode.
- the position of the slot depends on the position of the feeding point, and since the feeding point is formed by the first end of the feeding piece disposed on the bottom radiating patch of the double-layer radiating patch, in the specific implementation process According to the actual polarization requirement of the designed broadband dual-polarized array antenna, the position of the feeding point on the underlying radiation patch is set to determine the actual position of the slot.
- the spacing between adjacent antenna elements 100 may be unequal. Further, the spacing between adjacent antenna elements 100 may be greater than or equal to one-half wavelength. Preferably, the spacing between the partial antenna elements 100 is equal to one-half of the wavelength, and the spacing between the other portions of the antenna elements 100 is greater than one-half of the wavelength.
- the feeding points 111 between the antenna elements 100 are located at the same or different positions.
- the number of the feeding points 111 is two, which are disposed adjacent to the same side of the antenna unit 100; and the side edges adjacent to the feeding point 111 in each antenna unit are the sides of the same position, or The opposite sides, or adjacent sides, can be understood by those skilled in the art to determine that the position of the feed point in the antenna unit is set according to the polarization requirements.
- the position of the feeding point of the adjacent antenna unit between the antenna elements used in the array antenna can be rotated in different directions, and the typical rotation angle is 90° and 180° to realize different in the array antenna.
- the position and posture of the antenna feeding position by rotating the position of the feeding point by different angles, such as 90° or 180°, the feeding points of different antenna units are ensured while ensuring that the polarization mode of the array antenna is unchanged.
- the distance of the position is opened to achieve the purpose of improving the isolation between different antenna elements.
- At least one metal isolation plate 300 is disposed between each antenna unit 100.
- the number of metal spacers 300 in the larger pitch is greater than the number of metal spacers 300 in the smaller pitch.
- the metal isolation plate 300 forms a rectangle around the antenna unit 100, resulting in two antenna units 100. The orthogonality of the polarization modes deteriorates, further reducing the iso-polarization isolation of the same antenna elements.
- the method of adding the metal isolating plate 300 is adopted, so that the metal isolating plates around the antenna elements 100 are surrounded to form a square isolation space, so that the metal isolation plate has the least influence on the orthogonality of the antenna elements, thereby improving the same antenna unit. Isolation of the polarization, ultimately guaranteeing the orthogonality of the array antenna polarization and array days.
- the symmetry of the line radiation characteristics, and this arrangement can be applied to two polarization implementations of ⁇ 45° polarization and horizontal vertical polarization.
- the broadband dual-polarized array antenna adopts the structure shown in FIG. 3, wherein the double-layer radiation patch uses a dielectric plate having a relative dielectric constant of 4, and the feeding piece is made of copper, horizontally and vertically.
- the metal separators are all made of aluminum.
- the performance of the broadband dual-polarized array antenna provided by the present invention is further illustrated by the following simulation:
- the broadband dual-polarized array antenna is simulated by simulation software.
- the simulation results are obtained by observing the isolation between the standing wave ratio of the feed port and the feed port.
- FIG. 6 is a graph showing a reflection coefficient of the first feed port of the broadband dual-polarized array antenna according to the second embodiment of the present invention
- FIG. 7 is a first feed of the second embodiment of the broadband dual-polarization array antenna of the present invention
- the reflection coefficient (S1, l) of the input port that is, the first feed port is below -15.4 dB; the same polarization with the antenna element Isolation (S1, 2), that is, the isolation between the first feed port and the second feed port is below -18.9dB; the isotropic isolation between the columns (Sl, 3), that is, the first feed
- the isolation between the port and the third feed port is below -19.2 dB;
- the polarization between the columns (S1, 4), that is, the isolation between the first feed port and the fourth feed port is -27.1dB or less;
- the same polarization isolation (S1, 5) in the column that is, the isolation between the first feed port and the fifth feed port is below -22.8dB; the polarization isolation in the column (Sl, 6) At -19.58 dB, the isolation between the first feed port and the sixth feed port.
- the above data indicates that the isolation between the antenna elements in the broadband dual-polarized array antenna provided by the embodiment of the present invention is good, thereby realizing the orthogonality of the dual polarization of the array antenna and the symmetry of the radiation characteristics of the array antenna. .
- the embodiment of the present invention further provides a base station, including the broadband dual-polarized array antenna provided by any embodiment of the present invention, for receiving and/or transmitting signals through the broadband dual-polarized antenna with high performance.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
本发明实施例提供一种宽带双极化阵列天线及基站,该宽带双极化阵列天线包括天线单元、金属反射板和金属隔离板,天线单元通过金属隔离板隔开,其中,天线单元包括馈电片和双层辐射贴片,馈电片,第一端设置在双层辐射贴片的底层辐射贴片上,形成馈电点,第二端与馈电结构相连,形成馈电端口;双层辐射贴片中底层辐射贴片的上表面设置开槽,在开槽范围内开孔固定连接馈电片的所述第一端,用于形成容性电抗。本发明实施例,在阵列天线的底层辐射贴片的上表面设置开槽实现容性电抗,使得该阵列天线的双层辐射贴片中各辐射贴片的谐振容易实现,从而使得该阵列天线能够实现宽带化,且宽带性能较好。
Description
宽带双极化阵列天线及基站
技术领域
本发明实施例涉及无线通信技术, 尤其涉及一种宽带双极化阵列天线及 基站。 背景技术
随着无线通信技术的迅猛发展, 对于天线的频宽和性能要求越来越高。 无论是军事通信还是民用通信系统, 都有高性能基站天线的需求。
现有技术中天线的尺寸和带宽, 是制约通信系统小型化的主要障碍。 天 线尺寸的减小意味着天线其它性能, 例如, 带宽和效率的降低。 因此, 通信 系统小型化设计需要在天线的性能参数, 例如, 方向性系数、 增益、 辐射效 率、 极化和带宽等性能参数中寻求折衷, 这样就有必要设计出宽频带高性能 的阵列天线。 发明内容
本发明实施例提供一种宽带双极化阵列天线及基站, 以实现阵列天线的 宽带化和高性能化。
第一方面, 本发明实施例提供一种宽带双极化阵列天线, 包括天线单元 和金属反射板, 还包括金属隔离板, 所述天线单元通过所述金属隔离板隔开, 其中, 所述天线单元包括馈电片和双层辐射贴片,
所述馈电片, 第一端设置在所述双层辐射贴片的底层辐射贴片上, 形成 馈电点, 第二端与馈电结构相连, 形成馈电端口;
所述双层辐射贴片中底层辐射贴片的上表面设置开槽, 在所述开槽范围 内开孔固定连接所述馈电片的所述第一端, 用于形成容性电抗。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述开槽的形 状为封闭结构,所述馈电片的第一端固定连接在所述封闭结构开槽的通孔中。
结合第一方面, 在第一方面的第二种可能的实现方式中, 各所述天线单 元中所述馈电点的个数为 2个;
两个馈电点分别独立邻近所述底层辐射贴片上表面的同一侧边设置, 且 两个馈电点在所述底层辐射贴片的对角线上, 以实现 ±45°极化; 或, 两个馈 电点分别独立邻近所述底层辐射贴片上表面的相邻侧边设置, 且两个馈电点 在所述相邻侧边的中心轴线上, 以实现水平垂直极化。
结合第一方面, 在第一方面的第三种可能的实现方式中, 各所述天线单 元间的馈电点位置相同或不同。
结合第一方面、 第一方面的第一种至第三种可能的实现方式中的任意一 种, 在第一方面的第四种可能的实现方式中, 各所述天线单元之间设置至少 一个所述金属隔离板。
结合第一方面的第四种可能的实现方式, 在第一方面的第五种可能的实 现方式中, 各所述天线单元间的间距不等, 在较大间距中金属隔离板的数量 大于较小间距中金属隔离板的数量。
结合第一方面的第五种可能的实现方式, 在第一方面的第六种可能的实 现方式中, 各所述天线单元周围的金属隔离板围设形成正方形隔离空间。
第二方面, 本发明实施例提供一种基站, 包括如第一方面任一项所述的 宽带双极化阵列天线。
本发明实施例, 在阵列天线的底层辐射贴片的上表面、 馈电点周围设置 开槽实现容性电抗, 使得该阵列天线的双层辐射贴片中各辐射贴片的谐振容 易实现, 从而使得该阵列天线能够实现宽带化, 且宽带性能较好, 例如, 相 比于设置开槽前, 阵列天线的驻波比降低等。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明宽带双极化阵列天线实施例一的整体结构示意图; 图 2 为本发明宽带双极化阵列天线实施例一中天线单元的结构示意 图;
图 3为本发明宽带双极化阵列天线实施例一中 2*2面阵结构的示例图;
图 4为本发明宽带双极化阵列天 ^实施例一中底层辐射贴片上馈电点位 置的一示例图;
图 5为本发明宽带双极化阵列天 ^实施例一中底层辐射贴片上馈电点位 置的另一示例图;
图 6为本发明宽带双极化阵列天 ^实施例二中第一馈电端口为输入端口 时自身的反射系数曲线图;
图 7为本发明宽带双极化阵列天 ^实施例二中第一馈电端口为输入端口 时, 与其它相邻天线单元馈电端口的隔离度曲线图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、完整地描述, 显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
实施例一
图 1 为本发明宽带双极化阵列天线实施例一的整体结构示意图, 图 2 为本发明宽带双极化阵列天线实施例一中天线单元的结构示意图。 本发明 实施例提供一种宽带双极化阵列天线, 该宽带双极化阵列天线可集成在基站 中。 其中, 该阵列天线中天线单元可以为一个或多个, 多个天线单元可以规 则排列成线阵或面阵, 也可以随机排列。 本实施例中以 2*2天线单元规则排 列的面阵结构为例进行说明, 如图 3所示。
如图 1和图 2所示, 该宽带双极化阵列天线包括天线单元 100、 金属反 射板 200和金属隔离板 300, 各个天线单元 100通过金属隔离板 300隔开, 其中, 每个天线单元 100包括馈电片 110和双层辐射贴片 120 (如图 2中所 示, 双层辐射贴片 120包括顶层辐射贴片 123和底层辐射贴片 121 ) , 馈电 片 110的第一端设置在双层辐射贴片 120的底层辐射贴片 121上, 形成馈电 点 111 (图中未示出) , 馈电片 110的第二端与馈电结构 (图中未示出) 相 连, 形成馈电端口 (图中未示出) ; 双层辐射贴片 120中底层辐射贴片 121 的上表面设置开槽 122, 在开槽 122范围内开孔固定连接馈电片 110的第一
端, 用于形成容性电抗。
具体地, 阵列天线的谐振都可以等效成 LC谐振电路, 本发明通过在双 层辐射贴片 120上设置开槽 122来引入容性电抗, 使得阵列天线的谐振容易 实现, 并且能够实现宽带化。
本发明实施例, 在阵列天线的底层辐射贴片的上表面、 馈电点周围设置 开槽实现容性电抗, 使得该阵列天线的双层辐射贴片中各辐射贴片的谐振容 易实现, 从而使得该阵列天线能够实现宽带化, 且宽带性能较好, 例如, 相 比于设置开槽前, 阵列天线的驻波比降低等。
每层辐射贴片的结构一般包括板状的介质层, 在介质层的上表面贴附有 导电层, 例如通常是铜层。 底层辐射贴片的开槽可以开设在上表面的导电层 中, 即开槽仅贯通导电层。
开槽的形状可以有多种, 位置也可以有多种变化, 能够根据需求在辐射 贴片上形成合适的容性电抗即可。 例如开槽为条形、 圆形, 位于辐射贴片的 边缘或内部等。
优选的, 开槽 122的形状为封闭结构, 馈电片 110的第一端固定连接在 该封闭结构开槽的通孔中。如图 1所示,开槽 122的位置在底层辐射贴片 121 上的馈电点 111四周, 开槽 122的内壁恰好抵接在馈电片 110的第一端。 开 槽 122的形状可以选择圆环形、 矩形环等封闭结构, 在此不对其进行限制。
其中,各天线单元 100中馈电点 111的个数优选为 2个,两个馈电点 111 分别独立邻近底层辐射贴片 121上表面的同一侧边设置, 且两个馈电点 111 在该底层辐射贴片 121 的对角线上, 以实现 ±45°极化; 或, 两个馈电点 111 分别独立邻近底层辐射贴片 121上表面的相邻侧边设置, 且两个馈电点 111 在该底层辐射贴片 121两相邻侧边的中心轴线上, 以实现水平垂直极化。
所谓邻近同一侧边设置, 即两个馈电点沿着同一个侧边排列设置, 例如 图 4所示,两个馈电点 21和 22在底层辐射贴片 20上沿着同一个侧边排列错 开设置。 邻近相邻侧边设置, 即每个馈电点分别对应一个侧边, 例如, 设置 在侧边的中心处, 且两个侧边相邻接, 例如图 5所示, 两个馈电点 31和 32 在底层辐射贴片 30上分别对应一个侧边, 错开设置在侧边的中心处, 且两个 侧边相邻接。 本发明实施例中, 根据馈电点的位置, 在馈电点周围设置开槽, 两个开槽相互独立错开设置, 可有效增加双极化的隔离度, 避免双极化的相
互干扰。
需要说明的是, 在本发明所有实施例中, 极化的方式是由馈电点的位置 决定的, 即馈电点的位置决定了极化方式。 又由于开槽的位置依赖于馈电点 的位置, 且由于馈电点是由馈电片的第一端设置在双层辐射贴片的底层辐射 贴片上形成的, 所以, 在具体实现过程中, 根据所设计宽带双极化阵列天线 的实际极化需求, 设置馈电点在底层辐射贴片上的位置, 从而确定开槽的实 际位置。
另需说明的是, 在本发明任意实施例中, 相邻天线单元 100间间距可以 不等。更进一步地, 相邻天线单元 100间间距可以大于或等于二分之一波长。 优选是部分天线单元 100间的间距等于二分之一波长,另一部分天线单元 100 间的间距大于二分之一波长。
进一步地, 各天线单元 100间的馈电点 111位置相同或不同。 例如, 每 个天线单元 100中, 馈电点 111的数量为两个, 邻近天线单元 100的同一侧 边设置; 且各天线单元中馈电点 111邻近的侧边为相同位置的侧边, 或者对 置的侧边, 或者相邻的侧边, 本领域技术人员可以理解为天线单元中馈电点 的位置是根据极化需求设置的。 在设计阵列天线时, 该阵列天线所采用的天 线单元间, 相邻天线单元的馈电点位置可以按不同方向的旋转, 典型的旋转 角度是 90° 和 180° , 以在阵列天线中实现不同的天线馈电摆放位置和姿势, 通过将馈电点位置旋转不同的角度, 如 90° 或者 180° , 在保证阵列天线的 极化方式不变的情况下, 将不同天线单元的馈电点位置的距离拉开, 从而达 到提高不同天线单元之间的隔离度的目的。
更进一步地, 各天线单元 100之间设置至少一个金属隔离板 300。 在各 天线单元 100间的间距不等时, 在较大间距中金属隔离板 300的数量大于较 小间距中金属隔离板 300的数量。 如图 3中所示, 由于该阵列天线中水平布 阵方向和垂直布阵方向上各天线单元 100间距不同, 使得金属隔离板 300在 天线单元 100四周形成一个矩形, 导致各天线单元 100的两个极化模式的正 交性恶化, 进一步使得同天线单元的异极化隔离度降低。 在此, 采用增加金 属隔离板 300的方法, 使得各天线单元 100周围的金属隔离板围设形成正方 形隔离空间, 进而使得金属隔离板对天线单元的正交性影响最小, 从而改善 了同天线单元的异极化的隔离度, 最终保证阵列天线极化的正交性和阵列天
线辐射特性的对称性, 并且该种设置方式可适用于 ±45°极化和水平垂直极化 的两种极化实现方式。
实施例二
本发明实施例中宽带双极化阵列天线采用如图 3所示的结构, 其中, 双 层辐射贴片选用相对介电常数为 4的介质板, 馈电片选用铜片, 水平方向和 垂直方向的金属隔离板均选用铝板。
过以下仿真进一步说明本发明提供的宽带双极化阵列天线的性能:
1、 仿真内容
利用仿真软件对该宽带双极化阵列天线进行仿真, 通过观察其馈电端口 的驻波比和馈电端口之间的隔离度, 得出仿真结果。
2、 仿真结果
图 6为本发明宽带双极化阵列天线实施例二中第一馈电端口为输入端口 时自身的反射系数曲线图, 图 7为本发明宽带双极化阵列天线实施例二中第 一馈电端口为输入端口时, 与其它相邻天线单元馈电端口的隔离度曲线图。 在图 3所示的阵列天线结构中, 第一馈电端口所在的天线单元与第三馈电端 口和第四馈电端口所在的天线单元, 以及第五馈电端口和第六馈电端口所在 的天线单元相邻。 由于第七馈电端口和第八馈电端口所在的天线单元距离第 一馈电端口所在的天线单元较远, 各馈电端口之间的干扰可忽略, 因此, 在 这里不对其进行考虑。
从图 6和图 7中可以看出, 在 2.300GHz-2.690GHz频段中, 输入端口, 即第一馈电端口的反射系数 (Sl,l )在 -15.4dB以下; 同天线单元的异极化隔 离度(Sl,2), 即第一馈电端口和第二馈电端口之间的隔离度在 -18.9dB以下; 列间的同极化隔离度 (Sl,3 ) , 即第一馈电端口和第三馈电端口之间的隔离 度在 -19.2dB以下; 列间的异极化隔离度 (Sl,4) , 即第一馈电端口和第四馈 电端口之间的隔离度在 -27.1dB以下; 列内的同极化隔离度 (Sl,5 ) , 即第一 馈电端口和第五馈电端口之间的隔离度在 -22.8dB以下;列内的异极化隔离度 (Sl,6) 在 -19.58dB, 即第一馈电端口和第六馈电端口之间的隔离度。
通过以上数据说明, 本发明实施例提供的宽带双极化阵列天线中各天线 单元之间的隔离度很好, 从而实现阵列天线双极化的正交性, 以及该阵列天 线辐射特性的对称性。
本发明实施例还提供一种基站, 包括本发明任意实施例所提供的宽带双 极化阵列天线, 用以通过该宽带双极化天线高性能地接收和 /或发射信号。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims
1、一种宽带双极化阵列天线,包括天线单元和金属反射板,其特征在于, 还包括金属隔离板, 所述天线单元通过所述金属隔离板隔开, 其中, 所述天 线单元包括馈电片和双层辐射贴片,
所述馈电片, 第一端设置在所述双层辐射贴片的底层辐射贴片上, 形成 馈电点, 第二端与馈电结构相连, 形成馈电端口;
所述双层辐射贴片中底层辐射贴片的上表面设置开槽, 在所述开槽范围 内开孔固定连接所述馈电片的所述第一端, 用于形成容性电抗。
2、 根据权利要求 1所述的天线, 其特征在于:
所述开槽的形状为封闭结构, 所述馈电片的第一端固定连接在所述封闭 结构开槽的通孔中。
3、 根据权利要求 1所述的天线, 其特征在于:
各所述天线单元中所述馈电点的个数为 2个;
两个馈电点分别独立邻近所述底层辐射贴片上表面的同一侧边设置, 且 两个馈电点在所述底层辐射贴片的对角线上, 以实现 ±45°极化; 或, 两个馈 电点分别独立邻近所述底层辐射贴片上表面的相邻侧边设置, 且两个馈电点 在所述相邻侧边的中心轴线上, 以实现水平垂直极化。
4、 根据权利要求 1所述的天线, 其特征在于, 各所述天线单元间的馈电 点位置相同或不同。
5、 根据权利要求 1-4任一所述的天线, 其特征在于, 各所述天线单元之 间设置至少一个所述金属隔离板。
6、 根据权利要求 5所述的天线, 其特征在于:
各所述天线单元间的间距不等, 在较大间距中金属隔离板的数量大于较 小间距中金属隔离板的数量。
7、 根据权利要求 6所述的天线, 其特征在于:
各所述天线单元周围的金属隔离板围设形成正方形隔离空间。
8、 一种基站, 其特征在于, 包括如权利要求 1-7任一项所述的宽带双极 化阵列天线。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380001251.5A CN103703620B (zh) | 2013-08-26 | 2013-08-26 | 宽带双极化阵列天线及基站 |
PCT/CN2013/082285 WO2015027378A1 (zh) | 2013-08-26 | 2013-08-26 | 宽带双极化阵列天线及基站 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/082285 WO2015027378A1 (zh) | 2013-08-26 | 2013-08-26 | 宽带双极化阵列天线及基站 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015027378A1 true WO2015027378A1 (zh) | 2015-03-05 |
Family
ID=50363924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/082285 WO2015027378A1 (zh) | 2013-08-26 | 2013-08-26 | 宽带双极化阵列天线及基站 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103703620B (zh) |
WO (1) | WO2015027378A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112599986A (zh) * | 2020-12-04 | 2021-04-02 | 武汉柏禾智科技有限公司 | 隔离效果好的微带天线阵列 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104300209B (zh) * | 2014-09-05 | 2021-09-07 | 江苏省东方世纪网络信息有限公司 | 垂直极化吸顶全向天线 |
CN104600439B (zh) * | 2014-12-31 | 2018-03-13 | 广东通宇通讯股份有限公司 | 多频双极化天线 |
CN105356045B (zh) * | 2015-10-13 | 2017-11-17 | 福州大学 | 宽频带高低仰角增益北斗一代卫星导航收发天线 |
US9929886B2 (en) * | 2016-06-06 | 2018-03-27 | Intel Corporation | Phased array antenna cell with adaptive quad polarization |
CN107785660B (zh) * | 2016-08-29 | 2020-11-03 | 大唐移动通信设备有限公司 | 一种全向辐射天线、终端设备和基站 |
CN106935963A (zh) * | 2017-01-20 | 2017-07-07 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 高隔离度双极化环缝微带天线单元 |
CN108023163B (zh) * | 2018-01-05 | 2023-05-02 | 西安电子科技大学 | 矢量合成基站天线单元 |
CN108511893B (zh) * | 2018-02-28 | 2020-09-25 | 哈尔滨工程大学 | 一种基于多边耦合的双极化天线 |
CN110444855B (zh) * | 2018-05-02 | 2021-03-02 | 惠州硕贝德无线科技股份有限公司 | 一种集成在移动终端金属边框上的双极化5g天线 |
KR102607522B1 (ko) * | 2018-06-20 | 2023-11-29 | 삼성전자 주식회사 | 복수개의 방사체를 포함하는 안테나 모듈 및 이를 포함하는 기지국 |
KR102598060B1 (ko) * | 2019-02-15 | 2023-11-09 | 삼성전자주식회사 | 이중 편파 안테나 및 그것을 포함하는 전자 장치 |
CN110504534A (zh) * | 2019-08-07 | 2019-11-26 | 深圳市航天华拓科技有限公司 | 一种双极化天线 |
KR102568207B1 (ko) * | 2019-10-30 | 2023-08-18 | 엘지전자 주식회사 | 5g 안테나를 구비하는 전자 기기 |
CN113013599B (zh) * | 2019-12-18 | 2022-10-04 | 中国科学院国家空间科学中心 | 一种用于星载海洋盐度探测的双极化空气腔体微带天线 |
CN111162378B (zh) * | 2019-12-26 | 2022-03-18 | 东南大学 | 一种微带天线 |
CN112054288B (zh) * | 2020-09-04 | 2022-11-08 | 青岛海信移动通信技术股份有限公司 | 电子设备 |
CN112332114B (zh) * | 2020-09-24 | 2022-11-29 | 网络通信与安全紫金山实验室 | 一种用于无线定位系统的微带阵列天线 |
CN112332094B (zh) * | 2020-09-24 | 2023-04-07 | 网络通信与安全紫金山实验室 | 一种用于无线定位系统的缝隙阵列天线 |
CN112382854B (zh) * | 2020-10-22 | 2022-06-17 | 杭州泛利科技有限公司 | 5g基站全双工超高隔离度双极化mimo天线阵列 |
CN112821069B (zh) * | 2021-01-04 | 2023-04-11 | 中信科移动通信技术股份有限公司 | 贴片辐射单元及基站天线 |
CN113270722A (zh) * | 2021-05-14 | 2021-08-17 | 华南理工大学 | 一种宽带小型化基站天线及通信设备 |
WO2024034680A1 (ja) * | 2022-08-12 | 2024-02-15 | 株式会社ヨコオ | パッチアンテナ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030103015A1 (en) * | 2001-12-04 | 2003-06-05 | Jeong-Kun Oh | Skeleton slot radiation element and multi-band patch antenna using the same |
CN102299409A (zh) * | 2011-05-16 | 2011-12-28 | 电子科技大学 | 一种用于IMT-Advanced系统的宽带双极化基站天线 |
CN102856640A (zh) * | 2012-09-26 | 2013-01-02 | 电子科技大学 | 一种带有寄生圆片的高隔离度双极化e型微带天线 |
CN202749507U (zh) * | 2012-07-20 | 2013-02-20 | 江苏华灿电讯股份有限公司 | 一种高增益宽波速双极化天线 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100464508C (zh) * | 2007-02-13 | 2009-02-25 | 华为技术有限公司 | 一种利用基站天线收发信号的方法和基站天线 |
US8803757B2 (en) * | 2008-09-15 | 2014-08-12 | Tenxc Wireless Inc. | Patch antenna, element thereof and feeding method therefor |
CN102163767B (zh) * | 2011-03-24 | 2014-09-24 | 清华大学 | 一种共面集成的gps/its天线 |
CN202231141U (zh) * | 2011-06-27 | 2012-05-23 | 京信通信系统(中国)有限公司 | 基站用双极化射灯天线 |
-
2013
- 2013-08-26 WO PCT/CN2013/082285 patent/WO2015027378A1/zh active Application Filing
- 2013-08-26 CN CN201380001251.5A patent/CN103703620B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030103015A1 (en) * | 2001-12-04 | 2003-06-05 | Jeong-Kun Oh | Skeleton slot radiation element and multi-band patch antenna using the same |
CN102299409A (zh) * | 2011-05-16 | 2011-12-28 | 电子科技大学 | 一种用于IMT-Advanced系统的宽带双极化基站天线 |
CN202749507U (zh) * | 2012-07-20 | 2013-02-20 | 江苏华灿电讯股份有限公司 | 一种高增益宽波速双极化天线 |
CN102856640A (zh) * | 2012-09-26 | 2013-01-02 | 电子科技大学 | 一种带有寄生圆片的高隔离度双极化e型微带天线 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112599986A (zh) * | 2020-12-04 | 2021-04-02 | 武汉柏禾智科技有限公司 | 隔离效果好的微带天线阵列 |
Also Published As
Publication number | Publication date |
---|---|
CN103703620B (zh) | 2016-12-14 |
CN103703620A (zh) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015027378A1 (zh) | 宽带双极化阵列天线及基站 | |
CN111052504B (zh) | 毫米波天线阵元、阵列天线及通信产品 | |
US10044111B2 (en) | Wideband dual-polarized patch antenna | |
US9929472B2 (en) | Phased array antenna | |
CN111129749B (zh) | 一种双极化天线、天线阵列及通讯设备 | |
US10186778B2 (en) | Wideband dual-polarized patch antenna array and methods useful in conjunction therewith | |
EP2631991B1 (en) | Microstrip antenna | |
US9831566B2 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
KR20210077808A (ko) | 마이크로스트립 안테나, 안테나 어레이, 및 마이크로스트립 안테나의 제조 방법 | |
WO2015161445A1 (zh) | 多极化基片集成波导天线 | |
CN112467395B (zh) | 一种小型化低剖面双圆极化天线 | |
CN113016107A (zh) | 四端口辐射元件 | |
CN109742515B (zh) | 一种用于移动终端的毫米波圆极化天线 | |
WO2022242069A1 (zh) | 双极化滤波天线单元和双极化滤波天线阵列 | |
EP3949013A2 (en) | Frasera antenna radiator (far) for 5g array antennas | |
US20150214624A1 (en) | Micro base station antenna | |
EP3047538B1 (en) | Short coincident phased slot-fed dual polarized aperture | |
WO2023109868A1 (zh) | 天线模组及电子设备 | |
US20170338553A1 (en) | Self-complementary multilayer array antenna | |
Malviya et al. | MIMO antenna design with low ECC for mmWave | |
CN115939782A (zh) | 一种w波段旋转式圆极化磁电偶极子天线阵列 | |
CN101707284B (zh) | 一种用于射频前端系统的ltcc电小集成天线 | |
TWI464962B (zh) | 複合式多天線系統及其無線通訊裝置 | |
CN201741806U (zh) | 一种用于射频前端系统的ltcc电小集成天线 | |
US11688952B1 (en) | Current sheet array antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13892483 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13892483 Country of ref document: EP Kind code of ref document: A1 |