WO2016177119A1 - 一种交流柴油发电机的控制方法及装置 - Google Patents

一种交流柴油发电机的控制方法及装置 Download PDF

Info

Publication number
WO2016177119A1
WO2016177119A1 PCT/CN2016/076503 CN2016076503W WO2016177119A1 WO 2016177119 A1 WO2016177119 A1 WO 2016177119A1 CN 2016076503 W CN2016076503 W CN 2016076503W WO 2016177119 A1 WO2016177119 A1 WO 2016177119A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
output current
current value
rectifier
situ
Prior art date
Application number
PCT/CN2016/076503
Other languages
English (en)
French (fr)
Inventor
覃武
滕凌巧
武希洲
周保航
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177119A1 publication Critical patent/WO2016177119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation

Definitions

  • This application relates to, but is not limited to, the field of generator technology.
  • AC diesel generators are increasingly being used as a more convenient supplementary energy source. Since the AC diesel generator is used as a supplement and emergency backup energy, it is the last line of defense for some remote stations.
  • the battery charging current may be too large, or the load may be too large, so that during the starting process, the oil machine overload causes the downtime; if the three-phase AC diesel generator is in the load, if three The long-term imbalance of the phase loading rate will affect the service life of the oil machine.
  • the common solution of the related technology is to configure the capacity of the oil machine to be very large, and prevent the downtime caused by the excessive starting current. But as a non-green energy source with limited resources, such a configuration is very wasteful.
  • This paper provides a control method and device for AC diesel generator, which can solve the problem of single-phase overload, three-phase unbalance, and low load rate of the oil machine when the AC diesel generator cooperates with the rectifier module.
  • a control method for an alternating current diesel generator including:
  • Each in-situ rectifier module controls the output current according to a maximum output current value such that the output current is not greater than the maximum output current value.
  • determining the maximum output current value of each in-situ rectifier module according to the actual working capacity of the AC diesel generator and the number of in-phase rectifier modules for single-phase operation or three-phase operation includes:
  • the maximum output current value of each in-position rectifier module is calculated using the maximum allowable power and maximum number of AC diesel generators.
  • it also includes:
  • the number of in-situ rectifier modules operated per phase is adjusted to exchange the balanced operation of each phase of the diesel generator.
  • the adjusting the number of in-situ rectifier modules for each phase operation according to the detected number of in-situ rectifier modules for each phase operation, so that the phase balance operation of the alternating current diesel generator comprises:
  • the execution is repeated: adjusting the in-position rectification module of one working in-position rectification module on the phase of the maximum number of values to the minimum number of values A closed in-position rectification module in phase is adjusted to operate the in-position rectification module until the difference between the adjusted maximum quantity value and the minimum quantity value is less than or equal to the threshold value range or is not adjustable by the in-position rectification module;
  • it also includes:
  • the number of in-situ rectifier modules working in each phase is adjusted, so that the output power of the AC diesel generator is better.
  • determining whether the output power of the AC diesel generator can be better according to the determined first maximum output current value, the first output current value, and the maximum output current value includes:
  • the output power of the alternating current diesel generator can be better.
  • the number of in-situ rectifier modules operating per phase is adjusted, so that the output power of the AC diesel generator is better:
  • the second maximum output current value is sent to each in-situ rectification module so that the output power of the AC diesel generator is better.
  • a control device for an alternating current diesel generator including:
  • Determining the maximum output current value module setting: determining the maximum output current value of each in-position rectifier module according to the actual working capacity of the AC diesel generator and the number of in-phase rectifier modules for single-phase operation or three-phase operation;
  • the issuing module is configured to: send the determined maximum output current value to each in-situ rectifier module;
  • the control module is configured to: control each in-situ rectifier module to control an output current according to a maximum output current value such that the output current is not greater than the maximum output current value.
  • it also includes:
  • a detecting unit configured to: detect the number of in-situ rectifier modules of each phase operation of the alternating current diesel generator;
  • the first adjusting unit is configured to: adjust the number of in-situ rectifier modules operated by each phase according to the detected number of in-situ rectifier modules for each phase operation, so as to exchange the balance operation of each phase of the diesel generator.
  • it also includes:
  • Determining a unit configured to: determine, according to the adjusted number of in-situ rectifier modules for each phase of operation, a first output current value required to provide a load of each in-position rectifier module;
  • the determining unit is configured to: determine whether the output power of the AC diesel generator can be better according to the determined first maximum output current value, the first output current value, and the maximum output current value;
  • the second adjusting unit is configured to: when determining that the output power of the alternating current diesel generator can be better, adjust the number of in-situ rectifier modules working in each phase, so that the output power of the alternating diesel generator is better.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above is provided.
  • the embodiment of the invention adjusts the number and output of the rectifier module to prevent the oil machine from being smashed due to excessive single-phase load during the starting process, and at the same time ensures the three-phase balance of the oil machine as much as possible, and maximizes the oil machine.
  • the actual load rate is the number and output of the rectifier module to prevent the oil machine from being smashed due to excessive single-phase load during the starting process, and at the same time ensures the three-phase balance of the oil machine as much as possible, and maximizes the oil machine.
  • the actual load rate is the number and output of the rectifier module to prevent the oil machine from being smashed due to excessive single-phase load during the starting process, and at the same time ensures the three-phase balance of the oil machine as much as possible, and maximizes the oil machine.
  • FIG. 1 is a flow chart of a method for controlling an alternating current diesel generator according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a control device for an alternating current diesel generator according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for adjusting a number of rectifier modules according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a device for adjusting the number of rectifier modules according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an anti-overload control device for a single-phase oil machine according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a three-phase oil machine anti-overload control device according to an embodiment of the present invention.
  • FIG. 1 is a flow chart showing a control method of an alternating current diesel generator provided by an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S101 determining a maximum output current value of each in-position rectifier module according to an actual working capacity of the AC diesel generator and a number of in-situ rectifier modules of single-phase operation or three-phase operation;
  • Step S102 The determined maximum output current value is sent to each in-position rectification module
  • Step S103 Each in-position rectification module controls the output current according to the maximum output current value such that the output current is not greater than the maximum output current value.
  • determining the maximum output current value of each in-position rectifier module includes: detecting single-phase operation or The number of in-situ rectifier modules for three-phase operation determines the maximum number of in-position rectifier modules for each phase of operation; the maximum allowable power and maximum number of AC diesel generators are used to calculate the maximum output of each in-position rectifier module Current value.
  • the embodiment of the invention further includes: detecting the number of in-situ rectifier modules of each phase operation of the alternating current diesel generator; adjusting the number of in-situ rectifier modules working in each phase according to the detected number of in-situ rectifier modules operating per phase In order to exchange the balance work of each phase of the diesel generator.
  • adjusting the number of in-situ rectifier modules for each phase operation so that each phase balancing operation of the alternating current diesel generator comprises: working according to each phase detected The number of in-situ rectifier modules determines the maximum number of values and the minimum number of in-position rectifier modules for each phase of operation; when the difference between the determined maximum number of values and the minimum number of values is greater than the threshold range, the execution is repeated: The number of values on the phase of a working in-situ rectifier module is adjusted to the off-position in-situ rectifier module, and a closed in-position rectifier module on the phase of the minimum number of values is adjusted to operate the in-position rectifier module until the adjusted maximum number The difference between the value and the minimum quantity value is less than or equal to the threshold range or is not adjustable in the bit rectification module; according to each phase after adjustment The number of working in-situ rectifier modules determines the first maximum output current value of
  • the embodiment of the invention further includes: determining, according to the adjusted number of in-situ rectifier modules for each phase operation, a first output current value required to provide a load of each in-position rectifier module; and determining the first maximum output current value according to the determined
  • the first output current value and the maximum output current value determine whether the output power of the AC diesel generator can be better; when it is judged that the output power of the AC diesel generator can be better, the in-situ rectifier module for each phase operation is adjusted.
  • the number of AC motors to achieve better output power.
  • determining whether the output power of the AC diesel generator can be achieved according to the determined first maximum output current value, the first output current value, and the maximum output current value comprises: when the first output current value When the value is greater than the first maximum output current and less than the maximum output current value, it is determined that the output power of the AC diesel generator can be better.
  • adjusting the number of in-situ rectifier modules for each phase operation, so that the output power of the AC diesel generator is better when determining the AC diesel generator When the output power can be better, repeat it: adjust the in-position rectifier module to a closed in-position rectifier module for the maximum number of values on the phase; according to the adjusted number of in-situ rectifier modules operating per phase, Determining a second maximum output current value of each in-position rectifier module, a second output current value required to provide a load; until the second output current value is less than the second maximum output current value and less than the maximum output current The value, or the in-position rectification module is adjustable, then the adjustment is stopped; the determined second maximum output current value is sent to each in-position rectification module, so that the output power of the AC diesel generator is better.
  • FIG. 2 is a schematic diagram of a control device for an alternating current diesel generator according to an embodiment of the present invention.
  • the method includes: determining a maximum output current value module 201, a sending module 202, and a control module 203.
  • the determining the maximum output current value module 201 is configured to: determine the maximum of each in-position rectifier module according to the actual working capacity of the AC diesel generator and the number of in-phase rectifier modules for single-phase operation or three-phase operation.
  • the sending module 202 is configured to: send the determined maximum output current value to each in-situ rectification module;
  • the control module 203 is configured to: control each in-situ rectification module The output current is controlled according to the maximum output current value such that the output current is not greater than the maximum output current value.
  • the embodiment of the invention further includes: a detecting unit, configured to: detect the number of in-situ rectifier modules of each phase of the alternating current diesel generator; the first adjusting unit is configured to: in-position rectification according to the detected per phase operation The number of modules, adjust the number of in-situ rectifier modules working in each phase, in order to exchange the balance of each phase of the diesel generator.
  • a detecting unit configured to: detect the number of in-situ rectifier modules of each phase of the alternating current diesel generator
  • the first adjusting unit is configured to: in-position rectification according to the detected per phase operation The number of modules, adjust the number of in-situ rectifier modules working in each phase, in order to exchange the balance of each phase of the diesel generator.
  • the embodiment of the present invention further includes: a determining unit, configured to: determine, according to the adjusted number of in-situ rectifier modules for each phase operation, a first output current value required for each in-position rectifier module to provide a load; determining unit, setting It is determined whether the output power of the AC diesel generator can be better according to the determined first maximum output current value, the first output current value and the maximum output current value; and the second adjustment unit is set to: when determining the alternating diesel fuel When the output power of the generator can be better, the number of in-situ rectifier modules working in each phase can be adjusted, so that the output power of the AC diesel generator can be better.
  • the embodiment of the invention adjusts the number and output of the rectifier module, satisfies the load power requirement in the case that the output of the oil machine is not overloaded, and can ensure the three-phase balance and improve the output power of the oil machine.
  • the steps are as follows:
  • Step 1 According to the actual capacity of the oil machine and the number of rectifier modules working in a single phase, the maximum output current of the rectifier module is obtained to ensure that the single phase of the oil machine is not overloaded;
  • Step 2 If it is a three-phase AC diesel generator, judge whether there is a big difference in the number of rectifier modules working in each phase. If there is a big difference, adjust the opening and closing of the rectifier module working for each phase to ensure The three phases are balanced as much as possible; if it is not a three-phase oil machine, this step is ignored;
  • Step 3 If it is a three-phase AC diesel generator, judge whether the oil machine has reached the maximum output power according to the actual load condition. If the maximum output power is not reached, continue to adjust the number of rectifiers working in each phase until the maximum output power is met. Or there is no adjustable rectifier module.
  • the rated output power P of the oil machine and the power factor ⁇ of the oil machine are determined by the properties of the oil machine and belong to the determined value; the oil load rate ⁇ of the oil machine is set according to the allowable value of the system.
  • the calculation function module calculates the maximum output current I max of the single rectifier module of the single-phase oil machine.
  • the formula is as follows:
  • I max single-phase maximum allowable power of the oil machine P e * rectifier module efficiency ⁇ / N max / load voltage U;
  • the efficiency of the rectifier module ⁇ is determined by the properties of the rectifier module itself; N max represents the number of rectifiers that operate normally; the value of the load voltage U is determined by the load of the actual system.
  • the control function module sends the maximum output current I max of a single rectifier module to all rectifier modules working in position, limiting the output current of all in-place rectifier modules, thereby limiting the load rejection of the oil machine to the allowable range.
  • the single-phase oil machine algorithm of the embodiment of the invention is also applicable to the application scenario of the three-phase oil machine working with the three-phase rectifier module, and the structure diagram of the three-phase oil machine anti-overload control device shown in FIG. Similar to the above steps, it will not be described. Through the above steps in the three-phase oil machine, it is ensured that each phase in the three-phase oil machine is not overloaded. For the balance of the three-phase output current of the adjusted oil machine, whether the output power of the oil machine can be better can be further calculated and optimized by subsequent steps.
  • FIG. 3 is a flow chart showing a method for adjusting the number of rectifier modules according to an embodiment of the present invention, as shown in FIG. 3, including an oil machine three-phase output current balance portion and an oil machine output power optimization portion.
  • the first part the three-phase output current balance part of the oil machine, the steps are as follows:
  • the rated output power P of the oil machine and the power factor ⁇ of the oil machine are determined by the properties of the oil machine and belong to the determined value; the oil load rate ⁇ of the oil machine is set according to the allowable value of the system.
  • N N max - N min , to determine whether N is greater than or equal to the threshold range (in this example, the threshold range is equal to 2) when N is greater than or equal to 2, then perform step 3); when N is less than 2, perform step 4);
  • I max single-phase maximum allowable power of the oil machine P e * rectifier module efficiency ⁇ / N max / load voltage U;
  • the efficiency of the rectifier module ⁇ is determined by the properties of the rectifier module itself; the load voltage value U is determined by the load of the actual system.
  • the maximum number of single-phase rectifier modules before adjustment is N max1
  • the maximum number of single-phase rectifier modules after adjustment is N max2
  • N max2 is less than N max1
  • the total number of rectifier modules is Ns
  • the maximum allowable power of single-phase oil machine is P e ;
  • the output current of the load required by a single rectifier module I load load power demand P load / load voltage value U / the total number of rectifier modules working N s1 ;
  • the maximum output current I max of the single-phase single rectifier module is sent to all rectifier modules operating in position, limiting the output current of the rectifier module on each phase;
  • N s1 3N max1 -2
  • N s2 N s1 -1
  • N max2 N max1 -1
  • (N max1 *N s2 )/(N max2 *N s1 ) 3N max1 /( 3N max1 -2)>1;
  • N s1 3N max1 -1
  • N s2 N s1 -2
  • N max2 N max1 -1
  • (N max1 *N s2 )/(N max2 *N s1 ) 3N max1 /( 3N max1 -1)>1;
  • N s1 3N max1
  • N s2 N s1 -3
  • FIG. 4 is a schematic diagram of a device for adjusting the number of rectifier modules according to an embodiment of the present invention.
  • the system includes a system monitoring module 41 and an output controllable rectifier module 42.
  • System monitoring Module 41 Calculate and output the maximum output current value of the rectifier module according to the configuration and operation of the system, and limit the system output power;
  • the rectifier module 42 the controllable function includes a switchable working state and a controllable maximum output current And receive the maximum output current value issued by the system monitoring module, and adjust its own output current.
  • the system monitoring module 41 can be divided into three functional modules: a detecting function module 411: detecting the number of rectifier modules configured on each phase AC input of the system, and a load voltage; and calculating a function module 412: calculating according to the formula mentioned above The number of rectifier modules and the maximum output current value; the control function module 413: sends the maximum output current value of the rectifier module to the rectifier module, or controls the rectifier module switch.
  • a detecting function module 411 detecting the number of rectifier modules configured on each phase AC input of the system, and a load voltage
  • calculating a function module 412 calculating according to the formula mentioned above The number of rectifier modules and the maximum output current value
  • the control function module 413 sends the maximum output current value of the rectifier module to the rectifier module, or controls the rectifier module switch.
  • the power supply system of the base station equipment is composed of mains + battery + three-phase oil machine.
  • the battery is first powered.
  • the battery is discharged to a certain extent, to protect the battery, At the same time to prevent the load from breaking, start the oil machine to supply power.
  • Three-phase oil machine rated power P 18kVA; battery capacity: 800AH, 4 groups; oil machine running battery charging coefficient: 0.1C10; configured single-phase rectifier module number is 12, rectifier module maximum output current Ie is 60A; setting The oil load rate ⁇ is 80%, the power factor ⁇ of the three-phase oil machine is 0.8; the efficiency ⁇ of the power conversion module is 98%, and the load voltage U is detected as 50V.
  • I load3 is greater than the maximum output current I e of the rectifier module is 60A, so the number of rectifier modules in 11) is maintained, and the number of rectifier modules is adjusted by issuing a control command;
  • the current limit value I max2 is issued to limit the output current of the rectifier module.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit, and the steps may be separately fabricated into integrated circuit modules, or multiple modules thereof or The steps are made into a single integrated circuit module.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the invention adjusts the number and output of the rectifier module to prevent the oil machine from being smashed due to excessive single-phase load during the starting process, and at the same time ensures the three-phase balance of the oil machine as much as possible, and maximizes the oil machine.
  • the actual load rate is the number and output of the rectifier module to prevent the oil machine from being smashed due to excessive single-phase load during the starting process, and at the same time ensures the three-phase balance of the oil machine as much as possible, and maximizes the oil machine.
  • the actual load rate is the number and output of the rectifier module to prevent the oil machine from being smashed due to excessive single-phase load during the starting process, and at the same time ensures the three-phase balance of the oil machine as much as possible, and maximizes the oil machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种交流柴油发电机的控制方法及装置,该方法包括:根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值(S101);将所确定的最大输出电流值下发给每个在位整流模块(S102);每个在位整流模块根据最大输出电流值,对输出电流进行控制,使所述输出电流不大于所述最大输出电流值(S103)。

Description

一种交流柴油发电机的控制方法及装置 技术领域
本申请涉及但不限于发电机技术领域。
背景技术
随着绿色能源越来越多的在一些偏远地区的使用,交流柴油发电机作为一种比较便利的补充能源也越来越多的被使用到。由于交流柴油发电机是作为一种补充和紧急后备能源,是作为一些偏远站点不断站的最后一道防线。
但在交流柴油发电机实际的使用过程中,可能由于电池充电电流过大,或者负载过大,从而在启动过程中,油机过载导致宕机;三相交流柴油发电机在带载中如果三相的带载率长期不平衡,会影响油机的使用寿命。
因此如何真正有效的将油机启动起来,延长油机使用寿命,同时保证最大化的利用油机资源,是一个比较重要的课题。
针对该问题,相关技术比较常用的解决方式就是将油机的容量配置的非常大,防止由于启动电流过大,引起宕机。但是油机作为一种非绿色能源,且资源有限,这样的配置是非常浪费的。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种交流柴油发电机的控制方法及装置,可以解决交流柴油发电机配合整流模块工作时的单相过载,三相不平衡,以及油机带载率低的问题。
根据本发明实施例的一个方面,提供了一种交流柴油发电机的控制方法,包括:
根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值;
将所确定的最大输出电流值下发给每个在位整流模块;
每个在位整流模块根据最大输出电流值,对输出电流进行控制,使所述输出电流不大于所述最大输出电流值。
可选地,所述的根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值包括:
通过检测单相工作或三相工作的在位整流模块的数量,确定每相工作的在位整流模块的最多数量值;
利用交流柴油发电机的最大允许功率和最多数量值,计算出每个在位整流模块的最大输出电流值。
可选地,还包括:
检测所述交流柴油发电机的每相工作的在位整流模块数量;
根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作。
可选地,所述的根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作包括:
根据检测到的每相工作的在位整流模块数量,确定每相工作的在位整流模块的最多数量值和最少数量值;
当所确定的最多数量值和最少数量值的差值大于阈值范围内时,则重复执行:对最多数量值相位上的一个工作的在位整流模块调整成关闭的在位整流模块,对最少数量值相位上的一个关闭的在位整流模块调整成工作的在位整流模块,直至调整后的最多数量值和最少数量值的差值小于或等于所述阈值范围或者没有在位整流模块可调整;
根据调整后每相工作的在位整流模块数量,确定每个在位整流模块的第一最大输出电流值,并将所述第一最大输出电流值下发给每个在位整流模块,以便交流柴油发电机的每相平衡工作。
可选地,还包括:
根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块 所需要提供负载的第一输出电流值;
根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优;
当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优。
可选地,所述的根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优包括:
当所述第一输出电流值大于所述第一最大输出电流值且小于所述最大输出电流值时,则判断交流柴油发电机的输出功率可以达到更优。
可选地,当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优包括:
当判断交流柴油发电机的输出功率可以达到更优时,则重复执行:对最多数量值相位上的一个工作的在位整流模块调整成关闭的在位整流模块;根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块的第二最大输出电流值、所需要提供负载的第二输出电流值;直至所述第二输出电流值小于所述第二最大输出电流值且小于所述最大输出电流值,或者没有在位整流模块可调整,则停止调整;
将所述第二最大输出电流值下发给每个在位整流模块,以便交流柴油发电机的输出功率达到更优。
根据本发明实施例的另一方面,提供了一种交流柴油发电机的控制装置,包括:
确定最大输出电流值模块,设置为:根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值;
下发模块,设置为:将所确定的最大输出电流值下发给每个在位整流模块;
控制模块,设置为:控制每个在位整流模块根据最大输出电流值,对其输出电流进行控制,使所述输出电流不大于所述最大输出电流值。
可选地,还包括:
检测单元,设置为:检测所述交流柴油发电机的每相工作的在位整流模块数量;
第一调整单元,设置为:根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作。
可选地,还包括:
确定单元,设置为:根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块所需要提供负载的第一输出电流值;
判断单元,设置为:根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优;
第二调整单元,设置为:当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优。
根据本发明实施例的另一方面,提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明实施例通过对整流模块的数量和输出进行调节,防止油机在启动过程中由于单相负载过大引起宕机,同时尽可能保证油机三相平衡,又最大化的提高了油机的实际带载率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例提供的一种交流柴油发电机的控制方法的流程图;
图2是本发明实施例提供的一种交流柴油发电机的控制装置的示意图;
图3是本发明实施例提供的整流模块数量调整方法流程图;
图4是本发明实施例提供的整流模块数量调整装置示意图;
图5是本发明实施例提供的单相油机防过载控制装置结构示意图;
图6是本发明实施例提供的三相油机防过载控制装置结构示意图。
本发明的实施方式
以下结合附图对本发明的实施方式进行说明。
图1显示了本发明实施例提供的一种交流柴油发电机的控制方法的流程图,如图1所示,包括以下步骤:
步骤S101:根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值;
步骤S102:将所确定的最大输出电流值下发给每个在位整流模块;
步骤S103:每个在位整流模块根据最大输出电流值,对其输出电流进行控制,使所述输出电流不大于所述最大输出电流值。
其中,所述的根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值包括:通过检测单相工作或三相工作的在位整流模块的数量,确定每相工作的在位整流模块的最多数量值;利用交流柴油发电机的最大允许功率和最多数量值,计算出每个在位整流模块的最大输出电流值。
本发明实施例还包括:检测所述交流柴油发电机的每相工作的在位整流模块数量;根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作。
其中,所述的根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作包括:根据检测到的每相工作的在位整流模块数量,确定每相工作的在位整流模块的最多数量值和最少数量值;当所确定的最多数量值和最少数量值的差值大于阈值范围内时,则重复执行:对最多数量值相位上的一个工作的在位整流模块调整成关闭的在位整流模块,对最少数量值相位上的一个关闭的在位整流模块调整成工作的在位整流模块,直至调整后的最多数量值和最少数量值的差值小于或等于所述阈值范围或者没有在位整流模块可调整;根据调整后每相 工作的在位整流模块数量,确定每个在位整流模块的第一最大输出电流值,并将其下发给每个在位整流模块,以便交流柴油发电机的每相平衡工作。
本发明实施例还包括:根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块所需要提供负载的第一输出电流值;根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优;当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优。
其中,所述的根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优包括:当所述第一输出电流值大于所述第一最大输出电流值且小于所述最大输出电流值时,则判断交流柴油发电机的输出功率可以达到更优。所述的当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优包括:当判断交流柴油发电机的输出功率可以达到更优时,则重复执行:对最多数量值相位上的一个工作的在位整流模块调整成关闭的在位整流模块;根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块的第二最大输出电流值、所需要提供负载的第二输出电流值;直至所述第二输出电流值小于所述第二最大输出电流值且小于所述最大输出电流值,或者没有在位整流模块可调整,则停止调整;将所述确定的第二最大输出电流值下发给每个在位整流模块,以便交流柴油发电机的输出功率达到更优。
图2显示了本发明实施例提供的一种交流柴油发电机的控制装置的示意图,如图2所示,包括:确定最大输出电流值模块201、下发模块202以及控制模块203。其中,所述的确定最大输出电流值模块201,设置为:根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值;所述的下发模块202,设置为:将所确定的最大输出电流值下发给每个在位整流模块;所述的控制模块203,设置为:控制每个在位整流模块根据最大输出电流值,对其输出电流进行控制,使所述输出电流不大于所述最大输出电流值。
本发明实施例还包括:检测单元,设置为:检测所述交流柴油发电机的每相工作的在位整流模块数量;第一调整单元,设置为:根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作。
本发明实施例还包括:确定单元,设置为:根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块所需要提供负载的第一输出电流值;判断单元,设置为:根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优;第二调整单元,设置为:当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优。
本发明实施例通过对整流模块的数量和输出进行调节,在油机输出不过载的情况下满足负载功率需求,又能保证三相平衡及提高油机输出功率,步骤如下:
步骤一:根据油机的实际容量和单相工作的整流模块的数量,得出整流模块的最大输出电流,以保证油机单相不过载;
步骤二:如果是三相交流柴油发电机,则判断每相工作的整流模块数量是否存在较大差异,如存在较大差异,则对每相工作的整流模块进行开和关的调整,以保证三相尽可能平衡;如果不是三相油机,则忽略本步骤;
步骤三:如果是三相交流柴油发电机,则根据实际负载情况判断油机是否达到了最大输出功率,如果未达到最大输出功率,则继续调整每相工作的整流器个数,直到满足最大输出功率或者已无可调整的整流模块为止。
通过以上三个步骤,可最大程度上解决交流柴油发电机配合整流模块工作时的单相过载,三相不平衡及输出功率低的问题。
下面结合图5对本发明实施例提供单相油机的油机防过载控制方法进行说明,步骤如下:
1、计算单相油机的最大允许功率Pe,公式如下:
单相油机最大允许功率Pe=油机额定输出功率P*油机帯载率η*油机功率 因数λ;
其中,油机额定输出功率P和油机功率因数λ由油机自身属性决定,属于确定的值;油机帯载率η按照系统允许值进行设定。
2、计算功能模块计算出单相油机单个整流模块最大输出电流Imax,公式如下:
Imax=油机单相最大允许功率Pe*整流模块效率δ/Nmax/负载电压U;
其中,整流模块效率δ由整流模块自身属性决定;Nmax表示正常工作的整流器数量;负载电压值U是由实际系统的负载决定。
3、控制功能模块将单个整流模块最大输出电流Imax下发给所有在位工作的整流模块,限制所有在位的整流模块的输出电流,从而将油机的帯载率都限制在允许的范围内。
本发明实施例单相油机算法同样适用于三相油机配合三相整流模块工作的应用场景,如图6所示的三相油机防过载控制装置结构示意图。与上述步骤类似,不再描述。在三相油机中通过以上步骤,保证了三相油机中每相都不过载。对于调整后油机三相输出电流是否平衡,油机输出功率是否可以达到更优,可采用后续步骤进一步的计算和优化。
图3显示了本发明实施例提供的整流模块数量调整方法流程图,如图3所示,包括油机三相输出电流平衡部分和油机输出功率优化部分。
第一部分:油机三相输出电流平衡部分,步骤如下:
1)计算三相油机的单相最大允许功率Pe,公式如下:
油机单相最大允许功率Pe=油机额定输出功率P/3*油机帯载率η*油机功率因数λ;
其中,油机额定输出功率P和油机功率因数λ由油机自身属性决定,属于确定的值;油机帯载率η按照系统允许值进行设定。
检测三相油机的每个相位上整流模块的数量,比较得出单相中正常工作的整流模块的最大数量Nmax和单相中正常工作的整流模块的最小数量Nmin
2)N=Nmax-Nmin,判断N是否大于等于阈值范围(本例中,该阈值范围 等于2)当N大于等于2,则执行步骤3);当N小于2,执行步骤4);
3)最小数量Nmin加1、最大数量Nmax减1;返回执行步骤1)
4)调整三相油机每个相位上的整流模块的工作状态,使每相上工作的整流模块数量与步骤3)中调整后整流模块的数量一致;
5)计算出单相单个整流模块最大输出电流Imax,公式如下:
Imax=油机单相最大允许功率Pe*整流模块效率δ/Nmax/负载电压U;
其中,整流模块效率δ由整流模块自身属性决定;负载电压值U是由实际系统的负载决定。
6)将单相单个整流模块最大输出电流Imax下发给所有在位工作的整流模块,限制每一相上整流模块的输出电流,从而将油机每一相的帯载率都限制在允许的范围内;
重复步骤2)~6),直到N小于2或者该相位上已经没有可调整的整流模块;
调整前单相整流模块最大数量为Nmax1,调整后单相整流模块最大数量为Nmax2,且Nmax2小于Nmax1;整流模块总数量为Ns,油机单相最大允许功率为Pe;则,调整后油机输出功率为调整前的:(Pa/Nmax2*Ns)/(Pa/Nmax1*Ns)=Nmax1/Nmax2倍。所以调整后,油机输出功率将增大。
通过以上步骤,即保证了三相油机中每相都不过载,同时也最大程度的保证了油机三相输出平衡。下面进行进一步的计算和优化,即第二部分:油机输出功率优化部分,使调整后油机输出功率达到更优,步骤如下:
7)已知当前负载功率需求为Pload,由系统负载配置情况决定;
检测当前工作的整流模块总数量Ns
计算当前负载下,每个整流模块所需要提供负载的输出电流Iload,公式如下:
单个整流模块所需要提供负载的输出电流Iload=负载功率需求Pload/负载电压值U/工作的整流模块总数量Ns1
8)判断Iload是否大于流模块的额定输出电流Ie,如果是,则执行步骤11), 如果否,则执行步骤9);9)判断当前单相单个整流模块最大输出电流Imax是否小于Iload,如果是,执行步骤10),如果否,执行步骤12)
10)将所有整流模块数量为Nmax的相位上的整流器模块数量减1,即Nmax=Nmax-1;返回执行步骤5),重新计算单相单个整流模块最大输出电流Imax;重复执行5-10,直到单相单个整流模块最大输出电流Imax≥Iload或者相位上已无整流器可调整;
11)Iload已经大于等于整流模块的额定输出电流Ie,则无法再通过调整整流模块数量,来进一步提高油机输出功率,保持上一次计算的整流模块数量;
12)调整三相油机每相位上的整流模块的工作状态,使每相上工作的整流模块数量与上述步骤调整后整流模块的数量一致;
将单相单个整流模块最大输出电流Imax下发给所有在位工作的整流模块,限制每一相上整流模块的输出电流;
调整前单相整流模块最大数量为Nmax1,调整后单相整流模块最大数量为Nmax2,且Nmax2<Nmax1;调整前整流模块总数量为Ns1,调整后整流模块总数量为Ns2,且Ns2<Ns1,油机单相最大允许功率为Pe;则,调整后油机输出功率大于等于调整前输出功率,即:e=(Pe/Nmax2*Ns2)/(Pe/Nmax1*Ns1)=(Nmax1*Ns2)/(Nmax2*Ns1)倍。
在10)步骤中,模块数量减1的相位数量为N,N有3种取值:N=1、N=2、N=3;
当N=1时,Ns1=3Nmax1-2,Ns2=Ns1-1,Nmax2=Nmax1-1,(Nmax1*Ns2)/(Nmax2*Ns1)=3Nmax1/(3Nmax1-2)>1;
当N=2时,Ns1=3Nmax1-1,Ns2=Ns1-2,Nmax2=Nmax1-1,(Nmax1*Ns2)/(Nmax2*Ns1)=3Nmax1/(3Nmax1-1)>1;
当N=3时,Ns1=3Nmax1,Ns2=Ns1-3,Nmax2=Nmax1-1,(Nmax1*Ns2)/(Nmax2*Ns1)=3Nmax1/3Nmax1=1;
因此,调整后,油机输出功率将增大。
图4显示了本发明实施例提供的整流模块数量调整装置示意图,如图4所示,包括:系统监控模块41和输出可控制的整流模块42。所述系统监控 模块41:根据系统的配置和运行情况,计算和下发整流模块的最大输出电流值,限制系统输出功率;所述整流模块42:可控功能包括可开关的工作状态和可控的最大输出电流,并接收系统监控模块下发的最大输出电流值,调整自身输出电流。所述系统监控模块41可分为三个功能模块:检测功能模块411:检测系统每相交流输入上配置的整流模块数量,以及负载电压;计算功能模块412:根据上文提到的公式,计算整流模块数量及最大输出电流值;控制功能模块413:将整流模块最大输出电流值下发给整流模块,或控制整流模块开关。
下面提供一个应用实例来说明:
在一个油电混合供电的偏远基站中,基站设备的供电系统由市电+电池+三相油机组成,当无市电时,首先由电池供电,当电池放电到一定程度,为保护电池,同时防止负载断站,则启动油机进行供电。
三相油机额定功率P:18kVA;电池容量:800AH,4组;油机运行电池充电系数:0.1C10;配置的单相整流模块个数为12,整流模块最大输出电流Ie为60A;设定油机带载率η为80%,三相油机的功率因数λ为0.8;功率转换模块的效率δ为98%,负载电压U检测为50V。
通过以上参数,进行油机逻辑控制步骤如下:
1)统计出正常工作的整流模块总数量Ns=8;三相整流器模块数量分别为,Na=4,Nb=3,Nc=1;则单相最大整流模块数量Nmax=4,单相最小整流模块数量Nmin=1;
2)计算油单相油机最大允许功率Pe=P/3*η*λ=18000/3*0.8*0.8=3840W;
3)计算单相单个整流模块最大输出电流Imax=Pe*δ/Nmax/U=3840*0.98/4/50=18.8A;
4)判断出Nmax-Nmin>=2;
5)a相整流模块数量-1,c相整流模块数量+1;
6)重新调整后整流模块数量为Ns1=8,Na1=3,Nb1=3,Nc1=2,Nmax1=3,Nmin1=2;
7)重新判断Nmax1–Nmin1=1,数量满足要求;
8)计算Imax1=Pe*δ/Nmax1/U=3840*0.98/3/50=25.1A;
9)计算单个整流模块所需要提供负载的输出电流Iload=Pload/U/Ns1=800*4*0.1/8=40A;
0)判断出Iload>Imax1
11)将a、b两相整流模块数量-1,则重新调整后整流模块数量为Ns2=6,Na2=2,Nb2=2,Nc2=2,Nmax2=2,Nmin2=2;
12)计算Iload2=Pload/U/Ns2=800*4*0.1/6=53.3A;
13)计算Imax2=Pe*δ/Nmax2/U=3840*0.98/2/50=37.6A;
14)判断出Iload>Imax1
15)将a、b、c三相整流模块数量-1,则重新调整后整流模块数量为Ns3=3,Na3=1,Nb3=1,Nc3=1,Nmax3=1,Nmin3=1;
16)计算Iload3=Pload/U/Ns3=800*4*0.1/3=106.7A;
17)Iload3已经大于整流模块最大输出电流Ie为60A,因此保持11)中的整流模块数量,下发控制命令调整整流模块数量;
18)下发限流值Imax2,限制整流模块输出电流。
在算法调整之前,整流模块数量Ns=8,单相单个整流模块最大输出电流Imax=18.8A,油机输出电流限制为Ns*Imax=150.4A;
在第一次调整整流模块数量后Ns1=8,Imax1=25.1A,油机输出电流限制为Ns1*Imax1=200.8A,油机帯载率提高了33.5%;
在第二次调整整流模块数量后,Ns2=6,Imax2=37.6A,油机输出电流限制为Ns2*Imax2=225.6A,油机帯载率进一步提高了12.4%.
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过对整流模块的数量和输出进行调节,防止油机在启动过程中由于单相负载过大引起宕机,同时尽可能保证油机三相平衡,又最大化的提高了油机的实际带载率。

Claims (11)

  1. 一种交流柴油发电机的控制方法,包括:
    根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值;
    将所确定的最大输出电流值下发给每个在位整流模块;
    每个在位整流模块根据最大输出电流值,对输出电流进行控制,使所述输出电流不大于所述最大输出电流值。
  2. 根据权利要求1所述的控制方法,其中,所述的根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值包括:
    通过检测单相工作或三相工作的在位整流模块的数量,确定每相工作的在位整流模块的最多数量值;
    利用交流柴油发电机的最大允许功率和最多数量值,计算出每个在位整流模块的最大输出电流值。
  3. 根据权利要求1所述的控制方法,还包括:
    检测所述交流柴油发电机的每相工作的在位整流模块数量;
    根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作。
  4. 根据权利要求3所述的控制方法,其中,所述的根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作包括:
    根据检测到的每相工作的在位整流模块数量,确定每相工作的在位整流模块的最多数量值和最少数量值;
    当所确定的最多数量值和最少数量值的差值大于阈值范围内时,则重复执行:对最多数量值相位上的一个工作的在位整流模块调整成关闭的在位整流模块,对最少数量值相位上的一个关闭的在位整流模块调整成工作的在位整流模块,直至调整后的最多数量值和最少数量值的差值小于或等于所述阈 值范围或者没有在位整流模块可调整;
    根据调整后每相工作的在位整流模块数量,确定每个在位整流模块的第一最大输出电流值,并将所述第一最大输出电流值下发给每个在位整流模块,以便交流柴油发电机的每相平衡工作。
  5. 根据权利要求4所述的控制方法,还包括:
    根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块所需要提供负载的第一输出电流值;
    根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优;
    当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优。
  6. 根据权利要求5所述的控制方法,其中,所述的根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优包括:
    当所述第一输出电流值大于所述第一最大输出电流值且小于所述最大输出电流值时,则判断交流柴油发电机的输出功率可以达到更优。
  7. 根据权利要求6所述的控制方法,其中,当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优包括:
    当判断交流柴油发电机的输出功率可以达到更优时,则重复执行:对最多数量值相位上的一个工作的在位整流模块调整成关闭的在位整流模块;根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块的第二最大输出电流值、所需要提供负载的第二输出电流值;直至所述第二输出电流值小于所述第二最大输出电流值且小于所述最大输出电流值,或者没有在位整流模块可调整,则停止调整;
    将所述确定的第二最大输出电流值下发给每个在位整流模块,以便交流柴油发电机的输出功率达到更优。
  8. 一种交流柴油发电机的控制装置,包括:
    确定最大输出电流值模块,设置为:根据交流柴油发电机的实际工作容量和单相工作或三相工作的在位整流模块的数量,确定每个在位整流模块的最大输出电流值;
    下发模块,设置为:将所确定的最大输出电流值下发给每个在位整流模块;
    控制模块,设置为:控制每个在位整流模块根据最大输出电流值,对输出电流进行控制,使所述输出电流不大于所述最大输出电流值。
  9. 根据权利要求8所述的控制装置,还包括:
    检测单元,设置为:检测所述交流柴油发电机的每相工作的在位整流模块数量;
    第一调整单元,设置为:根据检测到的每相工作的在位整流模块数量,调整每相工作的在位整流模块的数量,以便交流柴油发电机的每相平衡工作。
  10. 根据权利要求9所述的控制装置,还包括:
    确定单元,设置为:根据调整后的每相工作的在位整流模块的数量,确定每个在位整流模块所需要提供负载的第一输出电流值;
    判断单元,设置为:根据所确定的第一最大输出电流值、第一输出电流值以及最大输出电流值,判断交流柴油发电机的输出功率是否可以达到更优;
    第二调整单元,设置为:当判断交流柴油发电机的输出功率可以达到更优时,调整每相工作的在位整流模块的数量,以便交流柴油发电机的输出功率达到更优。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-7任一项的方法。
PCT/CN2016/076503 2015-07-27 2016-03-16 一种交流柴油发电机的控制方法及装置 WO2016177119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510445642.7A CN106712616B (zh) 2015-07-27 2015-07-27 一种交流柴油发电机的控制方法及装置
CN201510445642.7 2015-07-27

Publications (1)

Publication Number Publication Date
WO2016177119A1 true WO2016177119A1 (zh) 2016-11-10

Family

ID=57218100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076503 WO2016177119A1 (zh) 2015-07-27 2016-03-16 一种交流柴油发电机的控制方法及装置

Country Status (2)

Country Link
CN (1) CN106712616B (zh)
WO (1) WO2016177119A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341807A (ja) * 1998-05-27 1999-12-10 Yaskawa Electric Corp 三相/三相pwmサイクロコンバータの制御装置
CN2742676Y (zh) * 2004-09-02 2005-11-23 北京中铁牵引电气研究所 恒功率励磁调节装置
JP2013223340A (ja) * 2012-04-17 2013-10-28 Mitsubishi Electric Corp 電力変換装置
CN103580572A (zh) * 2012-08-06 2014-02-12 中国北车股份有限公司大连电力牵引研发中心 恒功率控制方法、装置及恒功率牵引驱动系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984754A (en) * 1974-12-11 1976-10-05 Kronid Vasilievich Lapaev Device for automatic excitation of brushless electrical machines
CN1191948C (zh) * 1998-12-21 2005-03-09 西门子能量及自动化公司 满负载下串联电源的系统,方法和设备
CN102255522B (zh) * 2011-07-25 2013-07-31 中达电通股份有限公司 适应三相交流电网输出功率不足的直流电源系统控制方法
CN103490498B (zh) * 2012-06-13 2016-08-10 中兴通讯股份有限公司 电源系统的供电处理方法及装置
CN107565588A (zh) * 2017-10-19 2018-01-09 上海航天电源技术有限责任公司 一种移动式机场地面静变电源系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341807A (ja) * 1998-05-27 1999-12-10 Yaskawa Electric Corp 三相/三相pwmサイクロコンバータの制御装置
CN2742676Y (zh) * 2004-09-02 2005-11-23 北京中铁牵引电气研究所 恒功率励磁调节装置
JP2013223340A (ja) * 2012-04-17 2013-10-28 Mitsubishi Electric Corp 電力変換装置
CN103580572A (zh) * 2012-08-06 2014-02-12 中国北车股份有限公司大连电力牵引研发中心 恒功率控制方法、装置及恒功率牵引驱动系统

Also Published As

Publication number Publication date
CN106712616A (zh) 2017-05-24
CN106712616B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
JP5977843B2 (ja) 電気供給ネットに電流を給電するシステムの制御方法
RU2492566C2 (ru) Реагирующее на частоту управление поддержанием заряда систем накопления электричества для вспомогательных услуг в электроэнергетической сети
Gkavanoudis et al. A combined fault ride-through and power smoothing control method for full-converter wind turbines employing supercapacitor energy storage system
WO2012070141A1 (ja) 風力発電設備の出力制御方法及び出力制御装置
JP5508796B2 (ja) 電源システム制御方法及び電源システム制御装置
JP6742592B2 (ja) マイクログリッドの制御システム
JP4246179B2 (ja) 電源系統の制御装置、電力系統の制御装置、電源系統の制御方法および電力系統の制御方法
CN105470985B (zh) 一种风储孤网系统的柔性自启动方法
US10554160B2 (en) System and method for operating a pumped storage power plant with a double fed induction machine
CN104300583B (zh) 一种计及设备调节响应特性的微网频率控制方法
CN105552893B (zh) 一种直流频率限制器控制方法
CN206471840U (zh) 一种多台火电机组电化学储能辅助调频控制装置
CN103620904A (zh) 不同种类发电装置之间的并联运行控制方法及控制系统
CN104993520A (zh) 一种基于超级电容的变频器低电压穿越支持装置
KR101951117B1 (ko) 풍력 발전용 제어 시스템
JP2016039685A (ja) 制御装置、それを備えた蓄電システム、及びその制御方法並びに制御プログラム
JP2014079089A (ja) デジタルグリッドルータの制御方法
WO2016177119A1 (zh) 一种交流柴油发电机的控制方法及装置
CN107681649B (zh) 一种控制直流微电网母线电压稳定的方法
CN107681687B (zh) 基于储能的分布式系统母线过电压抑制控制方法和系统
US10135249B2 (en) Electricity providing system including energy storage system
CN105227042A (zh) 大功率高压变频器的失电跨越控制方法
CN109659950A (zh) 变下限电压的电压源换流器的无功控制系统及方法
WO2010003469A1 (en) Power control module and method for controlling energy flow
CN110649591B (zh) 调相机、statcom与upfc协调控制的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789113

Country of ref document: EP

Kind code of ref document: A1