WO2016177088A1 - 一种检测信号的方法和装置 - Google Patents

一种检测信号的方法和装置 Download PDF

Info

Publication number
WO2016177088A1
WO2016177088A1 PCT/CN2016/075991 CN2016075991W WO2016177088A1 WO 2016177088 A1 WO2016177088 A1 WO 2016177088A1 CN 2016075991 W CN2016075991 W CN 2016075991W WO 2016177088 A1 WO2016177088 A1 WO 2016177088A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
reference test
clock
voltage threshold
test points
Prior art date
Application number
PCT/CN2016/075991
Other languages
English (en)
French (fr)
Inventor
彭海远
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177088A1 publication Critical patent/WO2016177088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation

Definitions

  • This document relates to, but is not limited to, signal processing techniques, and more particularly to a method and apparatus for detecting signals.
  • signal quality is undoubtedly one of the most important parameters for evaluating the performance of communication equipment.
  • the requirements for signal quality are also increasing: on the one hand, to ensure and improve the quality of the signal; on the other hand, it is also necessary to monitor the signal quality of the service and make corresponding decisions, in order to Timely avoiding the occurrence of major quality accidents can also present the signal quality of equipment operation.
  • the method for detecting signal quality in the related art includes a Cyclic Redundancy Check (CRC) detection, that is, a verification rule is generated by a certain rule according to a k-bit binary code sequence to be transmitted at a transmitting end.
  • the bit supervision code ie, CRC code
  • CRC code is appended to the original information code (k-bit binary code sequence) to form a new binary code sequence number (k+r) bits, which are then transmitted.
  • k+r binary code sequence number
  • a check is made according to the rules followed between the original information code and the CRC code to determine if an error has occurred during the transmission.
  • these methods can only detect the signal quality of the link layer, but cannot detect the signal quality of the physical layer.
  • Embodiments of the present invention provide a method and apparatus for detecting a signal capable of detecting a signal quality of a physical layer.
  • the embodiment of the invention provides a method for detecting a signal, including:
  • the detecting device synchronously receives the second data bit stream at a standard voltage threshold according to the clock recovered from the first data bitstream to obtain the first data of the reference test point; wherein the reference test point refers to the voltage threshold and the clock as the coordinate axis In the coordinate system, the point corresponding to the clock recovered from the second data stream and the standard voltage threshold;
  • the detecting device separately receives the second data at different voltage thresholds by using clocks of different phases
  • the code stream obtains second data of different non-reference test points; wherein each non-reference test point refers to a point corresponding to each clock and each voltage threshold in a coordinate system with a voltage threshold and a clock as an axis;
  • the detecting device generates an eye diagram according to the first data of the reference test point and the second data of all the non-reference test points to implement detection of the signal quality.
  • the method further includes:
  • the detecting device divides the unit interval UI area into a plurality of areas, and presets a correspondence relationship between the divided areas and operations; wherein, the UI area refers to a maximum voltage value and a minimum on the axis of the UI and the voltage threshold on the clock axis. The area corresponding to the difference between the voltage values;
  • the method also includes:
  • the detecting device determines an area in which the generated eye map is located, searches for an operation corresponding to the determined area in the corresponding relationship, and performs the found operation.
  • the operation includes any combination of the following: a red alarm, a protection switch, and a yellow alarm.
  • the detecting device generates an eye diagram according to the first data of the benchmark test point and the second data of all the non-reference test points, including:
  • the detecting device acquires a bit error rate of each of the non-reference test points according to the first data and the second data of each of the non-reference test points;
  • the detecting device joins the non-reference test points having the same bit error rate to form an eye diagram.
  • the detecting device obtains the error rate of each non-reference test point according to the first data and the second data of each non-reference test point, including:
  • SER is the error rate of each of the non-reference test points
  • N is the number of symbols different from the first data in the second data of each of the non-reference test points
  • M is each The second data of the non-reference test point or the total number of symbols of the first data.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions for performing any of the methods described above.
  • the embodiment of the invention further provides a device for detecting a signal, which at least includes:
  • the receiving module is configured to synchronously receive the second data code stream according to the clock recovered from the first data code stream to obtain the first data of the reference test point according to the standard voltage threshold; respectively, the clocks of different phases are synchronously received at different voltage thresholds
  • the second data stream obtains second data of different non-reference test points; wherein the reference test point refers to a clock and a standard recovered from the first data bit stream in a coordinate system with a voltage threshold and a clock as an axis a point corresponding to the voltage threshold; each non-reference test point is a point corresponding to each clock and each voltage threshold in a coordinate system with a voltage threshold and a clock as an axis;
  • the generating module is configured to generate an eye diagram according to the first data of the benchmark test point and the second data of all the non-reference test points to implement detection of the signal quality.
  • it also includes:
  • the setting module is configured to divide the unit interval UI area into a plurality of areas, and preset a correspondence relationship between the divided area and the operation; wherein the UI area refers to a maximum voltage on the axis of the UI and the voltage threshold on the clock axis The area corresponding to the difference between the value and the minimum voltage value;
  • the execution module is configured to determine an area where the generated eye diagram is located, find an operation corresponding to the determined area in the correspondence relationship, and perform the found operation.
  • the generating module is configured to:
  • the generating module is configured to obtain a bit error rate of each non-reference test point according to the first data and the second data of each non-reference test point in the following manner:
  • SER is a bit error rate of each of the non-reference test points
  • N is a second data of each of the non-reference test points and the first a number of different symbols of data
  • M is the second data of each of the non-reference test points or the total number of symbols of the first data.
  • the embodiment of the present invention includes: the detecting device synchronously receiving the second data code stream according to the clock recovered from the first data code stream to obtain the first data of the reference test point according to the standard voltage threshold; the detecting device adopts respectively Clocks of different phases receive the second number synchronously at different voltage thresholds The second data of different non-reference test points is obtained according to the code stream; the detecting device generates an eye diagram according to the first data of the reference test point and the second data of all the non-reference test points to implement detection of the signal quality.
  • the second data code stream is detected by the eye diagram of the second data stream, and the detection of the signal quality of the physical layer is realized.
  • FIG. 1 is a flowchart of a method for detecting a signal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a UI area according to an embodiment of the present invention.
  • 3(a) is a schematic diagram of dividing a UI area into squares nested within each other according to an embodiment of the present invention
  • FIG. 3(b) is a schematic diagram of dividing a UI area into rectangles nested inside each other according to an embodiment of the present invention
  • FIG. 3(c) is a schematic diagram of dividing a UI area into circles that are nested within each other according to an embodiment of the present invention
  • FIG. 3(d) is a schematic diagram of dividing a UI area into elliptical shapes nested in each other according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an apparatus for detecting a signal according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for detecting a signal, including:
  • Step 100 The detecting device synchronously receives the second data bit stream according to the standard voltage threshold according to the clock recovered from the first data bitstream to obtain the first data of the reference test point.
  • the reference test point refers to a point corresponding to the clock recovered from the first data bit stream and the standard voltage threshold in the coordinate system with the voltage threshold and the clock as the coordinate axes.
  • the second data code stream is synchronously received at the standard voltage threshold.
  • the first data to the reference test point refers to: receiving a signal at a center position of each signal period according to the recovered clock, comparing the received signal with a standard voltage threshold, and if the received signal is greater than or equal to a standard voltage threshold, The symbol corresponding to the signal period takes a value of 1. If the received signal is smaller than the standard voltage threshold, the symbol corresponding to the signal period takes a value of zero.
  • the signal period is 5 milliseconds (ms)
  • each signal period starts from 5k ms
  • k is an integer greater than or equal to 0
  • the second data stream is received at 2.5k ms according to the recovered clock.
  • Step 101 The detecting device separately receives the second data bit stream at different voltage thresholds by using clocks of different phases to obtain second data of different non-reference test points.
  • the clocks of different phases refer to clocks that are different from the phase of the recovered clock.
  • the second data stream can be synchronously received at 0.5 k ms, k ms, 1.5 k ms, 2 k ms, and the like.
  • 0.5, 1, 1.5, 2, etc. indicate different phases.
  • each non-reference test point refers to a point corresponding to each clock and each voltage threshold in a coordinate system with a voltage threshold and a clock as an axis.
  • Steps 100 and 101 are performed in no particular order.
  • Step 102 The detecting device generates an eye diagram according to the first data of the reference test point and the second data of all the non-reference test points to implement detection of the signal quality.
  • the detecting device generates an eye diagram according to the first data of the benchmark test point and the second data of all the non-reference test points, including:
  • the detecting device acquires the error rate of each non-reference test point according to the first data and the second data of each non-reference test point; and connects the non-reference test points with the same bit error rate to form an eye diagram.
  • the error rate of each non-reference test point obtained by the detecting device according to the first data and the second data of each non-reference test point includes:
  • N is the number of symbols different from the first data in the second data of each non-reference test point
  • M is the number of each non-reference test point The total number of symbols of the second data or the first data.
  • the value of M is related to the difference between two adjacent error rates. For example, if the difference between two adjacent bit error rates is 10 -9 , M is required to be above 10 9 .
  • the method also includes:
  • the detecting device divides the unit interval (UI, Unit Interval) area into a plurality of areas, and presets the correspondence between the divided areas and operations.
  • UI Unit Interval
  • the UI is equivalent to one clock cycle.
  • the UI area refers to an area corresponding to the difference between the maximum voltage value and the minimum voltage value on the UI and the voltage threshold coordinate axis on the clock coordinate axis, as shown in FIG. 2 .
  • the detection device can divide the UI area into arbitrary graphics, such as a square, a rectangle, a circle, an ellipse, etc., as shown in FIGS. 3( a ) to ( d ).
  • the method also includes:
  • Step 103 The detecting device determines an area where the generated eye diagram is located, searches for an operation corresponding to the determined area in the corresponding relationship, and performs the found operation.
  • the detecting device can determine the area where the generated eye image is located through the points on the eye diagram. For example, if more than a certain number of points on the eye map fall within a certain area, then the eye diagram falls on the area.
  • the eye diagram may fall on one or more areas at the same time. When the eye diagram falls on multiple areas, the operations corresponding to each area may be sequentially performed according to the priority level, or only the operations corresponding to the areas with the highest priority level may be performed. It is also possible to determine the area in which the eye map is located as the highest level area.
  • operations include, but are not limited to, any combination of the following: red alarm, protection switching, yellow alarm, and the like.
  • the second data code stream is detected by the eye diagram of the second data stream, and the detection of the signal quality of the physical layer is realized.
  • Embodiments of the present invention also provide a computer readable storage medium storing a computer executable
  • the instructions, computer executable instructions, are used to perform any of the methods described above.
  • an embodiment of the present invention further provides an apparatus for detecting a signal, including:
  • the receiving module is configured to synchronously receive the second data code stream according to the clock recovered from the first data code stream to obtain the first data of the reference test point according to the standard voltage threshold; respectively, the clocks of different phases are synchronously received at different voltage thresholds
  • the second data stream obtains second data of different non-reference test points; wherein the reference test point refers to a clock and a standard recovered from the first data bit stream in a coordinate system with a voltage threshold and a clock as an axis a point corresponding to the voltage threshold; each non-reference test point is a point corresponding to each clock and each voltage threshold in a coordinate system with a voltage threshold and a clock as an axis;
  • the generating module is configured to generate an eye diagram according to the first data of the benchmark test point and the second data of all the non-reference test points to implement detection of the signal quality.
  • the device of the present invention further includes:
  • the setting module is configured to divide the UI area into a plurality of areas, and preset a corresponding relationship between the divided area and the operation; wherein, the UI area refers to a maximum voltage value on the axis of the UI and the voltage threshold on the clock axis and The area corresponding to the difference between the minimum voltage values;
  • the execution module is configured to determine an area where the generated eye diagram is located, find an operation corresponding to the determined area in the corresponding relationship, and perform the found operation.
  • the generating module is set to:
  • the generating module is configured to obtain a bit error rate of each non-reference test point according to the first data and the second data of each non-reference test point in the following manner:
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program in a storage and a memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution realizes the detection of the signal quality of the physical layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dc Digital Transmission (AREA)

Abstract

一种检测信号的方法和装置,包括:检测设备根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据;检测设备分别采用不同相位的时钟在不同的电压阈值同步接收第二数据码流得到不同非基准测试点的第二数据;其中,基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,从第一数据码流中恢复出的时钟和标准电压阈值所对应的点;每一个非基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,每一个时钟和每一个电压阈值所对应的点;检测设备根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。

Description

一种检测信号的方法和装置 技术领域
本文涉及但不限于信号处理技术,尤指一种检测信号的方法和装置。
背景技术
在现代通信设备中,信号质量无疑是评价通信设备性能的最为重要的参数之一。随着电信业务的发展,对信号质量的要求也是越来越高:一方面,要保证和提高信号的质量;另一方面,也需要对业务的信号质量进行监测并作出相应的决策,以便更及时地规避重大质量事故的发生,也可以呈现出设备运行的信号质量的情况。
相关技术中检测信号质量的方法,包括循环冗余校验码(CRC,Cyclic Redundancy Check)检测,即在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(即CRC码),附在原始信息码(k位二进制码序列)后边,构成一个新的二进制码序列数共(k+r)位,然后发送出去。在接收端,根据原始信息码和CRC码之间所遵循的规则进行检验,以确定传送过程中是否出错。但这些方法只能检测链路层的信号质量,而无法检测物理层的信号质量。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出了一种检测信号的方法和装置,能够检测物理层的信号质量。
本发明实施例提出了一种检测信号的方法,包括:
检测设备根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据;其中,基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,从第二数据码流中恢复出的时钟和标准电压阈值所对应的点;
检测设备分别采用不同相位的时钟在不同的电压阈值同步接收第二数据 码流得到不同非基准测试点的第二数据;其中,每一个非基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,每一个时钟和每一个电压阈值所对应的点;
检测设备根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。
可选地,该方法之前还包括:
检测设备将单位间隔UI区域划分为多个区域,预先设置划分得到的区域和操作之间的对应关系;其中,UI区域是指以时钟坐标轴上UI和电压阈值坐标轴上最大电压值和最小电压值之间的差值所对应的区域;
该方法还包括:
检测设备确定生成的眼图所在的区域,在所述对应关系中查找确定出的区域对应的操作,执行查找到的操作。
可选地,所述操作包括以下任意组合:红色告警、保护倒换、黄色告警。
可选地,所述检测设备根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图包括:
检测设备根据所述第一数据和每一个所述非基准测试点的第二数据获取每一个所述非基准测试点的误码率;
检测设备将所述误码率相同的非基准测试点连在一起形成眼图。
可选地,所述检测设备根据第一数据和每一个非基准测试点的第二数据获取每一个非基准测试点的误码率包括:
检测设备按照公式
Figure PCTCN2016075991-appb-000001
计算每一个所述非基准测试点的误码率;
其中,SER为每一个所述非基准测试点的误码率,N为每一个所述非基准测试点的第二数据中与所述第一数据不同的码元的个数;M为每一个所述非基准测试点的第二数据或所述第一数据的码元总数。
本发明实施例还提出了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述描述的任意一个方法。
本发明实施例还提出了一种检测信号的装置,至少包括:
接收模块,设置为根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据;分别采用不同相位的时钟在不同的电压阈值同步接收第二数据码流得到不同非基准测试点的第二数据;其中,基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,从第一数据码流中恢复出的时钟和标准电压阈值所对应的点;每一个非基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,每一个时钟和每一个电压阈值所对应的点;
生成模块,设置为根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。
可选地,还包括:
设置模块,设置为将单位间隔UI区域划分为多个区域,预先设置划分得到的区域和操作之间的对应关系;其中,UI区域是指以时钟坐标轴上UI和电压阈值坐标轴上最大电压值和最小电压值之间的差值所对应的区域;
执行模块,设置为确定生成的眼图所在的区域,在所述对应关系中查找确定出的区域对应的操作,执行查找到的操作。
可选地,所述生成模块是设置为:
根据所述第一数据和每一个所述非基准测试点的第二数据获取每一个所述非基准测试点的误码率;将所述误码率相同的非基准测试点连在一起形成眼图。
可选地,所述生成模块是设置为采用以下方式实现根据第一数据和每一个非基准测试点的第二数据获取每一个非基准测试点的误码率:
按照公式
Figure PCTCN2016075991-appb-000002
计算每一个所述非基准测试点的误码率;其中,SER为每一个所述非基准测试点的误码率,N为每一个所述非基准测试点的第二数据中与所述第一数据不同的码元的个数;M为每一个所述非基准测试点的第二数据或所述第一数据的码元总数。
与相关技术相比,本发明实施例包括:检测设备根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据;检测设备分别采用不同相位的时钟在不同的电压阈值同步接收第二数 据码流得到不同非基准测试点的第二数据;检测设备根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。通过本发明实施例的方案,通过第二数据码流的眼图对第二数据码流进行检测,实现了对物理层的信号质量的检测。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例检测信号的方法的流程图;
图2为本发明实施例UI区域的示意图;
图3(a)为本发明实施例将UI区域划分成相互嵌套的正方形的示意图;
图3(b)为本发明实施例将UI区域划分成相互嵌套的长方形的示意图;
图3(c)为本发明实施例将UI区域划分成相互嵌套的圆形的示意图;
图3(d)为本发明实施例将UI区域划分成相互嵌套的椭圆形的示意图;
图4为本发明实施例检测信号的装置的结构组成示意图。
本发明的实施方式
为了便于本领域技术人员的理解,下面结合附图对本发明作进一步的描述,并不能用来限制本发明的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
参见图1,本发明实施例提出了一种检测信号的方法,包括:
步骤100、检测设备根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据。
本步骤中,检测设备如何根据从第一数据码流中恢复出的时钟和标准电压阈值同步接收第二数据码流得到基准测试点的第一数据属于本领域技术人员的公知技术,并不用于限定本发明的保护范围,这里不再赘述。
本步骤中,基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,从第一数据码流中恢复出的时钟和标准电压阈值所对应的点。
本步骤中,根据恢复出的时钟在标准电压阈值同步接收第二数据码流得 到基准测试点的第一数据是指:根据恢复出的时钟在每一个信号周期的中心位置接收信号,将接收的信号与标准电压阈值进行比较,如果接收的信号大于或等于标准电压阈值,则该信号周期对应的码元取值为1,如果接收的信号小于标准电压阈值,则该信号周期对应的码元取值为0。
例如,信号周期为5毫秒(ms),每一个信号周期从5k ms开始,k为大于或等于0的整数,则根据恢复出的时钟在2.5k ms处接收第二数据码流。
步骤101、检测设备分别采用不同相位的时钟在不同的电压阈值同步接收第二数据码流得到不同非基准测试点的第二数据。
本步骤中,不同相位的时钟是指偏离恢复出的时钟不同的相位的时钟。
例如,根据恢复出的时钟在2.5k ms处接收第二数据码流,则可以在0.5k ms、k ms、1.5k ms、2k ms等同步接收第二数据码流。0.5、1、1.5、2等表示不同的相位。
本步骤中,如何分别采用不同相位的时钟在不同的电压阈值同步接收第二数据码流得到不同非基准测试点的第二数据属于本领域技术人员的公知技术,并不用于限定本发明的保护范围,这里不再赘述。
本步骤中,每一个非基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,每一个时钟和每一个电压阈值所对应的点。
其中,步骤100和步骤101不分先后顺序执行。
步骤102、检测设备根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。
检测设备根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图包括:
检测设备根据第一数据和每一个非基准测试点的第二数据获取每一个非基准测试点的误码率;将误码率相同的非基准测试点连在一起形成眼图。
其中,检测设备根据第一数据和每一个非基准测试点的第二数据获取每一个非基准测试点的误码率包括:
检测设备按照公式
Figure PCTCN2016075991-appb-000003
计算每一个非基准测试点的误码率;
其中,SER为每一个非基准测试点的误码率,N为每一个非基准测试点的第二数据中与第一数据不同的码元的个数;M为每一个非基准测试点的第二数据或第一数据的码元总数。
其中,M的取值与相邻两个误码率之间的差值相关。例如,如果相邻两个误码率之间的差值为10-9,则M要求在109以上。
该方法之前还包括:
检测设备将单位间隔(UI,Unit Interval)区域划分为多个区域,预先设置划分得到的区域和操作之间的对应关系。
其中,UI相当于一个时钟周期。
其中,UI区域是指以时钟坐标轴上UI和电压阈值坐标轴上最大电压值和最小电压值之间的差值所对应的区域,如图2所示。
其中,检测设备在对UI区域进行划分时,可以划分成相互嵌套的任意图形,如正方形、长方形、圆形、椭圆形等,如图3(a)~(d)所示。
该方法还包括:
步骤103、检测设备确定生成的眼图所在的区域,在对应关系中查找确定出的区域对应的操作,执行查找到的操作。
本步骤中,检测设备可以通过眼图上的点来确定生成的眼图所在的区域。例如,如果眼图上超过一定数量的点落在某一区域内,则说明眼图落在该区域上。眼图可以同时落在一个或多个区域上,当眼图落在多个区域上时,可以按照优先级别依次执行每一个区域对应的操作,也可以只执行优先级别最高的区域对应的操作,也可以确定眼图所在的区域为级别最高的区域。
其中,可以设置越往里的区域优先级别越高。
本步骤中,操作包括但不限于以下任意组合:红色告警、保护倒换、黄色告警等。
通过本发明实施例的方案,通过第二数据码流的眼图对第二数据码流进行检测,实现了对物理层的信号质量的检测。
本发明实施例还提出了一种计算机可读存储介质,存储有计算机可执行 指令,计算机可执行指令用于执行上述描述的任意一个方法。
参见图4,本发明实施例还提出了一种检测信号的装置,包括:
接收模块,设置为根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据;分别采用不同相位的时钟在不同的电压阈值同步接收第二数据码流得到不同非基准测试点的第二数据;其中,基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,从第一数据码流中恢复出的时钟和标准电压阈值所对应的点;每一个非基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,每一个时钟和每一个电压阈值所对应的点;
生成模块,设置为根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。
本发明的装置中,还包括:
设置模块,设置为将UI区域划分为多个区域,预先设置划分得到的区域和操作之间的对应关系;其中,UI区域是指以时钟坐标轴上UI和电压阈值坐标轴上最大电压值和最小电压值之间的差值所对应的区域;
执行模块,设置为确定生成的眼图所在的区域,在对应关系中查找确定出的区域对应的操作,执行查找到的操作。
本发明的装置中,生成模块是设置为:
根据第一数据和每一个非基准测试点的第二数据获取每一个非基准测试点的误码率;将误码率相同的非基准测试点连在一起形成眼图。
本发明的装置中,生成模块是设置为采用以下方式实现根据第一数据和每一个非基准测试点的第二数据获取每一个非基准测试点的误码率:
按照公式
Figure PCTCN2016075991-appb-000004
计算每一个非基准测试点的误码率;其中,SER为每一个非基准测试点的误码率,N为每一个非基准测试点的第二数据中与第一数据不同的码元的个数;M为每一个非基准测试点的第二数据或第一数据的码元总数。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储与存储器中的程序/指令来实现其相应功能。本发明不限于任何特定形式的硬件和软件的结合。
需要说明的是,以上所述的实施例仅是为了便于本领域的技术人员理解而已,并不用于限制本发明的保护范围,在不脱离本发明的发明构思的前提下,本领域技术人员对本发明所做出的任何显而易见的替换和改进等均在本发明的保护范围之内。
工业实用性
上述技术方案实现了对物理层的信号质量的检测。

Claims (10)

  1. 一种检测信号的方法,包括:
    检测设备根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据;其中,基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,从第二数据码流中恢复出的时钟和标准电压阈值所对应的点;
    检测设备分别采用不同相位的时钟在不同的电压阈值同步接收第二数据码流得到不同非基准测试点的第二数据;其中,每一个非基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,每一个时钟和每一个电压阈值所对应的点;
    检测设备根据基准非基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。
  2. 根据权利要求1所述的方法,该方法之前还包括:
    所述检测设备将单位间隔UI区域划分为多个区域,预先设置划分得到的每个区域和操作之间的对应关系;其中,UI区域是指以时钟坐标轴上UI和电压阈值坐标轴上最大电压值和最小电压值之间的差值所对应的区域;
    该方法还包括:
    所述检测设备确定生成的眼图所在的区域,在所述对应关系中查找确定出的区域对应的操作,执行查找到的操作。
  3. 根据权利要求2所述的方法,其中,所述操作包括以下任意组合:红色告警、保护倒换、和黄色告警。
  4. 根据权利要求1或2或3所述的方法,其中,所述检测设备根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图包括:
    所述检测设备根据所述第一数据和每一个所述非基准测试点的第二数据获取每一个所述非基准测试点的误码率;
    所述检测设备将所述误码率相同的非基准测试点连在一起形成眼图。
  5. 根据权利要求4所述的方法,其中,所述检测设备根据第一数据和每 一个非基准测试点的第二数据获取每一个非基准测试点的误码率包括:
    所述检测设备按照公式
    Figure PCTCN2016075991-appb-100001
    计算每一个所述非基准测试点的误码率;
    其中,SER为每一个所述非基准测试点的误码率,N为每一个所述非基准测试点的第二数据中与所述第一数据不同的码元的个数;M为每一个所述非基准测试点的第二数据或所述第一数据的码元总数。
  6. 一种检测信号的装置,包括:
    接收模块,设置为根据从第一数据码流中恢复出的时钟在标准电压阈值同步接收第二数据码流得到基准测试点的第一数据;分别采用不同相位的时钟在不同的电压阈值同步接收第二数据码流得到不同非基准测试点的第二数据;其中,基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,从第一数据码流中恢复出的时钟和标准电压阈值所对应的点;每一个非基准测试点是指在以电压阈值和时钟为坐标轴的坐标系中,每一个时钟和每一个电压阈值所对应的点;
    生成模块,设置为根据基准测试点的第一数据和所有非基准测试点的第二数据生成眼图,以实现对信号质量的检测。
  7. 根据权利要求6所述的装置,还包括:
    设置模块,用于将单位间隔UI区域划分为多个区域,预先设置划分得到的区域和操作之间的对应关系;其中,UI区域是指以时钟坐标轴上UI和电压阈值坐标轴上最大电压值和最小电压值之间的差值所对应的区域;
    执行模块,用于确定生成的眼图所在的区域,在所述对应关系中查找确定出的区域对应的操作,执行查找到的操作。
  8. 根据权利要求6或7所述的装置,其中,所述生成模块是设置为:
    根据所述第一数据和每一个所述非基准测试点的第二数据获取每一个所述非基准测试点的误码率;将所述误码率相同的非基准测试点连在一起形成眼图。
  9. 根据权利要求6或7所述的装置,其中,所述生成模块是设置为采用 以下方式实现根据第一数据和每一个非基准测试点的第二数据获取每一个非基准测试点的误码率:
    按照公式
    Figure PCTCN2016075991-appb-100002
    计算每一个所述非基准测试点的误码率;其中,SER为每一个所述非基准测试点的误码率,N为每一个所述非基准测试点的第二数据中与所述第一数据不同的码元的个数;M为每一个所述非基准测试点的第二数据或所述第一数据的码元总数。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行权利要求1~5任意一项所述的方法。
PCT/CN2016/075991 2015-07-03 2016-03-09 一种检测信号的方法和装置 WO2016177088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510388679.0A CN106330596A (zh) 2015-07-03 2015-07-03 一种检测信号的方法和装置
CN201510388679.0 2015-07-03

Publications (1)

Publication Number Publication Date
WO2016177088A1 true WO2016177088A1 (zh) 2016-11-10

Family

ID=57218474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075991 WO2016177088A1 (zh) 2015-07-03 2016-03-09 一种检测信号的方法和装置

Country Status (2)

Country Link
CN (1) CN106330596A (zh)
WO (1) WO2016177088A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835581A (zh) * 2020-06-17 2020-10-27 中车青岛四方机车车辆股份有限公司 一种以太网物理层信号测试方法及系统
CN112748325A (zh) * 2020-12-29 2021-05-04 海光信息技术股份有限公司 一种眼图测试方法、装置及设备
CN115378845A (zh) * 2022-08-17 2022-11-22 深圳市紫光同创电子有限公司 眼图扫描方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201422114Y (zh) * 2009-03-31 2010-03-10 成都纵横测控技术有限公司 一种基于pxi总线的误码率测试模块
US20120020203A1 (en) * 2010-07-21 2012-01-26 Global Unichip Corporation Clock and data recovery system
CN102681925A (zh) * 2011-03-10 2012-09-19 鸿富锦精密工业(深圳)有限公司 串行外围设备接口总线测试系统及方法
CN104301035A (zh) * 2014-10-17 2015-01-21 深圳市易飞扬通信技术有限公司 用于测试sfp的检测装置
CN104502835A (zh) * 2014-12-09 2015-04-08 中国航空工业集团公司第六三一研究所 一种串行链路片内信号质量示波电路及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100481728C (zh) * 2004-07-05 2009-04-22 友达光电股份有限公司 低电压差动信号的时脉数据回复装置及其方法
US20060020412A1 (en) * 2004-07-23 2006-01-26 Bruensteiner Matthew M Analog waveform information from binary sampled measurements
CN104378321B (zh) * 2014-11-26 2017-06-27 英特格灵芯片(天津)有限公司 自适应均衡参数调整、传输性能测试的集成方法和电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201422114Y (zh) * 2009-03-31 2010-03-10 成都纵横测控技术有限公司 一种基于pxi总线的误码率测试模块
US20120020203A1 (en) * 2010-07-21 2012-01-26 Global Unichip Corporation Clock and data recovery system
CN102681925A (zh) * 2011-03-10 2012-09-19 鸿富锦精密工业(深圳)有限公司 串行外围设备接口总线测试系统及方法
CN104301035A (zh) * 2014-10-17 2015-01-21 深圳市易飞扬通信技术有限公司 用于测试sfp的检测装置
CN104502835A (zh) * 2014-12-09 2015-04-08 中国航空工业集团公司第六三一研究所 一种串行链路片内信号质量示波电路及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835581A (zh) * 2020-06-17 2020-10-27 中车青岛四方机车车辆股份有限公司 一种以太网物理层信号测试方法及系统
CN112748325A (zh) * 2020-12-29 2021-05-04 海光信息技术股份有限公司 一种眼图测试方法、装置及设备
CN115378845A (zh) * 2022-08-17 2022-11-22 深圳市紫光同创电子有限公司 眼图扫描方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN106330596A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
US10158437B2 (en) Wireless analysis apparatus and wireless analysis method
JP5767462B2 (ja) 近距離通信のための受信装置による通信モード検出方法
US10396921B2 (en) Multi-lane synchronization method, synchronization apparatus and system, and computer storage medium
CN105187070B (zh) 一种曼彻斯特编码信号解码方法和装置
WO2016177088A1 (zh) 一种检测信号的方法和装置
JP5238369B2 (ja) データ受信装置、データ受信方法及びデータ受信プログラム
US10944539B2 (en) Method and apparatus for backscatter communication of pattern-based demodulation
CN113168393B (zh) 高速的硬件传输均衡
CN114024884B (zh) 一种测试方法、装置、电子设备及存储介质
KR20120098326A (ko) 반도체 장치 및 데이터 처리방법
CN104104559B (zh) 一种e1误码仪系统
CN109076041A (zh) 一种目标星座图的确定方法、数据发送方法及装置
JP2016515787A5 (zh)
US10656172B2 (en) Motion detecting device and detecting method for repetitive motion
US20190266305A1 (en) Placement-driven generation of error detecting structures in integrated circuits
US9621189B2 (en) Method and apparatus for identification and compensation for inversion of input bit stream in Ldpc decoding
US20190130126A1 (en) Non-transitory computer readable recording medium, alteration detection method, and alteration detection apparatus
KR101649828B1 (ko) 이더넷 프레임 감지 장치 그의 동작 방법
US9838229B2 (en) Method for verifying the functionality of a digital circuit
US20170142677A1 (en) Sequence detection method and apparatus, and computer storage medium
US9130694B2 (en) Method, apparatus, and system for phase jump detection
US20160054388A1 (en) Debugging circuit, debugger device, and debugging method
CN109219928B (zh) 数据处理装置、数据处理方法及计算机可读取的存储介质
CN114972807B (zh) 图像识别准确率的确定方法、装置、电子设备和介质
US11824761B1 (en) Identifying alignment markers using partial correlators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789082

Country of ref document: EP

Kind code of ref document: A1