WO2016176825A1 - 一种基站、小小区和控制信道的配置方法 - Google Patents

一种基站、小小区和控制信道的配置方法 Download PDF

Info

Publication number
WO2016176825A1
WO2016176825A1 PCT/CN2015/078277 CN2015078277W WO2016176825A1 WO 2016176825 A1 WO2016176825 A1 WO 2016176825A1 CN 2015078277 W CN2015078277 W CN 2015078277W WO 2016176825 A1 WO2016176825 A1 WO 2016176825A1
Authority
WO
WIPO (PCT)
Prior art keywords
small cell
mode
base station
physical layer
downlink
Prior art date
Application number
PCT/CN2015/078277
Other languages
English (en)
French (fr)
Inventor
张莉莉
斯特林-加拉赫⋅理查德
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/078277 priority Critical patent/WO2016176825A1/zh
Priority to JP2017557361A priority patent/JP6466599B2/ja
Priority to CN201580076317.6A priority patent/CN107295815B/zh
Priority to EP15891077.8A priority patent/EP3285451B1/en
Priority to US15/571,579 priority patent/US10608693B2/en
Publication of WO2016176825A1 publication Critical patent/WO2016176825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method for configuring a base station, a small cell, and a control channel.
  • a small cell is introduced in the communication system, such as a relay cell, a pico cell, or a femto cell or a femto cell. Home eNodeB) and so on.
  • the small cell performs data transmission on the one hand with a base station such as an access point through a backhaul link, and on the other hand through an access link and a wireless terminal (
  • the user equipment User Equipment (UE)
  • UE User Equipment
  • the base station and the small cell may be connected by wireless or wired (for example, optical fiber).
  • FIG. 1 shows a manner in which the base station and the small cell are wirelessly connected.
  • the wireless communication device transmit and receive simultaneously on the same carrier, but since the signal transmitted by the wireless communication device on the transmission link often leaks into its own receiving link, causing interference to the receiving link, Therefore, the wireless communication device is usually not simultaneously transmitted and received on the same carrier when implemented.
  • full duplex simultaneous transmission and reception on the same carrier.
  • One potential full-duplex application involves a small cell receiving signals from a base station and using the same physical layer resources, such as the same carrier simultaneously transmitting signals to surrounding wireless terminals.
  • the above-mentioned full-duplex communication on the same subcarrier is generally not realized in the wireless communication system.
  • the Third Generation Partnership Project (the 3 rd Generation Partener Project, 3GPP) version 10 (release 10) provides: a wireless communication device is not in the same time-frequency resource, i.e. simultaneously transmit and receive on one kind of physical layer resources, the release 10
  • the information on the control channel is transmitted on the backhaul link between the base station and the relay node by using a Relay-Physical Downlink Control CHannel (R-PDCCH).
  • R-PDCCH Relay-Physical Downlink Control CHannel
  • the R-PDCCH occupies the time-frequency resources of the physical downlink shared channel (PDSCH) of the base station, and the traditional physical downlink control channel (Physical Downlink Control CHannel, PDCCH)
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control CHannel
  • the embodiments of the present invention provide a method for configuring a base station, a small cell, and a control channel, which is used to solve the problem of using an additional physical control channel to transmit control information on a backhaul link of a small cell, resulting in waste of resources.
  • an embodiment of the present invention provides a base station, including:
  • a transceiver module configured to receive full-duplex capability support information sent by a small cell that communicates with the base station, where the full-duplex capability support information is used to indicate whether the small cell supports using the same physical layer resource in a backhaul link Sending on the access link while receiving;
  • a processing module configured to determine, according to the full duplex capability support information received by the transceiver module, a configuration mode of a backhaul link between the base station and the small cell and an access link of the small cell
  • the configuration mode is one of the following modes:
  • the small cell receives the physical layer signaling sent by the base station by using a first downlink physical channel on the backhaul link, and the small cell is returned on the access link of the small cell
  • Other physical layer resources except the physical layer resources occupied by the link may be used for downlink transmission of the small cell
  • the small cell receives the base by using a second downlink physical channel on the backhaul link Physical layer signaling sent by the station, all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all the access links of the small cell Physical layer resources can be used for downlink transmission of the small cell;
  • the first downlink physical channel is used to transmit physical layer signaling on a backhaul link between the base station and the small cell, and occupies a downlink physical channel between the base station and the small cell for transmitting data.
  • Physical layer resources
  • the second downlink physical channel is a conventional downlink physical channel used for transmitting physical layer signaling between a base station and a wireless terminal.
  • the processing module is specifically configured to:
  • the receiving and receiving module receives the first event sent by the small cell, where the first event is used to indicate that the self-interference cancellation gain of the small cell is greater than a preset self-interference cancellation gain threshold;
  • the processing module is specifically configured to:
  • the full duplex capability support information received by the transceiver module indicates that the small cell supports sending on the access link while receiving the same physical layer resource on the backhaul link, and the processing module detects Determined when the physical layer resources for transmitting downlink data on the backhaul link with the small cell are insufficient
  • the configuration mode is the second mode or the third mode.
  • the processing module is specifically configured to:
  • the full duplex capability support information received by the transceiver module indicates that the small cell supports sending on the access link while receiving the same physical layer resource on the backhaul link, and the processing module detects The physical layer resources for transmitting downlink data on the backhaul link with the small cell are insufficient, but the detected downlink physical layer is transmitted on the backhaul link with the small cell.
  • the physical layer resource of the signaling is sufficient, determining that the configuration mode is the second mode; or
  • the full duplex capability support information received by the transceiver module indicates that the small cell supports sending on the access link while receiving the same physical layer resource on the backhaul link, and the processing module detects When the physical layer resources for transmitting downlink data and for transmitting downlink physical layer signaling on the backhaul link with the small cell are insufficient, the configuration mode is determined to be the third mode.
  • the processing module is specifically configured to:
  • the full duplex capability support information received by the transceiver module indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the backhaul link, and receives the small cell.
  • the configuration mode is the second mode or the third mode.
  • the processing module is specifically configured to:
  • the full duplex capability support information received by the transceiver module indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the backhaul link, and receives the small cell. Determining, when the first event is sent, and the physical layer resource of the downlink physical channel for transmitting downlink physical layer signaling on the back link between the small cell detected by the processing module is sufficient
  • the configuration mode is the second mode; or
  • the full duplex capability support information received by the receiving module indicates that the small cell supports enabling Sending on the access link while receiving the same physical layer resource on the back link, and receiving the first event sent by the small cell, and the processing module detects the relationship with the small cell
  • the configuration mode is determined to be the third mode.
  • the usage information of the small cell includes one or more of the following information :
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs a reduced power value on the access link
  • the small cell needs a reduced power value on the access link
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the processing module is specifically configured to:
  • the full duplex capability support information received by the transceiver module indicates that the small cell does not support sending on the access link while receiving the same physical layer resource on the backhaul link, and determines that the configuration mode is The first mode.
  • the processing module is further configured to:
  • the mode configuration command is sent by using a radio resource control RRC message, a media access control MAC signaling, or a downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell and subframe configuration information on an access link of the small cell; or
  • the mode configuration command is further used to indicate that the small cell uses pre-set subframe configuration information as a backhaul link between the base station and the small cell and an access link of the small cell. Subframe configuration information.
  • the small cell and the wireless communication system where the base station is located is a long term evolution LTE system
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or an enhanced physical downlink control channel E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives physical layer signaling sent by the base station by using an R-PDCCH and/or an E-PDCCH on a backhaul link, and the sub-access link of the small cell
  • the frame is a multicast broadcast single frequency point network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using a PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell passes the R-PDCCH on the backhaul link and/or The E-PDCCH, and the PDCCH receives the physical layer signaling sent by the base station, where the subframe on the access link of the small cell is a normal subframe.
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing OFDM symbols and the last OFDM symbol are vacant, and the fourth OFDM symbol is thirteenth Among the OFDM symbols, part of the physical resource blocks PRB of one or more OFDM symbols are used for physical layer signaling transmission, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols may be used for physical layer signaling, and the remaining OFDM symbols may be used for data transmission;
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode determined by the base station is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identifier information of the one or more subframes; or
  • the one or more subframes are pre-specified, and the mode configuration command includes: activating or deactivating the one or more subframes to use activation information of the configuration mode.
  • the processing module is specifically configured to:
  • the first mode to the second The switching of the mode or the third mode is semi-static, and the switching between the second mode and the third mode is dynamic;
  • the semi-static indicating that the period of switching between the configuration modes is not less than a radio frame length
  • the dynamics indicate that the period of switching between the configuration modes is less than the length of the radio frame.
  • an embodiment of the present invention provides a small cell, including:
  • a processing module configured to determine full duplex capability support information of the small cell, where the full duplex capability support information is used to indicate whether the small cell supports receiving the same physical layer resource on the backhaul link Sending on the access link;
  • a transceiver module configured to send the determined full duplex capability support information to the base station, and instruct the base station to determine, according to the full duplex capability support information, a backhaul link with the small cell and the small The configuration mode of the access link of the cell;
  • the configuration mode is one of the following modes:
  • the small cell receives the physical layer signaling sent by the base station by using a first downlink physical channel on the backhaul link, and the small cell is returned on the access link of the small cell
  • Other physical layer resources except the physical layer resources occupied by the link may be used for downlink transmission of the small cell
  • the small cell receives physical layer signaling sent by the base station by using a second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell are applicable to the Describe the downlink transmission of the small cell;
  • the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all the access links of the small cell Physical layer resources can be used for downlink transmission of the small cell;
  • the first downlink physical channel is used to transmit physical layer signaling on a backhaul link between the base station and the small cell, and occupies a downlink physical channel between the base station and the small cell for transmitting data.
  • Physical layer resources
  • the second downlink physical channel is a conventional downlink physical channel used for transmitting downlink physical layer signaling between the base station and the wireless terminal.
  • the transceiver module is further configured to: after transmitting the determined full duplex capability support information to the base station, receive a mode configuration command sent by the base station, where the mode configuration command is used to indicate the base station and the a backhaul link between the small cells and a configuration mode of the access link of the small cell;
  • the processing module is further configured to: configure a backhaul link between the base station and the small cell and a configuration mode of an access link of the small cell according to the mode configuration command received by the transceiver module .
  • the transceiver module is further configured to: before receiving the mode configuration command sent by the base station,
  • the usage information of the small cell includes one or more of the following information:
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs a reduced power value on the access link
  • the small cell needs a reduced power value on the access link
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the mode configuration command controls the RRC message and the medium access control MAC address by using a radio resource Let or downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell, and subframe configuration information on an access link of the small cell; the processing module is further configured to: After receiving the mode configuration command sent by the base station, the transceiver module configures a subframe of the small cell according to the subframe configuration information in the mode configuration command; or
  • the mode configuration command is further used to indicate that the small cell uses pre-set subframe configuration information as a backhaul link between the base station and the small cell and an access link of the small cell.
  • Sub-frame configuration information the processing module is further configured to: after the transceiver module receives the mode configuration command sent by the base station, configure a subframe of the small cell according to the preset subframe configuration information.
  • the transceiver module is further configured to: configure, in the processing module, the sub-cell according to the subframe configuration information After the frame,
  • the subframe configuration information on the access link of the small cell is sent to the wireless terminal that communicates with the small cell by using an RRC message, a MAC signaling, or a downlink physical control channel.
  • the small cell and the wireless communication system where the base station is located is a long term evolution LTE system
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or an E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives physical layer signaling sent by the base station by using an R-PDCCH and/or an E-PDCCH on a backhaul link, and the sub-access link of the small cell
  • the frame is a multicast broadcast single frequency point network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using a PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell receives the physical layer signaling sent by the base station by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the PDCCH, where the small cell
  • the subframe on the access link is a normal subframe.
  • the configuration mode determined by the base station is the first mode
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing OFDM symbols and the last OFDM symbol are vacant, and the fourth OFDM symbol is thirteenth Among the OFDM symbols, part of the physical resource blocks PRB of one or more OFDM symbols are used for physical layer signaling transmission, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • the configuration mode determined by the base station is the second mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols may be used for physical layer signaling, and the remaining OFDM symbols may be used for data transmission;
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode determined by the base station is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols are used for physical layer signaling, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission.
  • the processing module is specifically configured to:
  • the transceiver module After the transceiver module receives the preset configuration delay threshold after the mode configuration command, the physical control on the backhaul link between the base station and the small cell is configured according to the mode configuration command. Channel configuration mode.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identifier information of the one or more subframes; or
  • the one or more subframes are pre-specified, and the mode configuration command includes: activating or deactivating the one or more subframes to use activation information of the configuration mode.
  • the processing module is specifically configured to:
  • the first mode to the second The switching of the mode or the third mode is semi-static, and the switching between the second mode and the third mode is dynamic;
  • the semi-static indicating that the period of switching between the configuration modes is not less than a radio frame length
  • the dynamics indicate that the period of switching between the configuration modes is less than the length of the radio frame.
  • an embodiment of the present invention provides a method for configuring a control channel, including:
  • the base station receives the full-duplex capability support information sent by the small cell that communicates with the base station, where the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource to be received on the backhaul link. Sent on the access link;
  • the configuration mode is in the following mode One kind:
  • the small cell receives the physical layer signaling sent by the base station by using a first downlink physical channel on the backhaul link, and the small cell is returned on the access link of the small cell
  • Other physical layer resources except the physical layer resources occupied by the link may be used for downlink transmission of the small cell
  • the small cell receives physical layer signaling sent by the base station by using a second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell are applicable to the Describe the downlink transmission of the small cell;
  • the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all the access links of the small cell Physical layer resources can be used for downlink transmission of the small cell;
  • the first downlink physical channel is used to transmit physical layer signaling on a backhaul link between the base station and the small cell, and occupies a downlink physical channel between the base station and the small cell for transmitting data.
  • Physical layer resources
  • the second downlink physical channel is a conventional downlink physical channel used for transmitting physical layer signaling between a base station and a wireless terminal.
  • the base station determines, according to the received full duplex capability support information, a connection between the backhaul link and the small cell Incoming link configuration mode, including:
  • the base station receives the first event sent by the small cell, and the first event is used to indicate that the self-interference cancellation gain of the small cell is greater than a preset self-interference cancellation gain threshold;
  • a second possible implementation manner Determining, by the base station, the configuration mode of the backhaul link with the small cell and the access link of the small cell according to the received full duplex capability support information, including:
  • the configuration mode is the second mode or the third mode.
  • the base station determines, according to the received full duplex capability support information, a backhaul between the small cell and the small cell A configuration mode of the link and the access link of the small cell, including:
  • the physical layer resources for transmitting downlink data on the backhaul link between the cells are insufficient, but the detected physical layer on the backhaul link with the small cell for transmitting downlink physical layer signaling When the resource is sufficient, determining that the configuration mode is the second mode; or
  • the configuration mode is determined to be the third mode.
  • the base station determines, according to the received full duplex capability support information, a backhaul between the small cell and the small cell A configuration mode of the link and the access link of the small cell, including:
  • the full duplex capability support information indicating that the small cell supports sending on the back link while receiving the same physical layer resource on the back link, and receiving the small cell to send
  • the configuration mode is the second mode or the third mode.
  • a fifth possible implementation manner Determining, by the base station, the configuration mode of the physical control channel on the backhaul link with the small cell according to the received full duplex capability support information, including:
  • the receiving, by the base station, the full duplex capability support information, indicating that the small cell supports sending on the back link while receiving the same physical layer resource on the back link, and receiving the small cell to send Determining that the configuration mode is the first event, and the detected physical layer resource of the downlink physical channel for transmitting downlink physical layer signaling on the back link between the small cell is sufficient Second mode; or
  • the usage information of the small cell includes one or more of the following information :
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs a reduced power value on the access link
  • the small cell needs a reduced power value on the access link
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the base station is supported according to the received full duplex capability Information, determining a configuration mode of the backhaul link with the small cell and the access link of the small cell, including:
  • the receiving, by the base station, the full duplex capability support information, indicating that the small cell does not support receiving the same physical layer resource on the back link, and sending the information on the access link, determining that the configuration mode is The first mode is described.
  • the base station is configured according to the full duplex capability After the information is determined, the method for determining the backhaul link between the small cell and the access link of the small cell, the method further includes:
  • a mode configuration command to the small cell, where the mode configuration command is used to configure a backhaul link between the base station and the small cell and a configuration mode of an access link of the small cell,
  • the configuration mode configured to be determined.
  • the mode configuration command is sent by using a radio resource control RRC message, a media access control MAC signaling, or a downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell and subframe configuration information on an access link of the small cell; or
  • the mode configuration command is further used to indicate that the small cell uses pre-set subframe configuration information as a backhaul link between the base station and the small cell and an access link of the small cell. Subframe configuration information.
  • the small cell and the wireless communication system where the base station is located is a long term evolution LTE system
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or an enhanced physical downlink control channel E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives physical layer signaling sent by the base station by using an R-PDCCH and/or an E-PDCCH on a backhaul link, and the sub-access link of the small cell
  • the frame is a multicast broadcast single frequency point network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using a PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell receives the physical layer signaling sent by the base station by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the access chain of the small cell.
  • the subframe on the road is a normal subframe.
  • the configuration mode determined by the base station is the first mode
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing OFDM symbols and the last OFDM symbol are vacant, and the fourth OFDM symbol is thirteenth Among the OFDM symbols, part of the physical resource blocks PRB of one or more OFDM symbols are used for physical layer signaling transmission, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • the configuration mode determined by the base station is the second mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols may be used for physical layer signaling, and the remaining OFDM symbols may be used for data transmission;
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode determined by the base station is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols are used for physical layer signaling, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identifier information of the one or more subframes; or
  • the one or more subframes are pre-specified, and the mode configuration command includes: activating or deactivating the one or more subframes to use activation information of the configuration mode.
  • the base station is configured according to the full duplex
  • the capability support information determines a configuration mode of the backhaul link between the small cell and the access link of the small cell, including:
  • the base station periodically determines a configuration mode of a backhaul link with the small cell and an access link of the small cell;
  • the first mode to the second The switching of the mode or the third mode is semi-static, and the switching between the second mode and the third mode is dynamic;
  • the semi-static indicating that the period of switching between the configuration modes is not less than a radio frame length
  • the dynamics indicate that the period of switching between the configuration modes is less than the length of the radio frame.
  • an embodiment of the present invention provides a method for configuring a control channel, including:
  • the small cell determines its own full-duplex capability support information, and the full-duplex capability support information is used to indicate whether the small cell supports sending on the access link while receiving the same physical layer resource on the back-link link. ;
  • the configuration mode is one of the following modes:
  • the small cell receives the physical layer signaling sent by the base station by using a first downlink physical channel on the backhaul link, and the small cell is returned on the access link of the small cell
  • Other physical layer resources except the physical layer resources occupied by the link may be used for downlink transmission of the small cell
  • the small cell receives physical layer signaling sent by the base station by using a second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell are applicable to the Describe the downlink transmission of the small cell;
  • the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all the access links of the small cell Physical layer resources can be used for downlink transmission of the small cell;
  • the first downlink physical channel is used to transmit physical layer signaling on a backhaul link between the base station and the small cell, and occupies a downlink physical channel between the base station and the small cell for transmitting data.
  • Physical layer resources
  • the second downlink physical channel is a conventional downlink physical channel used for transmitting downlink physical layer signaling between the base station and the wireless terminal.
  • the method further includes:
  • the small cell receives a mode configuration command sent by the base station, where the mode configuration command is used to indicate a backhaul link between the base station and the small cell, and a configuration mode of an access link of the small cell. ;
  • the small cell configures a configuration mode of a backhaul link between the base station and the small cell and an access link of the small cell according to the mode configuration command.
  • the method further includes:
  • the small cell When the self-interference cancellation gain is greater than a preset self-interference cancellation gain threshold, the small cell sends a first event to the base station, and/or the small cell sends the small cell usage to the base station.
  • the usage information of the small cell includes one or more of the following information:
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs a reduced power value on the access link
  • the small cell needs a reduced power value on the access link
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the mode configuration command is used to control an RRC message and a medium access control MAC address by using a radio resource. Let or downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell, and the small Sub-frame configuration information on the access link of the cell; after the small cell receives the mode configuration command sent by the base station, the method further includes: the small cell according to the subframe in the mode configuration command The configuration information configures its own subframe; or
  • the mode configuration command is further used to indicate that the small cell uses pre-set subframe configuration information as a backhaul link between the base station and the small cell and an access link of the small cell.
  • the small cell After receiving the mode configuration command sent by the base station, the small cell further includes: the small cell configuring its own subframe according to the preset subframe configuration information.
  • the method further includes:
  • the small cell sends the subframe configuration information on its own access link to the wireless terminal that communicates with itself through the RRC message, the MAC signaling, or the downlink physical control channel.
  • the small cell and the wireless communication system where the base station is located is a long term evolution LTE system
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives physical layer signaling sent by the base station by using an R-PDCCH and/or an E-PDCCH on a backhaul link, and the sub-access link of the small cell
  • the frame is a multicast broadcast single frequency point network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using a PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell receives the physical layer signaling sent by the base station by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the access chain of the small cell.
  • the subframe on the road is a normal subframe.
  • the configuration mode determined by the base station is the first mode
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing OFDM symbols and the last OFDM symbol are vacant, and the fourth OFDM symbol is thirteenth Among the OFDM symbols, part of the physical resource blocks PRB of one or more OFDM symbols are used for physical layer signaling transmission, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • the configuration mode determined by the base station is the second mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols may be used for physical layer signaling, and the remaining OFDM symbols may be used for data transmission;
  • the first three OFDM symbols are available for the object.
  • Layer layer signaling the remaining OFDM symbols can be used for data transmission.
  • the configuration mode determined by the base station is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols are used for physical layer signaling, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission.
  • the small cell configures the base station and the The configuration mode of the physical control channel on the backhaul link between the small cells, including:
  • the small cell After receiving the preset configuration delay threshold after the mode configuration command, the small cell configures physical control on the backhaul link between the base station and the small cell according to the mode configuration command. Channel configuration mode.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identifier information of the one or more subframes; or
  • the one or more subframes are pre-specified, and the mode configuration command includes: activating or deactivating the one or more subframes to use activation information of the configuration mode.
  • the first mode to the second Mode or The switching of the three modes is semi-static, and the switching between the second mode and the third mode is dynamic;
  • the semi-static indicating that the period of switching between the configuration modes is not less than a radio frame length
  • the dynamics indicate that the period of switching between the configuration modes is less than the length of the radio frame.
  • the small cell sends its own full-duplex capability support information to the base station, and the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource to be received on the backhaul link.
  • the base station determines, according to the received full duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, where the configuration mode is the foregoing One of a mode, a second mode, or a third mode.
  • the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and the second downlink physical channel is traditionally used for transmitting between the base station and the wireless terminal.
  • the physical layer channel of the physical layer signaling does not need to occupy the physical layer resource of the downlink physical channel for transmitting data between the base station and the small cell, thereby saving the physicality of the downlink physical channel for transmitting data on the backhaul link. Resources improve data transmission efficiency and avoid waste of resources.
  • the second mode is determined according to the full-duplex capability support information of the small cell, the full-duplex capability of the small cell is considered, and thus the communication quality is also ensured.
  • the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell are available.
  • the downlink transmission of the small cell also implements the full-duplex transmission of the small cell, and the physical layer resources for transmitting the physical layer signaling on the backhaul link may be insufficient. Therefore, the small cell passes the first downlink physical.
  • the channel and the second downlink physical channel receive physical layer signaling sent by the base station, which alleviates the problem of insufficient physical layer resources for transmitting physical layer signaling.
  • the second downlink physical channel since the second downlink physical channel does not need to occupy physical layer resources of the downlink physical channel for transmitting data between the base station and the small cell, the data for transmitting data on the backhaul link is saved.
  • the physical resources of the downlink physical channel improve the data transmission efficiency and avoid the problem of resource waste.
  • the second mode since the second mode is determined according to the full-duplex capability support information of the small cell, all the small cells are considered. Duplex capability also ensures communication quality.
  • the first mode is also configured to avoid using the same physical layer in the small cell.
  • the small cell uses the same physical layer resource to receive interference on the back link while transmitting on the back link.
  • the small cell according to whether the small cell supports the same physical layer resource to be received on the back link while transmitting on the access link, comprehensively determining an appropriate configuration mode, that is, ensuring communication quality, Avoid wasting resources.
  • 1 is a schematic diagram of a communication mode between a small cell, a base station, and a wireless terminal;
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an LTE system according to an embodiment of the present disclosure.
  • 4A is a schematic diagram of a subframe configuration scheme in a first mode according to an embodiment of the present invention.
  • 4B is a schematic diagram of a subframe configuration scheme in a second mode according to an embodiment of the present invention.
  • 4C is a schematic diagram of a subframe configuration scheme in a third mode according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a manner in which a base station configures a mode of a small cell according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a subframe configuration of a small cell switching from a first mode to a second mode according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a first base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a second base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a first small cell according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a second small cell according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of a method for configuring a first control channel according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for configuring a second control channel according to an embodiment of the present invention.
  • the literature related to the above studies includes:
  • Literature 1 Practical and real-time full-duplex wireless communication published by Jain M et al. at MobiCom'11 ([1] Jain M, Choi J, Kim T, Bharadia D, Seth S, Srinivasan K, Levis P , Katti S, Sinha P: "Practical, Real-time, Full Duplex Wireless", MobiCom'11;
  • the embodiments of the present invention provide a method for configuring a base station, a small cell, and a subframe, which is used to solve the problem that the control information is transmitted by using an additional physical control channel on the backhaul link of the small cell, thereby causing waste of resources. It can avoid waste of resources and ensure the quality of communication.
  • the small cell sends its own full-duplex capability support information to the base station, and the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource to be received on the backhaul link. Sent on the access link;
  • the base station determines, according to the received full duplex capability support information, a configuration mode of the back link and the access link of the small cell with the small cell, and the configuration mode is one of the following modes:
  • the first mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel on the backhaul link, and the physical layer resource occupied by the back link of the small cell on the access link of the small cell Other physical layer resources outside can be used for downlink transmission of small cells;
  • the second mode the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the third mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used. Downlink transmission of a small cell;
  • the first downlink physical channel is used for transmitting physical layer signaling on a backhaul link between the base station and the small cell, and occupies a physical layer of a downlink physical channel for transmitting data between the base station and the small cell.
  • the second downlink physical channel is conventional for transmitting physical layer signaling between the base station and the wireless terminal Downlink physical channel.
  • the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and the second downlink physical channel is traditionally used for transmitting between the base station and the wireless terminal.
  • the physical layer channel of the physical layer signaling does not need to occupy the physical layer resource of the downlink physical channel for transmitting data between the base station and the small cell, thereby saving the physicality of the downlink physical channel for transmitting data on the backhaul link. Resources improve data transmission efficiency and avoid waste of resources.
  • the second mode is determined according to the full-duplex capability support information of the small cell, the full-duplex capability of the small cell is considered, and thus the communication quality is also ensured.
  • the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell are available.
  • the downlink transmission of the small cell also implements the full-duplex transmission of the small cell, and the physical layer resources for transmitting the physical layer signaling on the backhaul link may be insufficient. Therefore, the small cell passes the first downlink physical.
  • the channel and the second downlink physical channel receive physical layer signaling sent by the base station, which alleviates the problem of insufficient physical layer resources for transmitting physical layer signaling.
  • the second downlink physical channel since the second downlink physical channel does not need to occupy physical layer resources of the downlink physical channel for transmitting data between the base station and the small cell, the data for transmitting data on the backhaul link is saved.
  • the physical resources of the downlink physical channel improve the data transmission efficiency and avoid the problem of resource waste.
  • the second mode since the second mode is determined according to the full-duplex capability support information of the small cell, the full-duplex capability of the small cell is considered, and thus the communication quality is also ensured.
  • the first mode is also configured to avoid using the same physical layer in the small cell.
  • the small cell uses the same physical layer resource to receive interference on the back link while transmitting on the back link.
  • the small cell according to whether the small cell supports the same physical layer resource to be received on the back link while transmitting on the access link, comprehensively determining an appropriate configuration mode, that is, guaranteeing The quality of communication can avoid waste of resources.
  • a small cell is introduced.
  • the small cell is located between the traditional base station and the wireless terminal, and transfers data transmitted between the wireless terminal and the base station.
  • the wireless link between the base station 201 and the small cell 202 is referred to as a "backhaul link", and the wireless link between the small cell 202 and the wireless terminal 203. Called “access link”.
  • the wireless communication system 20 further includes a wireless terminal 204 that communicates directly with the base station 201. The communication between the wireless terminal 204 and the base station 201 does not need to be transited by the small cell 202.
  • wireless communication system 20 For clarity of illustration, only one base station 201, one small cell 202, and one wireless terminal 203 and one wireless terminal 204 are shown in the wireless communication system 20 of FIG. However, those skilled in the art will appreciate that one or more base stations, one or more small cells, one or more wireless terminals 203, and one or more wireless terminals 204 may be included in a wireless communication system.
  • the communication system of the wireless communication system 20 may include, but is not limited to, Global System of Mobile communication (GSM), Code Division Multiple Access (CDMA) IS-95, and code division multiple access ( Code Division Multiple Access (CDMA) 2000, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Duplex - Long Term Time Division Duplexing-Long Term Evolution (TDD LTE), Frequency Division Duplexing-Long Term Evolution (FDD LTE), Long Term Evolution-Advanced (LTE-advanced), Personal Handy-phone System (PHS), Wireless Local Network (WLAN) system specified by the 802.11 series of protocols.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • the base station 201 in the wireless communication system 20 is an evolved Node B (eNodeB), and the small cell 202 can be a relay node (Relay), and the wireless terminal 203
  • the wireless terminal 204 is a user equipment (User Equipment, UE), wherein when the small cell 202 is a relay node, the wireless terminal 203 is also referred to as a “relay UE”, and the wireless terminal 203 is also referred to as a “macro”.
  • UE Micro UE
  • the wireless communication system defined by the aforementioned 3GPP release 10 is an LTE system.
  • the first downlink physical channel is configured to transmit physical layer signaling on a backhaul link between the base station and the small cell, and occupy physical layer resources of a downlink physical channel for transmitting data between the base station and the small cell, For example, an R-PDCCH channel and an Enhanced-Physical Downlink Control CHannel (E-PDCCH) in an LTE system;
  • E-PDCCH Enhanced-Physical Downlink Control CHannel
  • the second downlink physical channel is a conventional downlink physical channel used for transmitting physical layer signaling between the base station and the wireless terminal, such as a PDCCH channel in an LTE system.
  • the wireless communication system 20 provided by the embodiment of the present invention is described in detail below with reference to FIG.
  • the small cell 202 is configured to determine its own full-duplex capability support information, where the full-duplex capability support information is used to indicate whether the small cell supports receiving the same physical layer resource on the backhaul link and is in the access chain. Sending on the road; and transmitting the determined full duplex capability support information to the base station 201;
  • the base station 201 is configured to receive the full duplex capability support information sent by the small cell 202, and determine the return link between the small cell 202 and the small cell 202 according to the received full duplex capability support information.
  • the configuration mode of the link which is one of the following modes:
  • the first mode the small cell 202 receives the physical layer signaling sent by the base station 201 by using the first downlink physical channel on the backhaul link, and the access link of the small cell 202 is occupied by the backhaul link of the small cell 202.
  • Other physical layer resources other than physical layer resources may be used for downlink transmission of the small cell 202;
  • the second mode the small cell 202 receives the base station 201 by using the second downlink physical channel on the backhaul link.
  • the physical layer signaling of the sending, all physical layer resources on the access link of the small cell 202 can be used for downlink transmission of the small cell 202;
  • the third mode the small cell 202 receives the physical layer signaling sent by the base station 201 by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all the physical layer resources on the access link of the small cell 202. Both can be used for downlink transmission of the small cell 202.
  • the base station 201 is a network device that has a wireless link connection with the small cell 202.
  • the base station 201 can be an evolved NodeB (eNodeB) in the system;
  • the communication system 20 is a WLAN system, and the base station 201 can be an access point (AP) in the system;
  • the wireless communication system 20 is a TD-SCDMA or WCDMA system, the base station 201 can be a node B in the system.
  • NodeB or a radio access network device composed of a Radio Network Controller (RNC) and a NodeB; if the wireless communication system 20 is a GSM system, the base station 201 can be a base transceiver station in the system (Base Transceiver Station (BTS), or a Base Station Subsystem (BSS) device consisting of a Base Station Controller (BSC) and a BTS.
  • BTS Base Transceiver Station
  • BSS Base Station Subsystem
  • the small cell 202 can be a device in the wireless communication system 20 that is connected to the base station 201 via a wireless link through which the base station 201 communicates with the wireless terminal.
  • the physical channel can be used to transmit physical layer signaling and data, wherein the data includes higher layer data and higher layer signaling above the physical layer, and higher layer signaling is transmitted as physical layer data on the physical channel.
  • the base station 201 can implement switching between the backhaul link with the small cell 202 and the configuration mode of the access link of the small cell 202.
  • the switching from the first mode to the second mode or the third mode may be semi-static, and the switching between the second mode and the third mode may be dynamic.
  • “semi-static” means that the period of switching between configuration modes is not less than the length of the radio frame; “dynamic” means that the period of switching between configuration modes is smaller than the length of the radio frame.
  • the base station 201 may periodically determine a configuration mode of the backhaul link with the small cell 202 and the access link of the small cell 202; or
  • the base station 201 determines the configuration mode of the back link between the small cell 202 and the access link of the small cell 202 when the data waiting delay sent to the small cell 202 is greater than a preset waiting delay threshold.
  • the base station 201 After determining the configuration mode of the backhaul link with the small cell 202 and the access link of the small cell 202, the base station 201 optionally sends a mode configuration command to the small cell 202, the mode configuration command is used for The configuration mode of the backhaul link between the base station 201 and the small cell 202 and the access link of the small cell 202 is configured as a determined configuration mode.
  • the mode configuration command may be sent by using a Radio Resource Control (RRC) message, Medium Access Control (MAC) signaling, or downlink physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the mode configuration command is sent to the small cell 202 through a system message in the RRC message.
  • the existing R-PDCCH configuration command, or the PDCCH configuration command, or the E-PDCCH configuration command may be sent to the small Cell 202.
  • the mode configuration command may be sent to the small cell 202 through physical layer signaling carried in the PDCCH, the R-PDCCH, and the E-PDCCH.
  • the small cell 202 configures a backhaul link between the base station 201 and the small cell 202 and a configuration mode of the access link of the small cell 202 according to the received mode configuration command.
  • the small cell 202 can configure the configuration mode of the back link between the base station 201 and the small cell 202 and the access link of the small cell 202 according to the mode configuration command.
  • the configuration mode of the physical control channel on the backhaul link between the base station 201 and the small cell 202 is configured according to the mode configuration command.
  • the configuration mode determined by the base station 201 is for one or more subframes of the small cell 202, where the mode configuration command may include: identifier information of the one or more subframes; or the one or more subframes are pre-designated
  • the foregoing mode configuration command includes: activating or deactivating the activation information of the one or more subframes using the configuration mode.
  • the small cell 202 configures a backhaul link between the base station and the small cell and an access link of the small cell. The configuration mode of one or more of the above subframes.
  • the mode configuration command may further include: a backhaul link between the base station 201 and the small cell 202 and subframe configuration information on the access link of the small cell 202; the small cell 202 may receive the base station 201. After the sent mode configuration command, configure its own subframe according to the subframe configuration information in the mode configuration command; or
  • the mode configuration command is further used to indicate that the small cell 202 uses the preset subframe configuration information as the backhaul link between the base station 201 and the small cell 202 and the subframe configuration information on the access link of the small cell 202; After receiving the mode configuration command sent by the base station 201, the small cell 202 configures its own subframe according to the preset subframe configuration information.
  • the small cell 202 configures its own subframe according to the subframe configuration information in the received mode configuration command or the preset subframe configuration information
  • the RRC message, the MAC signaling, or the downlink physical control channel is adopted. Sending subframe configuration information on its own access link to the wireless terminal communicating with itself.
  • the subframe configuration information may be for one or more subframes on the backhaul link of the small cell 202, and one or more subframes on the access link. Therefore, the subframe configuration information in the mode configuration command or the preset subframe configuration information may include different configuration information for the plurality of subframes.
  • the scheme for determining the configuration mode of the base station may be multiple, and is not limited to the solution mentioned in the embodiment of the present invention, as long as it can avoid adopting an additional physical control channel on the backhaul link and occupying data for transmitting data.
  • the resource waste caused by the physical layer resources and the quality of the communication can be regarded as a feasible solution for determining the configuration mode by the base station 201 in the embodiment of the present invention, which should be regarded as being within the protection scope of the patent.
  • the base station 201 may determine the backhaul link with the small cell 202 and the access chain of the small cell 202 according to the factor 1, the received full duplex capability support information, and at least one of the following factors: Road configuration mode:
  • Factor 2 usage of physical layer resources on the backhaul link with the small cell 202 detected by the base station 201;
  • the third event is that the base station 201 receives the first event sent by the small cell 202, and the first event is used to indicate that the self-interference cancellation gain of the small cell 202 is greater than a preset self-interference cancellation gain threshold;
  • the self-interference cancellation gain is used to describe the ability of the receiver of the small cell 202 to cancel the interference caused by the signal transmitted by the small cell 202.
  • the small cell 202 may send a first event to the base station 201 when its self-interference cancellation gain is greater than a preset self-interference cancellation gain threshold; the small cell 202 may also send its own usage information to the base station 201.
  • the usage information of the small cell 202 may include one or more of the following information:
  • the number of wireless terminals currently communicating with the small cell 202 such as the number of Relay UEs communicating with the base station 201 through the small cell 202 in the LTE system;
  • the amount of data of the data buffered by the small cell 202 in the downlink is the amount of data of the data buffered by the small cell 202 in the downlink
  • QCI Quality of Service Class INdentifier
  • a downlink physical channel such as a physical layer resource of a PDSCH channel
  • the small cell 202 needs to reduce the power value on the access link. If the mode is switched to the second mode, the small cell 202 may need to reduce the transmit power value on the access link to reduce the pair. The interference of the backhaul link may cause a decrease in the communication quality on the access link of the small cell 202;
  • the small cell 202 needs to reduce the power value on the access link, similar to the handover to the second mode. If the mode is switched to the third mode, the small cell 202 may also need to reduce the access link. Transmitting the power value to reduce interference to its backhaul link, which may result in a decrease in communication quality on the access link of the small cell 202;
  • the mode is switched to the second mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell 202, the access link of the small cell 202 to the backhaul link after switching to the second mode
  • the interference may be increased, and the wireless terminals that may cover the edge of the small cell 202 cannot communicate with the base station 201 through the small cell 202, and the wireless terminals may need to switch to other base stations or small cells for communication;
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell 202 is similar to the mode of switching to the second mode. If the mode is switched to the third mode, the access chain of the small cell 202 The interference of the road to the backhaul link may be increased, and the wireless terminal covering the edge of the small cell 202 may not be able to communicate with the base station 201 through the small cell 202, and the wireless terminals may need to switch to other base stations or small cells for communication;
  • Downstream coverage information of the small cell 202 such as the coverage radius of the small cell 202;
  • the downlink transmit power value of the small cell 202 is the downlink transmit power value of the small cell 202.
  • the base station 201 determines the configuration mode based on the factor 1 and the factor 2.
  • the full duplex capability support information indicates that the small cell 202 supports sending on the access link while receiving the same physical layer resource on the backhaul link, and the backhaul between the base station 201 and the small cell 202 is supported.
  • the configuration mode is the second mode or the third mode.
  • the received full duplex capability support information of the base station 201 indicates that the small cell 202 supports the same physical layer resource to be received on the back link while transmitting on the access link, and the detected and The physical layer resources for transmitting downlink data on the backhaul link between the small cells 202 are insufficient, but the detected physical layer for transmitting downlink physical layer signaling on the backhaul link with the small cell 202 When the layer resources are sufficient, determine that the configuration mode is the second mode; or
  • the base station 201 transmits on the access link while the received full duplex capability support information indicates that the small cell 202 supports receiving the same physical layer resource on the backhaul link, and detects the back with the small cell 202.
  • the configuration mode is the third mode
  • the base station 201 determines that the configuration mode is the first mode when the received full duplex capability support information indicates that the small cell 202 does not support transmitting on the access link while receiving the same physical layer resource on the backhaul link.
  • the base station 201 determines the configuration mode based on the factor 1 and the factor 3.
  • the base station 201 transmits on the access link while receiving the first event sent by the small cell 202, when the received full duplex capability support information indicates that the small cell 202 supports receiving the same physical layer resource on the backhaul link. , determine that the configuration mode is the second mode or the third mode.
  • the received full duplex capability support information of the base station 201 indicates that the small cell 202 supports the same physical layer resource to be received on the back link while transmitting on the access link, and receives the small cell.
  • the configuration mode is determined to be the second mode. ;or
  • the base station 201 receives the first event sent by the small cell 202, when the received full duplex capability support information indicates that the small cell 202 supports receiving the same physical layer resource on the backhaul link. And determining that the configuration mode is the third mode when the detected physical layer resource for transmitting the downlink physical layer signaling on the back link between the small cell 202 is insufficient; or
  • the base station 201 determines that the configuration mode is the first mode when the received full duplex capability support information indicates that the small cell 202 does not support transmitting on the access link while receiving the same physical layer resource on the backhaul link.
  • the base station 201 determines the configuration mode according to the factors 1 to 3.
  • the base station 201 receives the first event sent by the small cell 202, when the received full duplex capability support information indicates that the small cell 202 supports receiving the same physical layer resource on the backhaul link. And when the detected physical layer resource for transmitting downlink data on the back link between the small cell 202 is insufficient, it is determined that the configuration mode is the second mode or the third mode.
  • the full duplex capability support information received by the base station 201 indicates that the small cell 202 supports the use.
  • the same physical layer resource is sent on the access link while receiving on the backhaul link, and receives the first event sent by the small cell 202, and the detected backhaul link with the small cell 202
  • the configuration mode is determined. Is the second mode; or
  • the base station 201 receives the first event sent by the small cell 202, when the received full duplex capability support information indicates that the small cell 202 supports receiving the same physical layer resource on the backhaul link. And the detected physical layer resource for transmitting downlink data and the physical layer resource for transmitting downlink physical layer signaling on the backhaul link with the small cell 202 are insufficient, and determining that the configuration mode is the third mode; or
  • the base station 201 transmits the full duplex capability support information to indicate that the small cell 202 supports the same physical layer resource to be received on the back link while transmitting on the access link, but does not receive the first event sent by the small cell 202.
  • the configuration mode is determined to be the first mode; or
  • the base station 201 determines that the configuration mode is the first mode when the received full duplex capability support information indicates that the small cell 202 does not support transmitting on the access link while receiving the same physical layer resource on the backhaul link.
  • the base station 201 determines the configuration mode according to the factor 1 and the factor 4.
  • the base station 201 determines the configuration when the received full duplex capability support information indicates that the small cell 202 supports transmission on the access link while receiving the same physical layer resource on the backhaul link, and one or more of the following conditions are met.
  • the mode is the second mode or the third mode:
  • the number of wireless terminals currently communicating with the small cell 202 is greater than a preset “threshold value of the number of wireless terminals being communicated”;
  • Condition 2 The data volume of the downlink buffered data of the small cell 202 is greater than a preset “downstream buffer data volume threshold”;
  • Condition 3 The QCI fed back by the wireless terminal currently communicating with the small cell 202 is higher than the preset “QCI threshold”.
  • Condition 4 If the mode is switched to the second mode, the power value on the access link that the small cell 202 needs to be reduced is smaller than the preset “second mode power reduction threshold”;
  • Condition 5 If the mode is switched to the third mode, the power value of the access link that needs to be reduced by the small cell 202 is smaller than a preset “third mode power reduction threshold”;
  • Condition 6 If the mode is switched to the second mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell 202 is smaller than a preset “second mode switching terminal number threshold”;
  • Condition VII If the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell 202 is smaller than the preset “third mode switching terminal number threshold”;
  • the downlink coverage radius of the small cell 202 is greater than a preset "small cell downlink coverage radius threshold";
  • the downlink transmit power value of the small cell 202 is greater than a preset "small cell downlink transmit power threshold".
  • the full duplex capability support information received by the base station 201 indicates that the small cell 202 supports the use.
  • the same physical layer resource is sent on the access link while receiving on the backhaul link, and one or more of the above conditions are met,
  • the base station 201 may determine that the configuration mode is the second mode
  • the base station 201 may determine that the configuration mode is the third mode.
  • the wireless communication system 20 is taken as an example of the LTE system. Describe the implementation scheme of the subframe configuration information.
  • the base station is an eNodeB
  • the small cell is a relay node (Relay).
  • the Relay that supports "sending on the access link while receiving the same physical layer resource on the backhaul link" is a Full Duplex (FD) Relay (FD Relay).
  • the first downlink physical channel is an R-PDCCH and/or an E-PDCCH;
  • the second downlink physical channel is a PDCCH;
  • the first mode is: the relay receives the physical layer signaling sent by the eNodeB by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the subframe on the access link of the relay is a multicast broadcast single frequency point network ( Multicast Broadcast Single Frequency Network, MBSFN) subframe;
  • MBSFN Multicast Broadcast Single Frequency Network
  • the second mode is: the relay receives the physical layer signaling sent by the eNodeB by using the PDCCH on the backhaul link, and the subframe on the access link of the relay is a normal subframe, that is, an uplink subframe or a downlink subframe, and does not include a special Subframe
  • the third mode is: the relay receives the R-PDCCH and/or the E-PDCCH on the link, and the PDCCH receives the physical layer signaling sent by the eNodeB, and the subframe on the access link of the Relay is a normal subframe.
  • the configuration mode determined by the eNodeB is the first mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols and the last OFDM symbol are vacant, and the fourth OFDM symbol to the thirteenth OFDM symbol, one or more OFDM symbols
  • the physical resource block (PRB) is used for physical layer signaling, for example, R-PDCCH or E-PDCCH, and the remaining PRBs can be used for data transmission, for example, configured as PDSCH.
  • the first two OFDM symbols can be used for physical layer signaling transmission, for example, configured as a PDCCH, a third OFDM symbol, and a last OFDM symbol as a transmission gap.
  • the remaining OFDM symbols are vacant.
  • a subframe configuration scheme of the first mode can be as shown in FIG. 4A.
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling, for example, configured as a PDCCH, and the remaining OFDM symbols can be used for data transmission, for example, configured as a PDSCH. ;
  • the first three OFDM symbols can be used for physical layer signaling, for example, configured as a PDCCH, and the remaining OFDM symbols can be used for data transmission, for example, configured as a PDSCH.
  • a subframe configuration scheme of the second mode can be as shown in FIG. 4B.
  • the configuration mode determined by the eNodeB is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling transmission, for example, configured as a PDCCH, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission.
  • some physical layer resources are configured with PDSCH, and other physical layer resources are configured with E-PDCCH or R-PDCCH;
  • the first three OFDM symbols can be used in the physical layer.
  • the signaling is transmitted, for example, as a PDCCH, and the remaining OFDM symbols can be used for data transmission, for example, configured as a PDSCH.
  • a subframe configuration scheme of the third mode can be as shown in FIG. 4C.
  • the eNodeB can receive the full duplex capability support information sent by the Relay in the #2 subframe of the 10 ms radio frame.
  • “U” indicates an uplink subframe
  • “D” indicates a downlink subframe
  • “D” indicates a downlink subframe
  • S represents a special subframe.
  • the mode configuration command is sent to the Relay in the #8 subframe.
  • FIG. 6 shows a subframe configuration situation on a backhaul link and an access link from a first mode to a second mode, wherein the left part is a subframe configuration in the first mode, and the right part is For the subframe configuration in the second mode, the slashed portion is used to indicate the available physical layer resources added by the mode switch.
  • the relay is the FD relay
  • the physical layer resource for data transmission and physical layer signaling transmission is increased by switching the subframe configuration mode to the second mode, thereby improving system resource utilization. To avoid wasting resources.
  • the embodiment of the present invention further provides a method for configuring a base station, a small cell, and a control channel. Since the principle of solving the problem is the same as the wireless communication system provided by the embodiment of the present invention, the implementation may refer to the implementation of the system. The repetitions are not repeated here.
  • FIG. 7 is a schematic structural diagram of a first base station according to an embodiment of the present invention. As shown in FIG. 7, the base station includes:
  • the transceiver module 701 is configured to receive full-duplex capability support information sent by the small cell that communicates with the base station, where the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource to be received on the backhaul link. Sending on the access link;
  • the processing module 702 is configured to determine, according to the full-duplex capability support information received by the transceiver module 701, a configuration mode of a backhaul link between the base station and the small cell and an access link of the small cell, where the configuration mode is in the following mode.
  • the first mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel on the backhaul link, and the physical layer resource occupied by the back link of the small cell on the access link of the small cell Other physical layer resources outside can be used for downlink transmission of small cells;
  • the second mode the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the third mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used. Downlink transmission of a small cell;
  • the first downlink physical channel is used for transmitting physical layer signaling on a backhaul link between the base station and the small cell, and occupies a physical layer of a downlink physical channel for transmitting data between the base station and the small cell.
  • the second downlink physical channel is a conventional downlink physical channel for transmitting physical layer signaling between the base station and the wireless terminal.
  • processing module 702 is specifically configured to:
  • the transceiver module 701 receives the first event sent by the small cell, where the first event is used to indicate that the self-interference cancellation gain of the small cell is greater than a preset self-interference cancellation gain threshold;
  • processing module 702 is specifically configured to:
  • the full duplex capability support information received by the transceiver module 701 indicates that the small cell supports transmission on the access link while receiving the same physical layer resource on the backhaul link, and the processing module 702 detects the relationship with the small cell. When the physical layer resources for transmitting downlink data on the backhaul link are insufficient, it is determined
  • the configuration mode is the second mode or the third mode.
  • processing module 702 is specifically configured to:
  • the full duplex capability support information received by the transceiver module 701 indicates that the small cell supports transmission on the access link while receiving the same physical layer resource on the backhaul link, and the processing module 702 detects the relationship with the small cell.
  • the physical layer resources for transmitting downlink data on the backhaul link are insufficient, but when the detected physical layer resources for transmitting downlink physical layer signaling on the backhaul link with the small cell are sufficient, it is determined.
  • the configuration mode is the second mode; or
  • the full duplex capability support information received by the transceiver module 701 indicates that the small cell supports transmission on the access link while receiving the same physical layer resource on the backhaul link, and the processing module 702 detects the relationship with the small cell.
  • the configuration mode is the third mode.
  • processing module 702 is specifically configured to:
  • the full-duplex capability support information received by the transceiver module 701 indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the back-link link, and receives the first event sent by the small cell, determine
  • the configuration mode is the second mode or the third mode.
  • processing module 702 is specifically configured to:
  • the full duplex capability support information received by the transceiver module 701 indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the backhaul link, and receives the first event sent by the small cell, and When the physical layer resource of the downlink physical channel for transmitting downlink physical layer signaling on the backhaul link between the small cell and the small cell is sufficient, the configuration mode is determined to be the second mode; or
  • the full duplex capability support information received by the receiving module indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the backhaul link, and receives the first event sent by the small cell, and processes When the physical layer resource for transmitting downlink physical layer signaling on the backhaul link between the small cell and the small cell is insufficient, the configuration mode is determined to be the third mode.
  • the usage information of the small cell includes one or more of the following information:
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs to reduce the power value on the access link
  • the small cell needs to reduce the power value on the access link
  • the mode is switched to the second mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • processing module 702 is specifically configured to:
  • the full duplex capability support information received by the transceiver module 701 indicates that the small cell does not support sending on the access link while receiving the same physical layer resource on the backhaul link, and determines that the configuration mode is the first mode.
  • processing module 702 is further configured to:
  • the mode configuration command is sent to the small cell by the transceiver module 701, and the mode configuration command is used to configure the configuration mode of the back link between the base station and the small cell and the access link of the small cell to the determined configuration mode.
  • the mode configuration command is sent by using a radio resource control RRC message, media access control MAC signaling, or downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell and subframe configuration information on the access link of the small cell; or
  • the mode configuration command is further used to indicate that the small cell uses the preset subframe configuration information as the base station.
  • the backhaul link with the small cell and the subframe configuration information on the access link of the small cell is further used to indicate that the small cell uses the preset subframe configuration information as the base station.
  • the wireless communication system where the small cell and the base station are located is a Long Term Evolution (LTE) system;
  • LTE Long Term Evolution
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or an enhanced physical downlink control channel E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives the physical layer signaling sent by the base station by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the subframe on the access link of the small cell is a multicast broadcast single frequency point.
  • Network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using the PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell receives the R-PDCCH and/or the E-PDCCH on the link, and receives the physical layer signaling sent by the base station with the PDCCH, and the subframe on the access link of the small cell is an ordinary sub-frame. frame.
  • the configuration mode determined by the processing module 702 is the first mode
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing OFDM symbols and the last one OFDM symbol are vacant, and the fourth OFDM symbol to the thirteenth OFDM symbol
  • a partial physical resource block PRB of one or more OFDM symbols is used for physical layer signaling transmission, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • the configuration mode determined by the processing module 702 is the second mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode determined by the base station is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identification information of one or more subframes; or
  • the mode configuration command includes: activation information for activating or deactivating one or more subframes using the configuration mode.
  • processing module 702 is specifically configured to:
  • the configuration mode of the back link between the base station and the small cell and the access link of the small cell is determined.
  • the switching from the first mode to the second mode or the third mode is semi-static, and the switching between the second mode and the third mode is dynamic;
  • FIG. 8 is a schematic structural diagram of a second base station according to an embodiment of the present invention. As shown in FIG. 8, the base station includes:
  • the transceiver 801 is configured to receive full-duplex capability support information sent by the small cell that communicates with the base station, where the full-duplex capability support information is used to indicate whether the small cell supports using the same physical layer resource in the backhaul chain. Receiving on the road while transmitting on the access link;
  • the processor 802 is configured to determine, according to the full-duplex capability support information received by the transceiver 801, a configuration mode of the backhaul link between the base station and the small cell and the access link of the small cell, where the configuration mode is in the following mode.
  • the first mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel on the backhaul link, and the physical layer resource occupied by the back link of the small cell on the access link of the small cell Other physical layer resources outside can be used for downlink transmission of small cells;
  • the second mode the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the third mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used. Downlink transmission of a small cell;
  • the first downlink physical channel is used for transmitting physical layer signaling on a backhaul link between the base station and the small cell, and occupies a physical layer of a downlink physical channel for transmitting data between the base station and the small cell.
  • the second downlink physical channel is a conventional downlink physical channel for transmitting physical layer signaling between the base station and the wireless terminal.
  • transceiver 801 For other optional implementations of the transceiver 801, reference may be made to the foregoing transceiver module 701. For other optional implementation manners of the processor 802, reference may be made to the foregoing processing module 702, and other optional implementation manners of the base station may be repeated by referring to the foregoing base station 201. It will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a first small cell according to an embodiment of the present invention. As shown in FIG. 9, the small cell includes:
  • the processing module 901 is configured to determine full-duplex capability support information of the small cell, where the full-duplex capability support information is used to indicate whether the small cell supports receiving the same physical layer resource on the back-link link and is on the access link. Send
  • the transceiver module 902 is configured to send the determined full-duplex capability support information to the base station, and instruct the base station to determine, according to the full-duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell. ;
  • the configuration mode is one of the following modes:
  • the first mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel on the backhaul link, and the physical layer resource occupied by the back link of the small cell on the access link of the small cell Other physical layer resources outside can be used for downlink transmission of small cells;
  • the second mode the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the third mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used. Downlink transmission of a small cell;
  • the first downlink physical channel is used for transmitting physical layer signaling on a backhaul link between the base station and the small cell, and occupies a physical layer of a downlink physical channel for transmitting data between the base station and the small cell.
  • the second downlink physical channel is a conventional downlink physical channel for transmitting downlink physical layer signaling between the base station and the wireless terminal.
  • the transceiver module 902 is further configured to: after transmitting the determined full-duplex capability support information to the base station, receive a mode configuration command sent by the base station, where the mode configuration command is used to indicate a backhaul link between the base station and the small cell. Configuration mode of the access link with the small cell;
  • the processing module 901 is further configured to: configure a backhaul link between the base station and the small cell and a configuration mode of the access link of the small cell according to the mode configuration command received by the transceiver module 902.
  • the transceiver module 902 is further configured to: before receiving the mode configuration command sent by the base station,
  • the first event is sent to the base station, and/or the usage information of the small cell is sent to the base station, indicating the base station:
  • the usage information of the small cell includes one or more of the following information:
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs to reduce the power value on the access link
  • the small cell needs to reduce the power value on the access link
  • the mode is switched to the second mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the mode configuration command is sent by using a radio resource control RRC message, media access control MAC signaling, or downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell, and subframe configuration information on the access link of the small cell; the processing module 901 is further configured to: send, send, and receive, by the transceiver module 902 After the mode configuration command, configure a subframe of the small cell according to the subframe configuration information in the mode configuration command; or
  • the mode configuration command is further used to indicate that the small cell configures the preset subframe configuration information as the backhaul link between the base station and the small cell and the subframe configuration information on the access link of the small cell; the processing module 901 also uses After the transceiver module 902 receives the mode configuration command sent by the base station, the subframe of the small cell is configured according to the preset subframe configuration information.
  • the transceiver module 902 is further configured to: after the processing module 901 configures the subframe of the small cell according to the subframe configuration information,
  • the subframe configuration information on the access link of the small cell is transmitted to the wireless terminal that communicates with the small cell through the RRC message, the MAC signaling, or the downlink physical control channel.
  • the wireless communication system where the small cell and the base station are located is a Long Term Evolution (LTE) system;
  • LTE Long Term Evolution
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or an E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives the physical layer signaling sent by the base station by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the subframe on the access link of the small cell is a multicast broadcast single frequency point.
  • Network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using the PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell receives the R-PDCCH and/or the E-PDCCH on the link, and receives the physical layer signaling sent by the base station with the PDCCH, and the subframe on the access link of the small cell is an ordinary sub-frame. frame.
  • the configuration mode determined by the base station is the first mode
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing OFDM symbols and the last one OFDM symbol are vacant, and the fourth OFDM symbol to the thirteenth OFDM symbol
  • a partial physical resource block PRB of one or more OFDM symbols is used for physical layer signaling transmission, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • the configuration mode determined by the base station is the second mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode determined by the base station is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • processing module 901 is specifically configured to:
  • the configuration mode of the physical control channel on the backhaul link between the base station and the small cell is configured according to the mode configuration command.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identification information of one or more subframes; or
  • One or more subframes are pre-specified, and the mode configuration command includes: activating or deactivating activation information of one or more subframes using the configuration mode;
  • the processing module 901 is specifically configured to:
  • a configuration mode of one or more subframes on the backhaul link between the base station and the small cell and the access link of the small cell is configured.
  • the switching from the first mode to the second mode or the third mode is semi-static, and the switching between the second mode and the third mode is dynamic;
  • FIG. 10 is a schematic structural diagram of a second small cell according to an embodiment of the present invention. As shown in FIG. 10, the small cell includes:
  • the processor 1001 is configured to determine full-duplex capability support information of the small cell, where the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource to be received on the back-link link and is on the access link. send;
  • the transceiver 1002 is configured to send the determined full-duplex capability support information to the base station, and instruct the base station to determine, according to the full-duplex capability support information, a configuration mode of the return link with the small cell and the access link of the small cell. ;
  • the configuration mode is one of the following modes:
  • the first mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel on the backhaul link, and the physical layer resource occupied by the back link of the small cell on the access link of the small cell Other physical layer resources outside can be used for downlink transmission of small cells;
  • the second mode the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the third mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used. Downlink transmission of a small cell;
  • the first downlink physical channel is used for transmitting physical layer signaling on a backhaul link between the base station and the small cell, and occupies a physical layer of a downlink physical channel for transmitting data between the base station and the small cell.
  • the second downlink physical channel is a conventional downlink physical channel for transmitting downlink physical layer signaling between the base station and the wireless terminal.
  • the processor 1001 For the implementation of the processor 1001, reference may be made to the foregoing processing module 901.
  • the implementation of the transceiver 1002 may refer to the foregoing transceiver 902.
  • FIG. 11 is a flowchart of a method for configuring a first control channel according to an embodiment of the present invention. As shown in FIG. 11, the method includes the following steps:
  • the base station receives the full-duplex capability support information sent by the small cell that communicates with the base station, where the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource to be received on the backhaul link and is in the access chain. Send on the road;
  • the base station determines, according to the received full-duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, and the configuration mode is one of the following modes:
  • the first mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel on the backhaul link, and the physical layer resource occupied by the back link of the small cell on the access link of the small cell Other physical layer resources outside can be used for downlink transmission of small cells;
  • the second mode the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the third mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used. Downlink transmission of a small cell;
  • the first downlink physical channel is used for transmitting physical layer signaling on a backhaul link between the base station and the small cell, and occupies a physical layer of a downlink physical channel for transmitting data between the base station and the small cell.
  • the second downlink physical channel is a conventional downlink physical channel for transmitting physical layer signaling between the base station and the wireless terminal.
  • the base station determines, according to the received full-duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, including:
  • the base station determines, according to the received full-duplex capability support information, and at least one of the following factors, a configuration mode of the return link with the small cell and the access link of the small cell:
  • the base station receives the first event sent by the small cell, where the first event is used to indicate that the self-interference cancellation gain of the small cell is greater than a preset self-interference cancellation gain threshold;
  • the base station determines, according to the received full duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, including:
  • the received full duplex capability support information of the base station indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the backhaul link, and the detected backhaul link with the small cell is detected.
  • the physical layer resources for transmitting downlink data are insufficient, it is determined
  • the configuration mode is the second mode or the third mode.
  • the base station determines, according to the received full duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, including:
  • the received full duplex capability support information of the base station indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the backhaul link, and the detected backhaul link with the small cell is detected.
  • the physical layer resource for transmitting the downlink data is insufficient, but when the detected physical layer resource for transmitting the downlink physical layer signaling on the back link between the small cell is sufficient, the configuration mode is determined to be the second. Mode; or
  • the received full duplex capability support information of the base station indicates that the small cell supports transmitting on the access link while receiving the same physical layer resource on the backhaul link, and the detected backhaul link with the small cell is detected.
  • the configuration mode is the third mode.
  • the base station determines, according to the received full duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, including:
  • the base station determines, when the received full duplex capability support information indicates that the small cell supports the same physical layer resource to be received on the back link, and sends the first event sent by the small cell, and determines
  • the configuration mode is the second mode or the third mode.
  • the base station determines, according to the received full duplex capability support information, a configuration mode of the physical control channel on the backhaul link with the small cell, including:
  • the received full duplex capability support information indicates that the small cell supports the same physical layer resource to be received on the back link, and sends the first event sent by the small cell, and detects that the small cell supports the same physical layer resource to receive on the back link. Determining the configuration mode to the second mode when the physical layer resources of the downlink physical channel for transmitting the downlink physical layer signaling on the backhaul link with the small cell are sufficient; or
  • the received full duplex capability support information indicates that the small cell supports the same physical layer resource to be received on the back link, and sends the first event sent by the small cell, and detects that the small cell supports the same physical layer resource to receive on the back link.
  • the configuration mode is determined to be the third mode.
  • the usage information of the small cell includes one or more of the following information:
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs to reduce the power value on the access link
  • the small cell needs to reduce the power value on the access link
  • the mode is switched to the second mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the base station determines, according to the received full duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, including:
  • the full duplex capability support information received by the base station indicates that the small cell does not support the same physical layer resource.
  • the source is sent on the access link while receiving on the backhaul link, and the configuration mode is determined to be the first mode.
  • the method further includes:
  • the base station sends a mode configuration command to the small cell, where the mode configuration command is used to configure the configuration mode of the back link between the base station and the small cell and the access link of the small cell to the determined configuration mode.
  • the mode configuration command is sent by using a radio resource control RRC message, media access control MAC signaling, or downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell and subframe configuration information on the access link of the small cell; or
  • the mode configuration command is further used to indicate that the small cell configures the preset subframe configuration information as the backhaul link between the base station and the small cell and the subframe configuration information on the access link of the small cell.
  • the wireless communication system where the small cell and the base station are located is a Long Term Evolution (LTE) system;
  • LTE Long Term Evolution
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or an enhanced physical downlink control channel E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives the physical layer signaling sent by the base station by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the subframe on the access link of the small cell is a multicast broadcast single frequency point.
  • Network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using the PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell receives the R-PDCCH and/or the E-PDCCH on the link, and receives the physical layer signaling sent by the base station with the PDCCH, and the subframe on the access link of the small cell is an ordinary sub-frame. frame.
  • step S1102 determines whether the configuration mode determined by the base station in step S1102 is the first mode.
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing in the downlink subframe on the backhaul link between the base station and the small cell The OFDM symbol and the last OFDM symbol are vacant, and among the fourth OFDM symbol to the thirteenth OFDM symbol, part of the physical resource block PRB of one or more OFDM symbols is used for physical layer signaling, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • step S1102 determines whether the configuration mode determined by the base station in step S1102 is the second mode.
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • step S1102 determines whether the configuration mode determined by the base station in step S1102 is the third mode.
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identification information of one or more subframes; or
  • the mode configuration command includes: activation information for activating or deactivating one or more subframes using the configuration mode.
  • the base station determines, according to the received full-duplex capability support information, a configuration mode of the return link between the small cell and the access link of the small cell, including:
  • the base station periodically determines a configuration mode of the back link between the small cell and the access link of the small cell; or
  • the base station determines a configuration mode of the back link and the access link of the small cell when the data waiting delay sent to the small cell is greater than a preset waiting delay threshold.
  • the switching from the first mode to the second mode or the third mode is semi-static, and the switching between the second mode and the third mode is dynamic;
  • FIG. 12 is a flowchart of a method for configuring a second control channel according to an embodiment of the present invention. As shown in FIG. 12, the method includes the following steps:
  • the small cell determines its own full-duplex capability support information, and the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource to be received on the back-link link and is sent on the access link.
  • the small cell sends the determined full-duplex capability support information to the base station, and instructs the base station to determine, according to the full-duplex capability support information, a configuration mode of the return link with the small cell and the access link of the small cell.
  • the configuration mode is one of the following modes:
  • the first mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel on the backhaul link, and the physical layer resource occupied by the back link of the small cell on the access link of the small cell Other physical layer resources outside can be used for downlink transmission of small cells;
  • the second mode the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell;
  • the third mode the small cell receives the physical layer signaling sent by the base station by using the first downlink physical channel and the second downlink physical channel on the backhaul link, and all physical layer resources on the access link of the small cell can be used. Downlink transmission of a small cell;
  • the first downlink physical channel is used for transmitting physical layer signaling on a backhaul link between the base station and the small cell, and occupies a physical layer of a downlink physical channel for transmitting data between the base station and the small cell.
  • the second downlink physical channel is a conventional downlink physical channel for transmitting downlink physical layer signaling between the base station and the wireless terminal.
  • the method further includes:
  • the small cell receives a mode configuration command sent by the base station, where the mode configuration command is used to indicate a configuration mode of the back link between the base station and the small cell and the access link of the small cell;
  • the small cell configures a backhaul link between the base station and the small cell and a configuration mode of the access link of the small cell according to the mode configuration command.
  • the method before the small cell receives the mode configuration command sent by the base station, the method further includes:
  • the small cell sends the first event to the base station when the self-interference cancellation gain is greater than the preset self-interference cancellation gain threshold, and/or the small cell sends the usage information of the small cell to the base station, indicating the base station
  • the usage information of the small cell includes one or more of the following information:
  • the number of wireless terminals currently communicating with the small cell is the number of wireless terminals currently communicating with the small cell
  • the small cell needs to reduce the power value on the access link
  • the small cell needs to reduce the power value on the access link
  • the wireless terminal currently communicating with the small cell needs to switch to another small The number of wireless terminals in the area;
  • the mode is switched to the third mode, the number of wireless terminals that need to be handed over to other cells in the wireless terminal currently communicating with the small cell;
  • the mode configuration command is sent by using a radio resource control RRC message, media access control MAC signaling, or downlink physical layer signaling.
  • the mode configuration command further includes: a backhaul link between the base station and the small cell, and subframe configuration information on the access link of the small cell; after the small cell receives the mode configuration command sent by the base station, : the small cell configures its own subframe according to the subframe configuration information in the mode configuration command; or
  • the mode configuration command is further used to indicate that the small cell configures the preset subframe configuration information as the backhaul link between the base station and the small cell and the subframe configuration information on the access link of the small cell; and receives the base station in the small cell.
  • the method further includes: the small cell configuring its own subframe according to the preset subframe configuration information.
  • the method further includes:
  • the small cell transmits the subframe configuration information on its own access link to the wireless terminal that communicates with itself through the RRC message, the MAC signaling, or the downlink physical control channel.
  • the wireless communication system where the small cell and the base station are located is a Long Term Evolution (LTE) system;
  • LTE Long Term Evolution
  • the first downlink physical channel is a relay-physical downlink control channel R-PDCCH and/or an E-PDCCH;
  • the second downlink physical channel is a physical downlink control channel PDCCH;
  • the first mode is: the small cell receives the physical layer signaling sent by the base station by using the R-PDCCH and/or the E-PDCCH on the backhaul link, and the subframe on the access link of the small cell is a multicast broadcast single frequency point.
  • Network MBSFN subframe
  • the second mode is: the small cell receives the physical layer signaling sent by the base station by using the PDCCH on the backhaul link, and the subframe on the access link of the small cell is a normal subframe;
  • the third mode is: the small cell passes the R-PDCCH and/or the E-PDCCH on the backhaul link, and
  • the PDCCH receives the physical layer signaling sent by the base station, and the subframe on the access link of the small cell is a normal subframe.
  • the configuration mode determined by the base station is the first mode
  • the subframe configuration information is used to indicate:
  • the first three orthogonal frequency division multiplexing OFDM symbols and the last one OFDM symbol are vacant, and the fourth OFDM symbol to the thirteenth OFDM symbol
  • a partial physical resource block PRB of one or more OFDM symbols is used for physical layer signaling transmission, and the remaining PRBs are available for data transmission.
  • the first two OFDM symbols can be used for physical layer signaling, the third OFDM symbol and the last OFDM symbol are used as transmission gaps, and the remaining OFDM symbols are vacant.
  • the configuration mode determined by the base station is the second mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling, and the remaining OFDM symbols can be used for data transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • the configuration mode determined by the base station is the third mode
  • the subframe configuration information is used to indicate:
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols are used for data transmission and physical layer signaling transmission;
  • the first three OFDM symbols can be used for physical layer signaling transmission, and the remaining OFDM symbols can be used for data transmission.
  • the small cell configures a configuration mode of the physical control channel on the backhaul link between the base station and the small cell according to the mode configuration command, including:
  • the mode is configured according to the mode.
  • the command configures a configuration mode of a physical control channel on a backhaul link between the base station and the small cell.
  • the configuration mode is for one or more subframes of the small cell
  • the mode configuration command includes: identification information of one or more subframes; or
  • the mode configuration command includes: activation information for activating or deactivating one or more subframes using the configuration mode.
  • the small cell configures a backhaul link between the base station and the small cell and a configuration mode of the access link of the small cell according to the mode configuration command, including:
  • the small cell configures a configuration mode of one or more subframes on the backhaul link between the base station and the small cell and the access link of the small cell according to the mode configuration command.
  • the switching from the first mode to the second mode or the third mode is semi-static, and the switching between the second mode and the third mode is dynamic;
  • the small cell transmits its own full-duplex capability support information to the base station, and the full-duplex capability support information is used to indicate whether the small cell supports the same physical layer resource on the backhaul link.
  • the receiving is sent on the access link at the same time; the base station determines, according to the received full duplex capability support information, a configuration mode of the back link and the access link of the small cell with the small cell, the configuration mode It is one of the first mode, the second mode, or the third mode described above.
  • the small cell receives the physical layer signaling sent by the base station by using the second downlink physical channel on the backhaul link, and the second downlink physical channel is traditionally used for transmitting between the base station and the wireless terminal.
  • the physical layer channel of the physical layer signaling does not need to occupy the physical layer resource of the downlink physical channel for transmitting data between the base station and the small cell, thereby saving the physicality of the downlink physical channel for transmitting data on the backhaul link. Resources improve data transmission efficiency and avoid waste of resources.
  • the second mode is determined according to the full-duplex capability support information of the small cell, the full-duplex capability of the small cell is considered, and thus the communication quality is also ensured.
  • the small cell passes the first downlink physical channel and the second downlink on the backhaul link.
  • the physical channel receives the physical layer signaling sent by the base station, and all the physical layer resources on the access link of the small cell can be used for downlink transmission of the small cell, and also realizes full-duplex transmission of the small cell, and considers the backhaul chain.
  • the physical layer resources used for transmitting the physical layer signaling may be insufficient on the road. Therefore, the small cell receives the physical layer signaling sent by the base station through the first downlink physical channel and the second downlink physical channel, thereby alleviating the physical layer signaling used for transmission. The problem of insufficient physical layer resources.
  • the second downlink physical channel since the second downlink physical channel does not need to occupy physical layer resources of the downlink physical channel for transmitting data between the base station and the small cell, the data for transmitting data on the backhaul link is saved.
  • the physical resources of the downlink physical channel improve the data transmission efficiency and avoid the problem of resource waste.
  • the second mode since the second mode is determined according to the full-duplex capability support information of the small cell, the full-duplex capability of the small cell is considered, and thus the communication quality is also ensured.
  • the first mode is also configured to avoid using the same physical layer in the small cell.
  • the small cell uses the same physical layer resource to receive interference on the back link while transmitting on the back link.
  • the small cell according to whether the small cell supports the same physical layer resource to be received on the back link while transmitting on the access link, comprehensively determining an appropriate configuration mode, that is, ensuring communication quality, Avoid wasting resources.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术,尤其涉及一种基站、小小区和控制信道的配置方法,以解决在小小区的回传链路上采用额外的物理控制信道传输控制信息,造成的资源浪费。在本发明实施例提供的一种基站中,收发模块用于接收小小区发送的全双工能力支持信息,全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;处理模块用于根据收发模块接收的所述全双工能力支持信息,确定基站与小小区之间的回传链路和所述小小区的接入链路的配置模式。其中,基站根据小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,综合确定合适的配置模式,即保证了通信质量,又能够避免资源浪费。

Description

一种基站、小小区和控制信道的配置方法 技术领域
本发明涉及无线通信技术,尤其涉及一种基站、小小区和控制信道的配置方法。
背景技术
一方面,为了扩展基站的覆盖范围、提高基站的覆盖效果等原因,通信系统中引入小小区,比如:中继节点小区(relay cell)微微基站小区(pico cell)或家庭基站小区(femto cell或Home eNodeB)等。如图1所示,小小区一方面与诸如接入点(access point)的基站通过回传链路(backhaul link)进行数据传输,另一方面通过接入链路(access link)与无线终端(比如:用户终端(User Equipment,UE))进行数据传输,实现了基站通过中继节点与无线终端的通信,从而扩展了基站的覆盖范围。
基站与小小区可通过无线或有线(比如:光纤)连接,图1中示出了基站与小小区通过无线连接的方式。
另一方面,理论上无线通信设备在同一载波上同时收发是可行的,但是由于无线通信设备在发射链路上发射的信号往往会泄露到自身的接收链路中,对接收链路造成干扰,因此在实现时通常不会使无线通信设备在同一载波上同时收发。
这里,将在同一载波上同时收发称为“全双工”。一个潜在的全双工的应用包括:小小区从基站处接收信号,并使用相同的物理层资源,比如同一载波同时向周围的无线终端发送信号。
目前,考虑到上述发射链路对接收链路的干扰问题,无线通信系统中通常不会实现上述在同一个子载波上的全双工通信。
比如:第三代合作伙伴计划(the 3rd Generation Partener Project,3GPP)版本10(release 10)规定:无线通信设备不能在相同的时频资源,即一种物 理层资源上同时收发,在release 10中,通过中继-物理下行控制信道(Relay-Physical Downlink Control CHannel,R-PDCCH)在基站与中继节点之间的回传链路上进行控制信道上信息的传输。
在3GPP release10规定的无线通信系统中,由于R-PDCCH占用了基站的物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)的时频资源,而传统的物理下行控制信道(Physical Downlink Control CHannel,PDCCH)的时频资源空闲不使用,导致资源浪费。
综上,目前的无线通信系统中,为了避免诸如中继节点的小小区的回传链路造成的干扰,需要在回传链路上采用额外的物理控制信道传输控制信息,造成了资源浪费。
发明内容
本发明实施例提供一种基站、小小区和控制信道的配置方法,用于解决在小小区的回传链路上采用额外的物理控制信道传输控制信息,造成资源浪费的问题。
第一方面,本发明实施例提供一种基站,包括:
收发模块,用于接收与所述基站通信的小小区发送的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
处理模块,用于根据所述收发模块接收的所述全双工能力支持信息,确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,所述配置模式为下列模式中的一种:
第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基 站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
所述第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道。
结合第一方面,在第一种可能的实现方式中,所述处理模块具体用于:
根据所述收发模块接收的所述全双工能力支持信息,以及下列因素中的至少一个,确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式:
所述处理模块检测到的与所述小小区之间的回传链路上的物理层资源的使用情况;
所述收发模块是否收到所述小小区发送的第一事件,所述第一事件用于指示所述小小区的自干扰取消增益大于预设的自干扰取消增益门限;
所述小小区的使用情况信息。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理模块具体用于:
在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足时,确定
所述配置模式为所述第二模式或所述第三模式。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理模块具体用于:
在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足,但检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源充足时,确定所述配置模式为所述第二模式;或
在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行数据和用于传输下行物理层信令的物理层资源均不足时,确定所述配置模式为所述第三模式。
结合第一方面的第一种可能的实现方式,在第四种可能的实现方式中,所述处理模块具体用于:
在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到所述小小区发送的第一事件时,确定
所述配置模式为所述第二模式或所述第三模式。
结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述处理模块具体用于:
在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的下行物理信道的物理层资源充足时,确定所述配置模式为所述第二模式;或
在所述接收模块接收的所述全双工能力支持信息指示所述小小区支持使 用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源不足时,确定所述配置模式为所述第三模式。
结合第一方面的第一种至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,所述小小区的使用情况信息包括下列信息中的一项或多项:
当前与所述小小区通信的无线终端的数量;
所述小小区下行缓存的数据的数据量;
当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
所述小小区的下行覆盖范围信息;
所述小小区的下行发射功率值。
结合第一方面,或第一方面的第一种至第六种可能的实现方式中的任一种,在第七种可能的实现方式中,所述处理模块具体用于:
在所述收发模块接收的所述全双工能力支持信息指示所述小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,确定所述配置模式为所述第一模式。
结合第一方面,或第一方面的第一种至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,所述处理模块还用于:
在根据所述收发模块接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式之后,
通过所述收发模块向所述小小区发送模式配置命令,所述模式配置命令用于将所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,配置为确定的所述配置模式。
结合第一方面的第八种可能的实现方式,在第九种可能的实现方式中,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
结合第一方面的第八种或第九种可能的实现方式,在第十种可能的实现方式中,
所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;或
所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息。
结合第一方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或增强物理下行控制信道E-PDCCH;
所述第二下行物理信道为物理下行控制信道PDCCH;
所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或 E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,
若所述处理模块确定的所述配置模式为第一模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
结合第一方面的第十一种可能的实现方式,在第十三种可能的实现方式中,
若所述处理模块确定的所述配置模式为第二模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
结合第一方面的第十一种可能的实现方式,在第十四种可能的实现方式中,
若所述基站确定的所述配置模式为第三模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个 OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
结合第一方面的第八种至第十四种可能的实现方式中的任一种,在第十五种可能的实现方式中,所述配置模式针对所述小小区的一个或多个子帧;
所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息。
结合第一方面,或第一方面的第一种至第十五种可能的实现方式中的任一种,在第十六种可能的实现方式中所述处理模块具体用于:
周期性地确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;或
在所述收发模块发送给所述小小区的数据等待时延大于预设的等待时延阈值时,确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
结合第一方面,或第一方面的第一种至第十六种可能的实现方式中的任一种,在第十七种可能的实现方式中,从所述第一模式到所述第二模式或第三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
第二方面,本发明实施例提供一种小小区,包括:
处理模块,用于确定所述小小区的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
收发模块,用于向基站发送确定的所述全双工能力支持信息,指示所述基站根据所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
其中,所述配置模式为下列模式中的一种:
第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
所述第二下行物理信道为传统的用于在基站和无线终端之间传输下行物理层信令的下行物理信道。
结合第二方面,在第一种可能的实现方式中,
所述收发模块还用于:在向所述基站发送确定的所述全双工能力支持信息之后,接收所述基站发送的模式配置命令,所述模式配置命令用于指示所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
所述处理模块还用于:根据所述收发模块接收的所述模式配置命令,配置所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述收发模块还用于:在接收所述基站发送的所述模式配置命令之前,
在所述小小区的自干扰取消增益大于预设的自干扰取消增益门限时,向所述基站发送第一事件,和/或向所述基站发送所述小小区的使用情况信息,指示所述基站:
根据全双工能力支持信息,以及下列因素中的至少一种,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式:
所述基站是否收到所述第一事件;
所述小小区的使用情况信息。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述小小区的所述使用情况信息包括下列信息中的一项或多项:
当前与所述小小区通信的无线终端的数量;
所述小小区下行缓存的数据的数据量;
当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
所述小小区的下行覆盖范围信息;
所述小小区的下行发射功率值。
结合第二方面的第一种至第三种可能的实现方式中的任一种,在第四种可能的实现方式中,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,
所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;所述处理模块还用于:在所述收发模块接收所述基站发送的所述模式配置命令之后,根据所述模式配置命令中的所述子帧配置信息配置所述小小区的子帧;或
所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;所述处理模块还用于:在所述收发模块接收所述基站发送的所述模式配置命令之后,根据所述预先设置的子帧配置信息配置所述小小区的子帧。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,所述收发模块还用于:在所述处理模块根据所述子帧配置信息配置所述小小区的子帧之后,
通过RRC消息、MAC信令或下行物理控制信道,将所述小小区的接入链路上的子帧配置信息发送给与所述小小区通信的无线终端。
结合第二方面的第五种或第六种可能的实现方式,在第七种可能的实现方式中,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或E-PDCCH;
所述第二下行物理信道为物理下行控制信道PDCCH;
所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的 接入链路上的子帧为普通子帧。
结合第二方面的第七种可能的实现方式,在第八种可能的实现方式中,
若所述基站确定的所述配置模式为第一模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
结合第二方面的第七种可能的实现方式,在第九种可能的实现方式中,
若所述基站确定的所述配置模式为第二模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
结合第二方面的第七种可能的实现方式,在第十种可能的实现方式中,
若所述基站确定的所述配置模式为第三模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
结合第二方面的第一种至第十种可能的实现方式中的任一种,在第十一种可能的实现方式中,所述处理模块具体用于:
在所述收发模块收到所述模式配置命令后的预设的配置时延阈值后,根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上的物理控制信道的配置模式。
结合第二方面的第一种至第十一种可能的实现方式中的任一种,在第十二种可能的实现方式中,所述配置模式针对所述小小区的一个或多个子帧;
所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息。
所述处理模块具体用于:
根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上和所述小小区的接入链路上的所述一个或多个子帧的配置模式。
结合第二方面,或第二方面的第一种至第十二种可能的实现方式中的任一种,在第十三种可能的实现方式中,从所述第一模式到所述第二模式或第三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
第三方面,本发明实施例提供一种控制信道的配置方法,包括:
基站接收与所述基站通信的小小区发送的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,所述配置模式为下列模式中的一种:
第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
所述第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道。
结合第三方面,在第一种可能的实现方式中,所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
所述基站根据接收的所述全双工能力支持信息,以及下列因素中的至少一个,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式:
所述基站检测到的与所述小小区之间的回传链路上的物理层资源的使用情况;
所述基站是否收到所述小小区发送的第一事件,所述第一事件用于指示所述小小区的自干扰取消增益大于预设的自干扰取消增益门限;
所述小小区的使用情况信息。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足时,确定
所述配置模式为所述第二模式或所述第三模式。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足,但检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源充足时,确定所述配置模式为所述第二模式;或
所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与所述小小区之间的回传链路上的用于传输下行数据和用于传输下行物理层信令的物理层资源均不足时,确定所述配置模式为所述第三模式。
结合第三方面的第一种可能的实现方式,在第四种可能的实现方式中,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到所述小小区发送的第一事件时,确定
所述配置模式为所述第二模式或所述第三模式。
结合第三方面的第四种可能的实现方式,在第五种可能的实现方式中, 所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路上物理控制信道的配置模式,包括:
所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的下行物理信道的物理层资源充足时,确定所述配置模式为所述第二模式;或
所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源不足时,确定所述配置模式为所述第三模式。
结合第三方面的第一种至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,所述小小区的使用情况信息包括下列信息中的一项或多项:
当前与所述小小区通信的无线终端的数量;
所述小小区下行缓存的数据的数据量;
当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
所述小小区的下行覆盖范围信息;
所述小小区的下行发射功率值。
结合第三方面,或第三方面的第一种至第六种可能的实现方式中的任一种,在第七种可能的实现方式中,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
所述基站在接收的所述全双工能力支持信息指示所述小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,确定所述配置模式为所述第一模式。
结合第三方面,或第三方面的第一种至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,在所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式之后,所述方法还包括:
所述基站向所述小小区发送模式配置命令,所述模式配置命令用于将所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,配置为确定的所述配置模式。
结合第三方面的第八种可能的实现方式,在第九种可能的实现方式中,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
结合第三方面的第八种或第九种可能的实现方式,在第十种可能的实现方式中,
所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;或
所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息。
结合第三方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或增强物理下行控制信道E-PDCCH;
所述第二下行物理信道为物理下行控制信道PDCCH;
所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧。
结合第三方面的第十一种可能的实现方式,在第十二种可能的实现方式中,
若所述基站确定的所述配置模式为第一模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
结合第三方面的第十一种可能的实现方式,在第十三种可能的实现方式中,
若所述基站确定的所述配置模式为第二模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
结合第三方面的第十一种可能的实现方式,在第十四种可能的实现方式中,
若所述基站确定的所述配置模式为第三模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
结合第三方面的第八种至第十四种可能的实现方式中的任一种,在第十五种可能的实现方式中,所述配置模式针对所述小小区的一个或多个子帧;
所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息。
结合第三方面,或第三方面的第一种至第十五种可能的实现方式中的任一种,在第十六种可能的实现方式中,所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
所述基站周期性地确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;或
所述基站在发送给所述小小区的数据等待时延大于预设的等待时延阈值时,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
结合第三方面,或第三方面的第一种至第十六种可能的实现方式中的任一种,在第十七种可能的实现方式中,从所述第一模式到所述第二模式或第三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
第四方面,本发明实施例提供一种控制信道的配置方法,包括:
小小区确定自身的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
所述小小区向基站发送确定的所述全双工能力支持信息,指示所述基站根据所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
其中,所述配置模式为下列模式中的一种:
第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
所述第二下行物理信道为传统的用于在基站和无线终端之间传输下行物理层信令的下行物理信道。
结合第四方面,在第一种可能的实现方式中,
在所述小小区向所述基站发送确定的所述全双工能力支持信息之后,所述方法还包括:
所述小小区接收所述基站发送的模式配置命令,所述模式配置命令用于指示所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,
在所述小小区接收所述基站发送的所述模式配置命令之前,还包括:
所述小小区在自身的自干扰取消增益大于预设的自干扰取消增益门限时,向所述基站发送第一事件,和/或所述小小区向所述基站发送所述小小区的使用情况信息,指示所述基站
根据全双工能力支持信息,以及下列因素中的至少一种,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式:
所述基站是否收到所述第一事件;
所述小小区的使用情况信息。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,所述小小区的所述使用情况信息包括下列信息中的一项或多项:
当前与所述小小区通信的无线终端的数量;
所述小小区下行缓存的数据的数据量;
当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
所述小小区的下行覆盖范围信息;
所述小小区的下行发射功率值。
结合第四方面的第一种至第三种可能的实现方式中的任一种,在第四种可能的实现方式中,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
结合第四方面的第四种可能的实现方式,在第五种可能的实现方式中,所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;在所述小小区接收所述基站发送的所述模式配置命令之后,还包括:所述小小区根据所述模式配置命令中的所述子帧配置信息配置自身的子帧;或
所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;在所述小小区接收所述基站发送的所述模式配置命令之后,还包括:所述小小区根据所述预先设置的子帧配置信息配置自身的子帧。
结合第四方面的第五种可能的实现方式,在第六种可能的实现方式中,在所述小小区根据所述子帧配置信息配置自身的子帧之后,所述方法还包括:
所述小小区通过RRC消息、MAC信令或下行物理控制信道,将自身的接入链路上的子帧配置信息发送给与自身通信的无线终端。
结合第四方面的第五种或第六种可能的实现方式,在第七种可能的实现方式中,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或 E-PDCCH;
所述第二下行物理信道为物理下行控制信道PDCCH;
所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧。
结合第四方面的第七种可能的实现方式,在第八种可能的实现方式中,
若所述基站确定的所述配置模式为第一模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
结合第四方面的第七种可能的实现方式,在第九种可能的实现方式中,
若所述基站确定的所述配置模式为第二模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物 理层信令传输,其余OFDM符号可用于数据传输。
结合第四方面的第七种可能的实现方式,在第十种可能的实现方式中,
若所述基站确定的所述配置模式为第三模式,则
所述子帧配置信息用于指示:
在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
结合第四方面的第一种至第十种可能的实现方式中的任一种,在第十一种可能的实现方式中,所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上的物理控制信道的配置模式,包括:
所述小小区在收到所述模式配置命令后的预设的配置时延阈值后,根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上的物理控制信道的配置模式。
结合第四方面的第一种至第十一种可能的实现方式中的任一种,在第十二种可能的实现方式中,所述配置模式针对所述小小区的一个或多个子帧;
所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息。
所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上和所述小小区的接入链路上的所述一个或多个子帧的配置模式。
结合第四方面,或第四方面的第一种至第十二种可能的实现方式中的任一种,在第十三种可能的实现方式中,从所述第一模式到所述第二模式或第 三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
在本发明实施例中,小小区将自身的全双工能力支持信息发送给基站,该全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;基站根据收到的该全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式,该配置模式为上述第一模式、第二模式或第三模式中的一种。
其中,第二模式中,小小区通过通过回传链路上的第二下行物理信道接收基站发送的物理层信令,而第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道,无需占用基站与小小区之间的用于传输数据的下行物理信道的物理层资源,因此,节省了回传链路上用于传输数据的下行物理信道的物理资源,提高了数据传输效率,避免了资源浪费的问题。同时,由于第二模式是根据小小区的全双工能力支持信息来确定的,因此考虑了小小区的全双工能力,因此也保证了通信质量。
第三模式中,小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输,也实现了小小区的全双工传输,并且考虑到回传链路上用于传输物理层信令的物理层资源可能不足,因此,小小区通过第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,缓解了用于传输物理层信令的物理层资源不足的问题。并且,与第二模式类似,由于第二下行物理信道无需占用基站与小小区之间的用于传输数据的下行物理信道的物理层资源,因此,节省了回传链路上用于传输数据的下行物理信道的物理资源,提高了数据传输效率,避免了资源浪费的问题。同时,由于第二模式是根据小小区的全双工能力支持信息来确定的,因此考虑了小小区的全 双工能力,因此也保证了通信质量。
此外,考虑到小小区可能不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,因此,还配置了第一模式,避免在小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送的情况下,小小区使用同一物理层资源在回传链路上接收的同时在接入链路上发送时可能造成的干扰。
因此,本发明实施例中,根据小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,综合确定合适的配置模式,即保证了通信质量,又能够避免资源浪费。
附图说明
图1为小小区与基站和无线终端通信方式的示意图;
图2为本发明实施例提供的无线通信系统的结构示意图;
图3为本发明实施例提供的LTE系统的结构示意图;
图4A为本发明实施例中第一模式的一种子帧配置方案的示意图;
图4B为本发明实施例中第二模式的一种子帧配置方案的示意图;
图4C为本发明实施例中第三模式的一种子帧配置方案的示意图;
图5为本发明实施例中基站配置小小区的模式的方式示意图;
图6为本发明实施例中小小区从第一模式切换到第二模式的子帧配置情况示意图;
图7为本发明实施例提供的第一种基站的结构示意图;
图8为本发明实施例提供的第二种基站的结构示意图;
图9为本发明实施例提供的第一种小小区的结构示意图;
图10为本发明实施例提供的第二种小小区的结构示意图;
图11为本发明实施例提供的第一种控制信道的配置方法的流程图;
图12为本发明实施例提供的第二种控制信道的配置方法的流程图。
具体实施方式
近期,斯坦福大学的一系列研究表明,可通过高级自干扰压制方法(advanced self-interference cancellation schemes)实现无线通信设备在同一个载波上的同时收发,即在同一载波上的全双工,本发明实施例中简称“全双工”。从物理层角度看,这使得物理层的吞吐量提高一倍;并且对媒体接入控制(Medium Access Control,MAC)的实现产生了革新性的影响,从而使得未来的无线通信系统能获得更高的吞吐量。
上述研究相关的文献包括:
文献1、由Jain M等在杂志MobiCom’11上发表的《实用且实时的全双工无线通信》([1]Jain M,Choi J,Kim T,Bharadia D,Seth S,Srinivasan K,Levis P,Katti S,Sinha P:“Practical,Real-time,Full Duplex Wireless”,MobiCom’11;
文献2、由Choi J等在杂志Mobicom’10上发表的《实现单信道、全双工无线通信》(Choi J,Jain M,Srinivasan K,Levis P,Katti S:“Achieving Single Channel,Full Duplex Wireless Communication”,Mobicom’10;
文献3、由Radunovic B、Gunawardena D、Key P和Proutiere A在链接http://research.microsoft.com/pubs/131336/main.pdf上发表的《重新考虑室内无线网络设计:低功率、低频率、全双工》(Radunovic B,Gunawardena D,Key P,Proutiere A:“Rethinking Indoor Wireless Mesh Design:Low Power,Low Frequency,Full-Duplex”)
文献4、由Everett E等在杂志Asilomar 2011上发表的《通过采用直接分集促生全双工无线通信》(Everett E,Duarte M,Dick C,Sabharwal A:“Empowering Full-Duplex Wireless Communication by Exploiting Directional Diversity”,Asilomar 2011)
文献5、由Achaleshwar Sahai等在Rice大学技术报告TREE1104上发表的《去除全双工的限制:设计和实时实现》(]Achaleshwar Sahai,Gaurav Patel and Ashutosh Sabharwal“Pushing the limits of Full-duplex:Design and Real-time  Implementation”,Rice university technical report TREE1104)
基于上述斯坦福大学的研究,若小小区实现了同一载波上的全双工通信,则诸如R-PDCCH的回传链路上的物理控制信道的传输不再是必要的。但是,并不是任何时候小小区都有能力实现全双工,这取决于小小区所处的无线通信环境、小小区的抗干扰能力等诸多因素。
有鉴于此,本发明实施例提供一种基站、小小区和子帧配置方法,用于解决上述在小小区的回传链路上采用额外的物理控制信道传输控制信息,造成资源浪费的问题,既能避免资源浪费,又能保证通信质量。
在本发明实施例中,小小区将自身的全双工能力支持信息发送给基站,该全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
基站根据收到的该全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式,该配置模式为下列模式中的一种:
第一模式:小小区通过回传链路上的第一下行物理信道接收基站发送的物理层信令,小小区的接入链路上除小小区的回传链路占用的物理层资源之外的其他物理层资源可用于小小区的下行传输;
第二模式:小小区通过回传链路上的第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
第三模式:小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
其中,第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令 的下行物理信道。
其中,第二模式中,小小区通过通过回传链路上的第二下行物理信道接收基站发送的物理层信令,而第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道,无需占用基站与小小区之间的用于传输数据的下行物理信道的物理层资源,因此,节省了回传链路上用于传输数据的下行物理信道的物理资源,提高了数据传输效率,避免了资源浪费的问题。同时,由于第二模式是根据小小区的全双工能力支持信息来确定的,因此考虑了小小区的全双工能力,因此也保证了通信质量。
第三模式中,小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输,也实现了小小区的全双工传输,并且考虑到回传链路上用于传输物理层信令的物理层资源可能不足,因此,小小区通过第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,缓解了用于传输物理层信令的物理层资源不足的问题。并且,与第二模式类似,由于第二下行物理信道无需占用基站与小小区之间的用于传输数据的下行物理信道的物理层资源,因此,节省了回传链路上用于传输数据的下行物理信道的物理资源,提高了数据传输效率,避免了资源浪费的问题。同时,由于第二模式是根据小小区的全双工能力支持信息来确定的,因此考虑了小小区的全双工能力,因此也保证了通信质量。
此外,考虑到小小区可能不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,因此,还配置了第一模式,避免在小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送的情况下,小小区使用同一物理层资源在回传链路上接收的同时在接入链路上发送时可能造成的干扰。
因此,本发明实施例中,根据小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,综合确定合适的配置模式,即保证 了通信质量,又能够避免资源浪费。
下面,结合附图对本发明实施例进行详细说明。
首先,为了便于对本发明实施例的理解,下面对本发明实施例的应用场景、相关概念加以介绍。
如前所述,在无线通信系统中,为了延伸基站的覆盖范围,引入了小小区。小小区位于传统的基站和无线终端之间,对无线终端与基站之间传输的数据进行中转。
如图2所示的无线通信系统20中,基站201与小小区202之间的无线链路称为“回传链路”(backhaul link),小小区202和无线终端203之间的无线链路称为“接入链路”(access link)。此外,无线通信系统20中还包括直接与基站201通信的无线终端204,该无线终端204与基站201之间的通信不需经过小小区202的中转。
为了示意清晰起见,图2中的无线通信系统20中仅示出了一个基站201、一个小小区202,以及一个无线终端203和一个无线终端204。但本领域技术人员应知晓,在一个无线通信系统中可包含一个或多个基站、一个或多个小小区,一个或多个无线终端203,以及一个或多个无线终端204。
其中,无线通信系统20的通信制式可包括但不限于:全球移动通信系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)、个人手持电话系统(Personal Handy-phone System,PHS),802.11系列协议规定的无线局域网(Wireless Local Network,WLAN)系统等。
其中,对于TDD LTE、FDD LTE或LTE-A等LTE系统,无线通信系统20中的基站201为演进节点B(evolved NodeB,eNodeB),小小区202可为中继节点(Relay),无线终端203和无线终端204为用户设备(User Equipment,UE),其中,当小小区202为中继节点时,无线终端203又称为“中继UE”(Relay UE),无线终端203又称为“宏UE(Macro UE)”,该LTE系统的结构如图3所示。前述的3GPP release10规定的无线通信系统即为一种LTE系统。
下面,对本发明实施例中的术语进行如下约定:
第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源,比如:LTE系统中的R-PDCCH信道、增强物理下行控制信道(Enhanced-Physical Downlink Control CHannel,E-PDCCH);
第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道,比如:LTE系统中的PDCCH信道。
下面,结合图2对本发明实施例提供的无线通信系统20进行详细介绍。
图2所示的无线通信系统20中,
小小区202,用于确定自身的全双工能力支持信息,该全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;并向基站201发送确定的该全双工能力支持信息;
基站201,用于接收小小区202发送的全双工能力支持信息,并根据接收的所述全双工能力支持信息,确定与小小区202之间的回传链路和小小区202的接入链路的配置模式,该配置模式为下列模式中的一种:
第一模式:小小区202通过回传链路上的第一下行物理信道接收基站201发送的物理层信令,小小区202的接入链路上除小小区202的回传链路占用的物理层资源之外的其他物理层资源可用于小小区202的下行传输;
第二模式:小小区202通过回传链路上的第二下行物理信道接收基站201 发送的物理层信令,小小区202的接入链路上的全部物理层资源均可用于小小区202的下行传输;
第三模式:小小区202通过回传链路上的第一下行物理信道和第二下行物理信道接收基站201发送的物理层信令,小小区202的接入链路上的全部物理层资源均可用于小小区202的下行传输。
其中,基站201为与小小区202存在无线链路连接的网络设备,比如:若无线通信系统20为LTE系统,则基站201可为该系统中的演进节点B(evolved NodeB,eNodeB);若无线通信系统20为WLAN系统,则基站201可为该系统中的接入点(Access Point,AP);若无线通信系统20为TD-SCDMA或WCDMA系统,则基站201可为该系统中的节点B(NodeB),或由无线网络控制器(Radio Network Controller,RNC)和NodeB组成的无线接入网设备;若无线通信系统20为GSM系统,则基站201可为该系统中的基站收发台(Base Transceiver Station,BTS),或由基站控制器(Base Station Controller,BSC)和BTS和组成的基站子系统(Base Station Subsystem,BSS)设备。
小小区202可为无线通信系统20中,与基站201通过无线链路连接,基站201通过其与无线终端通信的设备。
物理信道可用于传输物理层信令和数据,其中,数据包括物理层之上的高层的数据和高层的信令,高层信令作为物理层的数据在物理信道上传输。
基站201在确定上述配置模式后,可实现与小小区202之间的回传链路和小小区202的接入链路的配置模式的切换。
其中,从第一模式到第二模式或第三模式的切换可为半静态的,第二模式和第三模式之间的切换可为动态的。其中,“半静态”表示配置模式之间切换的周期不小于无线帧长度;“动态”表示配置模式之间切换的周期小于无线帧长度。
可选地,基站201可周期性地确定与小小区202之间的回传链路和小小区202的接入链路的配置模式;或
基站201在发送给小小区202的数据等待时延大于预设的等待时延阈值时,确定与小小区202之间的回传链路和小小区202的接入链路的配置模式。
基站201在确定与小小区202之间的回传链路和小小区202的接入链路的配置模式后,可选地,基站201向小小区202发送模式配置命令,该模式配置命令用于将基站201与小小区202之间的回传链路和小小区202的接入链路的配置模式,配置为确定的配置模式。
可选地,该模式配置命令可通过无线资源控制(Radio Resource Control,RRC)消息、媒体接入控制(Medium Access Control,MAC)信令或下行物理层信令发送。
比如:该模式配置命令通过RRC消息中的系统消息发送给小小区202,比如:对于LTE系统,可通过现有的R-PDCCH配置命令,或PDCCH配置命令,或E-PDCCH配置命令发送给小小区202。
再比如:该模式配置命令还可通过PDCCH、R-PDCCH、E-PDCCH携带的物理层信令发送给小小区202。
小小区202根据收到的该模式配置命令,配置基站201和小小区202之间的回传链路和小小区202的接入链路的配置模式。
可选地,小小区202可在收到该模式配置命令后,立即按照该模式配置命令配置基站201和小小区202之间的回传链路和小小区202的接入链路的配置模式,或者也可在收到该模式配置命令之后的预设的配置时延阈值后,根据该模式配置命令,配置基站201与小小区202之间的回传链路上的物理控制信道的配置模式。
可选地,基站201确定的配置模式针对小小区202的一个或多个子帧,则上述模式配置命令中可包括:该一个或多个子帧的标识信息;或该一个或多个子帧是预先指定的,上述模式配置命令中包括:激活或去激活该一个或多个子帧使用配置模式的激活信息。小小区202在收到该模式配置命令后,配置所述基站与所述小小区之间的回传链路上和所述小小区的接入链路上的 上述一个或多个子帧的配置模式。
可选地,该模式配置命令还可包括:基站201与小小区202之间的回传链路和小小区202的接入链路上的子帧配置信息;小小区202可在收到基站201发送的模式配置命令之后,根据该模式配置命令中的子帧配置信息配置自身的子帧;或
该模式配置命令还用于指示:小小区202将预先设置的子帧配置信息作为基站201与小小区202之间的回传链路和小小区202的接入链路上的子帧配置信息;小小区202在收到基站201发送的该模式配置命令之后,根据上述预先设置的子帧配置信息配置自身的子帧。
可选地,在小小区202根据收到的模式配置命令中的子帧配置信息,或预先设置的子帧配置信息,配置自身的子帧之后,通过RRC消息、MAC信令或下行物理控制信道,将自身的接入链路上的子帧配置信息发送给与自身通信的无线终端。
可选地,该子帧配置信息可针对小小区202的回传链路上的一个或多个子帧,以及接入链路上的一个或多个子帧。因此,上述模式配置命令中的子帧配置信息或预先设置的子帧配置信息中,可包括对于多个子帧的不同的配置信息。
后面的示例五中,以LTE系统为例,给出了子帧配置信息的实现方案。
下面介绍基站201确定配置模式的可选方案。
需要说明的是,基站确定配置模式的方案可有多种,不限于本发明实施例中提到的方案,只要能够避免在回传链路上采用额外的物理控制信道,占用用于传输数据的物理层资源造成的资源浪费,又能保证通信质量,都应视为本发明实施例中基站201确定配置模式的可行方案,应视为在本专利的保护范围内。
其中,基站201可根据因素1、接收的全双工能力支持信息,以及下列因素中的至少一个,确定与小小区202之间的回传链路和小小区202的接入链 路的配置模式:
因素2、基站201检测到的与小小区202之间的回传链路上的物理层资源的使用情况;
因素3、基站201是否收到小小区202发送的第一事件,所述第一事件用于指示小小区202的自干扰取消增益大于预设的自干扰取消增益门限;
其中,自干扰取消增益用于表征小小区202的接收机对小小区202发射的信号造成的干扰进行取消的能力,值越大干扰取消能力越强,抗干扰能力越强。
因素4、小小区202的使用情况信息。
小小区202可在自身的自干扰取消增益大于预设的自干扰取消增益门限时向基站201发送第一事件;小小区202也可向基站201发送自身的使用情况信息。
其中,小小区202的使用情况信息可包括下列信息中的一项或多项:
当前与小小区202通信的无线终端的数量,比如LTE系统中,通过小小区202与基站201通信的Relay UE的数量;
小小区202下行缓存的数据的数据量;
当前与小小区202通信的无线终端反馈的所要达到的通信质量指标的信息,比如:业务质量等级标识(Quality of Service Class INdentifier,QCI);
QCI要求越高,要达到该QCI要求,无线终端下行数据传输需要占用的下行物理层资源越多,则期望没有诸如LTE系统中的R-PDCCH的第一下行物理信道占用用于传输数据的下行物理信道,比如PDSCH信道的物理层资源;
若切换到第二模式,小小区202需要降低的接入链路上的功率值,若切换到第二模式,则小小区202可能需要降低接入链路上的发射功率值,以减小对其回传链路的干扰,这可能造成小小区202的接入链路上的通信质量的降低;
若切换到第三模式,小小区202需要降低的接入链路上的功率值,与切换到第二模式类似,若切换到第三模式,小小区202也可能需要降低接入链路上的发射功率值,以减小对其回传链路的干扰,这可能造成小小区202的接入链路上的通信质量的降低;
若切换到第二模式,当前与小小区202通信的无线终端中需要切换到其他小区的无线终端的数量,由于切换到第二模式后,小小区202的接入链路对回传链路的干扰会加大,可能造成小小区202覆盖边缘的无线终端无法通过小小区202与基站201通信,则这些无线终端可能需要切换到其他基站或小小区进行通信;
若切换到第三模式,当前与小小区202通信的无线终端中需要切换到其他小区的无线终端的数量,与切换到第二模式类似,若切换到第三模式,小小区202的接入链路对回传链路的干扰会加大,可能造成小小区202覆盖边缘的无线终端无法通过小小区202与基站201通信,则这些无线终端可能需要切换到其他基站或小小区进行通信;
小小区202的下行覆盖范围信息,比如小小区202的覆盖半径;
小小区202的下行发射功率值。
下面,通过示例一~示例四以举例的方式说明基站201根据上述因素1~因素4确定配置模式的可选实现方式。
【示例一】
示例一中,基站201根据因素1和因素2确定配置模式。
可选地,若全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且基站201与小小区202之间的回传链路上的用于传输下行数据的物理层资源不足时,确定配置模式为第二模式或第三模式。
比如:基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与 小小区202之间的回传链路上的用于传输下行数据的物理层资源不足,但检测到的与小小区202之间的回传链路上的用于传输下行物理层信令的物理层资源充足时,确定配置模式为第二模式;或
基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与小小区202之间的回传链路上的用于传输下行数据和用于传输下行物理层信令的物理层资源均不足时,确定配置模式为第三模式;或
基站201在接收的全双工能力支持信息指示小小区202不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送时,确定配置模式为第一模式。
上述示例一的可选实现方案如表1所示:
表1
Figure PCTCN2015078277-appb-000001
【示例二】
示例二中,基站201根据因素1和因素3确定配置模式。
基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到小小区202发送的第一事件时,确定配置模式为第二模式或第三模式。
比如:基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区 202发送的第一事件,且检测到的与小小区202之间的回传链路上的用于传输下行物理层信令的下行物理信道的物理层资源充足时,确定配置模式为第二模式;或
基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区202发送的第一事件,且检测到的与小小区202之间的回传链路上的用于传输下行物理层信令的物理层资源不足时,确定配置模式为第三模式;或
基站201在接收的全双工能力支持信息指示小小区202不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送时,确定配置模式为第一模式。
上述示例二的可选实现方案如表2所示:
表2
Figure PCTCN2015078277-appb-000002
【示例三】
示例三中,基站201根据因素1~因素3确定配置模式。
基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到小小区202发送的第一事件,并且检测到的与小小区202之间的回传链路上的用于传输下行数据的物理层资源不足时,确定配置模式为第二模式或第三模式。
比如:基站201在接收的全双工能力支持信息指示小小区202支持使用 同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区202发送的第一事件,并且检测到的与小小区202之间的回传链路上的用于传输下行数据的物理层资源不足时,检测到的与小小区202之间的回传链路上的用于传输下行物理层信令的下行物理信道的物理层资源充足时,确定配置模式为第二模式;或
基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区202发送的第一事件,并且检测到的与小小区202之间的回传链路上的用于传输下行数据的物理层资源和用于传输下行物理层信令的物理层资源均不足,确定配置模式为第三模式;或
基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,但未收到小小区202发送的第一事件时,确定配置模式为第一模式;或
基站201在接收的全双工能力支持信息指示小小区202不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送时,确定配置模式为第一模式。
上述示例三的可选实现方案如表3所示:
表3
Figure PCTCN2015078277-appb-000003
【示例四】
示例四中,基站201根据因素1和因素4确定配置模式。
基站201在接收的全双工能力支持信息指示小小区202支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且下列一个或多个条件满足时,确定配置模式为第二模式或第三模式:
条件一、当前与小小区202通信的无线终端的数量大于预设的“正在通信的无线终端数量阈值”;
条件二、小小区202下行缓存的数据的数据量大于预设的“下行缓存数据量阈值”;
条件三、当前与小小区202通信的无线终端反馈的QCI高于预设的“QCI阈值”
条件四、若切换到第二模式,小小区202需要降低的接入链路上的功率值小于预设的“第二模式功率降低阈值”;
条件五、若切换到第三模式,小小区202需要降低的接入链路上的功率值小于预设的“第三模式功率降低阈值”;
条件六、若切换到第二模式,当前与小小区202通信的无线终端中需要切换到其他小区的无线终端的数量小于预设的“第二模式切换终端数量阈值”;
条件七、若切换到第三模式,当前与小小区202通信的无线终端中需要切换到其他小区的无线终端的数量小于预设的“第三模式切换终端数量阈值”;
条件八、小小区202的下行覆盖半径大于预设的“小小区下行覆盖半径阈值”;
条件九、小小区202的下行发射功率值大于预设的“小小区下行发射功率阈值”。
比如:基站201在接收的全双工能力支持信息指示小小区202支持使用 同一物理层资源在回传链路上接收的同时在接入链路上发送,且满足上述一个或多个条件时,
若与小小区202之间的回传链路上的用于传输下行物理层信令的物理层资源充足,则基站201可确定配置模式为第二模式;
若与小小区202之间的回传链路上的用于传输下行物理层信令的物理层资源不足,则基站201可确定配置模式为第三模式。
以上,介绍了基站201确定配置模式的可选实现方案。下面,介绍基站201控制小小区202切换配置模式的可选方式。
【示例五】
示例五中,以无线通信系统20为LTE系统为例。说明子帧配置信息的实现方案。
示例五中,基站为eNodeB,小小区为中继节点(Relay)。为了描述简单起见,称“支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送”的Relay,为全双工(Full Duplex,FD)Relay(FD Relay)。
第一下行物理信道为R-PDCCH和/或E-PDCCH;第二下行物理信道为PDCCH;
第一模式为:Relay通过回传链路上的R-PDCCH和/或E-PDCCH接收eNodeB发送的物理层信令,Relay的接入链路上的子帧为多播广播单频点网络(Multicast Broadcast Single Frequency Network,MBSFN)子帧;
第二模式为:Relay通过回传链路上的PDCCH接收eNodeB发送的物理层信令,Relay的接入链路上的子帧为普通子帧,即上行子帧或下行子帧,不包括特殊子帧;
第三模式为:Relay通过回传链路上的R-PDCCH和/或E-PDCCH,以及PDCCH接收eNodeB发送的物理层信令,Relay的接入链路上的子帧为普通子帧。
可选地,若eNodeB确定的配置模式为第一模式,则
子帧配置信息用于指示:
在eNodeB与Relay之间的回传链路上的下行子帧中,前三个OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块(Physical Resource Block,PRB)用于物理层信令传输,比如:配置为R-PDCCH或E-PDCCH,其余PRB可用于数据传输,比如:配置为PDSCH。
在Relay的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,比如:配置为PDCCH,第三个OFDM符号和最后一个OFDM符号作为传输间隙(Transmission gap),其余OFDM符号空置。
第一模式的一种子帧配置方案可如图4A所示。
若eNodeB确定的配置模式为第二模式,则
子帧配置信息用于指示:
在eNodeB与Relay之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,比如:配置为PDCCH,其余OFDM符号可用于数据传输,比如:配置为PDSCH;
在Relay的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,比如:配置为PDCCH,其余OFDM符号可用于数据传输,比如:配置为PDSCH。
第二模式的一种子帧配置方案可如图4B所示。
若eNodeB确定的配置模式为第三模式,则
子帧配置信息用于指示:
在eNodeB与Relay之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,比如:配置为PDCCH,其余OFDM符号用于数据传输和物理层信令传输,比如:部分物理层资源配置PDSCH,其他物理层资源配置E-PDCCH或R-PDCCH;
在Relay的接入链路上的下行子帧中,前三个OFDM符号可用于物理层 信令传输,比如:配置为PDCCH,其余OFDM符号可用于数据传输,比如:配置为PDSCH。
第三模式的一种子帧配置方案可如图4C所示。
如图5所示,eNodeB可在10ms的无线帧的#2子帧接收Relay发送的全双工能力支持信息,图5中,“U”表示上行子帧、“D”表示下行子帧、“S”表示特殊子帧。在#8子帧向Relay发送模式配置命令。
图6示出了从第一模式切换到第二模式,回传链路和接入链路上的子帧配置情况,其中,左侧部分为第一模式下的子帧配置情况,右侧部分为第二模式下的子帧配置情况,加了斜线的部分用于指示通过模式切换增加的可用物理层资源。从图6中可以看出,在Relay为FD Relay时,可通过将子帧配置模式切换为第二模式,增加用于数据传输和物理层信令传输的物理层资源,提高了系统资源利用率,避免了资源浪费。
基于同一发明构思,本发明实施例还提供了基站、小小区和控制信道的配置方法,由于其解决问题的原理与本发明实施例提供的无线通信系统相同,其实施可参考该系统的实施,重复之处不再赘述。
图7为本发明实施例提供的第一种基站的结构示意图。如图7所示,该基站包括:
收发模块701,用于接收与基站通信的小小区发送的全双工能力支持信息,全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
处理模块702,用于根据收发模块701接收的全双工能力支持信息,确定基站与小小区之间的回传链路和小小区的接入链路的配置模式,配置模式为下列模式中的一种:
第一模式:小小区通过回传链路上的第一下行物理信道接收基站发送的物理层信令,小小区的接入链路上除小小区的回传链路占用的物理层资源之 外的其他物理层资源可用于小小区的下行传输;
第二模式:小小区通过回传链路上的第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
第三模式:小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
其中,第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道。
可选地,处理模块702具体用于:
根据收发模块701接收的全双工能力支持信息,以及下列因素中的至少一个,确定基站与小小区之间的回传链路和小小区的接入链路的配置模式:
处理模块702检测到的与小小区之间的回传链路上的物理层资源的使用情况;
收发模块701是否收到小小区发送的第一事件,第一事件用于指示小小区的自干扰取消增益大于预设的自干扰取消增益门限;
小小区的使用情况信息。
可选地,处理模块702具体用于:
在收发模块701接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且处理模块702检测到的与小小区之间的回传链路上的用于传输下行数据的物理层资源不足时,确定
配置模式为第二模式或第三模式。
可选地,处理模块702具体用于:
在收发模块701接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且处理模块702检测到的与小小区之间的回传链路上的用于传输下行数据的物理层资源不足,但检测到的与小小区之间的回传链路上的用于传输下行物理层信令的物理层资源充足时,确定配置模式为第二模式;或
在收发模块701接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且处理模块702检测到的与小小区之间的回传链路上的用于传输下行数据和用于传输下行物理层信令的物理层资源均不足时,确定配置模式为第三模式。
可选地,处理模块702具体用于:
在收发模块701接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到小小区发送的第一事件时,确定
配置模式为第二模式或第三模式。
可选地,处理模块702具体用于:
在收发模块701接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区发送的第一事件,且处理模块702检测到的与小小区之间的回传链路上的用于传输下行物理层信令的下行物理信道的物理层资源充足时,确定配置模式为第二模式;或
在接收模块接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区发送的第一事件,且处理模块702检测到的与小小区之间的回传链路上的用于传输下行物理层信令的物理层资源不足时,确定配置模式为第三模式。
可选地,小小区的使用情况信息包括下列信息中的一项或多项:
当前与小小区通信的无线终端的数量;
小小区下行缓存的数据的数据量;
当前与小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到第二模式,小小区需要降低的接入链路上的功率值;
若切换到第三模式,小小区需要降低的接入链路上的功率值;
若切换到第二模式,当前与小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
若切换到第三模式,当前与小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
小小区的下行覆盖范围信息;
小小区的下行发射功率值。
可选地,处理模块702具体用于:
在收发模块701接收的全双工能力支持信息指示小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,确定配置模式为第一模式。
可选地,处理模块702还用于:
在根据收发模块701接收的全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式之后,
通过收发模块701向小小区发送模式配置命令,模式配置命令用于将基站与小小区之间的回传链路和小小区的接入链路的配置模式,配置为确定的配置模式。
可选地,模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
可选地,模式配置命令还包括:基站与小小区之间的回传链路和小小区的接入链路上的子帧配置信息;或
模式配置命令还用于指示:小小区将预先设置的子帧配置信息作为基站 与小小区之间的回传链路和小小区的接入链路上的子帧配置信息。
可选地,小小区和基站所在的无线通信系统为长期演进LTE系统;
第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或增强物理下行控制信道E-PDCCH;
第二下行物理信道为物理下行控制信道PDCCH;
第一模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
第二模式为:小小区通过回传链路上的PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧;
第三模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧。
可选地,若处理模块702确定的配置模式为第一模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
可选地,若处理模块702确定的配置模式为第二模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,若基站确定的配置模式为第三模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,配置模式针对小小区的一个或多个子帧;
模式配置命令中包括:一个或多个子帧的标识信息;或
一个或多个子帧是预先指定的,模式配置命令中包括:激活或去激活一个或多个子帧使用配置模式的激活信息。
可选地,处理模块702具体用于:
周期性地确定基站与小小区之间的回传链路和小小区的接入链路的配置模式;或
在收发模块701发送给小小区的数据等待时延大于预设的等待时延阈值时,确定基站与小小区之间的回传链路和小小区的接入链路的配置模式。
可选地,从第一模式到第二模式或第三模式的切换是半静态的,第二模式和第三模式之间的切换是动态的;
半静态,表示配置模式之间切换的周期不小于无线帧长度;
动态,表示配置模式之间切换的周期小于无线帧长度。
该基站的其他可选实现方式可参考前述的基站201,重复之处不再赘述。
图8为本发明实施例提供的第二种基站的结构示意图。如图8所示,该基站包括:
收发器801,用于接收与基站通信的小小区发送的全双工能力支持信息,全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链 路上接收的同时在接入链路上发送;
处理器802,用于根据收发器801接收的全双工能力支持信息,确定基站与小小区之间的回传链路和小小区的接入链路的配置模式,配置模式为下列模式中的一种:
第一模式:小小区通过回传链路上的第一下行物理信道接收基站发送的物理层信令,小小区的接入链路上除小小区的回传链路占用的物理层资源之外的其他物理层资源可用于小小区的下行传输;
第二模式:小小区通过回传链路上的第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
第三模式:小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
其中,第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道。
收发器801的其他可选实现方式可参考前述的收发模块701,处理器802的其他可选实现方式可参考前述的处理模块702,该基站的其他可选实现方式可参考前述的基站201,重复之处不再赘述。
图9为本发明实施例提供的第一种小小区的结构示意图。如图9所示,该小小区包括:
处理模块901,用于确定小小区的全双工能力支持信息,全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
收发模块902,用于向基站发送确定的全双工能力支持信息,指示基站根据全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式;
其中,配置模式为下列模式中的一种:
第一模式:小小区通过回传链路上的第一下行物理信道接收基站发送的物理层信令,小小区的接入链路上除小小区的回传链路占用的物理层资源之外的其他物理层资源可用于小小区的下行传输;
第二模式:小小区通过回传链路上的第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
第三模式:小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
其中,第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
第二下行物理信道为传统的用于在基站和无线终端之间传输下行物理层信令的下行物理信道。
可选地,收发模块902还用于:在向基站发送确定的全双工能力支持信息之后,接收基站发送的模式配置命令,模式配置命令用于指示基站与小小区之间的回传链路和小小区的接入链路的配置模式;
处理模块901还用于:根据收发模块902接收的模式配置命令,配置基站与小小区之间的回传链路和小小区的接入链路的配置模式。
可选地,收发模块902还用于:在接收基站发送的模式配置命令之前,
在小小区的自干扰取消增益大于预设的自干扰取消增益门限时,向基站发送第一事件,和/或向基站发送小小区的使用情况信息,指示基站:
根据全双工能力支持信息,以及下列因素中的至少一种,确定与小小区之间的回传链路和小小区的接入链路的配置模式:
基站是否收到第一事件;
小小区的使用情况信息。
可选地,小小区的使用情况信息包括下列信息中的一项或多项:
当前与小小区通信的无线终端的数量;
小小区下行缓存的数据的数据量;
当前与小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到第二模式,小小区需要降低的接入链路上的功率值;
若切换到第三模式,小小区需要降低的接入链路上的功率值;
若切换到第二模式,当前与小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
若切换到第三模式,当前与小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
小小区的下行覆盖范围信息;
小小区的下行发射功率值。
可选地,模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
可选地,模式配置命令还包括:基站与小小区之间的回传链路和小小区的接入链路上的子帧配置信息;处理模块901还用于:在收发模块902接收基站发送的模式配置命令之后,根据模式配置命令中的子帧配置信息配置小小区的子帧;或
模式配置命令还用于指示:小小区将预先设置的子帧配置信息作为基站与小小区之间的回传链路和小小区的接入链路上的子帧配置信息;处理模块901还用于:在收发模块902接收基站发送的模式配置命令之后,根据预先设置的子帧配置信息配置小小区的子帧。
可选地,收发模块902还用于:在处理模块901根据子帧配置信息配置小小区的子帧之后,
通过RRC消息、MAC信令或下行物理控制信道,将小小区的接入链路上的子帧配置信息发送给与小小区通信的无线终端。
可选地,小小区和基站所在的无线通信系统为长期演进LTE系统;
第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或E-PDCCH;
第二下行物理信道为物理下行控制信道PDCCH;
第一模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
第二模式为:小小区通过回传链路上的PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧;
第三模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧。
可选地,若基站确定的配置模式为第一模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
可选地,若基站确定的配置模式为第二模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,若基站确定的配置模式为第三模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,处理模块901具体用于:
在收发模块902收到模式配置命令后的预设的配置时延阈值后,根据模式配置命令,配置基站与小小区之间的回传链路上的物理控制信道的配置模式。
可选地,配置模式针对小小区的一个或多个子帧;
模式配置命令中包括:一个或多个子帧的标识信息;或
一个或多个子帧是预先指定的,模式配置命令中包括:激活或去激活一个或多个子帧使用配置模式的激活信息;
处理模块901具体用于:
根据模式配置命令,配置基站与小小区之间的回传链路上和小小区的接入链路上的一个或多个子帧的配置模式。
可选地,从第一模式到第二模式或第三模式的切换是半静态的,第二模式和第三模式之间的切换是动态的;
半静态,表示配置模式之间切换的周期不小于无线帧长度;
动态,表示配置模式之间切换的周期小于无线帧长度。
该小小区的其他可选实现方式可参考前述的小小区202,重复之处不再赘 述。
图10为本发明实施例提供的第二种小小区的结构示意图。如图10所示,该小小区包括:
处理器1001,用于确定小小区的全双工能力支持信息,全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
收发器1002,用于向基站发送确定的全双工能力支持信息,指示基站根据全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式;
其中,配置模式为下列模式中的一种:
第一模式:小小区通过回传链路上的第一下行物理信道接收基站发送的物理层信令,小小区的接入链路上除小小区的回传链路占用的物理层资源之外的其他物理层资源可用于小小区的下行传输;
第二模式:小小区通过回传链路上的第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
第三模式:小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
其中,第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
第二下行物理信道为传统的用于在基站和无线终端之间传输下行物理层信令的下行物理信道。
其中,处理器1001的实现可参考前述的处理模块901,收发器1002的实现可参考前述的收发器902,该小小区的其他可选实现方式可参考前述的小小 区202,重复之处不再赘述。
图11为本发明实施例提供的第一种控制信道的配置方法的流程图。如图11所示,该方法包括如下步骤:
S1101:基站接收与基站通信的小小区发送的全双工能力支持信息,全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
S1102:基站根据接收的全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式,配置模式为下列模式中的一种:
第一模式:小小区通过回传链路上的第一下行物理信道接收基站发送的物理层信令,小小区的接入链路上除小小区的回传链路占用的物理层资源之外的其他物理层资源可用于小小区的下行传输;
第二模式:小小区通过回传链路上的第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
第三模式:小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
其中,第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道。
可选地,步骤S1102基站根据接收的全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式,包括:
基站根据接收的全双工能力支持信息,以及下列因素中的至少一个,确定与小小区之间的回传链路和小小区的接入链路的配置模式:
基站检测到的与小小区之间的回传链路上的物理层资源的使用情况;
基站是否收到小小区发送的第一事件,第一事件用于指示小小区的自干扰取消增益大于预设的自干扰取消增益门限;
小小区的使用情况信息。
可选地,步骤S1102基站根据接收的全双工能力支持信息,确定在与小小区之间的回传链路和小小区的接入链路的配置模式,包括:
基站在接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与小小区之间的回传链路上的用于传输下行数据的物理层资源不足时,确定
配置模式为第二模式或第三模式。
可选地,步骤S1102基站根据接收的全双工能力支持信息,确定在与小小区之间的回传链路和小小区的接入链路的配置模式,包括:
基站在接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与小小区之间的回传链路上的用于传输下行数据的物理层资源不足,但检测到的与小小区之间的回传链路上的用于传输下行物理层信令的物理层资源充足时,确定配置模式为第二模式;或
基站在接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与小小区之间的回传链路上的用于传输下行数据和用于传输下行物理层信令的物理层资源均不足时,确定配置模式为第三模式。
可选地,步骤S1102基站根据接收的全双工能力支持信息,确定在与小小区之间的回传链路和小小区的接入链路的配置模式,包括:
基站在接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到小小区发送的第一事件时,确定
配置模式为第二模式或第三模式。
可选地,步骤S1102基站根据接收的全双工能力支持信息,确定在与小小区之间的回传链路上物理控制信道的配置模式,包括:
基站在接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区发送的第一事件,且检测到的与小小区之间的回传链路上的用于传输下行物理层信令的下行物理信道的物理层资源充足时,确定配置模式为第二模式;或
基站在接收的全双工能力支持信息指示小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到小小区发送的第一事件,且检测到的与小小区之间的回传链路上的用于传输下行物理层信令的物理层资源不足时,确定配置模式为第三模式。
可选地,小小区的使用情况信息包括下列信息中的一项或多项:
当前与小小区通信的无线终端的数量;
小小区下行缓存的数据的数据量;
当前与小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到第二模式,小小区需要降低的接入链路上的功率值;
若切换到第三模式,小小区需要降低的接入链路上的功率值;
若切换到第二模式,当前与小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
若切换到第三模式,当前与小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
小小区的下行覆盖范围信息;
小小区的下行发射功率值。
可选地,步骤S1102基站根据接收的全双工能力支持信息,确定在与小小区之间的回传链路和小小区的接入链路的配置模式,包括:
基站在接收的全双工能力支持信息指示小小区不支持使用同一物理层资 源在回传链路上接收的同时在接入链路上发送,确定配置模式为第一模式。
可选地,在步骤S1102基站根据接收的全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式之后,该方法还包括:
基站向小小区发送模式配置命令,模式配置命令用于将基站与小小区之间的回传链路和小小区的接入链路的配置模式,配置为确定的配置模式。
可选地,模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
可选地,模式配置命令还包括:基站与小小区之间的回传链路和小小区的接入链路上的子帧配置信息;或
模式配置命令还用于指示:小小区将预先设置的子帧配置信息作为基站与小小区之间的回传链路和小小区的接入链路上的子帧配置信息。
可选地,小小区和基站所在的无线通信系统为长期演进LTE系统;
第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或增强物理下行控制信道E-PDCCH;
第二下行物理信道为物理下行控制信道PDCCH;
第一模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
第二模式为:小小区通过回传链路上的PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧;
第三模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧。
可选地,若步骤S1102中基站确定的配置模式为第一模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个正交频分复用 OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
可选地,若步骤S1102中基站确定的配置模式为第二模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,若步骤S1102中基站确定的配置模式为第三模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,配置模式针对小小区的一个或多个子帧;
模式配置命令中包括:一个或多个子帧的标识信息;或
一个或多个子帧是预先指定的,模式配置命令中包括:激活或去激活一个或多个子帧使用配置模式的激活信息。
可选地,步骤S1102基站根据接收的全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式,包括:
基站周期性地确定与小小区之间的回传链路和小小区的接入链路的配置模式;或
基站在发送给小小区的数据等待时延大于预设的等待时延阈值时,确定与小小区之间的回传链路和小小区的接入链路的配置模式。
可选地,从第一模式到第二模式或第三模式的切换是半静态的,第二模式和第三模式之间的切换是动态的;
半静态,表示配置模式之间切换的周期不小于无线帧长度;
动态,表示配置模式之间切换的周期小于无线帧长度。
该方法的其他可选实现方式可参考前述的基站201的处理,重复之处不再赘述。
图12为本发明实施例提供的第二种控制信道的配置方法的流程图。如图12所示,该方法包括如下步骤:
S1201:小小区确定自身的全双工能力支持信息,全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
S1202:小小区向基站发送确定的全双工能力支持信息,指示基站根据全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式;
其中,配置模式为下列模式中的一种:
第一模式:小小区通过回传链路上的第一下行物理信道接收基站发送的物理层信令,小小区的接入链路上除小小区的回传链路占用的物理层资源之外的其他物理层资源可用于小小区的下行传输;
第二模式:小小区通过回传链路上的第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
第三模式:小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输;
其中,第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
第二下行物理信道为传统的用于在基站和无线终端之间传输下行物理层信令的下行物理信道。
可选地,在步骤S1202小小区向基站发送确定的全双工能力支持信息之后,方法还包括:
小小区接收基站发送的模式配置命令,模式配置命令用于指示基站与小小区之间的回传链路和小小区的接入链路的配置模式;
小小区根据模式配置命令,配置基站与小小区之间的回传链路和小小区的接入链路的配置模式。
可选地,在小小区接收基站发送的模式配置命令之前,还包括:
小小区在自身的自干扰取消增益大于预设的自干扰取消增益门限时,向基站发送第一事件,和/或小小区向基站发送小小区的使用情况信息,指示基站
根据全双工能力支持信息,以及下列因素中的至少一种,确定与小小区之间的回传链路和小小区的接入链路的配置模式:
基站是否收到第一事件;
小小区的使用情况信息。
可选地,小小区的使用情况信息包括下列信息中的一项或多项:
当前与小小区通信的无线终端的数量;
小小区下行缓存的数据的数据量;
当前与小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
若切换到第二模式,小小区需要降低的接入链路上的功率值;
若切换到第三模式,小小区需要降低的接入链路上的功率值;
若切换到第二模式,当前与小小区通信的无线终端中需要切换到其他小 区的无线终端的数量;
若切换到第三模式,当前与小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
小小区的下行覆盖范围信息;
小小区的下行发射功率值。
可选地,模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
可选地,模式配置命令还包括:基站与小小区之间的回传链路和小小区的接入链路上的子帧配置信息;在小小区接收基站发送的模式配置命令之后,还包括:小小区根据模式配置命令中的子帧配置信息配置自身的子帧;或
模式配置命令还用于指示:小小区将预先设置的子帧配置信息作为基站与小小区之间的回传链路和小小区的接入链路上的子帧配置信息;在小小区接收基站发送的模式配置命令之后,还包括:小小区根据预先设置的子帧配置信息配置自身的子帧。
可选地,在小小区根据子帧配置信息配置自身的子帧之后,方法还包括:
小小区通过RRC消息、MAC信令或下行物理控制信道,将自身的接入链路上的子帧配置信息发送给与自身通信的无线终端。
可选地,小小区和基站所在的无线通信系统为长期演进LTE系统;
第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或E-PDCCH;
第二下行物理信道为物理下行控制信道PDCCH;
第一模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
第二模式为:小小区通过回传链路上的PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧;
第三模式为:小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及 和PDCCH接收基站发送的物理层信令,小小区的接入链路上的子帧为普通子帧。
可选地,若基站确定的配置模式为第一模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
在小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
可选地,若基站确定的配置模式为第二模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,若基站确定的配置模式为第三模式,则
子帧配置信息用于指示:
在基站与小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
在小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
可选地,小小区根据模式配置命令,配置基站与小小区之间的回传链路上的物理控制信道的配置模式,包括:
小小区在收到模式配置命令后的预设的配置时延阈值后,根据模式配置 命令,配置基站与小小区之间的回传链路上的物理控制信道的配置模式。
可选地,配置模式针对小小区的一个或多个子帧;
模式配置命令中包括:一个或多个子帧的标识信息;或
一个或多个子帧是预先指定的,模式配置命令中包括:激活或去激活一个或多个子帧使用配置模式的激活信息。
小小区根据模式配置命令,配置基站与小小区之间的回传链路和小小区的接入链路的配置模式,包括:
小小区根据模式配置命令,配置基站与小小区之间的回传链路上和小小区的接入链路上的一个或多个子帧的配置模式。
可选地,从第一模式到第二模式或第三模式的切换是半静态的,第二模式和第三模式之间的切换是动态的;
半静态,表示配置模式之间切换的周期不小于无线帧长度;
动态,表示配置模式之间切换的周期小于无线帧长度。
综上,在本发明实施例中,小小区将自身的全双工能力支持信息发送给基站,该全双工能力支持信息用于指示小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;基站根据收到的该全双工能力支持信息,确定与小小区之间的回传链路和小小区的接入链路的配置模式,该配置模式为上述第一模式、第二模式或第三模式中的一种。
其中,第二模式中,小小区通过通过回传链路上的第二下行物理信道接收基站发送的物理层信令,而第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道,无需占用基站与小小区之间的用于传输数据的下行物理信道的物理层资源,因此,节省了回传链路上用于传输数据的下行物理信道的物理资源,提高了数据传输效率,避免了资源浪费的问题。同时,由于第二模式是根据小小区的全双工能力支持信息来确定的,因此考虑了小小区的全双工能力,因此也保证了通信质量。
第三模式中,小小区通过回传链路上的第一下行物理信道和第二下行物 理信道接收基站发送的物理层信令,小小区的接入链路上的全部物理层资源均可用于小小区的下行传输,也实现了小小区的全双工传输,并且考虑到回传链路上用于传输物理层信令的物理层资源可能不足,因此,小小区通过第一下行物理信道和第二下行物理信道接收基站发送的物理层信令,缓解了用于传输物理层信令的物理层资源不足的问题。并且,与第二模式类似,由于第二下行物理信道无需占用基站与小小区之间的用于传输数据的下行物理信道的物理层资源,因此,节省了回传链路上用于传输数据的下行物理信道的物理资源,提高了数据传输效率,避免了资源浪费的问题。同时,由于第二模式是根据小小区的全双工能力支持信息来确定的,因此考虑了小小区的全双工能力,因此也保证了通信质量。
此外,考虑到小小区可能不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,因此,还配置了第一模式,避免在小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送的情况下,小小区使用同一物理层资源在回传链路上接收的同时在接入链路上发送时可能造成的干扰。
因此,本发明实施例中,根据小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,综合确定合适的配置模式,即保证了通信质量,又能够避免资源浪费。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程 和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (64)

  1. 一种基站,其特征在于,包括:
    收发模块,用于接收与所述基站通信的小小区发送的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
    处理模块,用于根据所述收发模块接收的所述全双工能力支持信息,确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,所述配置模式为下列模式中的一种:
    第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
    第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
    所述第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道。
  2. 如权利要求1所述的基站,其特征在于,所述处理模块具体用于:
    根据所述收发模块接收的所述全双工能力支持信息,以及下列因素中的至少一个,确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式:
    所述处理模块检测到的与所述小小区之间的回传链路上的物理层资源的使用情况;
    所述收发模块是否收到所述小小区发送的第一事件,所述第一事件用于指示所述小小区的自干扰取消增益大于预设的自干扰取消增益门限;
    所述小小区的使用情况信息。
  3. 如权利要求2所述的基站,其特征在于,所述处理模块具体用于:
    在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足时,确定
    所述配置模式为所述第二模式或所述第三模式。
  4. 如权利要求3所述的基站,其特征在于,所述处理模块具体用于:
    在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足,但检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源充足时,确定所述配置模式为所述第二模式;或
    在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行数据和用于传输下行物理层信令的物理层资源均不足时,确定所述配置模式为所述第三模式。
  5. 如权利要求2所述的基站,其特征在于,所述处理模块具体用于:
    在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到所述小小区发送的第一事件时,确定
    所述配置模式为所述第二模式或所述第三模式。
  6. 如权利要求5所述的基站,其特征在于,所述处理模块具体用于:
    在所述收发模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的下行物理信道的物理层资源充足时,确定所述配置模式为所述第二模式;或
    在所述接收模块接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且所述处理模块检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源不足时,确定所述配置模式为所述第三模式。
  7. 如权利要求2~6任一项所述的基站,其特征在于,所述小小区的使用情况信息包括下列信息中的一项或多项:
    当前与所述小小区通信的无线终端的数量;
    所述小小区下行缓存的数据的数据量;
    当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
    若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    所述小小区的下行覆盖范围信息;
    所述小小区的下行发射功率值。
  8. 如权利要求1~7任一项所述的基站,其特征在于,所述处理模块具体 用于:
    在所述收发模块接收的所述全双工能力支持信息指示所述小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,确定所述配置模式为所述第一模式。
  9. 如权利要求1~8任一项所述的基站,其特征在于,所述处理模块还用于:
    在根据所述收发模块接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式之后,
    通过所述收发模块向所述小小区发送模式配置命令,所述模式配置命令用于将所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,配置为确定的所述配置模式。
  10. 如权利要求9所述的基站,其特征在于,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
  11. 如权利要求9或10所述的基站,其特征在于,
    所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;或
    所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息。
  12. 如权利要求11所述的基站,其特征在于,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
    所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或增强物理下行控制信道E-PDCCH;
    所述第二下行物理信道为物理下行控制信道PDCCH;
    所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播 单频点网络MBSFN子帧;
    所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
    所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧。
  13. 如权利要求12所述的基站,其特征在于,
    若所述处理模块确定的所述配置模式为第一模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
    在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
  14. 如权利要求12所述的基站,其特征在于,
    若所述处理模块确定的所述配置模式为第二模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  15. 如权利要求12所述的基站,其特征在于,
    若所述基站确定的所述配置模式为第三模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  16. 如权利要求9~15任一项所述的基站,其特征在于,所述配置模式针对所述小小区的一个或多个子帧;
    所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
    所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息。
  17. 如权利要求1~16任一项所述的基站,其特征在于,所述处理模块具体用于:
    周期性地确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;或
    在所述收发模块发送给所述小小区的数据等待时延大于预设的等待时延阈值时,确定所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
  18. 如权利要求1~17所述的基站,其特征在于,从所述第一模式到所述第二模式或第三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
    所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
    所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
  19. 一种小小区,其特征在于,包括:
    处理模块,用于确定所述小小区的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
    收发模块,用于向基站发送确定的所述全双工能力支持信息,指示所述基站根据所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
    其中,所述配置模式为下列模式中的一种:
    第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
    第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
    所述第二下行物理信道为传统的用于在基站和无线终端之间传输下行物理层信令的下行物理信道。
  20. 如权利要求19所述的小小区,其特征在于,
    所述收发模块还用于:在向所述基站发送确定的所述全双工能力支持信息之后,接收所述基站发送的模式配置命令,所述模式配置命令用于指示所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
    所述处理模块还用于:根据所述收发模块接收的所述模式配置命令,配置所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
  21. 如权利要求20所述的小小区,其特征在于,
    所述收发模块还用于:在接收所述基站发送的所述模式配置命令之前,
    在所述小小区的自干扰取消增益大于预设的自干扰取消增益门限时,向所述基站发送第一事件,和/或向所述基站发送所述小小区的使用情况信息,指示所述基站:
    根据全双工能力支持信息,以及下列因素中的至少一种,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式:
    所述基站是否收到所述第一事件;
    所述小小区的使用情况信息。
  22. 如权利要求21所述的小小区,其特征在于,所述小小区的所述使用情况信息包括下列信息中的一项或多项:
    当前与所述小小区通信的无线终端的数量;
    所述小小区下行缓存的数据的数据量;
    当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
    若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    所述小小区的下行覆盖范围信息;
    所述小小区的下行发射功率值。
  23. 如权利要求20~22任一项所述的小小区,其特征在于,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
  24. 如权利要求23所述的小小区,其特征在于,
    所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述 小小区的接入链路上的子帧配置信息;所述处理模块还用于:在所述收发模块接收所述基站发送的所述模式配置命令之后,根据所述模式配置命令中的所述子帧配置信息配置所述小小区的子帧;或
    所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;所述处理模块还用于:在所述收发模块接收所述基站发送的所述模式配置命令之后,根据所述预先设置的子帧配置信息配置所述小小区的子帧。
  25. 如权利要求24所述的小小区,其特征在于,所述收发模块还用于:在所述处理模块根据所述子帧配置信息配置所述小小区的子帧之后,
    通过RRC消息、MAC信令或下行物理控制信道,将所述小小区的接入链路上的子帧配置信息发送给与所述小小区通信的无线终端。
  26. 如权利要求24或25所述的小小区,其特征在于,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
    所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或E-PDCCH;
    所述第二下行物理信道为物理下行控制信道PDCCH;
    所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
    所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
    所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧。
  27. 如权利要求26所述的小小区,其特征在于,
    若所述基站确定的所述配置模式为第一模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
    在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
  28. 如权利要求26所述的小小区,其特征在于,
    若所述基站确定的所述配置模式为第二模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  29. 如权利要求26所述的小小区,其特征在于,
    若所述基站确定的所述配置模式为第三模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  30. 如权利要求20~29任一项所述的小小区,其特征在于,所述处理模块具体用于:
    在所述收发模块收到所述模式配置命令后的预设的配置时延阈值后,根据 所述模式配置命令,配置所述基站与所述小小区之间的回传链路上的物理控制信道的配置模式。
  31. 如权利要求20~30任一项所述的小小区,其特征在于,所述配置模式针对所述小小区的一个或多个子帧;
    所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
    所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息;
    所述处理模块具体用于:
    根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上和所述小小区的接入链路上的所述一个或多个子帧的配置模式。
  32. 如权利要求19~31任一项所述的小小区,其特征在于,从所述第一模式到所述第二模式或第三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
    所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
    所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
  33. 一种控制信道的配置方法,其特征在于,包括:
    基站接收与所述基站通信的小小区发送的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
    所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,所述配置模式为下列模式中的一种:
    第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
    第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基站 发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
    所述第二下行物理信道为传统的用于在基站和无线终端之间传输物理层信令的下行物理信道。
  34. 如权利要求33所述的方法,其特征在于,所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
    所述基站根据接收的所述全双工能力支持信息,以及下列因素中的至少一个,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式:
    所述基站检测到的与所述小小区之间的回传链路上的物理层资源的使用情况;
    所述基站是否收到所述小小区发送的第一事件,所述第一事件用于指示所述小小区的自干扰取消增益大于预设的自干扰取消增益门限;
    所述小小区的使用情况信息。
  35. 如权利要求34所述的方法,其特征在于,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
    所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足时,确定
    所述配置模式为所述第二模式或所述第三模式。
  36. 如权利要求35所述的方法,其特征在于,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
    所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与所述小小区之间的回传链路上的用于传输下行数据的物理层资源不足,但检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源充足时,确定所述配置模式为所述第二模式;或
    所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且检测到的与所述小小区之间的回传链路上的用于传输下行数据和用于传输下行物理层信令的物理层资源均不足时,确定所述配置模式为所述第三模式。
  37. 如权利要求34所述的方法,其特征在于,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
    所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,且收到所述小小区发送的第一事件时,确定
    所述配置模式为所述第二模式或所述第三模式。
  38. 如权利要求37所述的方法,其特征在于,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路上物理控制信道的配置模式,包括:
    所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且检测到的与所述小小区之间的回传链路上的用于传输下行 物理层信令的下行物理信道的物理层资源充足时,确定所述配置模式为所述第二模式;或
    所述基站在接收的所述全双工能力支持信息指示所述小小区支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,并收到所述小小区发送的第一事件,且检测到的与所述小小区之间的回传链路上的用于传输下行物理层信令的物理层资源不足时,确定所述配置模式为所述第三模式。
  39. 如权利要求34~38任一项所述的方法,其特征在于,所述小小区的使用情况信息包括下列信息中的一项或多项:
    当前与所述小小区通信的无线终端的数量;
    所述小小区下行缓存的数据的数据量;
    当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
    若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    所述小小区的下行覆盖范围信息;
    所述小小区的下行发射功率值。
  40. 如权利要求33~39任一项所述的方法,其特征在于,所述基站根据接收的所述全双工能力支持信息,确定在与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
    所述基站在接收的所述全双工能力支持信息指示所述小小区不支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送,确定所述配置模式为所述第一模式。
  41. 如权利要求33~40任一项所述的方法,其特征在于,在所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式之后,所述方法还包括:
    所述基站向所述小小区发送模式配置命令,所述模式配置命令用于将所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,配置为确定的所述配置模式。
  42. 如权利要求41所述的方法,其特征在于,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
  43. 如权利要求41或42所述的方法,其特征在于,
    所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;或
    所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息。
  44. 如权利要求43所述的方法,其特征在于,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
    所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或增强物理下行控制信道E-PDCCH;
    所述第二下行物理信道为物理下行控制信道PDCCH;
    所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
    所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
    所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的接 入链路上的子帧为普通子帧。
  45. 如权利要求44所述的方法,其特征在于,
    若所述基站确定的所述配置模式为第一模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
    在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
  46. 如权利要求44所述的方法,其特征在于,
    若所述基站确定的所述配置模式为第二模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  47. 如权利要求44所述的方法,其特征在于,
    若所述基站确定的所述配置模式为第三模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  48. 如权利要求41~47任一项所述的方法,其特征在于,所述配置模式针对所述小小区的一个或多个子帧;
    所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
    所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息。
  49. 如权利要求33~48任一项所述的方法,其特征在于,所述基站根据接收的所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
    所述基站周期性地确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;或
    所述基站在发送给所述小小区的数据等待时延大于预设的等待时延阈值时,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
  50. 如权利要求33~49所述的方法,其特征在于,从所述第一模式到所述第二模式或第三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
    所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
    所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
  51. 一种控制信道的配置方法,其特征在于,包括:
    小小区确定自身的全双工能力支持信息,所述全双工能力支持信息用于指示所述小小区是否支持使用同一物理层资源在回传链路上接收的同时在接入链路上发送;
    所述小小区向基站发送确定的所述全双工能力支持信息,指示所述基站根据所述全双工能力支持信息,确定与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
    其中,所述配置模式为下列模式中的一种:
    第一模式:所述小小区通过回传链路上的第一下行物理信道接收所述基站 发送的物理层信令,所述小小区的接入链路上除所述小小区的回传链路占用的物理层资源之外的其他物理层资源可用于所述小小区的下行传输;
    第二模式:所述小小区通过回传链路上的第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    第三模式:所述小小区通过回传链路上的第一下行物理信道和第二下行物理信道接收所述基站发送的物理层信令,所述小小区的接入链路上的全部物理层资源均可用于所述小小区的下行传输;
    其中,所述第一下行物理信道用于在基站与小小区之间的回传链路上传输物理层信令,且占用了基站与小小区之间的用于传输数据的下行物理信道的物理层资源;
    所述第二下行物理信道为传统的用于在基站和无线终端之间传输下行物理层信令的下行物理信道。
  52. 如权利要求51所述的方法,其特征在于,在所述小小区向所述基站发送确定的所述全双工能力支持信息之后,所述方法还包括:
    所述小小区接收所述基站发送的模式配置命令,所述模式配置命令用于指示所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式;
    所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式。
  53. 如权利要求52所述的方法,其特征在于,
    在所述小小区接收所述基站发送的所述模式配置命令之前,还包括:
    所述小小区在自身的自干扰取消增益大于预设的自干扰取消增益门限时,向所述基站发送第一事件,和/或所述小小区向所述基站发送所述小小区的使用情况信息,指示所述基站
    根据全双工能力支持信息,以及下列因素中的至少一种,确定与所述小小 区之间的回传链路和所述小小区的接入链路的配置模式:
    所述基站是否收到所述第一事件;
    所述小小区的使用情况信息。
  54. 如权利要求53所述的方法,其特征在于,所述小小区的所述使用情况信息包括下列信息中的一项或多项:
    当前与所述小小区通信的无线终端的数量;
    所述小小区下行缓存的数据的数据量;
    当前与所述小小区通信的无线终端反馈的所要达到的通信质量指标的信息;
    若切换到所述第二模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第三模式,所述小小区需要降低的接入链路上的功率值;
    若切换到所述第二模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    若切换到所述第三模式,当前与所述小小区通信的无线终端中需要切换到其他小区的无线终端的数量;
    所述小小区的下行覆盖范围信息;
    所述小小区的下行发射功率值。
  55. 如权利要求52~54任一项所述的方法,其特征在于,所述模式配置命令通过无线资源控制RRC消息、媒体接入控制MAC信令或下行物理层信令发送。
  56. 如权利要求55所述的方法,其特征在于,所述模式配置命令还包括:所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧配置信息;在所述小小区接收所述基站发送的所述模式配置命令之后,还包括:所述小小区根据所述模式配置命令中的所述子帧配置信息配置自身的子帧;或
    所述模式配置命令还用于指示:所述小小区将预先设置的子帧配置信息作为所述基站与所述小小区之间的回传链路和所述小小区的接入链路上的子帧 配置信息;在所述小小区接收所述基站发送的所述模式配置命令之后,还包括:所述小小区根据所述预先设置的子帧配置信息配置自身的子帧。
  57. 如权利要求56所述的方法,其特征在于,在所述小小区根据所述子帧配置信息配置自身的子帧之后,所述方法还包括:
    所述小小区通过RRC消息、MAC信令或下行物理控制信道,将自身的接入链路上的子帧配置信息发送给与自身通信的无线终端。
  58. 如权利要求56或57所述的方法,其特征在于,所述小小区和所述基站所在的无线通信系统为长期演进LTE系统;
    所述第一下行物理信道为中继-物理下行控制信道R-PDCCH和/或E-PDCCH;
    所述第二下行物理信道为物理下行控制信道PDCCH;
    所述第一模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为多播广播单频点网络MBSFN子帧;
    所述第二模式为:所述小小区通过回传链路上的PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧;
    所述第三模式为:所述小小区通过回传链路上的R-PDCCH和/或E-PDCCH,以及和PDCCH接收所述基站发送的物理层信令,所述小小区的接入链路上的子帧为普通子帧。
  59. 如权利要求58所述的方法,其特征在于,
    若所述基站确定的所述配置模式为第一模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个正交频分复用OFDM符号和最后一个OFDM符号空置,第四个OFDM符号至第十三个OFDM符号中,一个或多个OFDM符号的部分物理资源块PRB用于物理层信令传输,其余PRB可用于数据传输。
    在所述小小区的接入链路上的下行子帧中,前两个OFDM符号可用于物理层信令传输,第三个OFDM符号和最后一个OFDM符号作为传输间隙,其余OFDM符号空置。
  60. 如权利要求58所述的方法,其特征在于,
    若所述基站确定的所述配置模式为第二模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  61. 如权利要求58所述的方法,其特征在于,
    若所述基站确定的所述配置模式为第三模式,则
    所述子帧配置信息用于指示:
    在所述基站与所述小小区之间的回传链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号用于数据传输和物理层信令传输;
    在所述小小区的接入链路上的下行子帧中,前三个OFDM符号可用于物理层信令传输,其余OFDM符号可用于数据传输。
  62. 如权利要求52~61任一项所述的方法,其特征在于,所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上的物理控制信道的配置模式,包括:
    所述小小区在收到所述模式配置命令后的预设的配置时延阈值后,根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上的物理控制信道的配置模式。
  63. 如权利要求52~62任一项所述的方法,其特征在于,所述配置模式针对所述小小区的一个或多个子帧;
    所述模式配置命令中包括:所述一个或多个子帧的标识信息;或
    所述一个或多个子帧是预先指定的,所述模式配置命令中包括:激活或去激活所述一个或多个子帧使用所述配置模式的激活信息。
    所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路和所述小小区的接入链路的配置模式,包括:
    所述小小区根据所述模式配置命令,配置所述基站与所述小小区之间的回传链路上和所述小小区的接入链路上的所述一个或多个子帧的配置模式。
  64. 如权利要求51~63任一项所述的方法,其特征在于,从所述第一模式到所述第二模式或第三模式的切换是半静态的,所述第二模式和所述第三模式之间的切换是动态的;
    所述半静态,表示所述配置模式之间切换的周期不小于无线帧长度;
    所述动态,表示所述配置模式之间切换的周期小于无线帧长度。
PCT/CN2015/078277 2015-05-05 2015-05-05 一种基站、小小区和控制信道的配置方法 WO2016176825A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/078277 WO2016176825A1 (zh) 2015-05-05 2015-05-05 一种基站、小小区和控制信道的配置方法
JP2017557361A JP6466599B2 (ja) 2015-05-05 2015-05-05 基地局、スモールセル、及び制御チャネル構成方法
CN201580076317.6A CN107295815B (zh) 2015-05-05 2015-05-05 一种基站、小小区和控制信道的配置方法
EP15891077.8A EP3285451B1 (en) 2015-05-05 2015-05-05 Method for configuring base station, micro cell and control channel
US15/571,579 US10608693B2 (en) 2015-05-05 2015-05-05 Base station, small cell, and control channel configuration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078277 WO2016176825A1 (zh) 2015-05-05 2015-05-05 一种基站、小小区和控制信道的配置方法

Publications (1)

Publication Number Publication Date
WO2016176825A1 true WO2016176825A1 (zh) 2016-11-10

Family

ID=57217419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078277 WO2016176825A1 (zh) 2015-05-05 2015-05-05 一种基站、小小区和控制信道的配置方法

Country Status (5)

Country Link
US (1) US10608693B2 (zh)
EP (1) EP3285451B1 (zh)
JP (1) JP6466599B2 (zh)
CN (1) CN107295815B (zh)
WO (1) WO2016176825A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290592A (zh) * 2018-03-19 2019-09-27 北京三星通信技术研究有限公司 中继传输的方法及用户设备
US11206560B1 (en) 2019-06-18 2021-12-21 Sprint Communications Company L.P. Cross-relay interference mitigation in wireless relays that serve wireless user devices
CN113994726A (zh) * 2019-06-18 2022-01-28 株式会社Ntt都科摩 无线通信节点及无线通信方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201000449D0 (en) 2010-01-12 2010-02-24 Nec Corp Relay communication system
US10855441B2 (en) * 2015-12-18 2020-12-01 Telefonaktiebolaget Lm Ericsson (Publ) Method of generating a pseudonym associated with a communication device, a network node, computer program and computer program product
CN109391578B (zh) * 2017-08-11 2022-07-22 华为技术有限公司 信号发送方法、信号接收方法、终端设备及网络设备
US10979132B2 (en) * 2018-08-10 2021-04-13 Qualcomm Incorporated Organization of inter-relay discovery reference signals
CN115843439A (zh) * 2021-06-09 2023-03-24 北京小米移动软件有限公司 信息获取方法、装置和存储介质
EP4354786A1 (en) * 2021-06-11 2024-04-17 Beijing Xiaomi Mobile Software Co., Ltd. Information configuration method and apparatus, user equipment, base station, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283196A (zh) * 2010-11-05 2013-09-04 高通股份有限公司 用于确定和使用信道状态信息的方法和装置
US20140078939A1 (en) * 2012-09-20 2014-03-20 Hooman Shirani-Mehr Method and apparatus for power control in full-duplex wireless systems with simultaneous transmission reception
CN103874045A (zh) * 2012-12-12 2014-06-18 电信科学技术研究院 指示和确定小小区的归属小区的方法及设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873630B (zh) * 2009-04-24 2013-04-03 电信科学技术研究院 无线通信方法、系统及其装置
WO2011160253A1 (en) * 2010-06-21 2011-12-29 Nokia Siemens Networks Oy Outband/inband or full-duplex/half-duplex mixture backhaul signaling in relay enhanced networks
US8755324B2 (en) * 2011-08-03 2014-06-17 Blackberry Limited Allocating backhaul resources
CN103024749B (zh) 2011-09-27 2016-01-13 华为技术有限公司 一种动态频谱管理的方法和装置
GB2497078A (en) * 2011-11-24 2013-06-05 Sharp Kk Mobile relay handover in a wireless telecommunications system
CN107508621B (zh) 2012-02-16 2021-02-05 太阳专利信托公司 通信装置、通信方法以及集成电路
CN104365140A (zh) * 2012-03-22 2015-02-18 交互数字专利控股公司 用于卸载回程业务的方法和设备
CN102665230B (zh) 2012-04-23 2014-07-09 电信科学技术研究院 一种e-pdcch传输及盲检的方法及装置
CN104254077B (zh) 2013-06-27 2018-01-02 华为技术有限公司 中继配置方法和设备
US9172495B1 (en) * 2013-07-01 2015-10-27 Sprint Communications Company L.P. Dynamic modulation change while generating a MAC PDU in a LTE protocol wireless network
WO2015045555A1 (ja) * 2013-09-25 2015-04-02 ソニー株式会社 通信制御装置、通信制御方法、無線通信装置及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283196A (zh) * 2010-11-05 2013-09-04 高通股份有限公司 用于确定和使用信道状态信息的方法和装置
US20140078939A1 (en) * 2012-09-20 2014-03-20 Hooman Shirani-Mehr Method and apparatus for power control in full-duplex wireless systems with simultaneous transmission reception
CN103874045A (zh) * 2012-12-12 2014-06-18 电信科学技术研究院 指示和确定小小区的归属小区的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3285451A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290592A (zh) * 2018-03-19 2019-09-27 北京三星通信技术研究有限公司 中继传输的方法及用户设备
CN110290592B (zh) * 2018-03-19 2024-04-09 北京三星通信技术研究有限公司 中继传输的方法及用户设备
US11206560B1 (en) 2019-06-18 2021-12-21 Sprint Communications Company L.P. Cross-relay interference mitigation in wireless relays that serve wireless user devices
CN113994726A (zh) * 2019-06-18 2022-01-28 株式会社Ntt都科摩 无线通信节点及无线通信方法
US11553362B2 (en) 2019-06-18 2023-01-10 T-Mobile Innovations Llc Cross-relay interference mitigation in wireless relays that serve wireless user devices

Also Published As

Publication number Publication date
CN107295815A (zh) 2017-10-24
US20180159584A1 (en) 2018-06-07
EP3285451B1 (en) 2019-09-04
CN107295815B (zh) 2020-06-02
EP3285451A1 (en) 2018-02-21
JP2018518888A (ja) 2018-07-12
JP6466599B2 (ja) 2019-02-06
EP3285451A4 (en) 2018-04-11
US10608693B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2016176825A1 (zh) 一种基站、小小区和控制信道的配置方法
JP6382378B2 (ja) 時分割複信(tdd)アップリンク−ダウンリンク(ul−dl)再構成
CN105940756B (zh) 用于实现双连通性的方法和装置
CN106605424B (zh) 一个或多个频率双工资源上的灵活传输
JP6404453B2 (ja) ミリ波キャリアアグリゲーションを用いる中継バックホーリングの装置、システムおよび方法
US10383155B2 (en) Method and apparatus for performing sidelink transmission based on contention based scheduling request in wireless communication system
TWI746970B (zh) 存取點及於其中使用的方法
JP2021501513A (ja) New Radioにおける半永続的スケジューリング管理
JP2018511197A (ja) ライセンス補助アクセスのための不連続受信動作
JP6695891B2 (ja) ワイヤレス通信におけるフレキシブル複信のための制御シグナリング
KR20190110557A (ko) 멀티미디어 브로드캐스트 멀티캐스트 서비스를 위한 성능 및 커버리지 결정
US20150334714A1 (en) System And Method For Resource Allocation For Device-To-Device Communications
US20180199208A1 (en) Method for receiving a signal in wireless communication system and a device therefor
JP2022552171A (ja) ワイヤレス通信における複数の送受信ポイントのためのデフォルト送信ビーム
TWI672970B (zh) 處理用於服務細胞的傳送/接收的裝置及方法
US9877351B2 (en) Mobile communication system, user terminal, and base station
EP3491882A1 (en) Subframe structure for the co-existence network of sidelink and mission critical mobile devices
JP2023506128A (ja) 複数のアクティブグラント設定におけるタイマーハンドリング
JP2017513415A (ja) デバイスツーデバイスの発見及び通信のためのシステム、方法及びデバイス
WO2017148334A1 (zh) 一种终端设备、网络设备、帧格式配置方法和系统
TW201722176A (zh) 用於使用tdd子訊框結構中的共用上行鏈路短脈衝來去耦合上行鏈路延時的方法和裝置
JP6619742B2 (ja) 基地局及びユーザ端末
WO2014044177A1 (zh) 一种时隙分配信息的通知、接收的方法和装置
JP5894107B2 (ja) 基地局、ユーザ端末及びプロセッサ
JP2016042743A (ja) 基地局及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557361

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15571579

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE