WO2016176491A1 - Procédé et appareil pour fabriquer une batterie ayant des structures mésa, et batterie les comprenant - Google Patents

Procédé et appareil pour fabriquer une batterie ayant des structures mésa, et batterie les comprenant Download PDF

Info

Publication number
WO2016176491A1
WO2016176491A1 PCT/US2016/029855 US2016029855W WO2016176491A1 WO 2016176491 A1 WO2016176491 A1 WO 2016176491A1 US 2016029855 W US2016029855 W US 2016029855W WO 2016176491 A1 WO2016176491 A1 WO 2016176491A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesa
current collector
stack
layer
solid state
Prior art date
Application number
PCT/US2016/029855
Other languages
English (en)
Inventor
Michael Yu-Tak YOUNG
Original Assignee
Applied Materials, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials, Inc. filed Critical Applied Materials, Inc.
Publication of WO2016176491A1 publication Critical patent/WO2016176491A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments relate to solid state thin or thick film battery devices and methods and apparatuses for fabricating the same.
  • Maskless fabrication techniques have been considered advantageous in the field of solid state thin or thick film battery devices because they can enable high volume manufacturing, improving efficiencies and lowering costs.
  • Some conventional maskless fabrication techniques use laser ablation to define cell boundaries and form contact areas such as a cathode pad area.
  • control of laser ablation to stop before the thin bottom cathode layer is very difficult and can result in yield loss.
  • Femtosecond lasers may provide a more controlled removal of surface layers, however this is at the expense of longer processing time.
  • there is a need for improved maskless thin or thick film battery fabrication techniques that avoid these limitations.
  • a solid state battery may comprise: a substrate; a first current collector deposited on the surface of the substrate; an insulating mesa deposited on the cathode current collector, the insulating mesa defining a boundary of an active area of the solid state battery, the insulating mesa forming a continuous wall around the active area; and a stack of active device layers within the boundary, the stack comprising a cathode layer, an electrolyte layer and a second current collector layer; wherein a height of the insulating mesa is greater than a thickness of the stack of active device layers.
  • a method of fabricating a solid state battery may comprise: providing a substrate; depositing a first current collector layer on the substrate; forming an insulating mesa on the first current collector layer, the insulating mesa defining a boundary of an active area of the solid state battery, the insulating mesa forming a continuous wall around the active area; and depositing a stack of active device layers within the boundary, the stack comprising a cathode layer, an electrolyte layer and a second current collector layer; wherein a height of the insulating mesa is greater than a thickness of the stack of active device layers.
  • an apparatus for fabricating a solid state battery may comprise: a first system for blanket depositing a first current collector layer on a substrate; a second system for forming an insulating mesa structure defining a boundary of an active area of the solid state battery, the insulating mesa forming a continuous wall around the active area; and a third system for blanket depositing a cathode layer, an electrolyte layer and an second current collector layer.
  • FIGS. 1 A & IB are a top view and a cross-sectional view (section X-X) of a representation of a process for fabricating a solid state battery structure, showing mesa structures, defining the battery active area and cathode contact area, formed on a current collector layer, according to some embodiments;
  • FIGS. 2A & 2B are a top view and a cross-sectional view (section X-X) of a representation of a process for fabricating a solid state battery structure, showing a cathode contact mesa formed on the cathode contact area of FIGS. 1 A & I B, according to some embodiments;
  • FIGS. 3A & 3B are a top view and a cross-sectional view (section X-X) of a representation of a process for fabricating a solid state battery structure, showing a stack of battery layers blanket deposited on the structure of FIGS. 2A & 2B, according to some embodiments;
  • FIGS. 4A & 4B are a top view and a cross-sectional view (section X-X) of a representation of a process for fabricating a solid state battery structure, showing removal of the stack of battery layers off the cathode contact mesa of the structure of FIGS. 3A & 3B, according to some embodiments;
  • FIGS. 6A & 6B are a top view and a cross-sectional view (section X-X) of a representation of a process for fabricating a solid state battery structure, showing an encapsulation layer blanket deposited on the structure of FIGS. 5 A & 5B, according to some embodiments;
  • FIGS. 7A & 7B are a top view and a cross-sectional view (section X-X) of a representation of a process for fabricating a solid state battery structure, showing partial removal of the encapsulation layer to expose the cathode and anode contact mesas of the structure of FIGS, 6A & 6B, according to some embodiments;
  • FIG. 9 is a representation of a TFB fabrication system with multiple in-line tools, according to some embodiments.
  • FIGS. 1A, IB, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A & 7B are top views and cross-sectional views of an example method of fabricating a thin film solid state battery according to some embodiments,
  • the relatively small area of the cathode pad area in comparison to the overall area of the stack is made possible by the deposited mesa or dam structure and yields benefits in the completed battery device.
  • all of the active layers of the battery device can occupy the remaining area outside the defined cathode pad area, improving the overall capacity of the battery device as opposed to battery devices formed using conventional maskless fabrication techniques.
  • the overall area of the battery device is about lxl 0 "2 cm 2
  • the area of the cathode pad area is about 4xl 0 "4 cm 2 .
  • an encapsulation layer 1 10 is deposited over the entire device.
  • the encapsulation layer can comprise one or more layers of polymer materials such as parylene, epoxy, etc. and/or other encapsulating layers, These layer(s) may have built-in in-situ thermal or UV anneal or cure processes, as needed.
  • the encapsulation layer in embodiments can be 10 to 20 microns in thickness, and can be thicker to provide adequate surface planarization if needed.
  • Parylene can be deposited by a room temperature vapor condensation process, in a vacuum chamber. Epoxies and other polymers are usually applied via a process method such as spin coating, dip coating, powder coating etc, to achieve adequate surface planarization and an effective moisture/gas permeation barrier.
  • the encapsulation layer 1 10 is partially removed to expose the tops of the conductive mesas which form battery pad contact areas for the cathode, and optionally anode.
  • a laser ablation process may be used for partial removal of the encapsulation layer.
  • RF sputtering of L13PO4 in N 2 deposition of an alkali metal or alkaline earth metal; and possibly the deposition and annealing of insulating and conductive mesa structures.
  • suitable cluster tool platforms include display cluster tools. It is to be understood that while a cluster arrangement has been shown for the processing system 800, a linear system may be utilized in which the processing chambers are arranged in a line without a transfer chamber so that the substrate continuously moves from one chamber to the next chamber.
  • FIG. 9 shows a representation of an in-line fabrication system 900 with multiple in-line tools 910, 920, 930 and 940, although more tools may be used than are shown in the illustrative figure, according to some embodiments.
  • In-line tools may include tools for depositing all the active layers and mesa structures of a TFB device according to embodiments.
  • the in-line tools may include pre- and post-conditioning chambers.
  • tool 910 may be a pump down chamber for establishing a vacuum prior to the substrate moving through a vacuum airlock 915 into a deposition tool 920.
  • the apparatus may comprise a fifth system for removing the cathode layer, the electrolyte layer and the second current collector layer off the top surface of the first conductive mesa. Furthermore, the apparatus may comprise a sixth system for depositing an encapsulation layer over the second current collector. Furthermore, the apparatus may comprise a seventh system for depositing a second conductive mesa on the second current collector.
  • the systems may be cluster tools, in-line tools, stand-alone tools, or a combination of one or more of the aforementioned tools, Furthermore, the systems may include some tools which are common to one or more of the other systems.
  • the insulating mesa structures in embodiments provide a structural support for stacking battery cells - the mesa walls being taller than the thickness of the active device layers, provide protection to the active area of each battery cell.
  • solid state batteries may be fabricated with anode on the bottom (closer to the substrate) and cathode on the top.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne une batterie à électrolyte solide, qui peut comprendre : un substrat ; un premier collecteur de courant déposé sur la surface du substrat ; une mésa isolante déposée sur le collecteur de courant de cathode, la mésa isolante définissant une frontière d'une zone active de la batterie à électrolyte solide, la mésa isolante formant une paroi continue autour de la zone active ; et un empilement de couches de dispositif actives à l'intérieur de la frontière, l'empilement comprenant une couche de cathode, une couche d'électrolyte et une seconde couche de collecteur de courant, la hauteur de la mésa isolante étant supérieure à l'épaisseur de l'empilement de couches de dispositif actives. La mésa isolante peut en outre définir une frontière d'une zone de contact du premier collecteur de courant, la mésa isolante formant une paroi continue autour de la première zone de contact, et comprenant en outre une première mésa conductrice pour fournir un contact électrique au premier collecteur de courant.
PCT/US2016/029855 2015-04-28 2016-04-28 Procédé et appareil pour fabriquer une batterie ayant des structures mésa, et batterie les comprenant WO2016176491A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562153771P 2015-04-28 2015-04-28
US62/153,771 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016176491A1 true WO2016176491A1 (fr) 2016-11-03

Family

ID=57199466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/029855 WO2016176491A1 (fr) 2015-04-28 2016-04-28 Procédé et appareil pour fabriquer une batterie ayant des structures mésa, et batterie les comprenant

Country Status (2)

Country Link
TW (1) TW201711261A (fr)
WO (1) WO2016176491A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111942A1 (de) * 2017-05-31 2018-12-06 Epcos Ag Hybride Energieversorgungsschaltung, Verwendung einer hybriden Energieversorgungsschaltung und Verfahren zur Herstellung einer hybriden Energieversorgungsschaltung
FR3091036A1 (fr) * 2018-12-24 2020-06-26 I-Ten Procede de fabrication de batteries, et batterie obtenue par ce procede
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2575792B (en) * 2018-07-20 2021-11-03 Dyson Technology Ltd Stack for an energy storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525766A (en) * 1984-01-25 1985-06-25 Transensory Devices, Inc. Method and apparatus for forming hermetically sealed electrical feedthrough conductors
US20080286651A1 (en) * 2002-08-09 2008-11-20 Neudecker Bernd J Hybrid Thin-Film Battery
US20110287296A1 (en) * 2009-02-03 2011-11-24 Sony Corporation Thin film solid state lithium ion secondary battery and method of manufacturing the same
US20140076622A1 (en) * 2009-09-01 2014-03-20 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US20140308576A1 (en) * 2011-11-02 2014-10-16 I-Ten Method for manufacturing all-solid-state thin-film batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525766A (en) * 1984-01-25 1985-06-25 Transensory Devices, Inc. Method and apparatus for forming hermetically sealed electrical feedthrough conductors
US20080286651A1 (en) * 2002-08-09 2008-11-20 Neudecker Bernd J Hybrid Thin-Film Battery
US20110287296A1 (en) * 2009-02-03 2011-11-24 Sony Corporation Thin film solid state lithium ion secondary battery and method of manufacturing the same
US20140076622A1 (en) * 2009-09-01 2014-03-20 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US20140308576A1 (en) * 2011-11-02 2014-10-16 I-Ten Method for manufacturing all-solid-state thin-film batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111942A1 (de) * 2017-05-31 2018-12-06 Epcos Ag Hybride Energieversorgungsschaltung, Verwendung einer hybriden Energieversorgungsschaltung und Verfahren zur Herstellung einer hybriden Energieversorgungsschaltung
US11552353B2 (en) 2017-05-31 2023-01-10 Tdk Electronics Ag Hybrid power supply circuit, use of a hybrid power supply circuit and method for producing a hybrid power supply circuit
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices
FR3091036A1 (fr) * 2018-12-24 2020-06-26 I-Ten Procede de fabrication de batteries, et batterie obtenue par ce procede
WO2020136313A1 (fr) * 2018-12-24 2020-07-02 I-Ten Procédé de fabrication de batteries, et batterie obtenue par ce procédé
CN113228385A (zh) * 2018-12-24 2021-08-06 I-Ten公司 制造电池的方法和由该方法制得的电池

Also Published As

Publication number Publication date
TW201711261A (zh) 2017-03-16

Similar Documents

Publication Publication Date Title
EP1673834B1 (fr) Batterie, en particulier microbatterie, et sa fabrication a l'aide de la technologie des tranches
KR101338703B1 (ko) 하이브리드 박막 배터리
EP2721689B1 (fr) Fabrication de batterie à film mince à dépôt d'électrolyte sans masque
EP2936608B1 (fr) Fabrication sans masque de batteries à film mince verticales
JP5653756B2 (ja) 薄膜電池の大量製造方法
WO2016176491A1 (fr) Procédé et appareil pour fabriquer une batterie ayant des structures mésa, et batterie les comprenant
KR102372990B1 (ko) 고-종횡비 구조체의 제조 방법 및 장치
KR101433336B1 (ko) 박막 배터리를 제조하기 위한 방법들 및 팩토리들
US20170149093A1 (en) Configurations of solid state thin film batteries
US9593405B2 (en) Pinhole-free dielectric thin film fabrication
US20170288272A1 (en) Laser patterned thin film battery
US20230170532A1 (en) Large capacity solid state battery
US10903525B2 (en) Self-supporting thin-film battery and method of manufacturing such a battery
US11063288B2 (en) Stacked film battery architecture
US20150280201A1 (en) Forming an Interconnection for Solid-State Batteries
US20140106191A1 (en) Electrical storage device and method for manufacturing the same
US20110272786A1 (en) Energy storage system
Youn et al. Multi-film roll transferring (MRT) process using highly conductive and solution-processed silver solution for fully solution-processed polymer solar cells
US11876233B2 (en) Thin film battery stacking
WO2017204859A1 (fr) Configuration de batteries à couche mince à l'état solide
Piqué et al. Laser forward transfer of electronic and power generating materials
US20220140404A1 (en) Manufacturing method of solid state battery and solid state battery
WO2021117291A1 (fr) Procédé de fabrication d'élément
WO2017053473A1 (fr) Prévention de mélange dans des dispositifs électrochimiques
KR20000002283A (ko) 박막형 전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16787178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16787178

Country of ref document: EP

Kind code of ref document: A1