WO2016175233A1 - Substrate liquid processing method and substrate liquid processing device - Google Patents

Substrate liquid processing method and substrate liquid processing device Download PDF

Info

Publication number
WO2016175233A1
WO2016175233A1 PCT/JP2016/063162 JP2016063162W WO2016175233A1 WO 2016175233 A1 WO2016175233 A1 WO 2016175233A1 JP 2016063162 W JP2016063162 W JP 2016063162W WO 2016175233 A1 WO2016175233 A1 WO 2016175233A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
processing
processing liquid
wafer
Prior art date
Application number
PCT/JP2016/063162
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 川渕
章一郎 日高
央 河野
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2016175233A1 publication Critical patent/WO2016175233A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a technique for replacing a processing liquid in a recess on a substrate surface with another processing liquid when performing a liquid processing on a substrate such as a semiconductor wafer.
  • the manufacturing process of a semiconductor device includes liquid processing such as chemical cleaning processing or wet etching processing.
  • liquid processing such as chemical cleaning processing or wet etching processing.
  • the chemical solution is supplied to a substrate such as a semiconductor wafer, and the chemical solution and reaction products remaining on the substrate are washed away using a rinse solution such as pure water after the chemical treatment step.
  • a rinsing step, a displacing step of replacing the rinsing liquid remaining on the substrate after the rinsing step with an organic solvent for drying assistance such as IPA (isopropyl alcohol), and a drying step of drying the substrate after the displacing step are included.
  • IPA isopropyl alcohol
  • the first processing liquid supplied to the substrate in the previous step and remaining on the substrate is It is replaced with the second processing liquid supplied to the substrate in the process (see, for example, Patent Document 1).
  • the pure water is discharged from the concave portion in the drying process.
  • the chemical solution is replaced with pure water, if the chemical solution remains in the recess without being completely replaced, corrosion may occur due to the chemical component.
  • the present invention provides a technique capable of efficiently replacing the first processing liquid present in the recess formed on the substrate surface with the second processing liquid.
  • a step of forming a liquid film of the first treatment liquid, and a substitution step of substituting the second treatment liquid for the first treatment liquid present on the surface of the substrate including the inside of the recess. Supplies the second processing liquid to the surface of the substrate covered with the liquid film of the first processing liquid while rotating the substrate at the first rotational speed, and includes the second processing liquid containing the first processing liquid.
  • the substrate solution processing method is provided.
  • a substrate holding unit that holds and rotates a substrate
  • a first processing liquid supply unit that supplies the first processing liquid to the substrate held by the substrate holding unit
  • Control a second processing liquid supply unit that supplies the second processing liquid to the substrate held by the substrate holding unit, the substrate holding unit, the first processing liquid supply unit, and the second processing liquid supply unit.
  • a step of preparing a substrate having a recess formed on the surface a first processing liquid is supplied to the surface of the substrate, and the surface of the substrate including the inside of the recess Forming a liquid film of the first treatment liquid covering the substrate, and replacing the first treatment liquid present on the surface of the substrate including the inside of the recess with a second treatment liquid, and
  • the second processing liquid is supplied to the surface of the substrate covered with the liquid film of the first processing liquid, and the liquid film of the second processing liquid containing the first processing liquid is supplied to the surface of the substrate.
  • a substrate liquid processing method including supplying the second processing liquid toward the liquid film.
  • a substrate holding unit that holds a substrate
  • a first processing liquid supply unit that supplies the first processing liquid to the substrate held by the substrate holding unit
  • the substrate A second processing liquid supply unit that supplies the second processing liquid to the substrate held by the holding unit, and supplies the second processing liquid for forming a flow of the second processing liquid on the substrate surface to the substrate.
  • a second supply element that includes a first supply element and a second supply element that supplies the second processing liquid to the substrate while moving a landing point of the second processing liquid in a direction opposite to the flow of the second processing liquid.
  • a substrate liquid processing apparatus comprising: a processing liquid supply unit; and a control unit that controls the first processing liquid supply unit and the second processing liquid supply unit to execute the substrate liquid processing method.
  • the first processing liquid at the bottom of the recess on the substrate surface can be efficiently replaced with the second processing liquid.
  • FIG. 1 It is a figure showing a schematic structure of a substrate processing system concerning this embodiment. It is a figure which shows schematic structure of a processing unit. It is a figure which shows schematic structure of the process liquid supply part of the process unit used in 1st Embodiment. It is a time chart for demonstrating the solvent substitution process and drying process of 1st Embodiment. It is a schematic sectional drawing of the wafer for demonstrating the solvent substitution process of 1st Embodiment. It is a schematic side view of the wafer for demonstrating the drying process of 1st Embodiment. It is a figure which shows schematic structure of the process liquid supply part of the process unit used by 2nd Embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to the present embodiment.
  • the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
  • the substrate processing system 1 includes a carry-in / out station 2 and a processing station 3.
  • the carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
  • the loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12. A plurality of carriers C that accommodate a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
  • the transfer unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transfer device 13 and a delivery unit 14 inside.
  • the substrate transfer device 13 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 14 using the substrate holding mechanism. Do.
  • the processing station 3 is provided adjacent to the transfer unit 12.
  • the processing station 3 includes a transport unit 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are provided side by side on the transport unit 15.
  • the transfer unit 15 includes a substrate transfer device 17 inside.
  • the substrate transfer device 17 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using the substrate holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
  • the substrate processing system 1 includes a control device 4.
  • the control device 4 is a computer, for example, and includes a control unit 18 and a storage unit 19.
  • the storage unit 19 stores a program for controlling various processes executed in the substrate processing system 1.
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
  • Such a program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W. Place on the transfer section 14.
  • the wafer W placed on the delivery unit 14 is taken out from the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
  • the wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery unit 14 is returned to the carrier C of the carrier platform 11 by the substrate transfer device 13.
  • FIG. 2 is a diagram showing a schematic configuration of the processing unit 16.
  • the processing unit 16 includes a chamber 20, a substrate holding mechanism 30, a processing fluid supply unit 40, and a recovery cup 50.
  • the chamber 20 accommodates the substrate holding mechanism 30, the processing fluid supply unit 40, and the recovery cup 50.
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20.
  • the FFU 21 forms a down flow in the chamber 20.
  • the substrate holding mechanism 30 includes a holding part 31, a support part 32, and a driving part 33.
  • the holding unit 31 holds the wafer W horizontally.
  • pillar part 32 is a member extended in a perpendicular direction, a base end part is rotatably supported by the drive part 33, and supports the holding
  • the drive unit 33 rotates the column unit 32 around the vertical axis.
  • the substrate holding mechanism 30 rotates the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the support unit 31. .
  • the processing fluid supply unit 40 supplies a processing fluid to the wafer W.
  • the processing fluid supply unit 40 is connected to a processing fluid supply source 70.
  • the recovery cup 50 is disposed so as to surround the holding unit 31, and collects the processing liquid scattered from the wafer W by the rotation of the holding unit 31.
  • a drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged from the drain port 51 to the outside of the processing unit 16. Further, an exhaust port 52 for discharging the gas supplied from the FFU 21 to the outside of the processing unit 16 is formed at the bottom of the recovery cup 50.
  • the processing fluid supply unit 40 used in the first embodiment will be described.
  • the processing fluid supply unit 40 includes a chemical nozzle 41, a rinse nozzle 42, a solvent nozzle 43, and a dry gas nozzle 44.
  • the chemical nozzle 41 supplies, for example, DHF (dilute hydrofluoric acid) to the wafer W as a chemical.
  • the rinse nozzle 42 supplies, for example, DIW (pure water (deionized water)) as a rinse liquid to the wafer W.
  • the solvent nozzle 43 supplies IPA (isopropyl alcohol) to the wafer W as an organic solvent as a drying auxiliary fluid that has higher volatility and lower surface tension than DIW, which is a rinsing liquid.
  • the dry gas nozzle 44 supplies nitrogen (N 2 ) gas, which is a dry gas having a lower humidity and oxygen concentration than air. By supplying such a drying gas, a water mark is hardly generated when the wafer W is dried.
  • the chemical solution is not limited to DHF, and may be any one used in the field of semiconductor device manufacture, such as SC-1, SC-2, and buffered hydrofluoric acid.
  • Each of the nozzles 41 to 44 is supplied from a corresponding processing fluid supply source (tank, gas cylinder, etc.) through a corresponding processing fluid supply mechanism (not shown), that is, DHF, DIW, IPA, N 2 is supplied.
  • Each processing fluid supply mechanism includes a processing fluid supply line composed of piping and the like, and flow control devices such as a pump, an on-off valve, and a flow rate adjustment valve.
  • the chemical solution nozzle 41, the rinse nozzle 42, the solvent nozzle 43, and the dry gas nozzle 44 are supported by the tip of a common nozzle arm 45.
  • the nozzle arm 45 can be moved up and down by an arm drive mechanism 46 and can be swung around a vertical axis. Accordingly, the nozzles 41 to 44 can move between a position directly above the center of the wafer W and a position directly above the peripheral edge. Further, it is possible to move to a standby position (home position) deviated from directly above the wafer W.
  • the arm drive mechanism may be of a type that linearly translates the nozzle arm along the guide rail, for example.
  • a chemical liquid supply mechanism and a rinse liquid supply mechanism may be connected to the chemical liquid nozzle 41 so that either the chemical liquid or the rinse liquid can be selectively discharged from the chemical liquid nozzle 41.
  • the rinse nozzle 42 can be eliminated.
  • an unprocessed wafer W is loaded into the processing unit 16 by the arm (see FIG. 1) of the substrate transfer device 17, and the wafer W is held by the substrate holding mechanism 30 as shown in FIG.
  • the chemical nozzle 41 is located directly above the center of the wafer W.
  • the wafer W is rotated around the vertical axis, and a chemical solution nozzle 41 supplies a chemical solution, for example DHF, to the center of the wafer W.
  • the chemical liquid spreads due to centrifugal force, and the entire surface of the wafer W is covered with a chemical liquid film, whereby the surface of the wafer W is treated with the chemical liquid.
  • the chemical solution containing the reaction product is scattered radially outward from the outer peripheral edge of the wafer W. The scattered chemical is collected by the collection cup 50 (see FIG. 2).
  • DIW rinse is supplied from the rinse nozzle 42 (the chemical supply is stopped) as a rinse liquid to the center of the wafer W while the wafer W is continuously rotated.
  • a rinse treatment is performed to wash away the chemical solution and reaction product remaining on the substrate.
  • ⁇ Solvent replacement step> After completion of the rinsing process (the supply of the rinsing liquid is stopped), IPA is supplied from the solvent nozzle 43 to the wafer W, and a solvent replacement process is performed in which the rinsing liquid existing on the surface of the wafer W is replaced with IPA.
  • the solvent replacement step and the drying step may be collectively referred to as a “drying step”, but in this specification, the DIW, that is, the first processing liquid that has been on the wafer W until then is the IPA, that is, the second step.
  • the process until the treatment liquid is replaced is called a (solvent) replacement process, and the process of removing IPA on the wafer W from the wafer is called a drying process.
  • the horizontal axis is time, and the vertical axis is, in order from the top, wafer rotation speed (rpm), discharge from DIW from rinse nozzle 42 (ON) / discharge stop (OFF), solvent nozzle.
  • the rotation speed of the wafer W is reduced from the first rotation speed to the second rotation speed (for example, 300 to 800 rpm).
  • the second rotation speed is determined in consideration of the coverage at the peripheral edge of the wafer W (that is, the liquid film does not break at the peripheral edge).
  • This solvent replacement step includes a plurality of steps described below.
  • IPA is supplied to the center of the wafer W in a state where the rotation speed of the wafer W is maintained at the second rotation speed from the time t2 to the time t3 (third period).
  • the discharge of IPA from the solvent nozzle 43 is started.
  • the discharge of IPA from the solvent nozzle 43 is continued until time t9. If DIW discharge is stopped immediately after the start of IPA discharge, the surface of the wafer W may be exposed near the interface between DIW and IPA due to the Marangoni effect. For this reason, the discharge of DIW from the rinse nozzle 42 stops slightly after time t2.
  • DIW on the surface of the wafer W is replaced with IPA. That is, the entire surface of the wafer W outside the recess R is covered with the IPA liquid film. However, DIW remains at the bottom of the recess R on the wafer surface. Specifically, the surface of the wafer W is covered with a liquid film containing DIW and IPA, and this liquid film has a lower layer having a high DIW concentration and an upper layer having a high IPA concentration. This state is shown in FIG. The procedure for quickly replacing the DIW at the bottom of this recess continues.
  • ⁇ Stirring stage> Between time t3 and time t4 (fourth period), the rotation speed of the wafer W is reduced from the second rotation speed to the third rotation speed (for example, 0 to 50 rpm). Due to the deceleration (negative acceleration) at the time of deceleration, stirring of the liquid (DIW and IPA) in the recess R is promoted. In the fourth period, the rotation of the wafer W may be accelerated, or acceleration and deceleration may be combined. From the viewpoint of promoting stirring, it is better that the absolute value of the acceleration (deceleration) acceleration / deceleration is large (rapid acceleration, rapid deceleration). Regardless of how acceleration / deceleration is performed, the rotational speed of the wafer W is set to the third rotational speed at time t4.
  • ⁇ Replacement promotion stage> Next, the replacement of DIW remaining in the recess R with IPA is promoted.
  • the rotation speed of the wafer W is maintained at a third rotation speed, for example, 100 rpm or less, preferably about 30 to 50 rpm.
  • a gentle flow of IPA from the center of the wafer toward the peripheral edge occurs on the surface of the wafer W.
  • the force acting on the IPA on the surface of the wafer W is dominated by gravity, and the force caused by the rotation of the wafer W such as centrifugal force is very small. That is, the horizontal force acting on the IPA is very small, and a downward force in the vertical direction is applied. This downward force in the vertical direction promotes mixing (mutual diffusion) of DIW and IPA in the recess R.
  • the solvent nozzle 43 is moved from the center of the wafer W to the periphery of the wafer W while IPA is being discharged. Further, in the present embodiment, after the solvent nozzle 43 reaches the peripheral edge of the wafer W, the solvent nozzle 43 is moved to the wafer central portion in a state where IPA is discharged (reciprocating movement). As a result, as shown in FIG. 5D, DIW is replaced with IPA in all the recesses. Thus, the solvent replacement step is completed.
  • the replacement with IPA depends on the width and depth of the recess R, the state of the wafer surface, and the like. For this reason, the solvent nozzle 43 that discharges IPA is moved from the wafer center to the wafer periphery, or the solvent nozzle 43 that has started discharging IPA at the wafer periphery is moved to the wafer center. In other words, when DIW in the recess R is replaced with IPA by moving the solvent nozzle 43 discharging IPA one way, it is necessary to reciprocate the solvent nozzle 43 in the replacement promotion stage. No. In the case of one-way movement, the consumption of IPA can be reduced as compared with the case of two-way movement.
  • the solvent nozzle 43 that discharges IPA downward in the vertical direction is connected to the wafer W center portion and the wafer peripheral portion. May be reciprocated a plurality of times.
  • the moving speed of the solvent nozzle 43 it is preferable to make the moving speed of the solvent nozzle 43 relatively small in a state where IPA is discharged from the viewpoint of effectively pushing the IPA into all the recesses R.
  • a slit nozzle having a discharge port extending in the radial direction of the wafer W, which is different from the solvent nozzle 43, or a solvent nozzle having a plurality of discharge ports may be provided.
  • the rotational speed of the wafer W may be temporarily set to zero. By doing so, the horizontal force does not act on the IPA on the surface of the wafer W, but only the downward force in the vertical direction acts, and the DIW in the recess R is efficiently replaced by the IPA.
  • the rotation speed (third rotation speed) of the wafer W may be maintained at zero (0 rpm).
  • an IPA paddle is formed on the surface of the wafer W.
  • the horizontal force does not act on the IPA on the surface of the wafer W, and only the downward force in the vertical direction acts, and the replacement of the DIW in the recess R with IPA is further promoted.
  • the entire surface of the wafer W can be replaced by taking measures such as providing a slit nozzle having a discharge port having a length corresponding to the diameter of the wafer as a solvent nozzle for performing the scanning operation, in addition to the solvent nozzle 43. Promoted.
  • the surface portion replacement step, the stirring step and the replacement promotion step constituting the solvent replacement step may be repeated a plurality of times.
  • the process proceeds to a drying process in which IPA on the surface of the wafer W is removed and the surface of the wafer W is dried.
  • This drying process includes a plurality of stages described below.
  • a solvent discharging step for thinning the IPA liquid film on the surface of the wafer W is performed.
  • DIW in the recess R is replaced with IPA.
  • the rotation speed of the wafer W is increased from the third rotation speed to the fourth rotation speed (for example, 300 to 800 rpm), and thereafter, from the time t6 to the time t7. In the meantime (seventh period), the rotation speed of the wafer W is maintained at the fourth rotation speed.
  • the IPA that has formed a liquid film (which is relatively thick) on the surface of the wafer W flows toward the peripheral edge of the wafer W by centrifugal force, and a substantial portion of the IPA on the wafer W is exposed to the wafer. W is removed from above. That is, the IPA liquid film on the surface of the wafer W becomes thin. In this solvent discharge stage, if the surface of the wafer W is not exposed from the liquid film of IPA, the discharge of IPA from the solvent nozzle 43 may be stopped.
  • ⁇ Exposure stage> an exposure step of removing the IPA from the surface of the wafer W and exposing the surface of the wafer W is performed.
  • the rotation speed of the wafer W is increased from the fourth rotation speed to the fifth rotation speed (for example, 500 to 1000 rpm), and thereafter from time t8 to time t9.
  • the rotation speed of the wafer W is maintained at the fifth rotation speed.
  • the solvent nozzle 43 and the dry gas nozzle 44 are moved toward the peripheral edge of the wafer W while discharging the IPA and the N 2 gas from the solvent nozzle 43 and the dry gas nozzle 44 located immediately above the center of the wafer W, respectively.
  • the solvent nozzle 43 and the dry gas nozzle 44 start moving toward the peripheral edge of the wafer W at time t8, and move so that the dry gas nozzle 44 is positioned almost directly above the peripheral edge of the wafer W at time t9.
  • the position where the N 2 gas discharged from the dry gas nozzle 44 collides with the surface of the wafer W is larger in radius than the position where the IPA discharged from the solvent nozzle 43 collides with the surface of the wafer W. Keep it slightly inward with respect to direction.
  • the dry gas nozzle 44 is preferably attached to the nozzle arm 45 so as to inject N 2 gas obliquely downward so that a vector indicating the gas injection direction has a radially outward component.
  • the drying process may not be performed by simultaneous supply of IPA and N 2 gas.
  • the supply of IPA to the wafer W may be stopped at the time t5, and the rotation speed of the wafer W may be increased to the fifth rotation speed at once to perform shake-off drying.
  • the processing fluid supply unit 40 includes a chemical nozzle 41, a rinse nozzle 42, two solvent nozzles 43, and a dry gas nozzle 44. That is, the second embodiment is different from the first embodiment in that two solvent nozzles 43 for supplying IPA are provided.
  • two solvent nozzles 43 for supplying IPA are provided.
  • they are referred to as a first solvent nozzle 43 and a second solvent nozzle 43A.
  • the ordinal numbers “first” and “second” attached to the solvent nozzle do not always coincide with the description in the claims.
  • the chemical solution nozzle 41, the rinse nozzle 42, the first solvent nozzle 43, and the dry gas nozzle 44 are supported by a common nozzle arm 45 as in the first embodiment.
  • the second solvent nozzle 43A is supported by another nozzle arm 45A.
  • the nozzle arm 45A can be moved up and down by an arm drive mechanism 46A, and can turn around a vertical axis.
  • the second solvent nozzle 43A is arranged such that the vector indicating the discharge direction of IPA discharged from the second solvent nozzle 43A has a component inward in the radial direction of the wafer W in a plan view (for example, the center portion of the wafer
  • the discharge port is attached to the nozzle arm 45A with the axis of the discharge port facing obliquely downward.
  • IPA-1 shows the operation of the first solvent nozzle 43
  • IPA-2 shows the operation of the second solvent nozzle 43A
  • N1Pos represents the position of the first solvent nozzle 43 (nozzles 41 to 44)
  • N2Pos represents the position of the second solvent nozzle 43A.
  • the surface portion replacement step is executed.
  • processing similar to that from time t1 to time t3 of the first embodiment is performed. That is, at the time t3, the surface of the wafer W is in the state shown in FIG. 9A (this is the same as the state shown in FIG. 5B).
  • an agitation step by increasing or decreasing the rotation speed of the wafer W may be provided after the surface portion replacement step.
  • a replacement promotion step is performed.
  • the replacement promotion stage of the second embodiment is different from that of the first embodiment.
  • the rotation speed of the wafer is maintained at the second rotation speed (for example, 300 to 800 rpm) after time t3. Then, in a state where IPA is continuously supplied from the first solvent nozzle 43 to the central portion of the wafer W, supply of IPA from the second solvent nozzle 43A positioned in the vicinity of the peripheral edge of the wafer W toward the peripheral portion of the wafer W is performed. Start.
  • the nozzle arm 45A is driven so that the landing point of the IPA discharged from the second solvent nozzle 43A onto the wafer W is the wafer. It gradually approaches the center of W (see FIG. 9B).
  • the discharge of IPA from the second solvent nozzle 43A is stopped, and the second solvent The nozzle 43A is returned to the home position H (standby position) outside the wafer W in plan view. While the IPA is being discharged from the second solvent nozzle 43A, the second solvent nozzle 43A is moved so that the IPA landing point reciprocates once or a plurality of times between the peripheral edge and the center of the wafer W. Also good.
  • the second solvent nozzle 43A is moved so as to reciprocate a plurality of times, when the second solvent nozzle 43A is moved from the center of the wafer W toward the peripheral side, the IPA from the second solvent nozzle 43A. May be stopped. As a result, it is possible to reduce the consumption of IPA compared to reciprocating the second solvent nozzle while discharging IPA.
  • the kinetic energy of the second solvent nozzle 43A is discharged from the second solvent nozzle 43A described later. The replacement is promoted by adding to the horizontal component of the discharged energy of the IPA.
  • the wafer W is moved toward the peripheral edge side, such an effect is small.
  • FIG. 9B The state of FIG. 9B will be described in more detail with reference to FIG.
  • the surface of the wafer W is covered with a liquid film of IPA that is supplied from the first solvent nozzle 43 to the center of the rotating wafer W and flows outwardly due to centrifugal force.
  • the main force acting on the liquid film of the IPA liquid film present at the liquid landing point P of IPA discharged from the second solvent nozzle 43A (P is shown in FIG. 10 only) is discharged from the second solvent nozzle 43A.
  • Centrifugal force Fc and gravity Fg (excluding those caused by IPA).
  • the IPA discharged from the second solvent nozzle 43A gives a downward force Fj to the IPA at the landing point P.
  • the force Fj can be decomposed into a horizontal component Fjr and a vertical component Fjv. Since the second solvent nozzle 43A is arranged so that the horizontal component Fjr of the force Fj is substantially directed toward the center of the wafer W, at least a part of the centrifugal force Fc is canceled by the horizontal component Fjr of the force Fj.
  • the degree of cancellation depends on the magnitude of the force Fj (depending on the discharge flow rate of IPA from the second solvent nozzle 43A) and the direction (depending on the discharge angle), but almost all of the centrifugal force Fc can be canceled. preferable.
  • the IPA discharged from the second solvent nozzle 43A has a component in the direction opposite to the flow of IPA along the surface of the wafer W at the landing point P with respect to the IPA at the landing point P. It only has to give the power to have. As a result, the flow rate of IPA in the direction along the surface of the wafer W at the landing point P becomes small, and the IPA easily enters the recess R. For example, not only when the wafer W is rotated around the vertical axis as described above, but when the replacement liquid (for example, IPA as the second processing liquid) is supplied to the higher side of the substrate inclined with respect to the horizontal plane. In addition, the flow of the substitution liquid toward the lower side occurs along the surface of the substrate.
  • the replacement liquid for example, IPA as the second processing liquid
  • the substitution liquid is applied to the surface of the substrate from another substitution liquid supply means (nozzle, etc.) so as to give a force having a component in the direction opposite to the flow of the substitution liquid flowing from the high side to the low side of the substrate.
  • Supply As a result, the replacement of the liquid to be replaced (for example, DIW as the first processing liquid) in the recess formed on the surface of the substrate with the replacement liquid is promoted.
  • the other replacement liquid supply means and the substrate move relatively, and the replacement liquid supplied from the other replacement liquid supply means in the direction opposite to the flow of the replacement liquid flowing from the higher side to the lower side of the substrate. Move the landing point.
  • the replacement liquid when the replacement liquid is sprayed obliquely with respect to the surface of the substrate, the flow of the replacement liquid along the surface of the substrate is generated.
  • the substrate is formed on the substrate surface by supplying the replacement liquid to the surface of the substrate from another replacement liquid supply means (nozzle, etc.) so as to give a force having a component in the direction opposite to the flow of the replacement liquid.
  • the replacement of the liquid to be replaced for example, DIW
  • the other replacement liquid supply means and the substrate move relatively, and the replacement liquid supplied from the other replacement liquid supply means in the direction opposite to the flow of the replacement liquid sprayed obliquely with respect to the surface of the substrate. Move the landing point.
  • the centrifugal force Fc increases as it approaches the periphery of the wafer W. Therefore, in order to appropriately cancel the centrifugal force Fc, the discharge flow rate from the second solvent nozzle 43A is increased as the IPA landing point P from the second solvent nozzle 43A is closer to the periphery of the wafer W, or The IPA discharge direction of the two solvent nozzle 43A is made closer to the horizontal direction as the IPA landing point P from the second solvent nozzle 43A is closer to the periphery of the wafer W (in this case, the direction of the second solvent nozzle 43A is changed).
  • the rotational speed of the wafer W may be decreased as the distance between the IPA landing point P from the second solvent nozzle 43A and the periphery of the wafer W becomes smaller.
  • the second solvent nozzle 43A Since the second solvent nozzle 43A is moved by the nozzle arm 45A turning around the vertical axis, as shown in FIG. 11, depending on the relative positional relationship between the solvent nozzle 43A and the center of the wafer W, The direction of the vector of the horizontal component of IPA discharged from the second solvent nozzle 43A changes.
  • the IPA existing on the rotating wafer W receives a force dragged by the surface of the wafer W in addition to the centrifugal force Fc described above, so that the surface of the wafer W spirals as indicated by an arrow Fs. Flowing.
  • the horizontal component of the vector indicating the discharge direction of IPA from the second solvent nozzle 43A in the plan view is the radius of the second solvent nozzle 43A on the wafer W. It is preferable that the rotation direction of the wafer W and the swivel direction of the nozzle arm are set so that the direction is substantially opposite to the direction of the spiral flow of the IPA regardless of the direction position. By doing so, the force with which the IPA is pushed into the recess R can be largely maintained by the IPA discharged from the second solvent nozzle 43A.
  • Time points t7 ′, t8 ′, t9 ′, and t10 ′ in the second embodiment correspond to t7, t8, t9, and t10 in the first embodiment, and the state of the surface of the wafer W at each time point is substantially the same as in the first embodiment. It is.
  • the rotation speed of the wafer during the replacement promotion stage is relatively high and the IPA liquid film on the wafer W is relatively thin, it is not necessary to perform the solvent discharge stage.
  • the IPA sprayed from the nozzle is applied to the IPA liquid film by pushing the IPA constituting the liquid film into the recess R on the surface of the wafer W. For this reason, mixing of remaining DIW with IPA is promoted, and DIW remaining at the bottom of the recess R can be efficiently replaced with IPA.
  • the IPA liquid film is applied to the IPA liquid film. The IPA sprayed from the nozzle gives a force to push the IPA forming the liquid film into the recess R on the surface of the wafer W.
  • the replacement promotion stage is executed while the rotation of the wafer W is stopped or the wafer W is rotated at an extremely low speed, a vertical force is more reliably applied to the IPA liquid film.
  • the second embodiment has an advantage that a series of processes can be completed in a shorter time because the time required for stopping or decelerating and accelerating the wafer W is not required.
  • the DIW on the wafer W having a recess on the surface is replaced with IPA.
  • the processing liquid to be replaced is not limited to the combination of IPA and DIW, and may be a combination of other types of processing liquid.
  • the method according to the above embodiment may be used in order to promote the replacement of the chemical solution with the rinse solution.
  • the method according to the embodiment is particularly effective when the replacement processing solution is replaced with a replacement processing solution having a specific gravity lower than that of the replacement processing solution.
  • the substrate to be processed is not limited to a semiconductor wafer, and may be another type of substrate such as a glass substrate or a ceramic substrate.
  • control device control unit 42 1st process liquid supply part (nozzle) 43, 43A Second processing liquid supply unit (nozzle) 43 First supply element (nozzle) 43A Second supply element (nozzle)

Abstract

A substrate liquid processing method is provided with, after a step of forming a liquid film of a first processing liquid (DIW) on a surface of a substrate, a substitution step of substituting the first processing liquid, present on the surface of the substrate including the inside of a recess (R), with a second processing liquid (IPA). According to an embodiment, the substitution step includes: a liquid film formation stage in which the second processing liquid is supplied to the surface of the substrate covered with the liquid film of the first processing liquid while the substrate is rotated at a first rotational speed, and in which, on the substrate surface, a liquid film of the second processing liquid including the first processing liquid is formed; and, thereafter, a substitution promotion stage for promoting the substitution with the second processing liquid in which the second processing liquid is supplied with the rotational speed of the substrate being decreased to a second rotational speed lower than the first rotational speed, and in which the point of landing of the second processing liquid on the surface of the substrate is moved between a center portion and a peripheral portion of the substrate.

Description

基板液処理方法および基板液処理装置Substrate liquid processing method and substrate liquid processing apparatus
 本発明は、半導体ウエハ等の基板に液処理を施すにあたって、基板表面の凹部内にある処理液を他の処理液に置換する技術に関する。 The present invention relates to a technique for replacing a processing liquid in a recess on a substrate surface with another processing liquid when performing a liquid processing on a substrate such as a semiconductor wafer.
 半導体装置の製造工程には、薬液洗浄処理またはウエットエッチング処理等の液処理が含まれる。このような液処理は、薬液を半導体ウエハ等の基板に薬液を供給する薬液処理工程と、薬液処理工程の後に純水等のリンス液を用いて基板上に残留する薬液および反応生成物を洗い流すリンス工程と、リンス工程の後に基板上に残留するリンス液をIPA(イソプロピルアルコール)等の乾燥補助用有機溶剤により置換する置換工程と、置換工程の後に基板を乾燥させる乾燥工程とが含まれる。 The manufacturing process of a semiconductor device includes liquid processing such as chemical cleaning processing or wet etching processing. In such a liquid treatment, the chemical solution is supplied to a substrate such as a semiconductor wafer, and the chemical solution and reaction products remaining on the substrate are washed away using a rinse solution such as pure water after the chemical treatment step. A rinsing step, a displacing step of replacing the rinsing liquid remaining on the substrate after the rinsing step with an organic solvent for drying assistance such as IPA (isopropyl alcohol), and a drying step of drying the substrate after the displacing step are included.
 上記液処理において、薬液処理工程からリンス工程に移行する際、並びに、リンス工程から置換工程に移行する際には、前工程で基板に供給されて基板上に残留する第1処理液が、後工程で基板に供給される第2処理液に置換される(例えば特許文献1を参照)。例えば、純水からIPAへの置換を行う際に、置換が完全に行われず、基板表面に形成されたパターンの凹部の底部に純水が残ってしまうと、乾燥工程において純水が凹部から出て行くときに純水の表面張力によりパターンの倒壊が生じるおそれがある。また例えば、薬液から純水への置換を行う際に、置換が完全に行われずに凹部内に薬液が残留すると、薬液成分により腐食が生じるおそれもある。 In the above liquid processing, when shifting from the chemical processing step to the rinsing step, and when shifting from the rinsing step to the replacement step, the first processing liquid supplied to the substrate in the previous step and remaining on the substrate is It is replaced with the second processing liquid supplied to the substrate in the process (see, for example, Patent Document 1). For example, when replacing pure water with IPA, if the replacement is not completely performed and pure water remains at the bottom of the concave portion of the pattern formed on the substrate surface, the pure water is discharged from the concave portion in the drying process. When going, there is a risk that the pattern collapses due to the surface tension of pure water. Further, for example, when the chemical solution is replaced with pure water, if the chemical solution remains in the recess without being completely replaced, corrosion may occur due to the chemical component.
 従って、第1処理液が凹部内に残留することがないように第2処理液への液置換が行われることが望ましい。しかも、基板液処理装置のスループットを損なわないように、液置換が効率良く短時間で行われることも望まれている。さらに、近年のパターンのさらなる微細化に伴い、パターンの凹部内に入り混んだ第1処理液を第2処理液に置換することはより困難となっている。 Therefore, it is desirable to perform liquid replacement with the second processing liquid so that the first processing liquid does not remain in the recess. Moreover, it is also desired that the liquid replacement be performed efficiently and in a short time so as not to impair the throughput of the substrate liquid processing apparatus. Furthermore, with the further miniaturization of patterns in recent years, it has become more difficult to replace the first processing liquid that has entered the pattern recesses with the second processing liquid.
特許5016525号公報Japanese Patent No. 5016525
 本発明は、基板表面に形成された凹部内に存在する第1の処理液を、第2の処理液に効率良く置換することができる技術を提供するものである。 The present invention provides a technique capable of efficiently replacing the first processing liquid present in the recess formed on the substrate surface with the second processing liquid.
 本発明の一実施形態によれば、表面に凹部が形成された基板を準備する工程と、前記基板の表面に第1処理液を供給して、前記凹部の内部を含む前記基板の表面を覆う前記第1処理液の液膜を形成する工程と、前記凹部の内部を含む前記基板の表面に存在する前記第1処理液を第2処理液に置換する置換工程と、を備え、前記置換工程は、前記基板を第1回転数で回転させながら前記第1処理液の液膜により覆われた前記基板の表面に第2処理液を供給し、前記第1処理液を含む前記第2処理液の液膜を前記基板の表面に形成する液膜形成段階と、その後、前記基板の回転数を前記第1回転数よりも低い第2回転数に減じた状態で、前記第2処理液を供給するとともに、前記第2処理液の前記基板の表面上への着液点が前記基板の中心部と周縁部との間で移動する、前記第2処理液による置換を促進する置換促進段階と、を含む、基板液処理方法が提供される。 According to an embodiment of the present invention, a step of preparing a substrate having a recess formed on the surface, and supplying a first processing liquid to the surface of the substrate to cover the surface of the substrate including the inside of the recess. A step of forming a liquid film of the first treatment liquid, and a substitution step of substituting the second treatment liquid for the first treatment liquid present on the surface of the substrate including the inside of the recess. Supplies the second processing liquid to the surface of the substrate covered with the liquid film of the first processing liquid while rotating the substrate at the first rotational speed, and includes the second processing liquid containing the first processing liquid. Forming a liquid film on the surface of the substrate, and then supplying the second processing liquid in a state in which the rotational speed of the substrate is reduced to a second rotational speed lower than the first rotational speed. In addition, the point of landing of the second treatment liquid on the surface of the substrate is a center portion of the substrate. Moves between the edges, including the substitution accelerating stage to promote the substitution with the second processing liquid, the substrate solution processing method is provided.
 本発明の他の実施形態によれば、基板を保持して回転させる基板保持部と、前記基板保持部により保持された前記基板に前記第1処理液を供給する第1処理液供給部と、前記基板保持部により保持された前記基板に前記第2処理液を供給する第2処理液供給部と、前記基板保持部と前記第1処理液供給部と、前記第2処理液供給部を制御して、上記の基板液処理方法を実行させる制御部と、を備えた基板液処理装置が提供される。 According to another embodiment of the present invention, a substrate holding unit that holds and rotates a substrate, a first processing liquid supply unit that supplies the first processing liquid to the substrate held by the substrate holding unit, Control a second processing liquid supply unit that supplies the second processing liquid to the substrate held by the substrate holding unit, the substrate holding unit, the first processing liquid supply unit, and the second processing liquid supply unit. Then, there is provided a substrate liquid processing apparatus including a control unit that executes the substrate liquid processing method.
 本発明のさらに他の実施形態によれば、表面に凹部が形成された基板を準備する工程と、前記基板の表面に第1処理液を供給して、前記凹部の内部を含む前記基板の表面を覆う前記第1処理液の液膜を形成する工程と、前記凹部の内部を含む前記基板の表面に存在する前記第1処理液を第2処理液に置換する置換工程と、を備え、前記置換工程は、前記第1処理液の液膜により覆われた前記基板の表面に前記第2処理液を供給し、前記第1処理液を含む前記第2処理液の液膜を前記基板の表面に形成する液膜形成段階と、その後、前記液膜を形成した状態で、前記第2処理液の流れを基板表面に形成することと、前記第2処理液の流れに逆らう方向の成分を持つ力を前記液膜に対して与える置換促進段階と、を含み、前記第2処理液の流れに逆らう方向の成分を持つ力を前記液膜に対して与えることは、前記液膜に対する着液点を前記第2処理液の流れの方向と逆方向に移動させながら、前記第2処理液を、前記第2処理液の前記液膜に向けて供給することを含む、基板液処理方法が提供される。 According to still another embodiment of the present invention, a step of preparing a substrate having a recess formed on the surface, a first processing liquid is supplied to the surface of the substrate, and the surface of the substrate including the inside of the recess Forming a liquid film of the first treatment liquid covering the substrate, and replacing the first treatment liquid present on the surface of the substrate including the inside of the recess with a second treatment liquid, and In the replacement step, the second processing liquid is supplied to the surface of the substrate covered with the liquid film of the first processing liquid, and the liquid film of the second processing liquid containing the first processing liquid is supplied to the surface of the substrate. Forming a liquid film on the substrate surface in a state in which the liquid film is formed and then forming the liquid film, and having a component in a direction opposite to the flow of the second processing liquid. A substitution promoting step of applying a force to the liquid film, and the flow of the second treatment liquid Giving a force having a component in the opposite direction to the liquid film, moving the liquid treatment point in a direction opposite to the flow direction of the second treatment liquid while moving the second treatment liquid to the liquid film, There is provided a substrate liquid processing method including supplying the second processing liquid toward the liquid film.
 本発明のさらにまた他の実施形態によれば、基板を保持する基板保持部と、前記基板保持部により保持された基板に前記第1処理液を供給する第1処理液供給部と、前記基板保持部により保持された基板に第2処理液を供給する第2処理液供給部であって、前記第2処理液の流れを基板表面に形成するための前記第2処理液を基板に供給する第1供給要素と、前記第2処理液の流れと逆方向に前記第2処理液の着液点を移動させながら前記第2処理液を基板に供給する第2供給要素と、を有する第2処理液供給部と、前記第1処理液供給部及び前記第2処理液供給部を制御して、上記の基板液処理方法を実行させる制御部と、を備えた基板液処理装置が提供される。 According to still another embodiment of the present invention, a substrate holding unit that holds a substrate, a first processing liquid supply unit that supplies the first processing liquid to the substrate held by the substrate holding unit, and the substrate A second processing liquid supply unit that supplies the second processing liquid to the substrate held by the holding unit, and supplies the second processing liquid for forming a flow of the second processing liquid on the substrate surface to the substrate. A second supply element that includes a first supply element and a second supply element that supplies the second processing liquid to the substrate while moving a landing point of the second processing liquid in a direction opposite to the flow of the second processing liquid. There is provided a substrate liquid processing apparatus comprising: a processing liquid supply unit; and a control unit that controls the first processing liquid supply unit and the second processing liquid supply unit to execute the substrate liquid processing method. .
 上記本発明の実施形態によれば、基板表面の凹部の底部にある第1処理液を第2処理液に効率良く置換することができる。 According to the embodiment of the present invention, the first processing liquid at the bottom of the recess on the substrate surface can be efficiently replaced with the second processing liquid.
本実施形態に係る基板処理システムの概略構成を示す図である。It is a figure showing a schematic structure of a substrate processing system concerning this embodiment. 処理ユニットの概略構成を示す図である。It is a figure which shows schematic structure of a processing unit. 第1実施形態で用いる処理ユニットの処理液供給部の概略構成を示す図である。It is a figure which shows schematic structure of the process liquid supply part of the process unit used in 1st Embodiment. 第1実施形態の溶剤置換工程および乾燥工程を説明するためのタイムチャートである。It is a time chart for demonstrating the solvent substitution process and drying process of 1st Embodiment. 第1実施形態の溶剤置換工程を説明するためのウエハの概略断面図である。It is a schematic sectional drawing of the wafer for demonstrating the solvent substitution process of 1st Embodiment. 第1実施形態の乾燥工程を説明するためのウエハの概略側面図である。It is a schematic side view of the wafer for demonstrating the drying process of 1st Embodiment. 第2実施形態で用いる処理ユニットの処理液供給部の概略構成を示す図である。It is a figure which shows schematic structure of the process liquid supply part of the process unit used by 2nd Embodiment. 第2実施形態の溶剤置換工程および乾燥工程を説明するためのタイムチャートである。It is a time chart for demonstrating the solvent substitution process and drying process of 2nd Embodiment. 第2実施形態の溶剤置換工程を説明するためのウエハの概略断面図である。It is a schematic sectional drawing of the wafer for demonstrating the solvent substitution process of 2nd Embodiment. 第2実施形態の溶剤置換工程を説明するためのウエハの概略拡大断面図である。It is a schematic expanded sectional view of the wafer for demonstrating the solvent substitution process of 2nd Embodiment. ウエハ表面上の液の流れとノズルの向きについて説明するための概略平面図である。It is a schematic plan view for demonstrating the flow of the liquid on a wafer surface, and the direction of a nozzle.
 以下に添付図面を参照して本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
 図1は、本実施形態に係る基板処理システムの概略構成を示す図である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。 FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to the present embodiment. In the following, in order to clarify the positional relationship, the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 1, the substrate processing system 1 includes a carry-in / out station 2 and a processing station 3. The carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚のウエハWを水平状態で収容する複数のキャリアCが載置される。 The loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12. A plurality of carriers C that accommodate a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
 搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いてキャリアCと受渡部14との間でウエハWの搬送を行う。 The transfer unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transfer device 13 and a delivery unit 14 inside. The substrate transfer device 13 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 14 using the substrate holding mechanism. Do.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transfer unit 12. The processing station 3 includes a transport unit 15 and a plurality of processing units 16. The plurality of processing units 16 are provided side by side on the transport unit 15.
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いて受渡部14と処理ユニット16との間でウエハWの搬送を行う。 The transfer unit 15 includes a substrate transfer device 17 inside. The substrate transfer device 17 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using the substrate holding mechanism. I do.
 処理ユニット16は、基板搬送装置17によって搬送されるウエハWに対して所定の基板処理を行う。 The processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。 Further, the substrate processing system 1 includes a control device 4. The control device 4 is a computer, for example, and includes a control unit 18 and a storage unit 19. The storage unit 19 stores a program for controlling various processes executed in the substrate processing system 1. The control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 Note that such a program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium. Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウエハWを取り出し、取り出したウエハWを受渡部14に載置する。受渡部14に載置されたウエハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。 In the substrate processing system 1 configured as described above, first, the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W. Place on the transfer section 14. The wafer W placed on the delivery unit 14 is taken out from the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
 処理ユニット16へ搬入されたウエハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウエハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。 The wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery unit 14 is returned to the carrier C of the carrier platform 11 by the substrate transfer device 13.
 次に、処理ユニット16の概略構成について図2を参照して説明する。図2は、処理ユニット16の概略構成を示す図である。 Next, a schematic configuration of the processing unit 16 will be described with reference to FIG. FIG. 2 is a diagram showing a schematic configuration of the processing unit 16.
 図2に示すように、処理ユニット16は、チャンバ20と、基板保持機構30と、処理流体供給部40と、回収カップ50とを備える。 As shown in FIG. 2, the processing unit 16 includes a chamber 20, a substrate holding mechanism 30, a processing fluid supply unit 40, and a recovery cup 50.
 チャンバ20は、基板保持機構30と処理流体供給部40と回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。 The chamber 20 accommodates the substrate holding mechanism 30, the processing fluid supply unit 40, and the recovery cup 50. An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20. The FFU 21 forms a down flow in the chamber 20.
 基板保持機構30は、保持部31と、支柱部32と、駆動部33とを備える。保持部31は、ウエハWを水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。かかる基板保持機構30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された保持部31を回転させ、これにより、保持部31に保持されたウエハWを回転させる。 The substrate holding mechanism 30 includes a holding part 31, a support part 32, and a driving part 33. The holding unit 31 holds the wafer W horizontally. The support | pillar part 32 is a member extended in a perpendicular direction, a base end part is rotatably supported by the drive part 33, and supports the holding | maintenance part 31 horizontally in a front-end | tip part. The drive unit 33 rotates the column unit 32 around the vertical axis. The substrate holding mechanism 30 rotates the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the support unit 31. .
 処理流体供給部40は、ウエハWに対して処理流体を供給する。処理流体供給部40は、処理流体供給源70に接続される。 The processing fluid supply unit 40 supplies a processing fluid to the wafer W. The processing fluid supply unit 40 is connected to a processing fluid supply source 70.
 回収カップ50は、保持部31を取り囲むように配置され、保持部31の回転によってウエハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。 The recovery cup 50 is disposed so as to surround the holding unit 31, and collects the processing liquid scattered from the wafer W by the rotation of the holding unit 31. A drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged from the drain port 51 to the outside of the processing unit 16. Further, an exhaust port 52 for discharging the gas supplied from the FFU 21 to the outside of the processing unit 16 is formed at the bottom of the recovery cup 50.
 <第1実施形態>
 まず、第1実施形態で用いる処理流体供給部40について説明する。処理流体供給部40は、薬液ノズル41、リンスノズル42、溶剤ノズル43、乾燥ガスノズル44を有する。
<First Embodiment>
First, the processing fluid supply unit 40 used in the first embodiment will be described. The processing fluid supply unit 40 includes a chemical nozzle 41, a rinse nozzle 42, a solvent nozzle 43, and a dry gas nozzle 44.
 薬液ノズル41は、ウエハWに薬液として例えばDHF(希フッ酸)を供給する。リンスノズル42は、ウエハWにリンス液として例えばDIW(純水(脱イオン水))を供給する。溶剤ノズル43は、ウエハWに、リンス液であるDIWよりも揮発性が高くかつ表面張力が低い乾燥補助流体としての有機溶剤としてIPA(イソプロピルアルコール)を供給する。乾燥ガスノズル44は、空気より湿度および酸素濃度が低い乾燥ガスである窒素(N)ガスを供給する。このような乾燥ガスを供給することにより、ウエハWの乾燥時にウオーターマークが生じ難くなる。薬液は、DHFに限定されるものではなく、例えば、SC-1、SC-2、バッファードフッ酸等、半導体装置製造の分野で使用される任意のものであってよい。 The chemical nozzle 41 supplies, for example, DHF (dilute hydrofluoric acid) to the wafer W as a chemical. The rinse nozzle 42 supplies, for example, DIW (pure water (deionized water)) as a rinse liquid to the wafer W. The solvent nozzle 43 supplies IPA (isopropyl alcohol) to the wafer W as an organic solvent as a drying auxiliary fluid that has higher volatility and lower surface tension than DIW, which is a rinsing liquid. The dry gas nozzle 44 supplies nitrogen (N 2 ) gas, which is a dry gas having a lower humidity and oxygen concentration than air. By supplying such a drying gas, a water mark is hardly generated when the wafer W is dried. The chemical solution is not limited to DHF, and may be any one used in the field of semiconductor device manufacture, such as SC-1, SC-2, and buffered hydrofluoric acid.
 上記のノズル41~44には、各々に対応する図示しない処理流体供給源(タンク、ガスボンベ等)から、各々に対応する図示しない処理流体供給機構を介して対応する処理流体すなわち、DHF、DIW、IPA、Nが供給される。各処理流体供給機構は、配管等からなる処理流体供給ラインと、ポンプ、開閉弁、流量調整弁等の流れ制御機器とを含んでいる。 Each of the nozzles 41 to 44 is supplied from a corresponding processing fluid supply source (tank, gas cylinder, etc.) through a corresponding processing fluid supply mechanism (not shown), that is, DHF, DIW, IPA, N 2 is supplied. Each processing fluid supply mechanism includes a processing fluid supply line composed of piping and the like, and flow control devices such as a pump, an on-off valve, and a flow rate adjustment valve.
 薬液ノズル41、リンスノズル42、溶剤ノズル43および乾燥ガスノズル44は、共通のノズルアーム45の先端部により支持されている。ノズルアーム45は、アーム駆動機構46により昇降可能であり、また、鉛直軸線周りに旋回可能である。従って、ノズル41~44は、ウエハWの中心部の真上の位置と周縁部の真上との位置の間を移動することができる。また、ウエハWの真上から外れた待機位置(ホームポジション)にも移動することができる。 The chemical solution nozzle 41, the rinse nozzle 42, the solvent nozzle 43, and the dry gas nozzle 44 are supported by the tip of a common nozzle arm 45. The nozzle arm 45 can be moved up and down by an arm drive mechanism 46 and can be swung around a vertical axis. Accordingly, the nozzles 41 to 44 can move between a position directly above the center of the wafer W and a position directly above the peripheral edge. Further, it is possible to move to a standby position (home position) deviated from directly above the wafer W.
 アーム駆動機構は、例えば、ノズルアームをガイドレールに沿って直線的に並進運動させる形式のものであってもよい。 The arm drive mechanism may be of a type that linearly translates the nozzle arm along the guide rail, for example.
 薬液の種類によっては、薬液ノズル41に薬液供給機構及びリンス液供給機構を連結し、薬液およびリンス液のいずれかを選択的に薬液ノズル41から吐出できるようにしてもよい。この場合、リンスノズル42を廃止することができる。 Depending on the type of chemical liquid, a chemical liquid supply mechanism and a rinse liquid supply mechanism may be connected to the chemical liquid nozzle 41 so that either the chemical liquid or the rinse liquid can be selectively discharged from the chemical liquid nozzle 41. In this case, the rinse nozzle 42 can be eliminated.
 次に、処理ユニット16にて行われる一連の工程について説明する。以下の各工程は前述したように、制御装置4の制御の下で自動的に実行される。 Next, a series of steps performed in the processing unit 16 will be described. The following steps are automatically executed under the control of the control device 4 as described above.
 まず、未処理のウエハWが、基板搬送装置17のアーム(図1参照)により処理ユニット16内に搬入し、このウエハWは図3に示すように基板保持機構30により保持される。 First, an unprocessed wafer W is loaded into the processing unit 16 by the arm (see FIG. 1) of the substrate transfer device 17, and the wafer W is held by the substrate holding mechanism 30 as shown in FIG.
 <薬液処理工程>
 薬液ノズル41がウエハWの中心部の真上に位置する。ウエハWが鉛直軸線周りに回転させられ、ウエハWの中心部に薬液ノズル41が薬液例えばDHFを供給する。薬液は遠心力により広がり、ウエハWの表面の全域が薬液の液膜により覆われ、これによりウエハWの表面が薬液により処理される。反応生成物を含む薬液は、ウエハWの外周縁から半径方向外側に飛散する。飛散した薬液は回収カップ50(図2参照)により回収される。
 <リンス工程>
 薬液処理工程の終了後、引き続きウエハWを回転させたまま、(薬液の供給は停止している)リンスノズル42からリンス液としてDIWリンスをウエハWの中心部に供給して、ウエハWの表面に残留した薬液および反応生成物を洗い流すリンス処理を行う。
<Chemical solution treatment process>
The chemical nozzle 41 is located directly above the center of the wafer W. The wafer W is rotated around the vertical axis, and a chemical solution nozzle 41 supplies a chemical solution, for example DHF, to the center of the wafer W. The chemical liquid spreads due to centrifugal force, and the entire surface of the wafer W is covered with a chemical liquid film, whereby the surface of the wafer W is treated with the chemical liquid. The chemical solution containing the reaction product is scattered radially outward from the outer peripheral edge of the wafer W. The scattered chemical is collected by the collection cup 50 (see FIG. 2).
<Rinse process>
After completion of the chemical treatment process, DIW rinse is supplied from the rinse nozzle 42 (the chemical supply is stopped) as a rinse liquid to the center of the wafer W while the wafer W is continuously rotated. A rinse treatment is performed to wash away the chemical solution and reaction product remaining on the substrate.
 <溶剤置換工程>
 リンス工程の終了後(リンス液の供給は停止している)、溶剤ノズル43からIPAをウエハWに供給して、ウエハWの表面に存在するリンス液をIPAで置換する溶剤置換処理を行う。
<Solvent replacement step>
After completion of the rinsing process (the supply of the rinsing liquid is stopped), IPA is supplied from the solvent nozzle 43 to the wafer W, and a solvent replacement process is performed in which the rinsing liquid existing on the surface of the wafer W is replaced with IPA.
 <乾燥工程>
 IPA置換工程の終了後、ウエハWを乾燥させる乾燥工程を実行する。これにより一枚のウエハWに対する一連の液処理が終了する。その後ウエハWは処理ユニット16外に搬出される。
<Drying process>
After the IPA replacement process, a drying process for drying the wafer W is executed. Thus, a series of liquid processing for one wafer W is completed. Thereafter, the wafer W is carried out of the processing unit 16.
 なお、上記の溶剤置換工程および上記の乾燥工程をまとめて「乾燥工程」と呼ぶ場合もあるが、本明細書では、それまでウエハW上にあったDIWすなわち第1処理液がIPAすなわち第2処理液に置換されるまでを(溶剤)置換工程と呼び、その後ウエハW上にあるIPAをウエハ上から除去する工程を乾燥工程と呼ぶこととする。 Note that the solvent replacement step and the drying step may be collectively referred to as a “drying step”, but in this specification, the DIW, that is, the first processing liquid that has been on the wafer W until then is the IPA, that is, the second step. The process until the treatment liquid is replaced is called a (solvent) replacement process, and the process of removing IPA on the wafer W from the wafer is called a drying process.
 次に、リンス工程の終期から乾燥工程までに実行される手順について図3~図7を参照して詳細に説明する。図4のタイムチャートにおいて、横軸は時間であり、縦軸は、上から順に、ウエハ回転数(rpm)、リンスノズル42からのDIWからの吐出(ON)/吐出停止(OFF)、溶剤ノズル43からのIPAの吐出(ON)/吐出停止(OFF)、乾燥ガスノズル44からのNガスの吐出(ON)/吐出停止(OFF)、ノズル41~44の位置(NPos:Cがウエハ中心;Eがウエハ周縁;Hがホームポジション)を示している。 Next, a procedure executed from the end of the rinsing process to the drying process will be described in detail with reference to FIGS. In the time chart of FIG. 4, the horizontal axis is time, and the vertical axis is, in order from the top, wafer rotation speed (rpm), discharge from DIW from rinse nozzle 42 (ON) / discharge stop (OFF), solvent nozzle. IPA discharge (ON) / discharge stop (OFF) from 43, N 2 gas discharge (ON) / discharge stop (OFF) from the dry gas nozzle 44, positions of the nozzles 41 to 44 (NPos: C is the wafer center; E indicates the wafer periphery; H indicates the home position).
 <リンス工程終期>
 リンス工程の終期、すなわち時点t1より前の(第1期間)では、第1回転速度(例えば約1000rpm)でウエハWを回転させながらリンスノズル42からDIWをウエハWの中心部に供給している。このとき、図5(a)に示すように、ウエハWの表面の全体はDIWの液膜に覆われ、ウエハW表面に形成された凹部Rの内部もDIWで満たされている。
<End of rinsing process>
At the end of the rinsing process, that is, before the time point t1 (first period), DIW is supplied from the rinse nozzle 42 to the center of the wafer W while rotating the wafer W at a first rotation speed (for example, about 1000 rpm). . At this time, as shown in FIG. 5A, the entire surface of the wafer W is covered with a liquid film of DIW, and the inside of the recess R formed on the surface of the wafer W is also filled with DIW.
 時点t1から時点t2までの間(第2期間)に、ウエハWの回転速度を第1回転速度から第2回転速度(例えば300~800rpm)に減速する。第2回転速度は、ウエハW周縁部におけるカバレッジ性(つまり、周縁部において液膜が切れることが無いこと)を考慮して決定されている。 During the period from the time point t1 to the time point t2 (second period), the rotation speed of the wafer W is reduced from the first rotation speed to the second rotation speed (for example, 300 to 800 rpm). The second rotation speed is determined in consideration of the coverage at the peripheral edge of the wafer W (that is, the liquid film does not break at the peripheral edge).
 次いで、溶剤置換工程が実施される。この溶剤置換工程は以下に説明する複数の段階からなる。 Next, a solvent replacement step is performed. This solvent replacement step includes a plurality of steps described below.
 <表面部置換段階(溶剤液膜形成段階)>
 時点t2から時点t3までの間(第3期間)に、ウエハWの回転速度を第2回転速度に維持した状態でウエハWの中心部にIPAが供給される。時点t2において溶剤ノズル43からのIPAの吐出が開始される。溶剤ノズル43からのIPAの吐出は、時点t9まで継続される。IPAの吐出開始後直ちにDIWの吐出を停止すると、DIWとIPAとの界面付近でマランゴニ効果によりウエハW表面が露出してしまうおそれがある。このため、リンスノズル42からのDIWの吐出は、時点t2よりやや後に停止する。
<Surface part substitution stage (solvent liquid film formation stage)>
IPA is supplied to the center of the wafer W in a state where the rotation speed of the wafer W is maintained at the second rotation speed from the time t2 to the time t3 (third period). At time t2, the discharge of IPA from the solvent nozzle 43 is started. The discharge of IPA from the solvent nozzle 43 is continued until time t9. If DIW discharge is stopped immediately after the start of IPA discharge, the surface of the wafer W may be exposed near the interface between DIW and IPA due to the Marangoni effect. For this reason, the discharge of DIW from the rinse nozzle 42 stops slightly after time t2.
 時点t3までに、ウエハW表面にあるDIWはIPAに置換される。すなわち、凹部Rの外側におけるウエハW表面の全面は、IPAの液膜により覆われる。しかしながら、ウエハ表面の凹部Rの底部には、DIWが残留している。詳細には、ウエハW表面は、DIWとIPAとを含む液膜により覆われ、この液膜は、DIW濃度が高い下層と、IPA濃度が高い上層とを有している。この状態が、図5(b)に示されている。この凹部の底部にあるDIWを速やかに置換するための手順が引き続き実行される。 By time t3, DIW on the surface of the wafer W is replaced with IPA. That is, the entire surface of the wafer W outside the recess R is covered with the IPA liquid film. However, DIW remains at the bottom of the recess R on the wafer surface. Specifically, the surface of the wafer W is covered with a liquid film containing DIW and IPA, and this liquid film has a lower layer having a high DIW concentration and an upper layer having a high IPA concentration. This state is shown in FIG. The procedure for quickly replacing the DIW at the bottom of this recess continues.
 <撹拌段階>
 時点t3から時点t4までの間(第4期間)に、ウエハWの回転速度を第2回転速度から第3回転速度(例えば0~50rpm)に減速する。この減速時の減速度(負の加速度)により、凹部R内にある液体(DIWとIPA)の撹拌が促進される。この第4期間には、ウエハWの回転の加速を行ってもよく、加速と減速を組み合わせてもよい。撹拌促進の観点から、加減速の加(減)速度の絶対値は大きい方がよい(急加速、急減速)。どのように加減速を行ったかに関わらず、時点t4にウエハWの回転速度が第3回転速度となるようにする。
<Stirring stage>
Between time t3 and time t4 (fourth period), the rotation speed of the wafer W is reduced from the second rotation speed to the third rotation speed (for example, 0 to 50 rpm). Due to the deceleration (negative acceleration) at the time of deceleration, stirring of the liquid (DIW and IPA) in the recess R is promoted. In the fourth period, the rotation of the wafer W may be accelerated, or acceleration and deceleration may be combined. From the viewpoint of promoting stirring, it is better that the absolute value of the acceleration (deceleration) acceleration / deceleration is large (rapid acceleration, rapid deceleration). Regardless of how acceleration / deceleration is performed, the rotational speed of the wafer W is set to the third rotational speed at time t4.
 <置換促進段階>
 次に、凹部R内に残存するDIWのIPAへの置換を促進する。時点t4から時点t5までの間(第5期間)は、ウエハWの回転速度を第3回転速度、例えば100rpm以下、好ましくは30~50rpm程度に維持する。このようにウエハWを極低速で回転させると、ウエハWの表面にウエハ中心部から周縁部に向かう緩やかなIPAの流れが生じる。しかしながら、ウエハWの表面上にあるIPAに作用する力は、重力が支配的であり、遠心力等のウエハWの回転に起因する力は非常に小さい。つまり、IPAには作用する水平方向の力は非常に小さく、ほぼ鉛直方向下向きの力が作用することになる。この鉛直方向下向きの力により、凹部R内にあるDIWとIPAの混合(相互拡散)が促進される。
<Replacement promotion stage>
Next, the replacement of DIW remaining in the recess R with IPA is promoted. Between time t4 and time t5 (fifth period), the rotation speed of the wafer W is maintained at a third rotation speed, for example, 100 rpm or less, preferably about 30 to 50 rpm. When the wafer W is rotated at an extremely low speed as described above, a gentle flow of IPA from the center of the wafer toward the peripheral edge occurs on the surface of the wafer W. However, the force acting on the IPA on the surface of the wafer W is dominated by gravity, and the force caused by the rotation of the wafer W such as centrifugal force is very small. That is, the horizontal force acting on the IPA is very small, and a downward force in the vertical direction is applied. This downward force in the vertical direction promotes mixing (mutual diffusion) of DIW and IPA in the recess R.
 しかしながら、IPAの比重はDIWよりも小さいため、DIWとIPAの混合をさらに促進するには、IPAに鉛直方向下向きの力をさらに積極的に負荷することが好ましい。そこで、この第5期間では、鉛直方向下方に向けてIPAを吐出している溶剤ノズル43により凹部Rの中に向けてIPAを押し込む操作を行う。ウエハWの表面にある凹部Rの全てに対してIPAの押し込みを行うため、前述したようにウエハWを極低速で回転させた状態で、IPAを吐出している溶剤ノズル43をウエハW中心部とウエハ周縁部との間で移動させる(溶剤ノズル43のスキャン動作)。具体的には、図5(c)に示すように、IPAを吐出した状態で溶剤ノズル43をウエハW中心部からウエハW周縁部へ移動させる。さらに、本実施形態では、溶剤ノズル43がウエハW周縁部に到達した後、IPAを吐出した状態で溶剤ノズル43をウエハ中心部へ移動させる(往復移動)。これにより、図5(d)に示すように、全ての凹部内において、DIWがIPAに置換される。以上により、溶剤置換工程が終了する。 However, since the specific gravity of IPA is smaller than that of DIW, in order to further promote the mixing of DIW and IPA, it is preferable to further positively load the IPA with a downward force in the vertical direction. Therefore, in the fifth period, an operation of pushing the IPA into the concave portion R is performed by the solvent nozzle 43 that discharges the IPA downward in the vertical direction. In order to push the IPA into all the recesses R on the surface of the wafer W, the solvent nozzle 43 that discharges the IPA is placed at the center of the wafer W while the wafer W is rotated at an extremely low speed as described above. And the wafer peripheral edge (scanning operation of the solvent nozzle 43). Specifically, as shown in FIG. 5C, the solvent nozzle 43 is moved from the center of the wafer W to the periphery of the wafer W while IPA is being discharged. Further, in the present embodiment, after the solvent nozzle 43 reaches the peripheral edge of the wafer W, the solvent nozzle 43 is moved to the wafer central portion in a state where IPA is discharged (reciprocating movement). As a result, as shown in FIG. 5D, DIW is replaced with IPA in all the recesses. Thus, the solvent replacement step is completed.
 ところで、IPAへの置換は、凹部Rの幅および深さ、ウエハ表面の状態等に依存する。このため、IPAを吐出している溶剤ノズル43をウエハ中心部からウエハ周縁部に至るまで移動させることにより、或いはウエハ周縁部でIPAの吐出を開始した溶剤ノズル43をウエハ中心部に至るまで移動させることにより、すなわち、IPAを吐出している溶剤ノズル43を片道移動させることにより凹部R内のDIWがIPAに置換される場合には、置換促進段階において、溶剤ノズル43を往復移動させる必要は無い。片道移動の場合IPAの消費量を往復移動の場合よりも削減できる。 Incidentally, the replacement with IPA depends on the width and depth of the recess R, the state of the wafer surface, and the like. For this reason, the solvent nozzle 43 that discharges IPA is moved from the wafer center to the wafer periphery, or the solvent nozzle 43 that has started discharging IPA at the wafer periphery is moved to the wafer center. In other words, when DIW in the recess R is replaced with IPA by moving the solvent nozzle 43 discharging IPA one way, it is necessary to reciprocate the solvent nozzle 43 in the replacement promotion stage. No. In the case of one-way movement, the consumption of IPA can be reduced as compared with the case of two-way movement.
 また、溶剤ノズル43の往復移動で凹部内のDIWのIPAへの置換が十分ではない場合、鉛直方向下方に向けてIPAを吐出している溶剤ノズル43を、ウエハW中心部とウエハ周縁部との間で、複数回往復移動させてもよい。 In addition, when the reciprocating movement of the solvent nozzle 43 does not sufficiently replace DIW in the recess with IPA, the solvent nozzle 43 that discharges IPA downward in the vertical direction is connected to the wafer W center portion and the wafer peripheral portion. May be reciprocated a plurality of times.
 溶剤ノズル43の移動速度は、IPAを吐出した状態で溶剤ノズル43の移動速度を比較的小さくすることが、全ての凹部RへのIPAの押し込みを効果的に行う点で好ましい。IPAの押し込みを行うために、溶剤ノズル43とは別のウエハW半径方向に延びる吐出口を有するスリットノズル、あるいは、複数の吐出口を有する溶剤ノズルを設けてもよい。 As for the moving speed of the solvent nozzle 43, it is preferable to make the moving speed of the solvent nozzle 43 relatively small in a state where IPA is discharged from the viewpoint of effectively pushing the IPA into all the recesses R. In order to push in the IPA, a slit nozzle having a discharge port extending in the radial direction of the wafer W, which is different from the solvent nozzle 43, or a solvent nozzle having a plurality of discharge ports may be provided.
 第5期間の間(例えば第5期間の初期)、IPAを吐出している溶剤ノズル43がスキャン動作をしていないときに、一時的にウエハWの回転速度をゼロにしてもよい。そうすることにより、ウエハWの表面上にあるIPAには水平方向の力は働かず鉛直方向下向きの力だけが働くようになり、凹部R内にあるDIWがIPAにより効率的に置換される。 During the fifth period (for example, at the beginning of the fifth period), when the solvent nozzle 43 discharging IPA is not performing the scanning operation, the rotational speed of the wafer W may be temporarily set to zero. By doing so, the horizontal force does not act on the IPA on the surface of the wafer W, but only the downward force in the vertical direction acts, and the DIW in the recess R is efficiently replaced by the IPA.
 第5期間の間、ウエハWの回転速度(第3回転速度)をずっとゼロ(0rpm)に維持してもよい。この場合、ウエハWの表面にはIPAのパドルが形成される。そうすることにより、ウエハWの表面上にあるIPAには水平方向の力は働かず鉛直方向下向きの力だけが働くようになり、凹部R内にあるDIWからIPAへの置換がより促進される。この場合、スキャン動作を行う溶剤ノズルとして、溶剤ノズル43とは別に、ウエハの直径に相当する長さの吐出口を有するスリットノズルを設ける等の対策を行うことによりさらにウエハWの全面において置換が促進される。 During the fifth period, the rotation speed (third rotation speed) of the wafer W may be maintained at zero (0 rpm). In this case, an IPA paddle is formed on the surface of the wafer W. By doing so, the horizontal force does not act on the IPA on the surface of the wafer W, and only the downward force in the vertical direction acts, and the replacement of the DIW in the recess R with IPA is further promoted. . In this case, the entire surface of the wafer W can be replaced by taking measures such as providing a slit nozzle having a discharge port having a length corresponding to the diameter of the wafer as a solvent nozzle for performing the scanning operation, in addition to the solvent nozzle 43. Promoted.
 溶剤置換工程を構成する表面部置換段階、撹拌段階及び置換促進段階を繰り返し複数回実行してもよい。 The surface portion replacement step, the stirring step and the replacement promotion step constituting the solvent replacement step may be repeated a plurality of times.
 溶剤置換工程が終了したら、ウエハW表面上にあるIPAを除去してウエハW表面を乾燥させる乾燥工程に移行する。この乾燥工程は以下に説明する複数の段階からなる。 When the solvent replacement process is completed, the process proceeds to a drying process in which IPA on the surface of the wafer W is removed and the surface of the wafer W is dried. This drying process includes a plurality of stages described below.
 <溶剤排出段階>
 まず、ウエハWの表面上にあるIPAの液膜を薄くする溶剤排出段階が行われる。時点t5では、凹部R内にあるDIWがIPAに置換されている。その後、時点t5から時点t6までの間(第6期間)に、ウエハWの回転速度を第3回転速度から第4回転速度(例えば300~800rpm)に増速し、その後、時点t6から時点t7までの間(第7期間)に、ウエハWの回転速度を第4回転速度に維持する。これにより、ウエハWの表面上で液膜(これは比較的厚い)を形成していたIPAが遠心力によりウエハWの周縁部に向けて流れ、ウエハW上にあるIPAのかなりの部分がウエハW上から除去される。つまり、ウエハWの表面上にあるIPAの液膜が薄くなる。この溶剤排出段階では、ウエハW表面がIPAの液膜から露出しないのであれば、溶剤ノズル43からのIPAの吐出を停止してもよい。
<Solvent discharge stage>
First, a solvent discharging step for thinning the IPA liquid film on the surface of the wafer W is performed. At time t5, DIW in the recess R is replaced with IPA. Thereafter, during the period from the time point t5 to the time point t6 (sixth period), the rotation speed of the wafer W is increased from the third rotation speed to the fourth rotation speed (for example, 300 to 800 rpm), and thereafter, from the time t6 to the time t7. In the meantime (seventh period), the rotation speed of the wafer W is maintained at the fourth rotation speed. As a result, the IPA that has formed a liquid film (which is relatively thick) on the surface of the wafer W flows toward the peripheral edge of the wafer W by centrifugal force, and a substantial portion of the IPA on the wafer W is exposed to the wafer. W is removed from above. That is, the IPA liquid film on the surface of the wafer W becomes thin. In this solvent discharge stage, if the surface of the wafer W is not exposed from the liquid film of IPA, the discharge of IPA from the solvent nozzle 43 may be stopped.
 <露出段階>
 次に、ウエハWの表面からIPAを除去して、ウエハWの表面を露出させる露出段階が行われる。時点t7から時点t8までの間(第8期間)に、ウエハWの回転速度を第4回転速度から第5回転速度(例えば500~1000rpm)に増速し、その後、時点t8から時点t9までの間(第9期間)に、ウエハWの回転速度を第5回転速度に維持する。時点t8から、ウエハW中心部の真上に位置する溶剤ノズル43および乾燥ガスノズル44からそれぞれIPAおよびNガスを吐出しながら、溶剤ノズル43および乾燥ガスノズル44をウエハWの周縁部に向けて移動させてゆく。溶剤ノズル43及び乾燥ガスノズル44は、時点t8においてウエハW周縁部に向けて移動を開始し、時点t9において乾燥ガスノズル44が概ねウエハW周縁部の真上に位置するように移動する。このとき、図6に示すように、乾燥ガスノズル44から吐出されたNガスがウエハW表面に衝突する位置が、溶剤ノズル43から吐出されたIPAがウエハW表面に衝突する位置よりも、半径方向に関してやや内側に位置するように維持する。乾燥ガスノズル44は、ガスの噴射方向を示すベクトルが半径方向外向きの成分を持つように、斜め下方に向けてNガスを噴射するように、ノズルアーム45に取り付けられていることが好ましい。上記操作により、ウエハWの表面にあるIPAがNガスにより吹き飛ばされて半径方向外側に追いやられてゆき、最終的にウエハWの表面の全体からIPAが除去される。
<Exposure stage>
Next, an exposure step of removing the IPA from the surface of the wafer W and exposing the surface of the wafer W is performed. Between time t7 and time t8 (eighth period), the rotation speed of the wafer W is increased from the fourth rotation speed to the fifth rotation speed (for example, 500 to 1000 rpm), and thereafter from time t8 to time t9. During the period (the ninth period), the rotation speed of the wafer W is maintained at the fifth rotation speed. From time t8, the solvent nozzle 43 and the dry gas nozzle 44 are moved toward the peripheral edge of the wafer W while discharging the IPA and the N 2 gas from the solvent nozzle 43 and the dry gas nozzle 44 located immediately above the center of the wafer W, respectively. I will let you. The solvent nozzle 43 and the dry gas nozzle 44 start moving toward the peripheral edge of the wafer W at time t8, and move so that the dry gas nozzle 44 is positioned almost directly above the peripheral edge of the wafer W at time t9. At this time, as shown in FIG. 6, the position where the N 2 gas discharged from the dry gas nozzle 44 collides with the surface of the wafer W is larger in radius than the position where the IPA discharged from the solvent nozzle 43 collides with the surface of the wafer W. Keep it slightly inward with respect to direction. The dry gas nozzle 44 is preferably attached to the nozzle arm 45 so as to inject N 2 gas obliquely downward so that a vector indicating the gas injection direction has a radially outward component. By the above operation, the IPA on the surface of the wafer W is blown away by the N 2 gas and driven outward in the radial direction, and finally the IPA is removed from the entire surface of the wafer W.
 乾燥工程を上述したようにIPAおよびNガスの同時供給により行わなくてもよい。例えば、時点t5でウエハWへのIPAの供給を停止して、ウエハWの回転速度を第5回転速度まで一気に上昇させて振り切り乾燥を行うこともできる。 As described above, the drying process may not be performed by simultaneous supply of IPA and N 2 gas. For example, the supply of IPA to the wafer W may be stopped at the time t5, and the rotation speed of the wafer W may be increased to the fifth rotation speed at once to perform shake-off drying.
 時点t9で乾燥工程が終了したらウエハの回転を停止する(時点t10)。以上により乾燥工程が終了する。 When the drying process is completed at time t9, the rotation of the wafer is stopped (time t10). Thus, the drying process is completed.
 <第2実施形態>
 次に第2実施形態について説明する。第2実施形態に係る処理流体供給部40は、薬液ノズル41、リンスノズル42、2つの溶剤ノズル43及び乾燥ガスノズル44を有する。つまり、第2実施形態は、IPAを供給する溶剤ノズル43が2つ設けられている点において第1実施形態と異なる。以下、2つの溶剤ノズルを区別するために、第1溶剤ノズル43、第2溶剤ノズル43Aと呼ぶこととする。ここで溶剤ノズルに付けられた「第1」、「第2」の序数は特許請求の範囲の記述と必ずしも一致していない点に注意されたい。
Second Embodiment
Next, a second embodiment will be described. The processing fluid supply unit 40 according to the second embodiment includes a chemical nozzle 41, a rinse nozzle 42, two solvent nozzles 43, and a dry gas nozzle 44. That is, the second embodiment is different from the first embodiment in that two solvent nozzles 43 for supplying IPA are provided. Hereinafter, in order to distinguish the two solvent nozzles, they are referred to as a first solvent nozzle 43 and a second solvent nozzle 43A. Here, it should be noted that the ordinal numbers “first” and “second” attached to the solvent nozzle do not always coincide with the description in the claims.
 薬液ノズル41、リンスノズル42、第1溶剤ノズル43および乾燥ガスノズル44は、第1実施形態と同様に共通のノズルアーム45により支持されている。第2溶剤ノズル43Aは、別のノズルアーム45Aにより支持されている。ノズルアーム45Aは、アーム駆動機構46Aにより昇降可能であり、また、鉛直軸線周りに旋回可能である。第2溶剤ノズル43Aは、この第2溶剤ノズル43Aから吐出されるIPAの吐出方向を示すベクトルが、平面視で、ウエハWの半径方向内向きの成分を有するように(例えばウエハの中心部を向くように)、吐出口の軸線が斜め下方を向いた状態でノズルアーム45Aに取り付けられる。 The chemical solution nozzle 41, the rinse nozzle 42, the first solvent nozzle 43, and the dry gas nozzle 44 are supported by a common nozzle arm 45 as in the first embodiment. The second solvent nozzle 43A is supported by another nozzle arm 45A. The nozzle arm 45A can be moved up and down by an arm drive mechanism 46A, and can turn around a vertical axis. The second solvent nozzle 43A is arranged such that the vector indicating the discharge direction of IPA discharged from the second solvent nozzle 43A has a component inward in the radial direction of the wafer W in a plan view (for example, the center portion of the wafer The discharge port is attached to the nozzle arm 45A with the axis of the discharge port facing obliquely downward.
 次に、第2実施形態において、リンス工程の終期から乾燥工程までに実行される手順について図7~図11を参照して説明する。なお、図8のタイムチャートは図4と同様に記載されているが、溶剤ノズルが2つに増えたため、項目が増えている。IPA-1は第1溶剤ノズル43の動作、IPA-2は第2溶剤ノズル43Aの動作を示している。また、N1Posは第1溶剤ノズル43(ノズル41~44)の位置、N2Posは第2溶剤ノズル43Aの位置を示している。 Next, the procedure executed from the end of the rinsing process to the drying process in the second embodiment will be described with reference to FIGS. Although the time chart of FIG. 8 is described in the same manner as FIG. 4, the number of items is increased because the number of solvent nozzles is increased to two. IPA-1 shows the operation of the first solvent nozzle 43, and IPA-2 shows the operation of the second solvent nozzle 43A. N1Pos represents the position of the first solvent nozzle 43 (nozzles 41 to 44), and N2Pos represents the position of the second solvent nozzle 43A.
 第2実施形態においても、表面部置換段階が実行される。第2実施形態の表面部置換段階では、第1実施形態の時点t1から時点t3までと同様の処理が行われる。つまり、時点t3の時点でウエハWの表面は、図9(a)に示した状態(これは図5(b)に示した状態と同じである)となっている。第1実施形態と同様に、表面部置換段階の後に、ウエハWの回転速度の増減による撹拌段階を設けてもよい。 Also in the second embodiment, the surface portion replacement step is executed. In the surface portion replacement stage of the second embodiment, processing similar to that from time t1 to time t3 of the first embodiment is performed. That is, at the time t3, the surface of the wafer W is in the state shown in FIG. 9A (this is the same as the state shown in FIG. 5B). Similar to the first embodiment, an agitation step by increasing or decreasing the rotation speed of the wafer W may be provided after the surface portion replacement step.
 <置換促進段階>
 表面部置換段階の後に、置換促進段階が実行される。第2実施形態の置換促進段階は、第1実施形態とは異なる。第2実施形態では時点t3以降も、ウエハの回転速度が第2回転速度(例えば300~800rpm)に維持される。そして、ウエハWの中心部に第1溶剤ノズル43からIPAを供給し続けた状態で、ウエハWの周縁近傍に位置させた第2溶剤ノズル43AからウエハWの周縁部に向けてIPAの供給を開始する。その後、ウエハWの中心部に第1溶剤ノズル43からIPAを供給し続けながら、ノズルアーム45Aを駆動することにより第2溶剤ノズル43Aから吐出されるIPAのウエハW上への着液点がウエハWの中心部に徐々に近づいてゆくようにする(図9(b)を参照)。
<Replacement promotion stage>
After the surface portion replacement step, a replacement promotion step is performed. The replacement promotion stage of the second embodiment is different from that of the first embodiment. In the second embodiment, the rotation speed of the wafer is maintained at the second rotation speed (for example, 300 to 800 rpm) after time t3. Then, in a state where IPA is continuously supplied from the first solvent nozzle 43 to the central portion of the wafer W, supply of IPA from the second solvent nozzle 43A positioned in the vicinity of the peripheral edge of the wafer W toward the peripheral portion of the wafer W is performed. Start. Thereafter, while the IPA is continuously supplied from the first solvent nozzle 43 to the center of the wafer W, the nozzle arm 45A is driven so that the landing point of the IPA discharged from the second solvent nozzle 43A onto the wafer W is the wafer. It gradually approaches the center of W (see FIG. 9B).
 第2溶剤ノズル43Aから吐出されるIPAの着液点がウエハWの中心部に到達したら(図9(c)を参照)、第2溶剤ノズル43AからのIPAの吐出を停止し、第2溶剤ノズル43Aを平面視でウエハWの外方にあるホームポジションH(待機位置)に戻す。第2溶剤ノズル43AからIPAを吐出させたまま、IPAの着液点がウエハWの周縁部と中心部との間を1回または複数回往復するように、第2溶剤ノズル43Aを移動させてもよい。 When the landing point of the IPA discharged from the second solvent nozzle 43A reaches the center of the wafer W (see FIG. 9C), the discharge of IPA from the second solvent nozzle 43A is stopped, and the second solvent The nozzle 43A is returned to the home position H (standby position) outside the wafer W in plan view. While the IPA is being discharged from the second solvent nozzle 43A, the second solvent nozzle 43A is moved so that the IPA landing point reciprocates once or a plurality of times between the peripheral edge and the center of the wafer W. Also good.
 複数回往復するように第2溶剤ノズル43Aを移動させる場合において、第2溶剤ノズル43AをウエハWの中心部から周縁部側に向けて移動させているときは、第2溶剤ノズル43AからのIPAの吐出を停止させていてもよい。これにより、IPAを吐出させたまま第2溶剤ノズルを往復させるよりもIPAの消費量を削減することができる。後の説明より理解できるように、第2溶剤ノズル43AをウエハWの中心部側に向けて移動させているときは、第2溶剤ノズル43Aの運動エネルギが、後述の第2溶剤ノズル43Aから吐出されるIPAの吐出エネルギの水平方向成分に加算されることで、置換が促進される。それに対して、ウエハWの周縁部側に向けて移動させているときはそのような効果が少ない。 In the case where the second solvent nozzle 43A is moved so as to reciprocate a plurality of times, when the second solvent nozzle 43A is moved from the center of the wafer W toward the peripheral side, the IPA from the second solvent nozzle 43A. May be stopped. As a result, it is possible to reduce the consumption of IPA compared to reciprocating the second solvent nozzle while discharging IPA. As can be understood from the following description, when the second solvent nozzle 43A is moved toward the center of the wafer W, the kinetic energy of the second solvent nozzle 43A is discharged from the second solvent nozzle 43A described later. The replacement is promoted by adding to the horizontal component of the discharged energy of the IPA. On the other hand, when the wafer W is moved toward the peripheral edge side, such an effect is small.
 図9(b)の状態について、図10を参照してさらに詳細に説明する。ウエハWの表面は、第1溶剤ノズル43から回転するウエハWの中心部に供給されて遠心力により外方に広がりながら流れるIPAの液膜で覆われている。第2溶剤ノズル43Aから吐出されたIPAの着液点P(Pは図10のみに示す)に存在するIPAの液膜の液膜に作用する主な力は(第2溶剤ノズル43Aから吐出されたIPAによるものを除く)遠心力Fcと重力Fgである。遠心力FcはFc=mrω(但し、「m」は着液点Pに存在するIPAの重量、「r」は着液点PのウエハW中心からの距離、「ω」はウエハWの回転角速度)で表される。重力FgはFg=mg(但しgは重力加速度)である。ウエハW回転速度が比較的高い場合(例えば上記の第2回転速度の場合)、遠心力Fcが重力Fgより大幅に大きくなるので(Fc≫Fg)、FcとFgの合成力の向きは概ね水平である。このため、IPAが凹部R内に入り難くなる。この傾向は、遠心力Fcがより大きくなるウエハWの周縁に近づくほど強くなる。 The state of FIG. 9B will be described in more detail with reference to FIG. The surface of the wafer W is covered with a liquid film of IPA that is supplied from the first solvent nozzle 43 to the center of the rotating wafer W and flows outwardly due to centrifugal force. The main force acting on the liquid film of the IPA liquid film present at the liquid landing point P of IPA discharged from the second solvent nozzle 43A (P is shown in FIG. 10 only) is discharged from the second solvent nozzle 43A. Centrifugal force Fc and gravity Fg (excluding those caused by IPA). Centrifugal force Fc is Fc = mrω 2 (where “m” is the weight of the IPA present at the landing point P, “r” is the distance from the center of the wafer W at the landing point P, and “ω” is the rotation of the wafer W) (Angular velocity). Gravity Fg is Fg = mg (where g is gravitational acceleration). When the rotation speed of the wafer W is relatively high (for example, in the case of the second rotation speed described above), the centrifugal force Fc is significantly larger than the gravity Fg (Fc >> Fg), so the direction of the combined force of Fc and Fg is almost horizontal. It is. For this reason, it becomes difficult for IPA to enter the recess R. This tendency becomes stronger as it approaches the periphery of the wafer W where the centrifugal force Fc becomes larger.
 第2溶剤ノズル43Aから吐出されたIPAは、着液点PにあるIPAに斜め下向きの力Fjを与える。力Fjは、水平方向成分Fjrと鉛直方向成分Fjvとに分解することができる。力Fjの水平方向成分Fjrが概ねウエハWの中心部を向くように第2溶剤ノズル43Aが配置されているので、力Fjの水平方向成分Fjrにより遠心力Fcの少なくとも一部が相殺される。相殺の度合いは、力Fjの大きさ(第2溶剤ノズル43AからのIPAの吐出流量に依存)および向きに(吐出角度に依存)依存するが、遠心力Fcのほぼ全てが相殺されることが好ましい。このようにして遠心力が打ち消されることにより、着液点Pに存在するIPAに働く力は鉛直方向下方の力が支配的になり、IPAが凹部R内に入り易くなる。このため、凹部Rの底部に存在しているDIWがIPAと混合されやすくなり、凹部R内におけるDIWからIPAへの置換が促進される。 The IPA discharged from the second solvent nozzle 43A gives a downward force Fj to the IPA at the landing point P. The force Fj can be decomposed into a horizontal component Fjr and a vertical component Fjv. Since the second solvent nozzle 43A is arranged so that the horizontal component Fjr of the force Fj is substantially directed toward the center of the wafer W, at least a part of the centrifugal force Fc is canceled by the horizontal component Fjr of the force Fj. The degree of cancellation depends on the magnitude of the force Fj (depending on the discharge flow rate of IPA from the second solvent nozzle 43A) and the direction (depending on the discharge angle), but almost all of the centrifugal force Fc can be canceled. preferable. By canceling the centrifugal force in this way, the force acting on the IPA existing at the liquid landing point P is predominantly the downward force in the vertical direction, and the IPA easily enters the recess R. For this reason, DIW existing at the bottom of the recess R is easily mixed with IPA, and the replacement of DIW with IPA in the recess R is promoted.
 別の言い方をすれば、第2溶剤ノズル43Aから吐出されたIPAは、着液点PにあるIPAに対して、着液点PにおけるウエハW表面に沿ったIPAの流れに逆らう方向の成分を持つ力を与えていればよい。そうすれば、着液点PにおけるウエハW表面に沿う方向のIPAの流速は小さくなり、IPAが凹部R内に入り易くなる。例えば、上記のようにウエハWを鉛直方向軸線周りに回転させている場合に限らず、水平面に対して傾斜した基板の高い側に置換液(例えば第2処理液であるIPA)を供給したときにも、基板の表面に沿って低い側に向かう置換液の流れが生じる。この場合、基板の高い側から低い側に向かって流れる置換液の流れに逆らう方向の成分を持つ力を与えるように、別の置換液供給手段(ノズルなど)から、基板の表面に置換液を供給する。これにより基板の表面に形成された凹部内にある被置換液(例えば第1処理液であるDIW)の置換液による置換が促進される。この際に別の置換液供給手段と基板は相対的に移動し、基板の高い側から低い側に向かって流れる置換液の流れと逆方向に、別の置換液供給手段から供給された置換液の着液点を移動させる。また、基板の表面に対して斜めに置換液を吹き付けたときにも、基板の表面に沿った置換液の流れが生じる。この場合も、この置換液の流れに逆らう方向の成分を持つ力を与えるように別の置換液供給手段(ノズルなど)から、基板の表面に置換液を供給することにより、基板表面に形成された凹部内にある被置換液(例えばDIW)の置換液による置換が促進される。この際に別の置換液供給手段と基板は相対的に移動し、基板の表面に対して斜めに吹き付けられた置換液の流れと逆方向に、別の置換液供給手段から供給された置換液の着液点を移動させる。 In other words, the IPA discharged from the second solvent nozzle 43A has a component in the direction opposite to the flow of IPA along the surface of the wafer W at the landing point P with respect to the IPA at the landing point P. It only has to give the power to have. As a result, the flow rate of IPA in the direction along the surface of the wafer W at the landing point P becomes small, and the IPA easily enters the recess R. For example, not only when the wafer W is rotated around the vertical axis as described above, but when the replacement liquid (for example, IPA as the second processing liquid) is supplied to the higher side of the substrate inclined with respect to the horizontal plane. In addition, the flow of the substitution liquid toward the lower side occurs along the surface of the substrate. In this case, the substitution liquid is applied to the surface of the substrate from another substitution liquid supply means (nozzle, etc.) so as to give a force having a component in the direction opposite to the flow of the substitution liquid flowing from the high side to the low side of the substrate. Supply. As a result, the replacement of the liquid to be replaced (for example, DIW as the first processing liquid) in the recess formed on the surface of the substrate with the replacement liquid is promoted. At this time, the other replacement liquid supply means and the substrate move relatively, and the replacement liquid supplied from the other replacement liquid supply means in the direction opposite to the flow of the replacement liquid flowing from the higher side to the lower side of the substrate. Move the landing point. Further, when the replacement liquid is sprayed obliquely with respect to the surface of the substrate, the flow of the replacement liquid along the surface of the substrate is generated. In this case as well, the substrate is formed on the substrate surface by supplying the replacement liquid to the surface of the substrate from another replacement liquid supply means (nozzle, etc.) so as to give a force having a component in the direction opposite to the flow of the replacement liquid. The replacement of the liquid to be replaced (for example, DIW) in the recessed portion with the replacement liquid is promoted. At this time, the other replacement liquid supply means and the substrate move relatively, and the replacement liquid supplied from the other replacement liquid supply means in the direction opposite to the flow of the replacement liquid sprayed obliquely with respect to the surface of the substrate. Move the landing point.
 なお、ウエハWを鉛直方向軸線周りに回転させている場合において、ウエハWの周縁に近づくほど遠心力Fcが大きくなる。したがって、遠心力Fcを適当に打ち消すために、第2溶剤ノズル43Aからの吐出流量を第2溶剤ノズル43AからのIPAの着液点PがウエハWの周縁に近いほど大きくすること、あるいは、第2溶剤ノズル43AのIPAの吐出方向を、第2溶剤ノズル43AからのIPAの着液点PがウエハWの周縁に近いほど水平方向に近づけること(この場合、第2溶剤ノズル43Aの向きを変更する機構をノズルアーム45Aに設ける必要がある)を行ってもよい。上記に代えて、第2溶剤ノズル43AからのIPAの着液点PとウエハWの周縁との距離が小さくなるほど、ウエハWの回転数を減少させてもよい。 Note that, when the wafer W is rotated around the vertical axis, the centrifugal force Fc increases as it approaches the periphery of the wafer W. Therefore, in order to appropriately cancel the centrifugal force Fc, the discharge flow rate from the second solvent nozzle 43A is increased as the IPA landing point P from the second solvent nozzle 43A is closer to the periphery of the wafer W, or The IPA discharge direction of the two solvent nozzle 43A is made closer to the horizontal direction as the IPA landing point P from the second solvent nozzle 43A is closer to the periphery of the wafer W (in this case, the direction of the second solvent nozzle 43A is changed). It is necessary to provide the nozzle arm 45A with a mechanism for Instead of the above, the rotational speed of the wafer W may be decreased as the distance between the IPA landing point P from the second solvent nozzle 43A and the periphery of the wafer W becomes smaller.
 なお、第2溶剤ノズル43Aは、鉛直軸線周りに旋回するノズルアーム45Aにより移動させられるので、図11に示すように、溶剤ノズル43AとウエハWの中心との相対的位置関係に依存して、第2溶剤ノズル43Aから吐出されるIPAの水平方向成分のベクトルの向きが変化する。一方、回転するウエハW上に存在するIPAは、前述した遠心力Fcに加えて、ウエハW表面により引きずられる力を受けることにより、矢印Fsに示すように、ウエハWの表面上を螺旋状に流れる。 Since the second solvent nozzle 43A is moved by the nozzle arm 45A turning around the vertical axis, as shown in FIG. 11, depending on the relative positional relationship between the solvent nozzle 43A and the center of the wafer W, The direction of the vector of the horizontal component of IPA discharged from the second solvent nozzle 43A changes. On the other hand, the IPA existing on the rotating wafer W receives a force dragged by the surface of the wafer W in addition to the centrifugal force Fc described above, so that the surface of the wafer W spirals as indicated by an arrow Fs. Flowing.
 上記のことを考慮して、図11に示すように、平面視で、第2溶剤ノズル43AからのIPAの吐出方向を示すベクトルの水平方向成分が、第2溶剤ノズル43AのウエハW上における半径方向位置に関わらず、IPAの螺旋状流れの方向と概ね逆方向を向いているように、ウエハWの回転方向及びノズルアームの旋回方向が設定されていることが好ましい。こうすることにより、第2溶剤ノズル43Aから吐出されるIPAにより、凹部Rの内部にIPAが押し込まれる力を大きく維持することができる。 Considering the above, as shown in FIG. 11, the horizontal component of the vector indicating the discharge direction of IPA from the second solvent nozzle 43A in the plan view is the radius of the second solvent nozzle 43A on the wafer W. It is preferable that the rotation direction of the wafer W and the swivel direction of the nozzle arm are set so that the direction is substantially opposite to the direction of the spiral flow of the IPA regardless of the direction position. By doing so, the force with which the IPA is pushed into the recess R can be largely maintained by the IPA discharged from the second solvent nozzle 43A.
 時点t7’で置換促進段階が終了すると、その後は、第1実施形態と同様に、乾燥工程の露出段階が行われる。第2実施形態における時点t7’、t8’、t9’、t10’は第1実施形態におけるt7、t8、t9、t10に対応し、各時点におけるウエハW表面の状態は第1実施形態と概ね同じである。なお、第2実施形態では、置換促進段階中のウエハの回転速度が比較的高く、ウエハW上のIPAの液膜が比較的薄いので、溶剤排出段階を行う必要はない。 When the replacement promotion stage is completed at time t7 ', thereafter, the exposure stage of the drying process is performed as in the first embodiment. Time points t7 ′, t8 ′, t9 ′, and t10 ′ in the second embodiment correspond to t7, t8, t9, and t10 in the first embodiment, and the state of the surface of the wafer W at each time point is substantially the same as in the first embodiment. It is. In the second embodiment, since the rotation speed of the wafer during the replacement promotion stage is relatively high and the IPA liquid film on the wafer W is relatively thin, it is not necessary to perform the solvent discharge stage.
 上記第1及び第2実施形態によれば、IPAの液膜に対して、ノズルから噴射されるIPAにより、液膜を構成するIPAをウエハW表面の凹部R内に押し込む力を与えている。このため、残留するDIWをIPAとの混合が促進され、凹部Rの底部に残留するDIWをIPAで効率良く置換することができる。しかも、一旦ウエハWの表面にIPAの液膜を形成した後に(つまり、少なくとも凹部Rの外側のウエハW表面上にあるDIWのIPAへの置換が完了した後に)、IPAの液膜に対してノズルから噴射されるIPAにより、液膜を形成しているIPAをウエハW表面の凹部R内に押し込む力を与えている。このため、凹部Rの底部に(DIWにより希釈されてしまったIPAではなく)濃度の高いIPAが押し込まれるようになるので、置換効率が大幅に向上する。このため、凹部Rの底部に残留した状態でウエハWを乾燥させた場合にDIWの高表面張力に起因して生じうる、パターンの倒壊を防止することができる。 According to the first and second embodiments, the IPA sprayed from the nozzle is applied to the IPA liquid film by pushing the IPA constituting the liquid film into the recess R on the surface of the wafer W. For this reason, mixing of remaining DIW with IPA is promoted, and DIW remaining at the bottom of the recess R can be efficiently replaced with IPA. Moreover, after the IPA liquid film is once formed on the surface of the wafer W (that is, after the replacement of the DIW on the wafer W surface outside the recess R with the IPA is completed), the IPA liquid film is applied to the IPA liquid film. The IPA sprayed from the nozzle gives a force to push the IPA forming the liquid film into the recess R on the surface of the wafer W. For this reason, since the IPA having a high concentration is pushed into the bottom of the recess R (not the IPA diluted with DIW), the replacement efficiency is greatly improved. For this reason, when the wafer W is dried while remaining at the bottom of the concave portion R, it is possible to prevent the collapse of the pattern, which may occur due to the high surface tension of the DIW.
 第1実施形態では、ウエハWの回転を停止するか或いはウエハWを極低速で回転させた状態で置換促進段階が実行されるため、IPAの液膜に鉛直方向の力をより確実に与えることができるという利点がある。また、溶剤ノズルを追加する必要が無いため、装置コストの増大が抑制される。一方、第2実施形態では、ウエハWの回転停止若しくは減速及び加速に必要な時間が必要無いため、より短時間で一連の処理を完了することができるという利点がある。 In the first embodiment, since the replacement promotion stage is executed while the rotation of the wafer W is stopped or the wafer W is rotated at an extremely low speed, a vertical force is more reliably applied to the IPA liquid film. There is an advantage that can be. Moreover, since it is not necessary to add a solvent nozzle, the increase in apparatus cost is suppressed. On the other hand, the second embodiment has an advantage that a series of processes can be completed in a shorter time because the time required for stopping or decelerating and accelerating the wafer W is not required.
 上記実施形態では、表面に凹部を有するウエハW上のDIWをIPAに置換した。しかしながら、置換対象となる処理液はIPA及びDIWの組み合わせに限定されるものではなく、他の種類の処理液の組み合わせであってもよい。例えば、薬液からリンス液への置換を促進するために上記実施形態に係る方法を用いてもよい。また、上記実施形態に係る方法は、被置換処理液を被置換処理液より比重の軽い置換処理液に置換する場合に特に有効である。 In the above embodiment, the DIW on the wafer W having a recess on the surface is replaced with IPA. However, the processing liquid to be replaced is not limited to the combination of IPA and DIW, and may be a combination of other types of processing liquid. For example, the method according to the above embodiment may be used in order to promote the replacement of the chemical solution with the rinse solution. In addition, the method according to the embodiment is particularly effective when the replacement processing solution is replaced with a replacement processing solution having a specific gravity lower than that of the replacement processing solution.
 被処理基板は半導体ウエハに限定されるものではなく、ガラス基板、セラミック基板等の他の種類の基板であってもよい。 The substrate to be processed is not limited to a semiconductor wafer, and may be another type of substrate such as a glass substrate or a ceramic substrate.
 W 基板(ウエハ)
 R 凹部
 4 制御装置(制御部)
 42 第1処理液供給部(ノズル)
 43,43A 第2処理液供給部(ノズル)
 43 第1供給要素(ノズル)
 43A 第2供給要素(ノズル)
W substrate (wafer)
R recess 4 control device (control unit)
42 1st process liquid supply part (nozzle)
43, 43A Second processing liquid supply unit (nozzle)
43 First supply element (nozzle)
43A Second supply element (nozzle)

Claims (12)

  1.  表面に凹部が形成された基板を準備する工程と、
     前記基板の表面に第1処理液を供給して、前記凹部の内部を含む前記基板の表面を覆う前記第1処理液の液膜を形成する工程と、
     前記凹部の内部を含む前記基板の表面に存在する前記第1処理液を第2処理液に置換する置換工程と、を備え、
     前記置換工程は、
     前記基板を第1回転数で回転させながら前記第1処理液の液膜により覆われた前記基板の表面に第2処理液を供給し、前記第1処理液を含む前記第2処理液の液膜を前記基板の表面に形成する液膜形成段階と、
     その後、前記基板の回転数を前記第1回転数よりも低い第2回転数に減じた状態で、前記第2処理液を供給するとともに、前記第2処理液の前記基板の表面上への着液点が前記基板の中心部と周縁部との間で移動する、前記第2処理液による置換を促進する置換促進段階と、を含む、
    基板液処理方法。
    Preparing a substrate having a recess formed on the surface;
    Supplying a first treatment liquid to the surface of the substrate to form a liquid film of the first treatment liquid covering the surface of the substrate including the inside of the recess;
    A replacement step of replacing the first processing liquid present on the surface of the substrate including the inside of the recess with a second processing liquid,
    The replacement step includes
    A second processing liquid is supplied to the surface of the substrate covered with the liquid film of the first processing liquid while rotating the substrate at a first rotational speed, and the liquid of the second processing liquid containing the first processing liquid A liquid film forming step of forming a film on the surface of the substrate;
    Thereafter, the second processing liquid is supplied in a state where the rotational speed of the substrate is reduced to a second rotational speed lower than the first rotational speed, and the second processing liquid is deposited on the surface of the substrate. A substitution promoting step of promoting substitution by the second treatment liquid, in which a liquid spot moves between a central portion and a peripheral portion of the substrate,
    Substrate liquid processing method.
  2.  前記置換促進段階の間、前記基板の表面は前記第2処理液から露出しない、請求項1記載の基板液処理方法。 The substrate liquid processing method according to claim 1, wherein the surface of the substrate is not exposed from the second processing liquid during the substitution promoting step.
  3.  前記液膜形成段階と、前記置換促進段階との間に、前記第1処理液を含む前記第2処理液の液膜に対して前記第2処理液を供給するとともに、前記基板の回転数を前記第1回転数よりも低い前記第2回転数に減速する攪拌段階を含む、請求項2記載の基板液処理方法。 The second processing liquid is supplied to the liquid film of the second processing liquid containing the first processing liquid between the liquid film formation stage and the replacement promotion stage, and the rotation speed of the substrate is set. The substrate liquid processing method according to claim 2, further comprising a stirring step of decelerating to the second rotational speed that is lower than the first rotational speed.
  4.  前記攪拌段階において、
     加速と減速を組み合わせながら前記第2回転数に減速する、請求項3記載の基板液処理方法。
    In the stirring step,
    The substrate liquid processing method according to claim 3, wherein the speed is reduced to the second rotational speed while combining acceleration and deceleration.
  5.  前記置換工程の後に、前記第2回転数より高い第3の回転数で前記第2処理液を振り切り、前記基板の表面を前記第2処理液より露出させる乾燥工程を含む、請求項2記載の基板液処理方法。 3. The method according to claim 2, further comprising: after the replacing step, a drying step of shaking off the second processing liquid at a third rotational speed higher than the second rotational speed to expose a surface of the substrate from the second processing liquid. Substrate liquid processing method.
  6.  前記第2回転数は0rpmである、請求項1記載の基板液処理方法。 The substrate liquid processing method according to claim 1, wherein the second rotational speed is 0 rpm.
  7.  前記第2回転数は0rpmより大きくかつ100rpm以下である、請求項1記載の基板液処理方法。 The substrate liquid processing method according to claim 1, wherein the second rotational speed is greater than 0 rpm and equal to or less than 100 rpm.
  8.  表面に凹部が形成された基板を準備する工程と、
     前記基板の表面に第1処理液を供給して、前記凹部の内部を含む前記基板の表面を覆う前記第1処理液の液膜を形成する工程と、
     前記凹部の内部を含む前記基板の表面に存在する前記第1処理液を第2処理液に置換する置換工程と、を備え、
     前記置換工程は、
     前記第1処理液の液膜により覆われた前記基板の表面に前記第2処理液を供給し、前記第1処理液を含む前記第2処理液の液膜を前記基板の表面に形成する液膜形成段階と、
     その後、前記液膜を形成した状態で、前記第2処理液の流れを基板表面に形成することと、前記第2処理液の流れに逆らう方向の成分を持つ力を前記液膜に対して与える置換促進段階と、を含み、
     前記第2処理液の流れに逆らう方向の成分を持つ力を前記液膜に対して与えることは、前記液膜に対する着液点を前記第2処理液の流れの方向と逆方向に移動させながら、前記第2処理液を、前記第2処理液の前記液膜に向けて供給することを含む、基板液処理方法。
    Preparing a substrate having a recess formed on the surface;
    Supplying a first treatment liquid to the surface of the substrate to form a liquid film of the first treatment liquid covering the surface of the substrate including the inside of the recess;
    A replacement step of replacing the first processing liquid present on the surface of the substrate including the inside of the recess with a second processing liquid,
    The replacement step includes
    A liquid that supplies the second processing liquid to the surface of the substrate covered with the liquid film of the first processing liquid, and forms a liquid film of the second processing liquid containing the first processing liquid on the surface of the substrate. A film formation stage;
    Thereafter, in a state where the liquid film is formed, the flow of the second treatment liquid is formed on the substrate surface, and a force having a component in a direction opposite to the flow of the second treatment liquid is applied to the liquid film. A replacement promotion stage,
    Giving the liquid film a force having a component in a direction opposite to the flow of the second processing liquid is performed while moving a liquid landing point on the liquid film in a direction opposite to the flow direction of the second processing liquid. A substrate liquid processing method comprising supplying the second processing liquid toward the liquid film of the second processing liquid.
  9.  前記置換促進段階は、前記基板を鉛直軸線周りに回転させながら実行され、
     前記第2処理液の流れを基板表面に形成することは、前記基板の中心部に前記第2処理液を供給することにより行われ、
     前記液膜に対する着液点を前記第2処理液の流れの方向と逆方向に移動させることは、前記着液点を前記基板の周縁部から中心部に向けて移動させることである、請求項8記載の基板液処理方法。
    The replacement promotion step is performed while rotating the substrate around a vertical axis,
    Forming the flow of the second treatment liquid on the substrate surface is performed by supplying the second treatment liquid to the center of the substrate,
    The movement of the landing point on the liquid film in a direction opposite to the direction of the flow of the second processing liquid is to move the landing point from a peripheral part to a central part of the substrate. 8. The substrate liquid processing method according to 8.
  10.  前記液膜に対する着液点を前記第2処理液の流れの方向と逆方向に移動させながら、前記第2処理液を前記第2処理液の前記液膜に向けて供給することは、ノズルから前記基板の表面に対して斜め下方に向けて前記第2処理液を吐出することを含み、前記ノズルからの前記第2処理液の吐出方向が、前記基板の回転中心を向いた方向の成分を有している、請求項9記載の基板液処理方法。 Supplying the second processing liquid toward the liquid film of the second processing liquid while moving the landing point on the liquid film in the direction opposite to the flow direction of the second processing liquid is from a nozzle. Discharging the second processing liquid obliquely downward with respect to the surface of the substrate, and a component in a direction in which the discharge direction of the second processing liquid from the nozzle faces the rotation center of the substrate. The substrate liquid processing method according to claim 9.
  11.  基板を保持して回転させる基板保持部と、
     前記基板保持部により保持された前記基板に前記第1処理液を供給する第1処理液供給部と、
     前記基板保持部により保持された前記基板に前記第2処理液を供給する第2処理液供給部と、
     前記基板保持部と前記第1処理液供給部と、前記第2処理液供給部を制御して、請求項1に記載の基板液処理方法を実行させる制御部と、を備えた基板液処理装置。
    A substrate holder for holding and rotating the substrate;
    A first processing liquid supply unit that supplies the first processing liquid to the substrate held by the substrate holding unit;
    A second processing liquid supply unit for supplying the second processing liquid to the substrate held by the substrate holding unit;
    The substrate liquid processing apparatus provided with the control part which controls the said substrate holding part, the said 1st process liquid supply part, and the said 2nd process liquid supply part, and performs the substrate liquid processing method of Claim 1. .
  12.  基板を保持する基板保持部と、
     前記基板保持部により保持された基板に前記第1処理液を供給する第1処理液供給部と、
     前記基板保持部により保持された基板に第2処理液を供給する第2処理液供給部であって、前記第2処理液の流れを基板表面に形成するための前記第2処理液を基板に供給する第1供給要素と、前記第2処理液の流れと逆方向に前記第2処理液の着液点を移動させながら前記第2処理液を基板に供給する第2供給要素と、を有する第2処理液供給部と、
     前記第1処理液供給部及び前記第2処理液供給部を制御して、請求項8に記載の基板液処理方法を実行させる制御部と、
    を備えた基板液処理装置。
    A substrate holder for holding the substrate;
    A first processing liquid supply unit that supplies the first processing liquid to the substrate held by the substrate holding unit;
    A second processing liquid supply unit for supplying a second processing liquid to the substrate held by the substrate holding unit, wherein the second processing liquid for forming a flow of the second processing liquid on the substrate surface is applied to the substrate; A first supply element for supplying, and a second supply element for supplying the second processing liquid to the substrate while moving a landing point of the second processing liquid in a direction opposite to the flow of the second processing liquid. A second processing liquid supply unit;
    A control unit that controls the first processing liquid supply unit and the second processing liquid supply unit to execute the substrate liquid processing method according to claim 8;
    A substrate liquid processing apparatus comprising:
PCT/JP2016/063162 2015-04-30 2016-04-27 Substrate liquid processing method and substrate liquid processing device WO2016175233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-093336 2015-04-30
JP2015093336A JP6301281B2 (en) 2015-04-30 2015-04-30 Substrate liquid processing method, substrate liquid processing apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2016175233A1 true WO2016175233A1 (en) 2016-11-03

Family

ID=57199261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063162 WO2016175233A1 (en) 2015-04-30 2016-04-27 Substrate liquid processing method and substrate liquid processing device

Country Status (2)

Country Link
JP (1) JP6301281B2 (en)
WO (1) WO2016175233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390254A (en) * 2017-08-09 2019-02-26 东京毅力科创株式会社 Processing method for substrate, storage medium and substrate handling system
CN111446150A (en) * 2019-01-17 2020-07-24 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
JPWO2021015045A1 (en) * 2019-07-25 2021-01-28

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195084B2 (en) * 2018-08-27 2022-12-23 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
KR102597005B1 (en) * 2020-12-29 2023-11-02 세메스 주식회사 Method for treating a substrate
US11925963B2 (en) 2022-05-27 2024-03-12 Semes Co., Ltd. Method for treating a substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212408A (en) * 2008-03-06 2009-09-17 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2009218456A (en) * 2008-03-12 2009-09-24 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2013115370A (en) * 2011-11-30 2013-06-10 Tokyo Electron Ltd Substrate treatment method, recording medium recorded with computer program for performing substrate treatment method, and substrate treatment apparatus
JP2014072439A (en) * 2012-09-28 2014-04-21 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2014112652A (en) * 2012-11-08 2014-06-19 Dainippon Screen Mfg Co Ltd Substrate treatment method and substrate treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212408A (en) * 2008-03-06 2009-09-17 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2009218456A (en) * 2008-03-12 2009-09-24 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2013115370A (en) * 2011-11-30 2013-06-10 Tokyo Electron Ltd Substrate treatment method, recording medium recorded with computer program for performing substrate treatment method, and substrate treatment apparatus
JP2014072439A (en) * 2012-09-28 2014-04-21 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2014112652A (en) * 2012-11-08 2014-06-19 Dainippon Screen Mfg Co Ltd Substrate treatment method and substrate treatment device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390254A (en) * 2017-08-09 2019-02-26 东京毅力科创株式会社 Processing method for substrate, storage medium and substrate handling system
CN111446150A (en) * 2019-01-17 2020-07-24 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
CN111446150B (en) * 2019-01-17 2024-03-01 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
JPWO2021015045A1 (en) * 2019-07-25 2021-01-28
WO2021015045A1 (en) * 2019-07-25 2021-01-28 東京エレクトロン株式会社 Substrate treatment apparatus and substrate treatment method
JP7267426B2 (en) 2019-07-25 2023-05-01 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Also Published As

Publication number Publication date
JP2016213252A (en) 2016-12-15
JP6301281B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
WO2016175233A1 (en) Substrate liquid processing method and substrate liquid processing device
US8137478B2 (en) Substrate processing method and substrate processing apparatus
JP6404189B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
KR20100100640A (en) Liquid processing apparatus, liquid processing method, and resist coating method
JP6419053B2 (en) Substrate processing method and substrate processing apparatus
JP6256828B2 (en) Substrate processing method and substrate processing apparatus
KR102412247B1 (en) Substrate liquid processing method, substrate liquid processing apparatus, and recording medium
US11217451B2 (en) Substrate processing method and substrate processing apparatus
JP2012023209A (en) Substrate cleaning apparatus, application/development apparatus including the same, and substrate cleaning method
JP6077437B2 (en) Substrate processing apparatus and nozzle cleaning method
KR102514003B1 (en) Substrate processing apparatus, substrate processing method and recording medium
JP5771035B2 (en) Substrate processing method and substrate processing apparatus
JP2013128015A (en) Substrate processing apparatus, substrate processing method, and storage medium
JP2019040958A (en) Substrate processing device, substrate processing method and storage medium
KR102493554B1 (en) Substrate processing method, substrate processing apparatus and storage medium
JP5726686B2 (en) Liquid processing apparatus and method for controlling liquid processing apparatus
JP2010161164A (en) Processing apparatus and operating method thereof
JP6961362B2 (en) Board processing equipment
JP5293790B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
WO2023136200A1 (en) Method for treating substrate and device for treating substrate
JP7437154B2 (en) Substrate processing apparatus and substrate processing method
CN107170695A (en) Multiple afer rotates processing
WO2018062362A1 (en) Substrate processing method and substrate processing device
JP5726636B2 (en) Liquid processing apparatus and liquid processing method
JP5136127B2 (en) Coating apparatus, coating method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786509

Country of ref document: EP

Kind code of ref document: A1