WO2016173863A1 - Antenne, induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden - Google Patents

Antenne, induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden Download PDF

Info

Publication number
WO2016173863A1
WO2016173863A1 PCT/EP2016/058312 EP2016058312W WO2016173863A1 WO 2016173863 A1 WO2016173863 A1 WO 2016173863A1 EP 2016058312 W EP2016058312 W EP 2016058312W WO 2016173863 A1 WO2016173863 A1 WO 2016173863A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
charging
inductive charging
electric vehicle
metallic
Prior art date
Application number
PCT/EP2016/058312
Other languages
English (en)
French (fr)
Inventor
Fabian Kurz
Dominikus Joachim MÜLLER
Reiner Müller
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2016173863A1 publication Critical patent/WO2016173863A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Antenna, inductive charging device, electric vehicle, charging station and method for inductive charging are antenna, inductive charging device, electric vehicle, charging station and method for inductive charging
  • the present invention relates to an antenna according to the preamble of claim 1.
  • the present invention further relates to an inductive charging device according to the preamble of claim 3.
  • the present invention further relates to an electric vehicle according to the preamble of claim 4.
  • the present invention relates
  • inductive charging By 2020, should be on the German roads 1 million electric vehicles on the road. In order to be able to charge this quantity of electric vehicles, today there is the conductive and the inductive charging. In the case of conductive charging, there is a physical connection between an electric vehicle and a charging infrastructure. In inductive charging, on the other hand, there is no physical connection between the electric vehicle and the charging infrastructure, which includes an inductive charging device and a charging station operating according to a method for inductive charging. There is no physical connection between the electric vehicle and the charging infrastructure for either the energy transmission or the charging control. Inductive charging systems usually work according to the principle of transformer coupling, that is, via an inductive coupling of two coils, whereby the energy is transported via a magnetic field.
  • an arrangement of two antennas for communication is favorable, in which the antennas each in the center of the units for energy transmission, so possibly in the center of the power flow, that is in the center of a strong magnetic alternating field.
  • Such a system with possible antenna designs is known for example from the document DE 10 2013 212 736 AI.
  • the core problem with the prior art is that the antennas are exposed to a very strong alternating magnetic field. Within the antennas of electrically conductive materials, electrical currents are induced by the external magnetic field, which usually lead to heating of the antennas by eddy currents. Depending on the power to be transmitted and without special measures could be destroyed by the heating caused in the antennas, the antenna structure of the antenna. In order to avoid this problem, attempts are made today to arrange the antennas so that they are not or only weakly traversed by the alternating magnetic field. With such an arrangement, in which the antennas outside the Spool system are installed, it is then also necessary not only to position the coil system of the charging unit as closely as possible to each other, but also to place the communication antennas properly.
  • Object of the present invention is, starting from an antenna of the type mentioned to improve such an antenna in such a way that while it serves the same purpose as a corresponding known antenna, but that they are in a strong alternating magnetic field more favorable electrical and mechanical properties having. It is another object of the present invention to provide an inductive charging device, an electric vehicle, a charging station and a method for inductive charging, with which the same success is achieved.
  • Emitter surface and the metallic ground surface at least the metallic radiator surface in the longitudinal direction of a flowing on the surface high-frequency current flow is at least partially slotted made.
  • the advantage of the antenna according to the invention is that this antenna is operable in an environment with very strong alternating magnetic fields, in which normally the operation of an antenna would be impossible due to the possible overheating.
  • the antenna according to the invention is hereby strengthened, even in the adverse environment of a strong magnetic field in addition to the communication also for the co-localization of the electric vehicle and charging coil of the charging infrastructure to be used. This is achieved by reducing the eddy currents on the antenna, which are responsible for the unwanted heating, by a suitable measure, namely a suitable slitting of the metallic surface of the radiator element and possibly also of the metallic ground plane lying on the other side, such that the Operation in the adverse environment of a strong magnetic field is possible.
  • the antenna according to the invention with the advantageous properties used in an advantageous manner.
  • the antenna according to the invention with the advantageous properties used in an advantageous manner.
  • a method step is carried out at least once, in which communication data are transmitted in an advantageous manner via the antenna according to the invention with the advantageous properties.
  • FIG. 1 shows a schematic representation of a known antenna, by way of example in the form of a patch antenna,
  • FIG. 2 is a schematic representation of the antenna according to the
  • FIG. 1 shows, with the signal input omitted, a typical patch antenna consisting of a rectangular metallic radiator element / radiator 1 and a metallic ground plane 2, which is typically designed to be considerably larger than the metallic radiator element 1.
  • a material 3 with a known dielectric constant for example a printed circuit board made of FR4 material, which ensures a constant distance between the metallic radiator 1 and the metallic ground surface 2 seen over the antenna surface and additionally ensures mechanical stability.
  • the electrical supply of the metallic radiator 1 can take place in various ways, for example laterally via a microstrip line or perpendicular to the antenna surface from below by means of a coaxial line 4 (FIG. 2).
  • the size of the metallic radiator 1 or the metallic radiator surface 1 is essentially determined by the operating frequency of the antenna.
  • the metallic ground plane 2 is ideally infinitely large, in practice significantly larger than the metallic radiator 1.
  • Metallic radiator 1 and metallic ground plane 2 are ideally made of a conductive material with a high electrical conductance, for example copper.
  • such an antenna radiates preferably perpendicularly to the metallic ground plane 2 in the direction of the metallic radiator element 1 and, by this bundling of the energy in the emission direction, achieves a certain antenna gain.
  • the antenna With sufficient dimensioning of the metallic ground plane 2, the antenna has a low Em sensitivity to the environment under the metallic ground plane 2 on.
  • the patch antenna shown by way of example in the drawing in this form so favorable electrical properties for communication between, for example, a charging unit not shown in detail in the drawing on an electric vehicle also not shown in detail in the drawing and one in the drawing As shown, it is not necessarily suitable for operation in the center of a strong alternating magnetic field, as in the case of inductive power transmission to an electric vehicle.
  • the metallic surfaces of the radiator element 1 and the ground surface 2 would be subjected to strong heating by eddy currents, which in the worst case could lead to destruction of the antenna and possibly surrounding structures.
  • the high-frequency current flow 5 on the illustrated antenna moves essentially in the longitudinal direction.
  • the current flowing on the surface of the metallic radiator 1 is illustrated in more detail in terms of magnitude and direction.
  • the antenna according to the invention according to FIG. 3 uses a planar antenna structure, which is characterized by being very close to the electrical characteristic of a typical patch antenna according to FIGS. 1 or 2, but in contrast to such an antenna does not have large-area metal surfaces ,
  • the antenna according to the invention is modified in such a way that, although it still has a similar electrical effect, it manages with considerably less metal surfaces which are problematic in the magnetic field.
  • both of the radiator 1 and the Ground plane 2 are slotted in a suitable manner, that is, in the embodiment of Figure 3, both the metallic radiator 1 has a slot 6 and the metallic ground surface 2 a slit 7 on. Since the high-frequency current flow 5 in a conventional, for example, patch antenna moves substantially in the longitudinal direction (FIG. 2), slitting the antenna in the transverse direction would interrupt this high-frequency current flow and thus render proper functioning of the antenna no longer possible. In the case of the partial slits 6, 7 according to the invention in the longitudinal direction, on the other hand, there is no interruption of the high-frequency current flow and the antenna only slightly changes its electrical properties. At the same time metal surface, in the present embodiment of Figure 3, both with respect to the radiator 1 and the ground surface 2, saved, which improves the compatibility with the operation in a magnetic power field.
  • the antenna according to the invention according to FIG. 3 thus has only slightly limited electrical properties overall, but allows operation in much stronger alternating magnetic fields than would be possible with a typical known patch antenna, for example. Based on the way one slits the beam element, one can vary the respective advantages and disadvantages of slotting in favor of antenna performance or low sensitivity in the magnetic field.
  • An inductive charging device, an electric vehicle, a charging station and a method for inductive charging which use an antenna according to the invention described above and have for this, have the same inventive advantages as the antenna according to the invention and thus also form an inductive charging device, an electric vehicle, a charging station and a method for inductive charging according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

Es wird eine Antenne vorgeschlagen, die in der Weise verbessert ist, dass sie zwar den selben Zweck erfüllt wie eine entsprechende bekannte Antenne, dass sie aber in einem starken magnetischen Wechselfeld günstigere elektrische und mechanische Eigenschaften aufweist. Ferner werden eine induktive Ladeeinrichtung, ein Elektrofahrzeug, eine Ladestation und ein Verfahren zum induktiven Laden vorgeschlagen, die die gleichen vorteilhaften Eigenschaften haben. Die erfindungsgemäße Antenne weist dazu eine metallische Strahlerfläche (1) und eine metallische Massefläche (2) auf, von denen wenigstens die Strahlerfläche (1) in Längsrichtung eines auf der Oberfläche fließenden Hochfrequenz-Stromflusses (5) wenigstens teilweise geschlitzt (6, 7) gefertigt ist. Die induktive Ladeeinrichtung zum Laden eines Energiespeichers, das Elektrofahrzeug und die Ladestation für Energiespeicher jeweils gemäß der Erfindung weisen jeweils die erfindungsgemäße Antenne auf. Das Verfahren zum induktiven Laden eines Energiespeichers nach der Erfindung bedient sich der erfindungsgemäßen Antenne.

Description

Beschreibung
Antenne, induktive Ladeeinrichtung, Elektrofahrzeug, Ladestation und Verfahren zum induktiven Laden
Die vorliegende Erfindung betrifft eine Antenne nach dem Oberbegriff des Patentanspruchs 1. Die vorliegende Erfindung betrifft weiter eine induktive Ladeeinrichtung nach dem Oberbegriff des Patentanspruchs 3. Die vorliegende Erfindung be- trifft ferner ein Elektrofahrzeug nach dem Oberbegriff des Patentanspruchs 4. Die vorliegende Erfindung betrifft
schließlich ein Verfahren zum induktiven Laden nach dem Oberbegriff des Patentanspruchs 6. Bis zum Jahr 2020 sollen auf den deutschen Straßen 1 Million Elektrofahrzeuge unterwegs sein. Um diese Menge an Elektro- fahrzeugen laden zu können, gibt es heute das konduktive und das induktive Laden. Beim konduktiven Laden besteht eine physikalische Verbindung zwischen einem Elektrofahrzeug und ei- ner Ladeinfrastruktur. Beim induktiven Laden hingegen besteht keine physikalische Verbindung zwischen dem Elektrofahrzeug und der Ladeinfrastruktur, die eine induktive Ladeeinrichtung und eine nach einem Verfahren zum induktiven Laden arbeitende Ladestation umfasst. Es besteht hier weder für die Energie- Übertragung, noch für die Ladesteuerung eine physikalische Verbindung zwischen dem Elektrofahrzeug und der Ladeinfrastruktur. Induktive Ladesysteme funktionieren in der Regel nach dem Prinzip der transformatorischen Kopplung, das heißt über eine induktive Verkopplung zweier Spulen, wobei die Energie über ein Magnetfeld transportiert wird.
Neben der eigentlichen Energieübertragung steht und fällt der Nutzwert eines solchen drahtlosen Ladesystems mit den dazugehörigen Zusatzsystemen, die dem Benutzer eine komfortable und auch sichere Nutzung erlauben.
Naturgemäß sind auch diese Zusatzsysteme drahtlos. Da die Energieübertragung beim induktiven Laden drahtlos erfolgt, sollte auch die notwendige Kommunikation zur Ladesteuerung drahtlos von Statten gehen. Als „Physical Layer" für die Kommunikation zwischen Elektrofahrzeug und Ladeinfrastruktur kommen alle drahtlosen, also auf Funk basierende Systeme in Betracht. Neben der Kommunikation zur Steuerung eines Ladevorgangs ist es beim induktiven Laden auch sehr wichtig, die absolute Position der Spule im Elektrofahrzeug zur Spule der Ladeinfrastruktur so genau wie möglich zu bestimmen, um sicher zu stellen, dass die Betriebssicherheit und eine eindeu- tige Zuordnung zwischen Elektrofahrzeug und einer ganz bestimmten Ladeeinheit gewährleistet ist.
Zur Positionierung und zur eindeutigen Zuordnung zwischen einem Fahrzeug und einer Ladestation ist eine Anordnung von zwei Antennen zur Kommunikation günstig, bei der sich die Antennen jeweils im Zentrum der Einheiten zur Energieübertragung, also unter Umständen auch im Zentrum des Leistungsflusses, das heißt im Zentrum eines starken magnetischen Wechsel - feldes befinden.
Ein derartiges System mit möglichen Antennenausführungen ist beispielsweise aus dem Dokument DE 10 2013 212 736 AI bekannt . Das Kernproblem beim Stand der Technik ist, dass die Antennen einem sehr starken magnetischen Wechselfeld ausgesetzt sind. Innerhalb der Antennen aus elektrisch leitfähigen Materialien werden durch das äußere Magnetfeld elektrische Ströme induziert, die in der Regel zu einer Erwärmung der Antennen durch Wirbelströme führen. Abhängig von den zu übertragenden Leistungen und ohne spezielle Maßnahmen könnte durch die in den Antennen hervorgerufene Erhitzung die Antennenstruktur der Antenne zerstört werden. Um diesem Problem aus dem Weg zu gehen, wird heute möglichst versucht, die Antennen so anzuordnen, dass sie nicht oder nur schwach vom magnetischen Wechselfeld durchflössen sind. Mit einer solchen Anordnung, bei der die Antennen außerhalb des Spulensystems installiert sind, ist es dann zusätzlich notwendig, nicht nur das Spulensystem der Ladeeinheit möglichst genau zueinander zu positionieren, sondern auch die Kommunikationsantennen entsprechend richtig zu platzieren.
Aufgabe der vorliegenden Erfindung ist es, ausgehend von einer Antenne der eingangs genannten Art eine solche Antenne in der Weise zu verbessern, dass sie zwar den selben Zweck erfüllt wie eine entsprechende bekannte Antenne, dass sie aber in einem starken magnetischen Wechselfeld günstigere elektrische und mechanische Eigenschaften aufweist. Ferner ist es Aufgabe der vorliegenden Erfindung eine induktive Ladeeinrichtung, ein Elektrofahrzeug, eine Ladestation und ein Verfahren zum induktiven Laden anzugeben, mit denen der gleiche Erfolg erzielt ist.
Diese Aufgabe wird ausgehend von einer Antenne der eingangs genannten Art erfindungsgemäß durch eine Antenne gelöst, die die im Kennzeichen des Patentanspruchs 1 angegebenen Merkmale aufweist.
Diese Aufgabe wird ausgehend von einer induktiven Ladeeinrichtung der eingangs genannten Art erfindungsgemäß durch eine induktive Ladeeinrichtung gelöst, die die im Kennzeichen des Patentanspruchs 3 angegebenen Merkmale aufweist.
Diese Aufgabe wird ausgehend von einem Elektrofahrzeug der eingangs genannten Art erfindungsgemäß durch ein Elektrofahr- zeug gelöst, das die im Kennzeichen des Patentanspruchs 4 an- gegebenen Merkmale aufweist.
Diese Aufgabe wird ausgehend von einer Ladestation der eingangs genannten Art erfindungsgemäß durch eine Ladestation gelöst, die die im Kennzeichen des Patentanspruchs 5 angege- benen Merkmale aufweist.
Diese Aufgabe wird schließlich ausgehend von einem Verfahren zum induktiven Laden der eingangs genannten Art erfindungsge- maß durch ein Verfahren zum induktiven Laden gelöst, das die im Kennzeichen des Patentanspruchs 6 angegebenen Verfahrens- schritte aufweist. Danach ist bezüglich der erfindungsgemäßen Antenne die Antenne in der Weise konstruiert, dass von der metallischen
Strahlerfläche und der metallischen Massefläche wenigstens die metallische Strahlerfläche in Längsrichtung eines auf der Oberfläche fließenden Hochfrequenz -Stromflusses wenigstens teilweise geschlitzt gefertigt ist.
Der Vorteil der erfindungsgemäßen Antenne ist, dass diese Antenne in einer Umgebung mit sehr starken magnetischen Wechselfeldern betreibbar ist, in der normalerweise der Betrieb einer Antenne aufgrund der möglichen Überhitzung unmöglich wäre .
Im Gegensatz zu bekannten Lösungen, in denen Antenne und Magnetfeld voneinander räumlich getrennt sind, wird hier die er- findungsgemäße Antenne dazu ertüchtigt, auch in der widrigen Umgebung eines starken magnetischen Feldes neben der Kommunikation auch für die Ko-Lokalisierung von Elektrofahrzeug und Ladespule der Ladeinfrastruktur eingesetzt zu werden. Dies wird dadurch erreicht, dass die für die unerwünschte Erwär- mung ursächlichen Wirbelströme auf der Antenne durch eine geeignete Maßnahme, nämlich einer geeigneten Schlitzung der metallischen Fläche des Strahlerelements und gegebenenfalls auch der auf der anderen Seite liegenden metallischen Massefläche, soweit reduziert werden, dass der Betrieb in der wid- rigen Umgebung eines starken magnetischen Feldes ermöglicht ist .
Mit Hilfe einer solchen erfindungsgemäßen Antenne ist es möglich, eine zwingend für einen Ladevorgang zur Ladesteuerung notwendige, sichere Kommunikation zu gewährleisten, unter gleichzeitiger Überprüfung/Überwachung und damit Abbil- dung/Pairing von einem ganz bestimmten Elektrofahrzeug zu einem bestimmten Spulensystem auf Ladeinfrastruktur-Seite. Danach ist bezüglich der erfindungsgemäßen induktiven Ladeeinrichtung in der induktiven Ladeeinrichtung die erfindungsgemäße Antenne mit den vorteilhaften Eigenschaften in vor- teilhafter Weise verwendet.
Danach ist bezüglich des erfindungsgemäßen Elektrofahrzeugs in dem Elektrofahrzeug die erfindungsgemäße Antenne mit den vorteilhaften Eigenschaften in vorteilhafter Weise verwendet.
Danach ist bezüglich der erfindungsgemäßen Ladestation in der Ladestation die erfindungsgemäße Antenne mit den vorteilhaften Eigenschaften in vorteilhafter Weise verwendet. Danach ist bezüglich des erfindungsgemäßen Verfahrens zum induktiven Laden eines Energiespeichers wenigstens ein einziges Mal ein Verfahrensschritt ausgeführt, in dem über die erfindungsgemäße Antenne mit den vorteilhaften Eigenschaften in vorteilhafter Weise Kommunikationsdaten übertragen werden.
Eine vorteilhafte Weiterbildung der Erfindung ist Gegenstand des Patentanspruchs 2.
Danach ist die Ausbildung in Form einer Patch-Antenne bewerk- stelligt, so dass sie mit ihren vorteilhaften Eigenschaften insbesondere in induktiven Ladeeinrichtungen für Energiespeicher, Elektrofahrzeugen mit Energiespeicher, Ladestationen für Energiespeicher und Verfahren zum induktiven Laden von Energiespeichern in vorteilhafter Weise verwendbar ist.
Nachfolgend wird die Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
Figur 1 eine schematische Darstellung einer bekannten An- tenne, beispielhaft in Form einer Patch-Antenne,
Figur 2 eine schematische Darstellung der Antenne nach der
Figur eins mit schematischer Darstellung eines Hochfrequenz -Stromflusses auf der Antenne, und Figur 3 eine schematische Darstellung einer erfindungsgemäßen Antenne, beispielhaft in Form einer Patch- Antenne . In den einzelnen Figuren der Zeichnung sind gleiche Teile jeweils mit dem gleichen Bezugszeichen versehen.
Die Figur 1 zeigt mit weggelassener Signaleinspeisung eine typische Patch-Antenne, bestehend aus einem rechteckflächigem metallischen Strahlerelement/Strahler 1 und einer metallischen Massefläche 2, die typischerweise deutlich größer als das metallische Strahlerelement 1 ausgelegt ist. Dazwischen befindet sich in der Regel ein Material 3 mit einer bekannten Dielektrizitätskonstante, zum Beispiel eine Leiterplatte aus FR4 -Material , was einen über die Antennenfläche gesehen konstanten Abstand zwischen dem metallischen Strahler 1 und der metallischen Massefläche 2 sicherstellt und zusätzlich für mechanische Stabilität sorgt. Die elektrische Speisung des metallischen Strahlers 1 kann auf verschiedene Arten erfol- gen, so zum Beispiel seitlich über eine Mikrostreifenleitung oder senkrecht zur Antennenfläche von unten mittels einer Koaxialleitung 4 (Figur 2) .
Die Größe des metallischen Strahlers 1 beziehungsweise der metallischen Strahlerfläche 1 wird im Wesentlichen durch die Betriebsfrequenz der Antenne bestimmt. Die metallische Massefläche 2 ist im Idealfall unendlich groß, in der Praxis deutlich größer als der metallische Strahler 1. Metallischer Strahler 1 und metallische Massefläche 2 werden idealerweise aus einem leitfähigen Material mit einem hohen elektrischen Leitwert ausgeführt, zum Beispiel Kupfer.
Eine solche Antenne strahlt bei geeigneter elektrischer Speisung bevorzugt senkrecht zur metallischen Massefläche 2 in Richtung des metallischen Strahlerelements 1 ab und erreicht durch diese Bündelung der Energie in Abstrahlrichtung einen gewissen Antennengewinn. Bei ausreichender Dimensionierung der metallischen Massefläche 2 weist die Antenne eine geringe Em findlichkeit gegenüber der Umgebung unter der metallischen Massefläche 2 auf.
Während die in der Zeichnung beispielhaft gezeigte Patch- Antenne in dieser Form also günstige elektrische Eigenschaften für die Kommunikation zwischen beispielsweise einer in der Zeichnung nicht näher dargestellten Ladeeinheit an einem in der Zeichnung ebenfalls nicht näher dargestellten Elektro- fahrzeug und einer in der Zeichnung weiter nicht näher darge- stellten Infrastruktureinheit hat, ist sie nicht unbedingt geeignet für den Betrieb im Zentrum eines starken magnetischen Wechselfeldes, wie es im Falle einer induktiven Leistungsübertragung zu einem Elektrofahrzeug der Fall ist. Die metallischen Flächen des Strahlerelements 1 und der Masseflä- che 2 würden durch Wirbelströme einer starken Erwärmung ausgesetzt, was im schlimmsten Fall zu einer Zerstörung der Antenne und gegebenenfalls umliegender Strukturen führen kann.
Wie es die Feldsimulation in der Figur 2 näher zeigt bewegt sich der Hochfrequenz -Stromfluss 5 auf der dargestellten Antenne im Wesentlichen in Längsrichtung. Dabei ist der auf der Oberfläche des metallischen Strahlers 1 fließende Strom vek- toriell nach Betrag und Richtung näher dargestellt. Die erfindungsgemäße Antenne nach der Figur 3 verwendet eine planare Antennenstruktur, die sich dadurch auszeichnet, der elektrischen Charakteristik einer typischen beispielsweise Patch-Antenne nach den Figuren 1 oder 2 sehr nahe zu kommen, aber im Gegensatz zu einer solchen Antenne keine großflächi- gen Metallflächen aufzuweisen.
Nach der Figur 3 ist die erfindungsgemäße Antenne so modifiziert, dass sie zwar elektrisch noch eine ähnliche Wirkung aufweist, jedoch mit deutlich weniger im Magnetfeld problema- tischen Metallflächen auskommt.
Dies wird dadurch erreicht, dass die Metallflächen nach der Figur 3 beispielsweise sowohl des Strahlers 1 als auch der Massefläche 2 in geeigneter Weise geschlitzt sind, das heißt, beim Ausführungsbeispiel nach der Figur 3 weist sowohl der metallische Strahler 1 eine Schlitzung 6 als auch die metallische Massefläche 2 eine Schlitzung 7 auf. Da der Hochfre- quenz -Stromfluss 5 in einer herkömmlichen zum Beispiel Patch- Antenne sich im Wesentlichen in Längsrichtung (Figur 2) bewegt, würde eine Schlitzung der Antenne in Querrichtung diesen Hochfrequenz -Stromfluss unterbrechen und somit keine ordnungsgemäße Funktion der Antenne mehr ermöglichen. Bei der erfindungsgemäßen, teilweisen Schlitzung 6, 7 in Längsrichtung hingegen findet keine Unterbrechung des Hochfrequenz - Stromflusses statt und die Antenne ändert ihre elektrischen Eigenschaften nur leicht. Gleichzeitig wird Metallfläche, beim vorliegenden Ausführungsbeispiel nach Figur 3 sowohl be- züglich des Strahlers 1 als auch der Massefläche 2, eingespart, was die Kompatibilität mit dem Betrieb in einem magnetischen Leistungsfeld verbessert.
Bezüglich der metallischen Massefläche 2 wird diese in einem ersten Schritt so weit verkleinert, dass bei Auslegung mit Vollmaterial die Eigenschaften der Antenne noch ausreichend sind. Durch die Verkleinerung verschlechtert sich das Vor- zu Rückverhältnis und die Empfindlichkeit gegenüber Einflüssen aus der Umgebung steigt. Anschließend wird sie entlang der Linien des Hochfrequenz -Stromflusses 5 geschlitzt, um eine möglichst geringe Kupferfläche zu erreichen.
Die erfindungsgemäße Antenne nach der Figur 3 weist somit insgesamt nur leicht eingeschränkte elektrische Eigenschaften auf, lässt aber den Betrieb in wesentlich stärkeren magnetischen Wechselfeldern zu, als dies mit einer typischen bekannten zum Beispiel Patch-Antenne möglich wäre. Basierend auf der Art und Weise, wie man das Strahlelement schlitzt, kann man die jeweiligen Vor- und Nachteile der Schlitzung zuguns- ten der Antennenperformance oder der geringen Empfindlichkeit im magnetischen Feld variieren. Eine induktive Ladeeinrichtung, ein Elektrofahrzeug, eine Ladestation und ein Verfahren zum induktiven Laden, welche sich einer oben beschriebenen erfindungsgemäßen Antenne bedienen und eine solche hierfür aufweisen, weisen die gleichen erfin- dungsgemäßen Vorteile auf wie die erfindungsgemäße Antenne und bilden somit ebenfalls eine induktive Ladeeinrichtung, ein Elektrofahrzeug, eine Ladestation und ein Verfahren zum induktiven Laden nach der Erfindung.

Claims

Patentansprüche
1. Antenne, aufweisend zwei zueinander parallel angeordnete Metallflächen, zwischen denen ein Material mit einer vorgege- benen Dielektrizitätskonstante angeordnet ist und von denen die eine als metallische Strahlerfläche in einer an eine Betriebsfrequenz der Antenne angepassten Größe und die andere als gegenüber der metallischen Strahlerfläche wenigstens deutlich größere metallische Massefläche ausgebildet ist, dadurch gekennzeichnet, dass von der metallischen Strahlerfläche (1) und der metallischen Massefläche (2) wenigstens die metallische Strahlerfläche (1) in Längsrichtung eines auf der Oberfläche fließenden Hochfrequenz-Stromflusses (5) wenigstens teilweise geschlitzt (6, 7) gefertigt ist.
2. Antenne nach Anspruch 1, dadurch gekennzeichnet, dass die Ausbildung in Form einer Patch-Antenne bewerkstelligt ist.
3. Induktive Ladeeinrichtung zum Laden eines Energiespeichers, aufweisend eine Antenne für Kommunikationszwecke, dadurch gekennzeichnet, dass die Antenne nach Art einer Antenne nach dem Patentanspruch 1 oder 2 ausgebildet ist .
4. Elektrofahrzeug, aufweisend einen Energiespeicher und eine Antenne für Kommunikationszwecke , dadurch gekennzeichnet , dass die Antenne nach Art einer Antenne nach dem Patentanspruch 1 oder 2 ausgebildet ist.
5. Ladestation für Energiespeicher, aufweisend eine Antenne für Kommunikationszwecke , dadurch gekennzeichnet, dass die Antenne nach Art einer Antenne nach dem Patentanspruch 1 oder 2 ausgebildet ist.
6. Verfahren zum induktiven Laden eines Energiespeichers, wobei über eine Antenne Kommunikationsdaten übertragen werden, dadurch gekennzeichnet, dass über eine Antenne nach Art einer Antenne nach dem Patentanspruch 1 oder 2 Kommunikationsdaten übertragen werden.
PCT/EP2016/058312 2015-04-30 2016-04-15 Antenne, induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden WO2016173863A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015207995.3 2015-04-30
DE102015207995.3A DE102015207995A1 (de) 2015-04-30 2015-04-30 Antenne, induktive Ladeeinrichtung, Elektrofahrzeug, Ladestation und Verfahren zum induktiven Laden

Publications (1)

Publication Number Publication Date
WO2016173863A1 true WO2016173863A1 (de) 2016-11-03

Family

ID=55754292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/058312 WO2016173863A1 (de) 2015-04-30 2016-04-15 Antenne, induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden

Country Status (2)

Country Link
DE (1) DE102015207995A1 (de)
WO (1) WO2016173863A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018140050A1 (en) * 2017-01-30 2018-08-02 Ford Global Technologies, Llc Drone to vehicle charge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019416A1 (en) * 2002-06-25 2012-01-26 David Gala Gala Multiband antenna for handheld terminal
US20140197782A1 (en) * 2013-01-15 2014-07-17 Lite-On It Corporation Wireless charger with combined electric radiation shielding and capacitive sensing functions
WO2014206661A1 (de) * 2013-06-28 2014-12-31 Siemens Aktiengesellschaft Induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden
DE102013212736A1 (de) 2013-06-28 2014-12-31 Siemens Aktiengesellschaft Induktive Ladeeinrichtung, Elektrofahrzeug, Ladestation und Verfahren zum induktiven Laden
US20150015195A1 (en) * 2012-07-06 2015-01-15 DvineWave Inc. Portable wireless charging pad

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772517B1 (fr) * 1997-12-11 2000-01-07 Alsthom Cge Alcatel Antenne multifrequence realisee selon la technique des microrubans et dispositif incluant cette antenne
AU2002220176A1 (en) * 2000-11-16 2002-05-27 Arc Wireless Solutions, Inc. Low cross-polarization microstrip patch radiator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019416A1 (en) * 2002-06-25 2012-01-26 David Gala Gala Multiband antenna for handheld terminal
US20150015195A1 (en) * 2012-07-06 2015-01-15 DvineWave Inc. Portable wireless charging pad
US20140197782A1 (en) * 2013-01-15 2014-07-17 Lite-On It Corporation Wireless charger with combined electric radiation shielding and capacitive sensing functions
WO2014206661A1 (de) * 2013-06-28 2014-12-31 Siemens Aktiengesellschaft Induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden
DE102013212736A1 (de) 2013-06-28 2014-12-31 Siemens Aktiengesellschaft Induktive Ladeeinrichtung, Elektrofahrzeug, Ladestation und Verfahren zum induktiven Laden

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018140050A1 (en) * 2017-01-30 2018-08-02 Ford Global Technologies, Llc Drone to vehicle charge

Also Published As

Publication number Publication date
DE102015207995A1 (de) 2016-11-03

Similar Documents

Publication Publication Date Title
DE2153827A1 (de)
DE2835983A1 (de) Elektrische signalweiche
DE102012209898A1 (de) Anordnung zur induktiven drahtlosen Abgabe von Energie
DE102013219540A1 (de) Ladeanordnung zur induktiven drahtlosen Abgabe von Energie
DE102013219542A1 (de) Ladeanordnung zur induktiven drahtlosen Abgabe von Energie
DE102015112362A1 (de) Drahtloses Ladegerät mit Resonator
DE102012207954B4 (de) Antennenvorrichtung
DE102013104059B4 (de) Antennen-Anordnung und Kommunikationsgerät
WO2019052961A1 (de) Fahrzeugkontakteinheit, bodenkontakteinheit, fahrzeugkoppelsystem sowie verfahren zur ueberpruefung der kontaktierung und der zuordnung von kontaktstellen
DE102014015708A1 (de) Antennenvorrichtung für Nahbereichsanwendungen sowie Verwendung einer derartigen Antennenvorrichtung
DE102007008575B4 (de) Antennenvorrichtung mit ionenimplantierter Resonanzstruktur
WO2016173863A1 (de) Antenne, induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden
EP3036793A1 (de) Vorrichtung und verfahren zur kombinierten signalübertragung oder zur kombinierten signal- und energieübertragung
DE60038218T2 (de) Antennenkonfiguration eines elektromagnetischen Detektierungssystems und ein derartiges System mit einer solchen Antennenkonfiguration
EP2489095A1 (de) Antennenkoppler
DE426944C (de) Einrichtung zur Abstimmung von Antennen mit einem ferromagnetischen Kern
DE102011090139B4 (de) Sendeanordnung für eine Funkstation und Funkstation
DE102007007703A1 (de) Antenne für Nahfeldreader und/oder Nahfeldtransponder
DE3312680A1 (de) Spulenanordnung
DE102009023374A1 (de) Antennenvorrichtung
DE112018003929T5 (de) Antenne, Übertragungsvorrichtung, Empfangsvorrichtung und drahtloses Kommunikationssystem
DE102014114640A1 (de) Induktives Energieübertragungssystem mit breiter Primäranordnung
DE102013212736A1 (de) Induktive Ladeeinrichtung, Elektrofahrzeug, Ladestation und Verfahren zum induktiven Laden
DE102012107358A1 (de) Primärleitersystem und Energieversorgungseinrichtung
DE102010062462A1 (de) Antennensystem, Sendeanordnung und Verfahren zum Betrieb einer Sendeanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16716569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16716569

Country of ref document: EP

Kind code of ref document: A1