WO2016172777A1 - Equipamento e processo para dissolução massiva de gases em líquidos - Google Patents

Equipamento e processo para dissolução massiva de gases em líquidos Download PDF

Info

Publication number
WO2016172777A1
WO2016172777A1 PCT/BR2016/050092 BR2016050092W WO2016172777A1 WO 2016172777 A1 WO2016172777 A1 WO 2016172777A1 BR 2016050092 W BR2016050092 W BR 2016050092W WO 2016172777 A1 WO2016172777 A1 WO 2016172777A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
equipment
gas
gases
water
Prior art date
Application number
PCT/BR2016/050092
Other languages
English (en)
French (fr)
Inventor
Ricardo Amaral Remer
Wim Maurits Sylvain Degrave
Original Assignee
Biotecam Assessoria E Desenvolvimento De Tecnologia Ambiental Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102016003779-4A external-priority patent/BR102016003779A2/pt
Application filed by Biotecam Assessoria E Desenvolvimento De Tecnologia Ambiental Ltda. filed Critical Biotecam Assessoria E Desenvolvimento De Tecnologia Ambiental Ltda.
Priority to BR112017023185A priority Critical patent/BR112017023185B1/pt
Priority to US15/570,224 priority patent/US10654732B2/en
Priority to EP16785695.4A priority patent/EP3290104B1/en
Publication of WO2016172777A1 publication Critical patent/WO2016172777A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • B01F23/232311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit the conduits being vertical draft pipes with a lower intake end and an upper exit end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • B01F23/232312Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit the guiding constructions being baffles for guiding the flow up-and-down or from left-to-right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4322Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa essentially composed of stacks of sheets, e.g. corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/503Floating mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32055Type of drive by using solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32065Wind driven
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention is in the fields of Chemical and Environmental Engineering and is related to an equipment and process for the massive dissolution of gases in liquids in an energy efficient manner and / or using energy from alternative sources. useful for the conservation and / or recovery of liquid bodies.
  • the equipment of the invention is also referred to as "Lung” because it is highly efficient in dissolving air in liquids, similar to what our organ does in the blood.
  • the invention is applicable to various situations in which controlled and adjustable dissolution of gases in large quantities, high dissolution rate and energy efficiency is desirable and may operate with energy autonomy or with reduced need for external power supply, ie from power and / or fuel distribution networks.
  • Examples include, but are not limited to, conserving and / or recovering water resources such as lagoons, rivers, coves, mangroves and beaches, removing unwanted organic loads, revitalizing liquid bodies and / or bathing them, as well as processes conservation and / or improvement of quality conditions, productivity and / or environmental efficiency of aquaculture processes, such as the cultivation of fish, shrimp, algae and other organisms cultivable in liquid medium.
  • Dissolving gases in liquids is a particularly relevant technical problem in the case of poorly soluble gases, which limits the amount of dissolved gases, their rate of dissolution and / or involves high energy demand and cost to be realized.
  • Oxygenation of large Liquid bodies is a technical challenge not yet overcome - as evidenced by the fish mortality events in the Rodrigo de Freitas Lagoon (RJ), as well as the state of the Baixada de Jacarepaguá (RJ) lagoons complex.
  • lagoon complex of Osorio (RS) among several other cases in Brazil or other countries.
  • the severe water crisis that has plagued several countries and more recently Brazil has drawn attention to the issue of water resources management and the need for new technologies to overcome existing bottlenecks.
  • liquid bodies ie rivers, lagoons, dams, lagoons, coves, beaches and mangroves.
  • BOD, COD, biochemical oxygen demand and chemical oxygen demand are undesirable substances and high oxygen demand.
  • a significant difficulty in the state of the art regarding liquid body aeration systems is that the vast majority of such systems require a lot of energy to dissolve air in the body. They are also inefficient to significantly increase and effectively the rate and amount of oxygen dissolution in the liquid body.
  • the water solubility of oxygen is low, which is aggravated at high temperatures as typical of tropical regions.
  • the introduction and effective dissolution of air / oxygen in large liquid bodies under open or tropical conditions has been a major technical challenge, since under such conditions the amount of dissolved oxygen in the liquid body is predominantly low and is particularly critical. when temperature is high and / or organic load is high.
  • the present invention also provides a solution to these problems.
  • Equipment currently available for the introduction of gases into liquids presents several other technical difficulties, including, but not limited to: (i) they are inefficient in energy efficiency; (ii) have limited ability to effectively dissolve gases in liquids, both from the point of view of velocity and the total amount of dissolved gases; (iii) the introduction of air / oxygen into large liquid bodies requires a large amount of energy from external sources, which makes it practically and / or economically unfeasible; (iv) it is very difficult to control environmental conditions in large liquid bodies, with fluid dynamics being an additional factor that can greatly modify the profile and concentration of substances present in the liquid body; (v) normally have no ability to adjust the amount of dissolved gases and / or direction of liquid flow according to interest; (vi) equipment that provides all these advantages together is not yet available.
  • microorganisms previously grown and added in powder form containing large amounts of spores or lyophilized microorganisms is not suitable for enrichment of specific microbial flora in closed or open liquid bodies due to several technical limitations: the cost and availability of the microorganisms. microorganisms, which are generally imported and suffer from exchange variation; the logistical difficulties of transportation and inventory; environmental and / or human health risks, as it involves the transport of microbial material in large quantities; and particularly the limitation of the amount available for introduction into liquid bodies and the low metabolic activation state of organisms when introduced under these conditions.
  • a critical problem that often precludes the treatment of watercourses such as lakes, lagoons, rivers, canals, river or sea arms, bays etc.
  • the present invention also provides a solution to these problems by disclosing an apparatus and process which provides for massive dissolution of gases in said liquid bodies contaminated with organic fillers or effluents of different origins, in which case the apparatus and process of the present invention optionally also comprises a device or subsystem for ex-situ and selective enrichment of organisms previously existing in liquid bodies and their on-site reintroduction.
  • the intensive dissolution of gases in liquids provided by the equipment and process of the invention is also suitable for the dissolution and fixation of CO 2 generated in industrial plants.
  • the equipment of the invention is also useful for dissolving such gases in liquids, an embodiment in which gases (or parts thereof) containing carbon dioxide from factories are dissolved in water in an algae culture tank. This approach reduces the environmental impact of carbon dioxide emitting plants.
  • Algae As Algae use CO2 for their growth and / or production of substances of economic interest, in addition to producing oxygen. In this context, it is important to note that at room temperature CO2 is 26 times more water soluble than O2.
  • the currently available approaches to introducing gases into liquids present a number of technical difficulties, including but not limited to: (i) they are inefficient in energy efficiency; (ii) have limited ability to effectively dissolve gases in liquids, both from the point of view of velocity and the total amount of dissolved gases; (iii) the introduction of air / oxygen into such liquid bodies, especially in large dimensions, generally requires a large amount of energy from external sources, factors that make it practically and / or economically unfeasible; (iv) it is very difficult to control environmental conditions in large liquid bodies, with fluid dynamics being an additional factor that can greatly modify the profile and concentration of substances present in the liquid body; (v) known systems usually do not have the ability to adjust the amount of dissolved gases according to environmental conditions or energy availability; (vi) known systems typically do not have the ability to displace large amounts of liquid at different depths without significant energy consumption; (vii) In the case of technologies that make use of microorganisms, the prohibition of the use of exotic microorganisms to the ecological system
  • Said device comprises: a pressure reducing part capable of reducing the pressure inside a tank by connecting an opening in the upper part of the closed tank with a vacuum pump through a pipe; an element for injecting treated and pressurized fluid into the tank top with a nozzle (e) capable of covering much of the area under reduced pressure; a foam generating part of the liquid that receives the treated fluid in a container at the center of the opening of the container and generating a large amount of bubbles at the bottom of the container.
  • This arrangement converts air bubbles to liquid bubbles.
  • the device further comprises a recovery pump part which allows the liquid bubbles to overflow from the upper part of the container and to pour to a lower part, temporarily storing the liquid bubbles as untreated treated fluid, ultimately collecting the treated fluid.
  • WO 2007/125996 entitled “Water quality improving unit and water quality improving device”, discloses a water quality improvement unit.
  • Said unit includes a device that increases the transparency of water by removing the organic charge, which floats on the surface of the water along with microbubbles, and can improve water quality by balancing dissolved gases such as oxygen and nitrogen.
  • Said unit comprises a body having a hollow portion, formed almost rotationally symmetrically and with reduced diameter towards both axial directions.
  • the periphery in the tangential direction of the unit comprises an opening for introducing liquid. Openings for vertically directed gas-liquid jets are arranged to open in a vertical direction along the axial direction of the hollow part rotational symmetry axis.
  • a carrier tube of a structure connected with the opening directing the gas jet. liquid upwards, with a gap or space between them. It also comprises a liquid bubble generator container connected to the upper body to form a liquid bubble aggregate from the upward flow of the mixture.
  • WO 2001/097958 entitled “Fine air bubble generator and fine air generator generating device with its generator”, discloses a small air bubble generator capable of preventing the formation of reactant and tailings aggregates.
  • Said device provides for the production of large amounts of small air bubbles in water and comprises: a generator body (1a) with a hollow part in rotational symmetry; an opening for the inlet and liquid air in the tangential direction; and openings for air-liquid supply in the direction of the hollow part symmetry axis.
  • US 8,292,271 entitled “Aeration unit, aeration apparatuses equipped therewith and method of aeration” discloses an aeration equipment and method.
  • Said equipment is multistage, consisting of: a diffuser to produce bubbles in water; a liquid foam channel for converting air bubbles to liquid bubbles; a gas retention chamber with space for holding gas in water and a portion for accumulating newly formed bubbles under the gas retention chamber.
  • US 2008/018534 entitled “Aeration method, aeration apparatuses and aeration system”, discloses a method and apparatus for aeration useful for improving the conditions of sewage treatment systems, fish farming and other aquatic organisms. , among others.
  • the apparatus provides highly efficient gas dissolution in water and comprises: a gas spray section (22) for generating gas bubble particles in the water to be treated (1W), a bubble rising section (3P) for providing upward movement of the generated bubbles, in which the gas bubbles are pushed to a position above the water surface, becoming liquid bubbles or thin films; and a transfer section (5P) into which treated water (2W) can be transferred.
  • EP 2558189 entitled “A microbubble generatoi” discloses a microbubble generator comprising: a pump configured to mix a liquid into a gas, forming a pressurized gas-liquid mixture; a contact chamber in hydraulic connection with the pump and configured to increase gas dissolution in said pressurized gas-liquid mixture; and a valve in hydraulic connection with the contact chamber.
  • the arrangement is configured to discharge a microbubble emulsion comprising liquid and gas microbubbles.
  • US 2005/0279713 entitled “System and method for dissolving gases in liquids", was published on 22December 2005.
  • Said document discloses an equipment and method for dissolving gas in a liquid and comprises a saturation tank and a pressurized gas source connected to a head space of the saturation tank.
  • the saturation tank comprises a pressurized tank containing at least one nozzle that allows liquid to pass into the tank. pressurized and an outlet for the liquid containing dissolved gas.
  • gas-containing liquid By passing gas-containing liquid into a second fluid, the gas is released as microbubbles.
  • the microbubbles assist in the flocculation of suspended particles and promote gas dissolution in the second fluid.
  • the preferred gas is air, oxygen or ozone, being those applicable for use in the treatment of rivers, lagoons and industrial facilities.
  • Document SI 24084 A discloses a bubble generator turbine powered by an electric motor.
  • Said turbine known as Toring Turbine, provides large-scale aeration of liquids. by the effect of water ejection from the turbine blades and the consequent suction generated inside the turbine.
  • the turbine is hollow and connected to a hollow shaft with holes in the region above water level where it connects with the electric motor.
  • the rotation generated by the engine provides the formation of external air suction inside the hollow shaft, and the air flow is subjected to the shear force of the turbine blades, generating microbubbles.
  • Said equipment has high volumetric gas delivery capacity in the liquid, but does not provide high gas dissolution rate in the liquid as it forms a mixture of macrobubbles and microbubbles.
  • the area of influence of the turbine is restricted to a diameter around it, that is, several of these devices are required in lakes or large areas of water, as well as flotation devices and electrical networks are required far from the shore. .
  • EP 2143483 B1 US 8,292,271, entitled "Aeration unit, aeration apparatus equipped therewith” discloses an aeration apparatus based on the principle of thin film formation of liquid.
  • Said apparatus / device is considered to be closest to the equipment of the present invention, consisting of: an air diffuser for producing conventional air bubbles in water within a cylindrical tube containing a thin film liquid channel to convert Air bubbles in liquid bubbles.
  • an air diffuser for producing conventional air bubbles in water within a cylindrical tube containing a thin film liquid channel to convert Air bubbles in liquid bubbles.
  • What characterizes this device is the fact that above the thin film (or liquid foam) generator channel there is a gas retention chamber with space to hold the gas in the water and a part to accumulate freshly formed bubbles below the gas retention chamber.
  • Said equipment has severe limitations on volumetric gas dissolution capacity in massive volumes of liquids.
  • the commercially available device has 4 cm diameter in the thin film liquid forming region and maximum full aeration capacity (ie oxygen saturation) of only 20 liters of water per minute.
  • the apparatus of the present invention provides a very higher gas dissolution scale, orders of magnitude greater than said prior art device.
  • the examples shown in Figures 4, 13 and 17 provide, respectively, complete aeration (i.e. oxygen saturation) of 1200, 2400 and 9800 liters of water per minute.
  • the equipment of the invention also provides other structural and operational advantages, as will be further detailed below.
  • equipment for introducing gases into liquids is known in the art and the operating principles are basically as follows: (i) introduction of regular sized gas bubbles and use of mechanical force to facilitate their dissolution. This technique is not energy efficient and provides low gas dissolution rate; (ii) introduction of microbubbles, which due to their better area-to-volume ratio increase the rate of gas dissolution in the liquid.
  • these equipments make use of the generation of high velocity liquid flows, generating a vacuum that allows the introduction of gas in the form of microbubbles, such as Venturi type devices and others that operate on pressurized water, or even in turbines as exemplified in SI 24084 A.
  • the equipment of the present invention differs from those described in said documents, among others, for various technical reasons.
  • the apparatus of the invention provides substantial increase in the amount and rate of gas dissolution in the liquid body, with low energy consumption, low cost, high volumetric gas dissolution capacity - some orders of magnitude greater than known counterparts.
  • the equipment of the invention provides for gas stripping rather than just introducing large amounts of gas.
  • a fundamental technical difference is that in the system of the invention there is no injection of gaseous species into the liquid, but gas exchange, whereas in conventional systems there is gas injection, which can lead to the serious problem of saturation with undesirable gases.
  • the equipment of the invention further comprises means for changing / controlling the direction of water flow, which is yet another additional technical advantage that is not attained by prior art devices / equipment.
  • the process of the present invention differs from said documents, among other technical reasons, by providing an efficient process for substantially increasing the amount and rate of dissolution of gases in the liquid body, with low energy consumption and adjustability under different circumstances. operation, climate and / or energy availability from external sources.
  • the process of the invention conveniently combines the characteristics of the equipment of the invention with the characteristics of other state of the art equipment, providing substantial technical advantages.
  • the inventive concept common to the various protection contexts of the present invention is a "Lung", a device specifically developed for substantially increasing the amount and rate of dissolution of gases in such liquids.
  • the equipment of the invention has the ability to adjust to different operating circumstances and high energy efficiency, operating autonomously or with reduced external power supply demand.
  • the equipment is particularly useful for massive gas dissolution in liquids and is therefore useful for the conservation and / or recovery of liquid bodies, improving the efficiency of effluent treatment plants, aquaculture systems, CO 2 fixation systems, among others.
  • the apparatus of the invention operates on the principle of air lift in conjunction with thin film and liquid formation and has a dissolution capacity of more than 1000 L of gas per minute in the liquid, with embodiments having a complete dissolution capacity.
  • gas that is, to the desired saturation, of several m 3 / s of liquid.
  • the equipment operates submerged in the liquid in which it is desired to dissolve the gas of interest. From the introduction of gas into a submerged zone within the equipment, conventional gas bubbles formed rise due to the natural thrust.
  • conventional gas bubbles formed rise due to the natural thrust.
  • Rising bubbles pass through one or more cross-sectional area restriction zones, and then pass through a hive with an even smaller cross-sectional area than the previous zones, which promotes bubble densification and / or coalescence.
  • the bubbles then pass through a section zone expansion zone. which promotes bubble expansion, formation of thin films of liquid and the explosion of such films.
  • the liquid resulting from the bursting of thin-film liquid bubbles is saturated with the desired gases introduced and leaks through a channel by gravity while the remaining released gas follows its upward path.
  • the rising released gas may undergo a new cycle equivalent to that described above, with subsequent recovery of new amount of liquid saturated with the desired gases.
  • the gas is air and the liquid is water, but the invention is not limited to such substances.
  • a rigid body containing a lower cross-sectional area in the lower region and a lower cross-sectional area in the upper region, said rigid body comprising one or more lower liquid inlet region (s); one or more upper and / or lower liquid outlet region (s); and one or more gas outlet region (s) at the top, said rigid body containing within it:
  • hives having a plurality of internal channels with even smaller cross-sectional area relative to the zone of lower cross-sectional area in the upper region, the liquid in which the gas was dissolved being extravasated after passing through the hive.
  • the equipment of the invention further comprises a partition wall within said rigid body, dividing it vertically at least partially into two regions.
  • the equipment of the invention further comprises means for reversing the direction of the flow of liquid passing therethrough, thereby providing the choice of the direction of liquid flows in the flow.
  • liquid bodies. Said flow inversion means are very simple and easy to operate, facilitating flow control and aeration processes in liquid bodies such as ponds and inlets.
  • the equipment additionally includes one or more sets of external piping, connected to the inlet and / or outlet of liquid. Due to the operating principle of the equipment of the invention, the movement of liquids is made possible over long distances, providing in practice the dissolution of gases even at depths of several meters. Depending on the arrangement of the liquid pipes connected to the equipment of the invention, technical effects such as flow direction and plume formation of desirable gas-containing liquids in regions of interest are feasible, with little or no external energy consumption.
  • the equipment of the invention makes use of the pre-existing flow of liquids (as in the case of river flow or unevenness in any liquid body) as a propelling force for gas dissolution.
  • said driving force is responsible for liquid movement, gas injection / suction or both, in which case the equipment of the invention operates without external power supply or with reduced external power supply.
  • the equipment of the invention further comprises: (i) one or more liquid-dissolving gas device (s), selected from microbubble, nanobubble, thin film liquid generators, or combinations thereof; and / or (ii) one or more subsystem (s) for energetically optimizing gas introduction / dissolution in the liquid.
  • liquid-dissolving gas device selected from microbubble, nanobubble, thin film liquid generators, or combinations thereof.
  • the subsystem (s) for energetically optimizing the introduction / dissolution of gas in the liquid are selected from: (iia) one or more pump drive control systems operating in accordance with the availability of energy and / or its cost, or according to climatic, biological or geophysical cycles; (iib) one or more available kinetic or potential energy utilization system (s), including gravity, existing gas and / or liquid flows, such as water gap, river or boat engine flow, booster pumps and / or pneumatic devices; (iic) one or more power generation subsystem (s), such as wind, solar, tidal flow, or chemical transformation, among others; or (iid) one or more ex situ microorganism enrichment subsystems, which provides a reduction in energy demand for gas dissolution in the liquid in question.
  • the process of the invention makes use of the equipment of the invention.
  • the apparatus and process of the invention provide: high increase in the rate of gas dissolution in liquids and / or the total amount of gases dissolved in liquids; the reduction of energy consumption, or the need for external power supply for the dissolution of gases in a liquid body; adjusting the equipment to environmental conditions or circumstantial needs, or both at the same time.
  • the process of the invention is particularly useful for the revitalization, conservation and / or bathing of open liquid bodies such as ponds, rivers, lagoons and inlets, as well as in increasing the productivity, quality and / or environmental efficiency of aquaculture processes. .
  • the invention is useful for the removal of undesirable organic fillers dissolved or dispersed in liquid bodies.
  • the process of the invention is also useful for dissolving other gases in liquids, such as factory-produced CO 2 which is conveniently dissolved by the equipment and process of the invention for fixing this carbon source and / or its biotransformation and other substances of interest. economic. Still other gases or combinations thereof are conveniently dissolved on a large scale with the equipment and / or process of the invention, including ozone and mixing thereof with air and / or other gases.
  • Figure 1 schematically illustrates the inventive concept, in its different embodiments and applications, indicating: (i) Lung, one or more equipment (s) of the invention for the massive dissolution of gases in liquids; B is an air or liquid pump which is optional and used in some embodiments; One or more device (s) selected from microbubble, nanobubble, thin film liquid, or combinations thereof, which is optional and used in some embodiments; F is a flotation device which is optional and used in some embodiments, which may be a boat; (ii) SEE, one or more system (s) for energetically optimizing the introduction / dissolution of gas in the liquid selected from: (iia) one or more pump drive control systems operating in accordance with energy availability and / or its cost, or according to climatic, biological or geophysical cycles; (iib) one or more available kinetic or potential energy utilization system (s), including existing gravity, air or liquid flows, such as boats, booster pumps, pneumatic devices; (iic) one or more power generation subsystem (s), such as wind, solar
  • FIG. 2 shows a schematic representation of an equipment embodiment of the invention.
  • equipment (20) for the massive dilution of gases in liquids visualized in "exploded" version, which operates by the air lift principle;
  • a gas pump (21) injects gas into the interior of the equipment through a perforated tube (22); the bubbles formed in the liquid rise and pass through one or more cross-sectional area restriction zones (23, 24), then pass through a hive (or hive) (25), which is provided with a internal channel series (26) with even smaller cross-sectional area compared to the lower areas (23, 24).
  • the passage of bubbles through said hive provides the formation of thin films of liquid, at least in part due to the coalescence of bubbles.
  • the formation of thin films of liquid provides both liquid saturation with incoming gas and removal of gases that were previously in the liquid (also known as stripping).
  • the equipment of the invention is also very useful for desaturating certain gases from the liquid, i.e. removing unwanted gases in the liquid by replacing them with desired gases.
  • B) The same equipment is shown, but in solid version. Shown are: the gas inlet (21), the gas outlet (22), liquid inlets (23) and a schematic representation of the optional partition wall (25).
  • C) the cross-sectional side view of the hive is shown in one embodiment in which the area of each inlet section of liquids and gases (bottom, 1, 2 cm 2 ) is larger than the area of each outlet section of liquids and gases (upper part, 1 cm 2 ).
  • Figure 3 shows an embodiment of the equipment of the present invention.
  • equipment in the form of pyramidal trunk with dimensions of 60 X 44 X 100 cm, respectively height, width and length.
  • the upper part is 15 cm wide.
  • This pyramidal trunk configuration provides stability in beds or watercourses and also the rise of conventional air bubbles blown into the machine, it passes through the reduced cross-section and subsequent passage through the honeycomb through which the bubbles coalesce and form thin films of liquid.
  • the liquid bubbles in the film rupture after passing through the hive, so that the liquid saturated with fresh gases leaks through the side duct as indicated. The remaining gases are released from the upper opening.
  • This embodiment of equipment of the invention provides for complete saturation of desirable gases (or aeration) in the liquid at 1200 liters per minute (only one side) or up to 2400 liters of liquid per minute (operating on both sides).
  • the equipment operates with two blowers, each CV-51 M model (SNatural) and 0.5 CV flow capacity of 1200 liters of air per minute, pressure of 1200 mm water column, by blowing air through a tube 100mm perforated on each side of the partition wall with 1mm holes.
  • B) there is shown a schematic representation of this embodiment of the equipment of the invention in exploded version, showing the water inlet ducts (33) and the perforated duct (31) as well as the liquid outlets at the top.
  • C) a perspective view of this embodiment of the equipment of the invention is shown, showing at the top the area where two hives are located (one on either side of the central separation wall) each containing 7 cm deep and wide, and 100 cm in length. In this embodiment, each quadrangular opening of the hive has an area of 1 cm 2 .
  • D) a side cross-sectional view of this embodiment of the equipment of the invention is shown, and positions are indicated where the two perforated gas insufflation tubes (bottom) are placed, and bubbles rise. The arrows indicate the flow of liquid caused by the rise of the bubbles, which pass through the hives and leak through the sides.
  • Figure 4 shows a cross-sectional side view of an apparatus according to Figure 3, but in a configuration with a partition wall containing only one hive (45) on the right side, such that gas supply through the Right side generates rise of bubbles and thus generates an upward flow of liquid (43), which passes through the hive and spills to the left side (44).
  • the equipment operates with a blower CV-51 M model (SNatural) and 0.5 CV flow capacity of 1200 liters of gas per minute, pressure of 1200 mm water column, blowing of one side of the separation wall, gases through a perforated 100cm tube (41).
  • This configuration provides full gasification / aeration capacity of up to 1200 liters per minute, with right-to-left flow.
  • Figure 5 shows details of the separation wall used in the middle of the equipment described in figure 4.
  • A) is shown below a perforated pipe (51) for the gas supply at the bottom and, at the top, the details from the hive (53) through which the liquid and the conventional bubbles pass, forming the thin films of liquid at the end.
  • the perspective view shows only one side, as used in figure 4, but the separating wall 52 may have a hive and a perforated tube on the other side as illustrated in figure 3D.
  • Figure 6 shows details of another embodiment of the invention (only half of the equipment being represented), provided with an additional division (63) to provide dimensional separation of the zones of rising liquid and bubbles. Said further division is unique and arranged along the extension of the partition wall, parallel to it in one dimension and angled in another, to proportionally divide the upward flow area of liquid and bubbles. This configuration is conveniently used in conjunction with the embodiment shown in figure 4.
  • FIG. 7 shows a schematic representation of an embodiment of the equipment of the invention, which provides for the reversal of liquid flow by changing the position of the partition wall (position 1 or 2).
  • Said embodiment presents a separation wall containing two perforated gas injection tubes, one on each side, only one of which is activated according to the desired flow direction, knowing that it is the upward flow of bubbles that determines the direction of liquid flow due to the principle of air lift.
  • the separation wall is positioned at point 1 and gas is inflated only to the left side of the equipment, providing the flow of liquid from left to right.
  • the separation wall is positioned at point 2 and the gas is inflated only on the right side of the equipment, providing the flow of liquid from right to left.
  • Figure 8 shows a schematic representation of an alternative embodiment of gas injection / aeration tube pivoting or rotating along its radial axis, providing for change of direction of upward flow of bubbles.
  • the separating wall is in a fixed position and the gas injection tube is positioned at the lower end thereof at the bottom and aligned with the wall.
  • the liquid flow is directed from left to right by rotating the gas injection tube to position 1.
  • the flow of liquid is directed from right to left by turning the gas injection tube to position 2.
  • FIG. 9 shows a schematic representation of another embodiment of the equipment, which provides for reversal of liquid flow without changing the position of the separation wall or rotation of the gas injection / aeration tube.
  • Said embodiment is provided with a separating wall and a single gas injection tube (91), above which there is a changing position half rod to direct the gas to one side of the equipment, determining the direction of liquid flow.
  • the half cane is positioned on the right side of the equipment to allow bubble flow only from the left side, causing liquid flow to occur from left (93) to right (94).
  • the half rod is positioned on the left side of the equipment to allow the flow of bubbles only from the right side, causing the flow of liquid to occur from right (93) to left (94).
  • Figure 10 shows a perspective view of an embodiment of equipment whose configuration is according to figure 3A or 9B, with It is evidenced the half cane positioned on the left side and the flow of liquid from the right (103) to the left (104).
  • Figure 11 shows a schematic representation of the pipes connected to an embodiment of equipment of the present invention submerged in a water tank.
  • the arrows indicate the direction of the flow of water that enters (1 13) and exits the equipment (1 14), as well as the inlet (1 1 1) and gas outlet (1 12).
  • Also shown at the top are left (11) and right (16) valves that provide flow change or bidirectional flow when both are open.
  • the flow direction changing system is distinct from that described in FIGS. 9-10, being made by sliding plates that close either side of the equipment next to the central separation plate.
  • Figure 12 shows in more detail the separating sliding plates indicated in figure 11.
  • On the left (A) is shown the open position that allows gases to pass on both sides of the equipment;
  • In the center of the figure (B) is shown the position that provides the gas passage only on the right side of the equipment;
  • To the right of the figure (C) is shown the position of the sliding plates that provides the gas passage only on the left side of the equipment.
  • Figure 13 shows a cross-sectional view of another embodiment of the equipment of the invention, two gasification / supply ducts being shown near the inner central region of the equipment, two valved pipes (one on the left, one on the right, one on the right). 137) for aerated liquid overflow and a five-valve system in the gas supply pipes (131) for controlling the supply direction and consequently the flow of liquid.
  • Figure 14 shows in A) details of the gasification / air supply pipes (141) in perspective view without the rest of the equipment described in figure 13.
  • B details of the valve system for the supply lines are shown. air supply.
  • the equipment With valve 5 closed and valves 1 -2, 3-4 open, the equipment operates with two gas blower pumps (pump 1, B1, and pump 2, B2), the liquid flow being upward on both sides of the equipment, which operates at At its maximum capacity, the liquid containing the dissolved gas being spilled through the side pipes 6 and 7 shown in figure 13.
  • valve 5 With valve 5 open, at least four modes of operation are possible: (i) with valves 1, 2 and 4 open and valve 3 closed, only pump 1 inflates gas and feeds both sides of the equipment; (ii) with valves 2, 3 and 4 open and valve 1 closed, only pump 2 inflates gas and feeds both sides of the equipment; (iii) with valves 1 and 4 open and valves 2 and 3 closed, only pump 1 inflates and feeds the right side of the equipment while the left side serves for overflow (in which case valves 6 and 7 shown in (iv) With valves 3 and 2 open and valves 1 and 4 closed, only pump 2 inflates gas and feeds the left side of the equipment, while the right side serves for overflow (in which the valves 6 and 7 shown in Figure 13.
  • valve arrangement provides a great deal of flexibility in operation, safety in the event of failure of one of the pumps and also reversal of liquid flow at the operator's choice with simple valve changes.
  • automatic, pneumatic and / or electronic control systems of these valves are readily implementable from the present description.
  • Figure 15 shows a schematic representation of another embodiment of equipment of the invention which is provided with three consecutive stages of hives for the formation of thin films.
  • A) the side sectional view (only half of the equipment) is shown and in B) the perspective view of the equipment as a whole.
  • the rise of the bubbles causes the airlift effect, causing the liquid volume equivalent to the rising gas volume to be dragged upwards. Consequently, in this three-stage embodiment, for every 1200 liters of air blown into the equipment, 3600 liters of water flow through the equipment and are completely saturated with oxygen, without requiring additional energy (compared to the one-stage configuration). Thus, with 0.5HP of air pump power in half of the equipment, 3600 liters of water per minute is completely saturated with oxygen. For double-sided and two-pump equipment (or one pump with double capacity), the equipment of this embodiment provides, with 1 HP of air pump power in the equipment, 7200 liters of water per minute fully saturated with oxygen. .
  • Figure 16 shows two schematic side sectional representations of other embodiments of the invention (shown only the left half), both with three successive stages of thin film formation.
  • the water inlets to be aerated are made through the central region of the equipment, unlike the embodiment of figure 15, in which this is done from the sides.
  • Figure 17 illustrates yet another embodiment of equipment of the invention, which shows a side sectional view of only half of the equipment.
  • the equipment provides, with 0.5HP of air pump power in half of the equipment, complete oxygen saturation of 4800 liters of water per minute).
  • the equipment of this embodiment provides, with 1 HP of air pump power in the equipment, 9600 liters of water per minute completely saturated with oxygen.
  • a larger embodiment comprising a 52.5 cm wide, 7 cm deep and 200 cm long hive (or two half size hives each) and the rigid body having a 200 cm long conical trunk shape , 100cm high and 150cm wide, has full aeration capacity, or complete saturation of water with air oxygen, of 1 m 3 / s of water. Therefore, the energy demand is of the order of 10HP or 7.5kW when one or more blower (s) powered by external electric power is used.
  • This configuration provides for the dissolution of 38, 6 g O2 / S, 138.9 02 kg / h, or 3.33 O 2 ton / day, which is equivalent to a daily organic load (BOD) of sewage from a population 62 thousand inhabitants (base of 54 grams per day of BOD per inhabitant, by IMHOFF in 2000).
  • BOD daily organic load
  • Figure 18 shows a schematic representation of a process embodiment of the invention, in which an equipment according to figure 4 is installed in a fish growing tank. Details of the piping installations (181, 183, 184) and the position of the equipment in relation to the water level (185) are shown.
  • FIG 19 shows a schematic representation of a process embodiment of the invention, in which an overhead view is shown of an apparatus according to Figure 4, but having a complete aeration (saturation) capacity of 1,000. liters per minute of water, arranged in a water tank.
  • the equipment of this embodiment includes 5 water inlet pipes 193 and 5 water outlet pipes 194, each pipe carrying or receiving 200 liters of water per minute.
  • the operator chooses which side a liquid stream will be formed at and at what time.
  • the inventive apparatus provides processes in which flow reversal is a useful step in the process, such as aeration of tidal liquid bodies and / or influence of localized organic charge inlets, as well as to facilitate the clearing of equipment or parts thereof. with plastics and other solid materials that may come into contact with the equipment, in which case the equipment is "self-cleaning", providing substantial process control advantages.
  • Figure 20 shows a schematic representation of a gas exchange process in an aquaculture cultivation tank, viewed from above.
  • the representation shows an equipment according to figure 4, with complete gas dissolution capacity (saturation with the desired gases) of 1000 liters per minute of water, installed in a 40m x 30m aquaculture tank.
  • Points 1-10 indicate the start or end positions of the pipes connecting to the equipment of the invention.
  • the inlets and outlets are chosen to maximize the liquid homogenization of the tank by alternating the locations where the (not still gasified) liquid is sucked and the already gasified liquid is discharged.
  • point 1 is the discharge site of suction gasified liquid from point 7; point 2 is the place of suction water not yet carbonated, and the discharge of carbonated water is made in point 6; point 3 is the discharge place of suctioned carbonated liquid from point 10; point 4 is the place of suction of water not yet carbonated, being the discharge of carbonated water made in point 9; point 5 is the place of discharge of suctioned carbonated liquid from point 8.
  • Fig. 21 shows a schematic representation of another arrangement of piping connected to equipment used in a process embodiment of the present invention.
  • the arrows indicate the direction of water flow in and out of the equipment.
  • Figure 22 schematically illustrates a process embodiment of the invention in which a 1000L liquid body receives gas dissolution.
  • an arrangement of two gas-to-liquid dissolution devices one being a BT-50 (Riverforest Corporation) microbubble generator (222) in hydraulic connection to a 0.5 HP liquid pump (223) ( WEG), and a model FBT-50 micro-bubble and thin film liquid generating device (Riverforest Corporation) hydraulically connected to a 0.5 HP (WEG) liquid pump (225); and
  • an ex situ microorganism enrichment subsystem (226) B Braun
  • FIG 23 shows a schematic representation of an embodiment of the equipment of the invention consisting of a floating unit (230), also represented by the symbol comprising: an air pump (231) piped to one or more devices (s). ) (232) liquid film thinner (s); a water pump (233) piped to one or more micro-bubble and / or thin-film forming device (s) (234), said device (s) (234) provided ) air inlet next to the liquid surface, the liquid inlet pipe (235) in the pump (233) being also indicated; a pump drive controller (236), optionally connected to a diesel electricity generator; a solar panel (237) connected to the controller (236) and / or pumps (231, 233); a power generation wind turbine (238) connected to the controller (236) and / or pumps (231, 233); is a schematic representation of the water line (239).
  • Fig. 24 shows a schematic representation of an embodiment of the equipment of the invention consisting of another floating unit (240) comprising: an air pump (241) piped to one or more device (s) (242) liquid film thinner (s); an ex-situ micro-organism enrichment subsystem (243), substantially increasing the amount of microorganisms previously present in the liquid body and reintroducing them (244), providing a reduction in the amount of energy required for aeration in the liquid body required for the growth of microorganisms (ex-situ growth saves energy and provides faster growth).
  • Figure 25 shows a schematic representation of the ex situ microbial enrichment subsystem 250 shown in Figure 23 or 24 for subsequent or concomitant introduction of the microorganisms cultured therein to the liquid body.
  • reactor (250) for ex-situ enrichment of microorganisms air inlet (251) in the reactor; air filter (252), optionally also including an air bubble generator; gas outlet (253) from the reactor; agitator motor (254); stirring paddles (255); output (256) of fermented must in the reactor, rich in microorganisms; fluid inlet (257) for temperature control in the reactor jacket; temperature control fluid outlet (258) in the reactor jacket; and probe (259) indicating physicochemical parameters in the reactor, optionally being connected to the fluid inlet control for temperature control and / or to another reactor control element.
  • Figure 26 shows a graph showing the oxygen saturation curve in water (without salinity) according to temperature, also indicating the minimum limits of oxygen in the liquid body and its associated phenomena.
  • the ordinates are values of dissolved oxygen concentration in water in mg / L (or ppm); in abscissa temperatures are given in degrees Celsius.
  • (261) indicates the saturation or maximum dissolution curve of oxygen in water at different temperatures;
  • (262) indicates the minimum recommended dissolved oxygen concentration for fish farming;
  • (263) indicates the minimum recommended dissolved oxygen concentration for water treatment;
  • (264) indicates the dissolved oxygen concentration below which unpleasant odor formation occurs in the liquid body.
  • Figure 27 shows a schematic representation of a process embodiment of the invention, in which the equipment and process for recovering / revitalizing the Bom Jesus Cove on Fund ⁇ o Island is depicted. Shown in A) is a picture of Fund ⁇ o Island, the arrow indicating the location of Bom Jesus Cove; in B) a schematic representation of the Bom Jesus Cove, in which a schematic representation of an equipment embodiment of the invention provides for increased oxygen dissolution rate, increased total amount of dissolved oxygen in the liquid body and substantial energy reduction to this end, being in addition adjustable to the conditions of tide and other climatic conditions. According to data from INEA (2014), the most critical region of the entire Guanabara Bay in terms of organic load is around the island of Fund ⁇ o.
  • Figure 28 shows a schematic (non-scaled) representation of an embodiment of the invention in which the equipment and process of the invention are used for increasing the dissolved oxygen level and water quality of a pond. river or aquaculture tank. Shown are: three units of the inventive equipment (280), each with an aeration capacity of 2400 L of water per minute, placed in the liquid body; schematic representation of an air pump (281) having a 7200 L air per minute air insufflation capacity, optionally including a pump drive / adjustment controller (282) for times of aeration demand in the liquid body; the air pipe (283) connecting the air pump (281) to the equipment (280) for massively diluting air in the liquid; and an energy generating wind turbine (284).
  • Fig. 29 shows a schematic representation of another embodiment of the invention, in which the equipment and process of the invention are used for increasing the dissolved oxygen level and water quality of a river next to a highway or avenue. Shown are: three units of the inventive equipment (290), each with an aeration capacity of 2400 L of water per minute, placed in the liquid body; a schematic representation of an air pump or air compressor (291) with a 7200 L air per minute supply capacity, optionally including a pump / compressor drive / adjustment controller (292) for times of aeration demand in the liquid body; the air tubing (293) that connects the air pump / compressor (291) to the equipment (290) for massively diluting air into the liquid; and a power generating spine (294) to power the pump (291).
  • the spine 294 is optionally a pneumatic spine that feeds the compressor 291 directly with air.
  • Figure 30 shows a schematic representation of another embodiment of the invention in which the power of the boat propulsion engine is harnessed for the generation of microbubbles and / or thin films of liquid, thus dispensing with the use of other pumps or other sources of energy.
  • This embodiment of the invention enables in practice the conversion of boats and ships into oxygen return units to the liquid bodies in which they sail. Indicated in: A) a boat (300) with an inboard motor and (301) the hydrodynamic flow generated in the posterior region of the boat, ie after the propulsion effect.
  • an inboard motor boat (300) comprises a microbubble and / or thin film liquid generating device (302) attached to the back of the boat propeller, to take advantage of the hydrodynamic flow generated by boat movement.
  • the movement of The liquid inside the device causes a suction and there is a breath above the surface of the liquid through which air enters the device 302 causing microbubbles and / or thin films of liquid to flow into the water 303, aerating it.
  • the inventive concept common to the various protection contexts of the present invention is equipment specifically developed for substantially increasing the amount and rate of dissolution of gases in such liquids.
  • the equipment of the invention has the ability to adjust to different operating circumstances and high energy efficiency, operating autonomously or with reduced external power supply demand.
  • the equipment is particularly useful for massive gas dissolution in liquids and is therefore useful for the conservation and / or recovery of liquid bodies, improving the efficiency of effluent treatment plants, aquaculture systems, CO 2 fixation systems, among others.
  • the equipment of the invention operates on the principle of air lift in conjunction with thin and liquid film formation and has the ability to dissolve more than 1000 L of gas per minute in the liquid, with no defined scaling limit, since the sizing only depends on the equipment configuration.
  • the equipment operates submerged in the liquid in which it is desired to dissolve the gas of interest. From the introduction of gas into a submerged zone within the equipment, conventional gas bubbles formed rise due to the natural thrust.
  • conventional gas bubbles formed rise due to the natural thrust.
  • Rising bubbles pass through one or more cross-sectional area restriction zones, and then pass through a hive with an even smaller cross-sectional area than the previous zones, which promotes bubble densification and / or coalescence. Then the bubbles pass through an expansion zone of the cross-sectional area, which promotes bubble expansion, formation of thin liquid films and the explosion of such films.
  • the liquid resulting from the bursting of thin-film liquid bubbles is saturated with the desired gases introduced and leaks through a channel by gravity while the remaining released gas follows its upward path.
  • the rising released gas may undergo a new cycle equivalent to that described above, with subsequent recovery of new amount of liquid saturated with the desired gases.
  • the gas is air and the liquid is water, but the invention is not limited to such substances.
  • Equipment for mass dilution of gases in liquids comprises:
  • a rigid body containing a lower cross-sectional area in the lower region and a lower cross-sectional area in the upper region, said rigid body comprising one or more lower liquid inlet region (s); one or more upper and / or lower liquid outlet region (s); and one or more gas outlet region (s) at the top, said rigid body containing within it:
  • hives having a plurality of internal channels with even smaller cross-sectional area relative to the zone of lower cross-sectional area in the upper region, the liquid in which the gas was dissolved being extravasated after passing through the hive.
  • the rigid body of the equipment of the invention further comprises a partition wall within it, dividing the rigid body vertically at least partially into two regions.
  • the equipment of the invention further comprises means for reversing the direction of the flow of liquid passing therethrough.
  • said means for reversing the flow direction is selected from: rotating a perforated pipe to one or another internal area of the equipment of the invention; use of a position-changing physical barrier to divert the flow of gases to one or another internal area of the equipment of the invention; use of a perforated pipe in each internal area of the equipment, selectively actuating one, the other or both areas by means of valves; or combinations thereof.
  • the equipment of the invention further comprises one or more outer pipe assemblies connected to the liquid inlet and / or outlet.
  • the equipment of the invention additionally comprises a means of suction or injection of gases into its interior, whose driving force is a flow of liquids or a slope in any liquid body.
  • the equipment of the invention further comprises: (i) one or more liquid-dissolving gas device (s) selected from microbubble, nanobubble, thin film films, or combinations thereof; and / or (ii) one or more subsystem (s) for energetically optimizing gas introduction / dissolution in the liquid.
  • liquid-dissolving gas device selected from microbubble, nanobubble, thin film films, or combinations thereof
  • subsystem s for energetically optimizing gas introduction / dissolution in the liquid.
  • said subsystem (s) for energetically optimizing the introduction / dissolution of gas in the liquid is selected from: (iia) one or more flow control systems. driving pumps, operating according to the availability of energy and / or its cost, or according to climatic, biological or geophysical cycles; (iib) one or more available kinetic or potential energy utilization system (s), including gravity, existing gas and / or liquid flows, such as water gap, river or boat engine flow, repression and / or pneumatic devices; (iic) one or more power generation subsystem (s) such as wind, solar, tidal flow, or transformation chemistry, among others; and / or (iid) one or more ex situ microorganism enrichment subsystems, which provides the reduction of energy demand for gas dissolution in the liquid in question.
  • the equipment of the invention further comprises means for flotation and / or one or more gas and / or liquid pumps.
  • the process for the mass dilution of gases in liquids of the invention comprises the use of the equipment of the invention.
  • the process of the invention comprises dissolving oxygen from air; of CO 2 ; ozone and / or other gases; and combinations thereof.
  • the process of the invention further comprises: (i) the use of one or more liquid gas dissolution device (s), selected from microbubble, nanobubble, thin film, or combinations of the same. same; and / or (ii) the use of one or more subsystem (s) to energetically optimize gas introduction / dissolution in the liquid.
  • liquid gas dissolution device selected from microbubble, nanobubble, thin film, or combinations of the same. same
  • subsystem s
  • the equipment of the invention provides much more flexibility of operation and a significant increase in the amount and rate of gas dissolution in the liquid body, and consequently in the organic charge removal capacity.
  • the amount of oxygen present in the air (21% by volume, 23% by weight) and the density of air (approximately 1.2 kg / m 3 ) determine that each cubic meter of air has 276g of O 2.
  • 8.3 mg / L is the oxygen saturation limit dissolved in fresh water at 25 ° C; and 6.6 mg / L in seawater (35 ppm salinity), as shown in tables 1 and 2 below, respectively.
  • each cubic meter of air fully dissolved in water represents the dissolution of 276g of oxygen.
  • the equipment of the invention is connected to an air pump; said pump may be continuously supplied with power from a wind turbine, or it may be powered / supplied at times of low demand (for example, at night, when dissolved oxygen concentration in ponds tends to decrease) so as to harness energy that would not be used by the electrical system.
  • the equipment of the invention operates independently and sustainably, ie without external energy input, providing continuous or semi-continuous dissolution of gases in liquids without external source energy consumption.
  • the equipment of the invention comprises pump drive control subsystem one operating according to fluid dynamics and / or cycles.
  • pump drive control subsystem one operating according to fluid dynamics and / or cycles.
  • Such an embodiment described in more detail in at least one example in the "Detailed Description of the Invention" section, is particularly useful for increasing efficiency and / or reducing energy consumption for dissolving gases in open liquid bodies, as is the case. of lagoons, coves, bays and the like.
  • the equipment of the invention comprises an ex situ microbial culture enrichment subsystem for subsequent or concomitant reintroduction into said liquid body.
  • This embodiment provides the selection of specific microorganisms already present in the liquid body's ecological system, their enrichment and reintroduction into the liquid body, thereby reducing or avoiding unwanted environmental impact or risk, and reducing the energy required for gas dissolution. in the liquid body to be recovered due to the higher efficiency and speed of recovery of the liquid body.
  • the equipment and process of the invention provide conditions for organisms present in the liquid body to have high metabolic activity under aerobic conditions, providing accelerated degradation or conversion of the organic charge without the introduction of exogenous substances or organisms.
  • Such embodiments independently of one another provide, among other advantages: higher rate (rate) of oxygen dissolution in liquid bodies; higher capacity (quantity) of gas introduction into liquids; low energy consumption for dissolving oxygen in the liquid body and / or substantially reducing the need for external power supply; adjustment to environmental conditions; or both.
  • the invention also provides for the selection of aeration regimes compatible with the biological cycle (s) to be promoted; the strategy of use and reintroduction of specific microorganisms to act in the liquid body; the selection of concentration ranges of microorganisms to act on the liquid body; selecting the time when such organisms are added; the high rate of change in the concentration of microorganism (s) in the liquid body, which makes it possible to adjust the remediation process according to the changes in organic load of the incoming material in the liquid body; high metabolism rate of ex-situ cultured microorganisms adapted to local ecological conditions to degrade and / or transform undesirable substances in the liquid body. These factors, either alone or combined, they reduce the recovery times of the liquid body; substantially increased performance of bioremediation systems.
  • the present invention provides a solution to the problem of the high amount of energy required for dissolution of gases in liquids, makes this process much to avoid the formation of undesirable gases and by providing their removal (such as methane, H 2 S and others) through the equipment of the invention.
  • the equipment of the invention provides an efficient and advantageous approach to bioremediation of liquid bodies.
  • the process of the invention is applicable, among others, to the conservation and / or recovery of lakes, rivers, lagoons, coves, beaches and mangroves.
  • FIG. 3 shows an embodiment of the equipment of the present invention.
  • equipment in the form of pyramidal trunk with dimensions of 60 X 44 X 100 cm, respectively height, width and length. The upper part is 15 cm wide.
  • This pyramidal trunk configuration provides stability in beds or watercourses and also the rise of conventional air bubbles blown into the machine, it passes through the reduced cross-section and subsequent passage through the honeycomb through which the bubbles coalesce and form thin films of liquid.
  • the liquid bubbles in the film rupture after passing through the hive, so that the liquid saturated with fresh gases leaks through the side duct as indicated.
  • the remaining gases are released from the upper opening.
  • This embodiment of equipment of the invention provides full saturation of desirable gases (or aeration) in the liquid of up to 2400 liters of liquid per minute.
  • the machine operates with two blowers, each CV-51 M model (SNatural) and 0.5 CV flow capacity of 1200 liters of air per minute, pressure of 1200 mm water column, blowing air through a 100mm perforated pipe on either side of the partition wall with 1mm holes.
  • CV-51 M model SNatural
  • 0.5 CV flow capacity 1200 liters of air per minute
  • pressure of 1200 mm water column blowing air through a 100mm perforated pipe on either side of the partition wall with 1mm holes.
  • B) there is shown a schematic representation of this embodiment of the equipment of the invention in exploded version, showing the water inlet ducts (33) and the perforated duct (31) as well as the liquid outlets at the top. aerated (34) and waste gas (32).
  • C) a perspective view of this embodiment of the equipment of the invention is shown, showing at the top the area where two hives are located (one on either side of the central separation wall) each containing 7 cm deep and wide, and 100 cm in length. Each quadrangular opening of the hive has an area of 1 cm 2 .
  • D) a side cross-sectional view of this embodiment of the equipment of the invention is shown, and positions are indicated where the two perforated gas insufflation tubes (bottom) are placed, and rising of the bubbles. The arrows indicate the flow of liquid caused by the rise of the bubbles, which pass through the hives and leak through the sides.
  • the equipment of this embodiment or any of its embodiments provides much more flexibility of operation and a significant increase in the amount and rate of gas dissolution in liquid, and consequently in the ability to remove unwanted organic charge.
  • the amount of oxygen present in the air (21% by volume, 23% by weight) and the density of air (approximately 1.2 kg / m 3 ) determine that each cubic meter of air has 276g of O 2.
  • 8.3 mg / L is the oxygen saturation limit dissolved in fresh water at 25 ° C.
  • This embodiment of the equipment of the invention (a thin film forming stage, injection of 1200 liters of air per minute) provides a saturation capacity of 1200 liters of water per minute, which is equivalent to dissolving up to 9 liters of water per minute. , 6 g O2 per minute at the energy cost of 0.5 HP.
  • Example 2 Equipment for mass dilution of gases in liquids provided with means for changing the flow direction of liquids.
  • FIG. 4 shows a cross-sectional side view of an apparatus according to Fig. 3, but in a configuration with a partition wall containing only one hive (45) on the right side, so that the gas supply on the right side generates bubbles rise and thus generates an upward flow of liquid (43), which passes through the hive and leaks to the left side (44).
  • the equipment operates with a model CV-51 M (SNatural) blower of 0.5 HP and with a flow capacity of 1200 liters of gas per minute, pressure of 1200 mm of Column cWater, by inflating gas from one side of the separation wall through a perforated 100cm tube (41).
  • CV-51 M SNatural blower of 0.5 HP and with a flow capacity of 1200 liters of gas per minute, pressure of 1200 mm of Column cWater, by inflating gas from one side of the separation wall through a perforated 100cm tube (41).
  • This configuration provides full gasification / aeration capacity of up to 1200 liters per minute, with right-to-left flow.
  • Figure 5 shows details of the separation wall used in the middle of the equipment described in figure 4.
  • A) is shown below a perforated pipe (51) for the gas supply at the bottom and, at the top, the details from the hive (53) through which the liquid and the conventional bubbles pass, forming the thin films of liquid at the end.
  • the perspective view shows only one side, as used in figure 4, but the separating wall 52 may have a hive and a perforated tube on the other side as illustrated in figure 3D.
  • Figure 6 shows details of another embodiment of the invention (only half of the equipment being represented), provided with an additional division (63) to provide dimensional separation of the zones of rising liquid and bubbles. Said further division is unique and arranged along the extension of the partition wall, parallel to it in one dimension and angled in another, to proportionally divide the upward flow area of liquid and bubbles. This configuration is conveniently used in conjunction with the embodiment shown in figure 4.
  • FIG. 7 shows a schematic representation of an embodiment of the equipment of the invention, which provides for the reversal of liquid flow by changing the position of the partition wall. (position 1 or 2).
  • Said embodiment presents a separation wall containing two perforated gas injection tubes, one on each side, only one of which is activated according to the desired flow direction, knowing that it is the upward flow of bubbles that determines the direction of liquid flow due to the principle of air lift.
  • the separation wall is positioned at point 1 and gas is inflated only to the left side of the equipment, providing the flow of liquid from left to right.
  • the separation wall is positioned at point 2 and the gas is inflated only on the right side of the equipment, providing the flow of liquid from right to left.
  • Figure 8 shows a schematic representation of an alternative embodiment of gas injection / aeration tube pivoting or rotating along its radial axis, providing for change of direction of upward flow of bubbles.
  • the separating wall is in a fixed position and the gas injection tube is positioned at the lower end thereof at the bottom and aligned with the wall.
  • the liquid flow is directed from left to right by rotating the gas injection tube to position 1.
  • the flow of liquid is directed from right to left by turning the gas injection tube to position 2.
  • Figure 9 shows a schematic representation of another embodiment of the equipment, which provides for the reversal of liquid flow without changing the position of the separation wall or rotation of the gas injection / aeration tube.
  • Said embodiment is provided with a separating wall and a single gas injection tube (91), above which there is a changing position half rod to direct the gas to one side of the equipment, determining the direction of liquid flow.
  • the half cane is positioned on the right side of the equipment to allow bubble flow only from the left side, causing liquid flow to occur from left (93) to right (94).
  • the half cane is positioned on the left side of the equipment to allow bubbles to flow only through the right side, causing fluid flow to occur from right (93) to left (94).
  • Figure 10 shows a perspective view of an embodiment of equipment the configuration of which is in accordance with Figure 3A or 9B, showing the half rod positioned on the left side and the flow of liquid from the right (103) to the left. (104).
  • Figure 11 shows a schematic representation of the pipes connected to an embodiment of equipment of the present invention submerged in a water tank.
  • the arrows indicate the direction of the flow of water that enters (1 13) and exits the equipment (1 14), as well as the inlet (1 1 1) and gas outlet (1 12).
  • Also shown at the top are left (11) and right (16) valves that provide flow change or bidirectional flow when both are open.
  • the flow direction changing system is distinct from that described in FIGS. 9-10, being made by sliding plates that close either side of the equipment next to the central separation plate.
  • Figure 12 shows in more detail the separating sliding plates indicated in Figure 11.
  • On the left (A) is shown the open position that allows gases to pass on both sides of the equipment;
  • In the center of the figure (B) is shown the position that provides the gas passage only on the right side of the equipment;
  • To the right of the figure (C) is shown the position of the sliding plates that provides the gas passage only on the left side of the equipment.
  • Figure 13 shows a cross-sectional view of another embodiment of the equipment of the invention, two gasification / insufflation ducts are shown next to the inner central region of the equipment, two valved pipelines (one on the left, one on the right, one on the right). 137) for aerated liquid overflow and a five-valve system in the gas supply pipes (131) for controlling the supply direction and consequently the flow of liquid.
  • Figure 14 shows in A) details of the gasification / air supply pipes (141) in perspective view without the rest of the equipment described in figure 13. In B) details of the valve system for the supply lines are shown. air supply.
  • valve 5 With valve 5 closed and valves 1 -2, 3-4 open, the equipment operates with two gas blower pumps (pump 1, B1, and pump 2, B2), the flow of liquid being upward on both sides of the valve. equipment, which operates at its maximum capacity, the liquid containing the dissolved gas being spilled through the side pipes 6 and 7 shown in figure 13.
  • valve 5 With valve 5 open, at least four modes of operation are possible: (i) with valves 1 2 and 4 open and valve 3 closed, only pump 1 inflates gas and feeds both sides of the equipment; (ii) with valves 2, 3 and 4 open and valve 1 closed, only pump 2 inflates gas and feeds both sides of the equipment; (iii) with valves 1 and 4 open and valves 2 and 3 closed, only pump 1 inflates and feeds the right side of the equipment while the left side serves for overflow (in which case valves 6 and 7 shown in (iv) With valves 3 and 2 open and valves 1 and 4 closed, only pump 2 inflates gas and feeds the left side of the equipment, while the right side serves for overflow (in which the valves 6 and 7 shown in Figure 13.
  • valve arrangement provides a great deal of flexibility in operation, safety in the event of failure of one of the pumps and also reversal of liquid flow at the operator's choice with simple valve changes.
  • automatic, pneumatic and / or electronic control systems of these valves are readily implementable from the present description.
  • Figure 15 shows a schematic representation of another embodiment of equipment of the invention which is provided with three stages. consecutive hives for thin film formation.
  • A) the side sectional view (only half of the equipment) is shown and in B) the perspective view of the equipment as a whole.
  • the rise of the bubbles causes the airlift effect, causing the liquid volume equivalent to the rising gas volume to be dragged upwards. Consequently, in this three-stage embodiment, for every 1200 liters of air blown into the equipment, 3600 liters of water flow through the equipment and are completely saturated with oxygen, without requiring additional energy (compared to the one-stage configuration). Thus, with 0.5HP of air pump power in half of the equipment, 3600 liters of water per minute is completely saturated with oxygen. For double-sided and two-pump equipment (or one pump with double capacity), the equipment of this embodiment provides, with 1 HP of air pump power in the equipment, 7200 liters of water per minute fully saturated with oxygen. .
  • Figure 16 shows two schematic side sectional representations of other equipment embodiments of the invention (shown only left half), both with three successive stages of thin film formation.
  • the water inlets to be aerated are made through the central region of the equipment, unlike the embodiment of figure 15, in which this is done from the sides.
  • A) an embodiment is shown in which the divisions and water passages are made at an angle and in B) such elements are more rounded.
  • Figure 17 illustrates yet another embodiment of equipment of the invention, which shows a side sectional view of only half of the equipment. In this embodiment four successive stages of thin film formation are shown which (for the same dimensions as shown in Figure 3) provides, with 0.5HP of air pump power in half of the equipment, complete oxygen saturation of 4800 liters. of water per minute.
  • the equipment of this embodiment provides, with 1 HP of air pump power in the equipment, 9600 liters of water per minute completely saturated with oxygen. .
  • the equipment of this embodiment provides 14% dissolution of the injected air on each side, ie for 1200 liters of injected air per minute on each side of the equipment, 4800 liters per minute of water is saturated with oxygen.
  • the apparatus of this embodiment therefore provides for the dissolution of up to 76.8 g O 2 per minute and oxygen saturates 9600 liters of water per minute at the energy cost of 1 HP.
  • the equipment of the invention provides for the adjustment of gas dissolution in the liquid in proportion to the oxygen demand at the site and / or the desired recovery time - the same being true for larger areas. Consequently, those skilled in the art will know from the teachings herein that the equipment not only promotes the increase of efficiency and competitiveness of companies operating in the environmental sanitation segment, but also the revitalization of areas whose economic activity is partially or partially stagnant. completely due to environmental degradation.
  • Fig. 22 schematically illustrates a process embodiment of the invention in which a 1000L liquid body receives gas dissolution with: (i) an apparatus (220) according to Fig. 3 connected to a compressor (221) clean air (Schulz); (ii) an arrangement of two gas-to-liquid dissolution devices, one being a BT-50 (Riverforest Corporation) microbubble generator (222) in hydraulic connection to a 0.5 HP liquid pump (223) ( WEG), and a model FBT-50 micro-bubble and thin film liquid generating device (Riverforest Corporation) hydraulically connected to a 0.5 HP (WEG) liquid pump (225); and (iii) an ex situ microorganism enrichment subsystem (226) (B Braun), which provides the additional reduction in energy demand for gas dissolution in the liquid in question, since ex situ enrichment does not require additional inlet gasification. situ.
  • B Braun ex situ microorganism enrichment subsystem
  • Laboratory tests with equipment of this embodiment of the invention indicate a 70% air dissolution efficiency with the equipment and may be higher depending on operating conditions. Under these conditions, the equipment of the invention provides for the injection of each cubic meter of air into the liquid to dissolve 193.2g of O2 (and 161.2g of O2 for high humidity air whose density is approximately 1 kg / m 3 of air).
  • FIG. 29 shows an embodiment of equipment (290) used for increasing the dissolved oxygen level and water quality of a lagoon.
  • equipment 290
  • two 7.5 HP air pumps (291) with a capacity of 7m 3 / min air each are used.
  • Said pumps are controlled by a drive device that switches the power supply of a 2MW wind turbine (94) from the mains to the pumps, preferably during times of low grid power demand and therefore higher power availability.
  • Pipe-connected to said air pumps (291) seven devices (290) of the invention, with a capacity of 2000 L / min (each) of air / oxygen dissolution in the lagoon water.
  • the seven devices of the invention used in this process provide the dissolution of 65 kg of O 2 per night at an approximate energy consumption of 1 1.2 kW, ie 0.05%.
  • the energy capacity of a single wind turbine such as that available at the Osório wind farm, which has a total of 75 wind turbines 2MW each, that is, the energy consumption of the equipment to operate under these conditions is only 0.00066% of the power generation capacity of the referred wind farm.
  • the amount of oxygen returned to said Lagoon is equivalent to the treatment of approximately 6,500 m 3 of water (with BOD 10) per night in an 8 hour operating regime, that is, the process of the invention of this embodiment supplies all biochemical oxygen demand (BOD) of a volume of 6,500m 3 per night cycle.
  • BOD biochemical oxygen demand
  • Intensive food production requires a substantially large amount of water, and it is known that water consumption in agriculture and livestock may compete with the use of water for human consumption.
  • An alternative that has been growing substantially in the world, including Brazil, is Aquaculture, a system for the production of food grown in aquatic environments.
  • fish production deserves attention because it is a source of protein and has a high capacity for scale expansion, especially in Brazil.
  • FIG. 18 shows a schematic representation of a process embodiment of the invention in which an apparatus according to Figure 4 is installed in a fish growing tank (Tambaquis). Details of the piping installations (181, 183, 184) and the position of the equipment in relation to the water level (185) are shown.
  • Figure 20 shows a schematic representation of a gas exchange process in an aquaculture culture tank, viewed from above.
  • the representation shows an equipment according to figure 4, with complete gas dissolution capacity (saturation with the desired gases) in 1200 liters per minute of water, installed in a 40m x 30m aquaculture tank.
  • Points 1-10 indicate the start or end positions of the pipes connecting to the equipment of the invention.
  • the inlets and outlets are chosen to maximize the liquid homogenization of the tank by alternating the locations where the (not still gasified) liquid is sucked and the already gasified liquid is discharged.
  • point 1 is the discharge site of suction gasified liquid from point 7; point 2 is the place of suction water not yet carbonated, and the discharge of carbonated water is made in point 6; point 3 is the discharge place of suctioned carbonated liquid from point 10; point 4 is the place of suction of water not yet carbonated, being the discharge of carbonated water made in point 9; point 5 is the place of discharge of suctioned carbonated liquid from point 8.
  • the equipment of the invention is applied to the conservation / oxygenation of a 12,500 m 3 water tank for fish production, and comprises: two 0.5 HP air pumps with a capacity of 1, 2 m 3 / min of air in the tank each (operating in redundancy with supplementary pump (s), in case of eventual failure of one pump to replace it immediately or quickly).
  • Said pump (s) are controlled by a drive device that switches the supply of two 1 kW wind turbines, model Generate 246 (Enersud); one set of 10 Yingli solar panels of 250 W each; and / or a 4kVA power diesel generator; for the pump (s).
  • a device of the invention Connected by air tubing to said air pump (s) is a device of the invention with a capacity of 2400 L / min air / oxygen dissolution in the tank water. Substantial decrease in dissolved oxygen concentration is known to occur overnight.
  • the apparatus of the invention operating at its maximum dissolving capacity of 2400 L / min of air, provides for the dissolution of 23.2 g of 0 2 / min, or 33.4 kg of O 2 per day. At a volume of 12,500 m 3 , it means the equivalent of dissolving 2.7 mg O 2 / L of water throughout the tank per day.
  • the equipment of the invention is configured to operate on the most available energy during the cycle.
  • the evaluated forced aeration conditions provided, in the worst case scenario, a 10% increase in productivity of fish farmed in tanks, a 5% improvement in feed conversion (it is known from the literature that fish farmed in waters with more dissolved oxygen have better feed conversion, ie require less feed to gain weight) and 10% reduction in growth cycle time, ie time for fish to reach desired weight.
  • Fund ⁇ o Island which houses the University City, with the UFRJ, the Petrobras Research Center, and the Technology Park, has 523 hectares (over 5 million square meters) and has 508 households (2010) in the Residential Village - University City District) and is bordered on one side by the Cunha Canal, and on the other by Guanabara Bay (latitude 22 ° 51 '27, 24 "S and longitude 43ten ° 13'49.38” W) . Although in a potentially bucolic environment, its beaches and coves are heavily polluted by floating material (bottles, plastics etc), sewage and accumulated sludge. The stench around the island is striking, noticeable not only in the Fund ⁇ o Channel and the Cunha Channel, where thousands of people pass by day, but also in almost all of Fund ⁇ o Island.
  • the Canal do Fund ⁇ o and Canal do Cunha regions are very silted, with a maximum depth of 0.5 m in many places. Although dredging (in 2007-2010) initially minimized the problems, the channel quickly returned to the initial situation as no further measures were put in place to improve the situation.
  • the process of this embodiment of the invention provides, as it should be, at a minimum, the dissolution of more oxygen in water than the oxygen demand that arrives each day in the Cove as an organic charge from the tide (since there is no another dump point in the Cove).
  • This embodiment of the process of the invention has been developed for environmental recovery of said liquid body and makes use of 20 inventive devices as illustrated in Figure 9, with full oxygen saturation capacity at 1200 L of water per minute, each connected to a 0.5 HP air pump (SNatural, model CV-51 M) capable of inflating 1200 L / min of air.
  • 10 devices of the invention with full oxygen saturation capacity in 2400 L of water per minute are used, each connected to two 0.5 HP air pumps (SNatural, model CV-51 M) capable of inflating 1200 L / min air each.
  • the pumps / blowers are connected to a 15 kVA electricity diesel generator.
  • the power supply is aided by sixteen Model Yingli 250 solar panels with a capacity of 250W each one; and by four power generation wind turbines, Enersud Generar 246 model, with a capacity of 1 kW each.
  • the equipment of this embodiment of the invention provides for the dissolution of 334 kg O2 / day, the supply equivalent to the daily removal of 334 kg BOD.
  • BOD biochemical oxygen demand
  • the process of the invention provides the supply of all biochemical oxygen demand (BOD) of all volume entering said inlet daily, while still having the additional oxygen supply capacity sufficient for the removal of 34 kg of BOD per day (said Cove has approximately 30,000m 3 total volume.
  • the process of this embodiment of the invention therefore provides for the removal of 1 ton of BOD from the Cove every 30 days.
  • the volume recovery capacity increases proportionally until the entire volume of the Cove is fully recovered. All this at an approximate external energy consumption of 7.5kW / day (without the use of solar panels or wind turbines).
  • the technology of the invention provides for the adjustment of gas dissolution in the liquid in proportion to the oxygen demand at the site and / or the desired recovery time - the same being true for larger areas or larger BODs.
  • a four-stage apparatus of the invention according to Figure 17 comprising hives 52.5 cm wide, 7 cm deep and 200 cm long (or two half-size hives each).
  • Said embodiment of equipment has full aeration capacity, or complete saturation of water with air oxygen, of 1 m 3 / s of water. Therefore, the energy demand is of the order of 10HP or 7.5kW when one or more blower (s) powered by external electric power is used.
  • This configuration provides the dissolution of 38.6 g O 2 / s, 138.9 kg O 2 / h, or 3.33 tons O 2 / day.
  • the process of the invention provides the supply of all biochemical oxygen demand (BOD) of all volume entering said inlet daily, with the additional oxygen supply capacity remaining sufficient for the removal of 1, 8 ton of BOD per day (said Cove has approximately 30,000m 3 total volume. Considering the tide, even an equal volume of water enters and leaves the Cove each day). Under these conditions, the process of this embodiment of the invention therefore provides for the removal of 1.8 tons of BOD from the Cove per day.
  • BOD biochemical oxygen demand
  • the volumetric recovery capacity increases proportionally until the entire volume of Enseada is fully recovered. All this at an approximate external power consumption of 10 HP or 7.5kW (without using solar panels or wind turbines).
  • the oxygen dissolution capacity is substantially greater than the organic charge-related oxygen demand entering said Cove, within a few days of the complete recovery of aerobic conditions in the Cove, it becomes an aerated water plume. surrounding it, radiating the aerobic zone to nearby areas around the island of Fund ⁇ o. This approach, given the low magnitude of energy demanded, makes it practically possible to balnealize this and other similar regions.
  • the technology of the present invention not only promotes the increase of efficiency and competitiveness of companies operating in the environmental sanitation segment, but also the revitalization of areas whose Economic activity is partially or completely stagnant due to environmental degradation.
  • the use of the inventive equipment and process adapted to each situation requiring aeration / oxygenation at different scales provides for the recovery of liquid bodies such as the depollution of part (s) of Guanabara Bay (and other bodies such as lagoons, lakes in parks etc). Said liquid bodies are largely favored by the equipment or process of the invention, which provides healthy and aerobic environment with low energy consumption.
  • the present example also contributes to the parametric study and demonstration of proof of principle in larger bodies of water.
  • the technologies described here are equally applicable to the situation in saltwater (coastal region and lagoons, crustacean farming) as well as freshwater (lakes, freshwater fish farming, wastewater).
  • Rodrido de Freitas Lagoon has a volume of approximately 5 million m 3 of water, substantial reception of water from surrounding river basins and also has communication with the sea, with moments due to tides and / or control. Jardim de Alah channel, where seawater flows in or out.
  • Rodrigo de Freitas Lagoon is known for its fish-killing episodes, which impacts the lives of local fishermen, surrounding residents and tourism potential, and leisure and sports. This phenomenon has been the object of many studies and projects to solve this and other problems related to the contamination of its waters.
  • the organic cargo that reaches the lagoon due to clandestine dumping or heavy rainfall It is not fully mobilized by the organisms that live there, resulting in the stratification of their waters. While aeration due to winds is substantial on the surface, in deeper areas the amount of dissolved oxygen drops dramatically, with several zones containing essentially anaerobic organic sludge. Depending on weather conditions, rainfall, winds and evictions, the situation may be critical or close to critical. Among several reasons, one in particular contributes to this scenario: the incompatibility between the amount of organic charge that reaches the lagoon and its ability to mobilize it, due to the low availability of dissolved oxygen, especially in the deepest zones.
  • This embodiment of the process of the invention has been developed for environmental recovery of a region of said liquid body and makes use of 2 inventive devices as illustrated in figure 9 or 14, with full oxygen saturation capacity of 1200 L per minute, each connected to a 0.5 HP air pump (SNatural, model CV-51 M) capable of inflating 1200 L / min of air.
  • the pumps / air blowers are connected to the power grid around the lagoon.
  • the power supply to each pump is aided by four Model Yingli 250 solar panels, each with a capacity of 250W, that power a battery during the day and discharge at night to power the air pump; or by a small power generation wind turbine, model Enersud Generar 246, with a capacity of 1 kW.
  • the equipment of this embodiment of the invention provides the dissolution of 1 1, 1 kg O2 / night, the supply equivalent to the daily removal of 1 1, 1 kg of BOD at an energy cost of 1 HP or 0.75kW.
  • the equipment of the invention provides for the displacement of liquid from the bottom of the pond and its complete aeration, with the aerated liquid being returned to the bottom, that is precisely the most critical region and with difficulty in natural aeration, where in addition are deposited sediments, which are have little ability to mobilize due to poorly aerated environment.
  • the equipment of the invention provides for changing the direction of liquid flow, so that the operator chooses which side a liquid stream will be formed at and at what time.
  • This additional technical feature of the equipment of the invention provides a liquid flow reversal process, which is particularly useful in aerating this tidal liquid body, the influence of localized organic charge inlets, as well as facilitating equipment clearing. or parts thereof with plastics and other solid materials that may come into contact with the equipment, ie the equipment is "self-cleaning", providing substantial process control advantages.
  • each unit of equipment of the invention when equipped with 5 inlet and 5 liquid outlet pipes, provides a large area of influence or formation of aerated water plumes according to the invention.
  • pipe arrangement Using 50 m pipes in 1000L / min flow capacity equipment, 200 L / min pass through each pipe, providing an area of influence of up to 200m radius in the surrounding area. This recovery is particularly useful for the revitalization of the area and for the benefit of sports practices in its surroundings.
  • An equipment with this configuration operates submerged without visual impairment, being operated preferably at night, providing the maintenance of a region of higher concentration of dissolved oxygen in its surroundings. This is made possible both by its ability to dissolve oxygen in water and by adjusting the direction of liquid flow in the pipes according to the water flow (influenced by winds and / or flow conditions in the Jardim de Alah channel). .
  • This approach given the low magnitude of energy demanded, makes it practically feasible for balancing specific areas of the lagoon or the entire lagoon, depending on the quantity, equipment specification and location.
  • Example 10 Liquid Body Treatment Process including selection of microorganisms from the medium itself, enrichment thereof and return to the liquid body
  • One embodiment of the invention is specifically directed to solving a regulatory problem, which often makes it impossible to treat watercourses such as lakes, lagoons, rivers, canals, river or sea arms, bays, etc.
  • the difficulty docorrente prohibiting the introduction of exogenous microorganisms in such bodies, on the possible and / or unknown environmental impact, is resolved by the use of the equipment of the invention together with such water bodies.
  • one embodiment of the equipment of the invention consists of a floating unit.
  • an air pump (231) piped to one or more liquid thin film forming device (s) (232); a water pump (233) piped to one or more micro-bubble and / or thin-film forming device (s) (234), said device (s) (234) provided ) air inlet next to the liquid surface, the liquid inlet pipe (235) in the pump (233) being also indicated; a pump drive controller (236), optionally connected to a diesel electricity generator; a solar panel (237) connected to the controller (236) and / or pumps (231, 233); a power generation wind turbine (238) connected to the controller (236) and / or pumps (231, 233); is a schematic representation of the water line (239).
  • Fig. 24 shows a schematic representation of an embodiment of the equipment of the invention consisting of another floating unit (240) comprising: an air pump (241) connected by tubing to one or more liquid thin film forming device (s) (242); an ex-situ microorganism enrichment subsystem (243) for substantially increasing the amount of microorganisms previously present in the liquid body and reintroducing them (244), providing a reduction in the amount of energy required for aeration in the liquid body required for growth of the microorganisms.
  • an air pump 241 connected by tubing to one or more liquid thin film forming device (s) (242
  • an ex-situ microorganism enrichment subsystem 243 for substantially increasing the amount of microorganisms previously present in the liquid body and reintroducing them (244), providing a reduction in the amount of energy required for aeration in the liquid body required for growth of the microorganisms.
  • a pump drive controller (245) optionally connected to a diesel electricity generator; a solar panel (247) connected to the controller (245) and / or the pump (241) or ex situ enrichment subsystem (243); a power generation wind turbine (248) connected to the controller (245) and / or the pump (241) or ex situ enrichment subsystem (243); is a schematic representation of the water line (249).
  • reactor (250) for ex-situ enrichment of microorganisms for ex-situ enrichment of microorganisms
  • air inlet (251) in the reactor for ex-situ enrichment of microorganisms
  • air filter (252) optionally also including an air bubble generator
  • gas outlet (253) from the reactor from the reactor
  • agitator motor (254) stirring paddles (255); output (256) of fermented must in the reactor, rich in microorganisms
  • probe (259) indicating physicochemical parameters in the reactor, optionally being connected to the fluid inlet control for temperature control and / or to another reactor control element.
  • the concentration of the microorganism of interest is some orders of magnitude lower than that obtained in the reactor (250), which provides at least 1000 times greater enrichment of the concentration of the microorganism of interest.
  • the control of the microbial population in the liquid body is done by adding the ex-situ crop content at a ratio of 1/1000 (or even lower depending on reactor operating conditions).
  • this is not the only advantage of the present invention: the achievement of high titers of microorganisms outside the liquid body and their subsequent reintroduction, in high quantity and high state of metabolic activation, enhances the efficiency of the bioremediation process for the reasons already stated. indicated in this report.
  • the amount of energy required to introduce gases in such a smaller volume is also substantially smaller.
  • obtaining high concentrations of microorganisms in the ex situ subsystem of the inventive equipment is possible with substantial energy reduction, especially when compared to the energy required for the introduction of gases (and similar concentration of microorganisms) throughout the liquid body.
  • an equipment and process for improving the water quality of effluent treatment plants is described.
  • the full saturation of the outlet water of a wastewater treatment plant is described to reduce the environmental impact on the area where the liquid is disposed of and / or to enable or improve the reuse conditions of said water.
  • the process of this embodiment of the invention provides complete saturation of water with oxygen, so that water obtained after said The process is saturated, rich in oxygen, benefiting the region of Guanabara Bay where it is currently dumped. Alternatively, it also enables its reuse.
  • This embodiment of the process of the invention makes use of two inventive apparatus according to FIG. 17, with four stages comprising hives 52.5 cm wide, 7 cm deep and 200 cm long (or two hives with half of the each dimension) and the rigid body having a conical trunk shape 200cm long, 100cm high and 150cm wide at the base.
  • Said embodiment of equipment has full aeration capacity, or complete saturation of water with air oxygen, of 1 m 3 / s of water each equipment.
  • the total energy demand is of the order of 20HP or 15kW when using one or more blower (s) powered by external electric power.
  • This configuration provides the dissolution of 77.2 g O 2 / s, or 6.67 tons O 2 / day.
  • the apparatus of this embodiment of the invention harnesses the available water flow and unevenness energy at the exit zone of said station. Specifically, the unevenness and / or water flow is conveniently used as a driving force for the suction or injection of gases within the inventive equipment from the Venturi effect known to those skilled in the art.
  • said conventional gas bubble-forming device in the lower region of the equipment is not a perforated tube in connection with an air blower pump, but the end of a venturi tube configured to suck air from the atmosphere, harnessing the energy of the available water flow and / or water gap.
  • the technology of the present invention not only promotes the increase of efficiency and competitiveness of companies operating in the environmental sanitation segment, but also the revitalization of areas whose Economic activity is partially or completely stagnant due to environmental degradation.
  • the use of the inventive equipment and process adapted to each situation requiring aeration / oxygenation at different scales provides a contribution to the recovery of liquid bodies and the depollution of part (s) of Guanabara Bay. Said liquid bodies are largely favored by the equipment or process of the invention, which provides healthy and aerobic environment with low energy consumption.
  • the present example also contributes as a proof of concept to an effluent treatment plant, and the same principle can subsequently be used in the effluent treatment itself, which requires a high amount of aeration and is currently a considerable energy demand.
  • Estimates made from the consideration of total organic load (BOD vs. volume) indicate that the technology of the present invention provides substantial reduction of energy consumption for oxygen dissolution in this and other effluent treatment plants, where energy demand for aeration corresponds to approximately 50% of all station energy demand.
  • a degraded area recovery system equipped with equipment according to the present invention is particularly useful for energy efficient operation. In addition to reducing the amount of energy required for the same treatment threshold, such equipment and This process reduces the time required for bioremediation or removal of organic charge.
  • the equipment and process of the invention are adjustable to energy availability, either synchronously or antisynchronously to the power availability cycles in the electrical system supplying them.
  • the inventive process enables greater flexibility in adjusting the operation according to the operating time. energy demand cycle in the electrical system to which the system is connected - as the means of adjusting the amount of energy introduced into the system will substantially alter the energy costs or operating risks of both bioremediation equipment and the electrical system in which it is supplied. connected.
  • inventive concept of the present invention additionally therefore provides for adjusting the energy use of the equipment of the invention so that the moments of highest energy consumption of the equipment occur at times of higher availability or lower energy cost offered by the operator. of the bioremediation process. From the point of view of the system operator, the invention is particularly useful for reducing the amount of energy consumed and such reduction can be extended at times of peak demand, increasing safety and reducing the risk of failure in the electrical system.
  • the use of the invention also provides for the reduction of energy consumption at peak times, as the equipment of the invention may have the energy consumption reduced at such times to a minimum that does not compromise the attainable organic load removal threshold. by conventional systems.
  • These technical effects of the invention are highly relevant and difficult to obtain by conventional systems, bringing substantial advantages: from the point of view of the electrical system operator, the use of The invention increases the efficiency of the electrical system as a whole, notably in hydroelectric power systems based on which the energy produced is not stored, at least not adequately or substantially. The invention therefore contributes to reducing energy consumption.
  • the equipment and process of the invention are used for increasing the dissolved oxygen level and water quality of a river or pond alongside a freeway or avenue. Shown are: three units of the inventive equipment (290), each with an aeration capacity of 2400 L of water per minute, placed in the liquid body; a schematic representation of an air pump or air compressor (291) with a 7200 L air per minute supply capacity, optionally including a pump / compressor drive / adjustment controller (292) for times of aeration demand in the liquid body; the air tubing (293) that connects the air pump / compressor (291) to the equipment (290) for massively diluting air into the liquid; and a speed bump (294) electric power generator to power the pump (291).
  • the spine 294 is optionally a pneumatic spine that feeds the compressor 291 directly with air.
  • the equipment of this embodiment of the invention has air dissolving capacity proportional to the amount of vehicles passing through the spine each period.
  • Each set of equipment of this embodiment of the invention provides for the dissolution of 100 kg of O2 per day without energy consumption from external power supply. This amount of oxygen provides the equivalent of removing 100kg of BOD per day from the water per set.
  • the number of sets of equipment of this embodiment of the invention is calculated at each lane (distance) to provide a return of dissolved oxygen in the liquid body. according to the desired parameter.
  • the solution provided here is energy sustainable and practically does not imply operational costs (except for preventive and / or corrective maintenance).
  • the capacity of the inventive equipment increases in proportion to the increase in vehicle flow, which demonstrates that the solution of the invention is not only sustainable at the moment but also tends to remain sustainable over time: the higher the vehicle flow the more Liquid body oxygenation provides the equipment of the invention.
  • Example 14 Boat equipped with aeration system for energy use to conserve the waters in which it sails
  • Figure 30 shows a schematic representation of another embodiment of the invention in which the energy of the boat propulsion engine is used for the generation of microbubbles and / or thin films of liquid, thus eliminating the use of other pumps or other sources of energy.
  • This embodiment of the invention enables in practice the conversion of boats and ships into oxygen return units to the liquid bodies in which they sail. They are indicated: In A) a boat (300) with inboard motor and (301) the hydrodynamic flow generated in the posterior region of the boat, ie after the propulsion effect. In B) a schematic representation of this embodiment of the invention is shown, in which an inboard motor boat (300) comprises a microbubble and / or thin film liquid generating device (302) attached to the back of the boat propeller, to take advantage of the hydrodynamic flow generated by boat movement.
  • the movement of the liquid within the device causes a suction, taking a breath above the surface of the liquid through which air enters the device (302) causing the formation of microbubbles and / or thin films of liquid in the water (303), aerating it. .
  • the inventive equipment and process is also suitable for use for dissolving CO 2 generated in industrial plants, such as cement plants. It is estimated that besides consuming around 2% of all global energy, cement companies are also responsible for 5% of CO 2 emissions worldwide.
  • the production of one ton of cement generates between 600 kg and 1 ton of CO 2 , and also sulfur oxide, nitrogen-containing gases, carbon monoxide, all pollutants.
  • the equipment of the invention is also useful for dissolving such gases in liquids.
  • part of the cement-containing carbon dioxide-containing gases are dissolved in water in an algae cultivation tank that uses CO 2 for its growth and produces oxygen, thereby reducing the environmental impact of the cement plant. .
  • Algae fix dissolved CO 2 and use it for the production of substances of economic interest.
  • it is important to stress that in At room temperature CO2 is 26 times more water-soluble than O2, especially under conditions of increased content or partial pressure, as is often the case with factory emissions.
  • the applicant when filing this patent application with the competent body / guarantor, seeks and intends to: (i) appoint the inventors in respect of their respective moral rights; (ii) indicate unequivocally that he is the holder of industrial secrecy and the holder of any form of intellectual property derived therefrom and the depositor wishes; (iii) describe in detail the content object of the secret, proving its existence at the physical and legal levels; (iv) establish the relationship between the examples / embodiments and the inventive concept according to the depositor's cognition and context, to clearly demonstrate the scope of his tutored and / or tutelable intangible good; (v) apply for and obtain the additional rights provided for patents if the applicant chooses to proceed with the administrative proceeding until the end.
  • patent application publication under the law does not eliminate the legal status of secrecy, serving only and solely the spirit of the law to: (i) unambiguously indicate its owner / holder and inventor (s); (ii) to inform third parties about the existence of such industrial secrecy, the content for which patent protection is required and the date of its filing, from which the term of patent exclusivity will begin; and (iii) assist in the technological and economic development of the country, by authorizing the use of the secret only and exceptionally for the purpose of studies and / or development of new improvements, thereby avoiding parallel reinvestment by third parties in the development of the same good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)

Abstract

A presente invenção situa-se nos campos da Engenharia Química e Ambiental, sendo relacionada a um equipamento para a dissolução massiva de gases em líquidos, mediante a formação de filmes finos de líquido e a troca de gases com os referidos filmes. O equipamento adicionalmente proporciona a movimentação de líquidos a grandes distâncias a partir do movimento ascendente de bolhas em seu interior. Em uma concretização, o equipamento compreende meios para alterar a direção do fluxo de água, sendo este aspecto particularmente útil para a recuperação de corpos líquidos como lagoas e enseadas. Além de proporcionar elevada taxa de dissolução de gases em líquidos, o equipamento da invenção é muito eficiente energeticamente e tem capacidade volumétrica muito grande, contornando assim as limitações do estado da técnica e sendo útil para a conservação e/ou recuperação de corpos líquidos, podendo, em certas aplicações, operar de forma energeticamente autônoma. A invenção é aplicável a diversas situações nas quais a dissolução energeticamente eficiente de gases em líquidos é desejada. Exemplos incluem: a conservação e/ou recuperação de corpos líquidos como lagoas, rios, lagunas, enseadas, manguezais e praias; processos de conservação e/ou melhoria da produtividade de sistemas de aquicultura; sistemas de tratamento de efluentes; e a fixação de gases como o CO2, dentre outros.

Description

Relatório Descritivo de Patente de Invenção
EQUIPAMENTO E PROCESSO PARA DISSOLUÇÃO MASSIVA DE GASES EM LÍQUIDOS
Criação e Campo da Invenção
[0001] A presente invenção situa-se nos campos da Engenharia Química e Ambiental, sendo relacionada a um equipamento e um processo para a dissolução massiva de gases em líquidos de forma energeticamente eficiente e/ou com aproveitamento de energia de fontes alternativas, sendo particularmente útil para a conservação e/ou recuperação de corpos líquidos. O equipamento da invenção é também referido como "Pulmão", por ser altamente eficiente na dissolução de ar em líquidos, analogamente ao que nosso órgão faz no sangue.
[0002] A invenção é aplicável a diversas situações nas quais é desejável a dissolução controlada e ajustável de gases em líquidos em grande quantidade, alta taxa de dissolução e eficiência energética, podendo operar com autonomia energética ou com reduzida necessidade de alimentação externa de energia, ou seja, de redes de distribuição de energia e/ou de combustíveis. Exemplos incluem, mas não se limitam a, conservação e/ou recuperação de recursos hídricos, como lagoas, rios, enseadas, manguezais e praias, a remoção cargas orgânicas indesejáveis, a revitalização de corpos líquidos e/ou balneabilização dos mesmos, bem como processos de conservação e/ou melhoria de condições de qualidade, produtividade e/ou eficiência ambiental de processos de aquicultura, como o cultivo de peixes, camarões, algas e outros organismos cultiváveis em meio líquido.
Antecedentes da Criação/Invenção
[0003] A dissolução de gases em líquidos é um problema técnico particularmente relevante nos casos de gases pouco solúveis, o que limita a quantidade de gases dissolvidos, sua velocidade de dissolução e/ou envolve elevada demanda energia e custo para ser realizado. A oxigenação de grandes corpos líquidos, por exemplo, é um desafio técnico ainda não superado - como evidenciam os eventos de mortandade de peixes na Lagoa (laguna) Rodrigo de Freitas (RJ), bem como o estado do complexo de lagoas da Baixada de Jacarepaguá (RJ) e do complexo lagunar de Osório (RS), dentre vários outros casos no Brasil ou outros países. Neste contexto, a severa crise hídrica que assola diversos países e mais recentemente o Brasil tem chamado a atenção para a questão da gestão dos recursos hídricos e a necessidade de novas tecnologias para superar os gargalos existentes.
[0004] De especial importância no contexto da presente invenção são os "corpos líquidos", ou seja, rios, lagoas, represas, lagunas, enseadas, praias e manguezais. O crescimento desordenado das cidades e especialmente a falta de adequado manejo dos recursos hídricos e/ou de efluentes têm gerado crescente pressão sobre tais corpos líquidos, seja pelo uso excessivo da água, seja pelo despejo de cargas orgânicas nos mesmos, ou ambos, provocando substancial aumento da concentração de substâncias indesejáveis e elevada demanda de oxigénio (DBO, DQO, demanda bioquímica de oxigénio e demanda química de oxignio, respectivamente).
[0005] Também têm tido significativo aumento as iniciativas de processos de aquicultura para a produção de alimentos em cativeiro, notadamente em tanques de cultivo de peixes, camarões, algas etc. Esta indústria tem também enfrentado dificuldades técnicas relativas à produtividade e/ou à qualidade dos produtos, da água de uso, reúso ou de descarte.
[0006] Em ambos os casos citados acima, a baixa concentração de oxigénio dissolvido na água é um problema técnico frequente e ainda não resolvido de forma satisfatória. Apesar de serem disponíveis variados dispositivos e processos para a dissolução de gases em líquidos, como a aeração forçada e seu uso na conservação ou recuperação de corpos líquidos, tais sistemas são infelizmente limitados ou pela baixa capacidade volumétrica, baixa eficiência de introdução de gases nos corpos líquidos, pelo alto consumo de energia para tanto, ou por ambos. [0007] A introdução de ar em corpos líquidos tem sido utilizada há muitos anos como forma de melhorar o desempenho de sistemas de tratamento biológico para a remoção de carga orgânica, sendo predominantemente aplicada a efluentes líquidos, ou seja, em ambientes contidos como as estações de tratamento. Semelhante abordagem vem sendo adotada para a melhoria da qualidade e/ou produtividade de sistemas e aquicultura como o de peixes, camarões, algas e outros organismos cultiváveis em tanques ou outros corpos líquidos. Certas espécias de peixes somente se desenvolvem plenamente em ambientes com água muito fria, provavelmente em função da elevada quantidade de oxigénio dissolvido em tais circunstâncias. Em ambos os casos, entretanto, as tecnologias disponíveis têm substanciais limitações. Além disso, corpos líquidos abertos, como rios, lagoas, enseadas e praias não são em geral ambientes propícios à abordagem de introdução de ar/oxigênio de forma forçada, devido às limitações das tecnologias atuais. A presente invenção proporciona uma solução para estes problemas.
[0008] Uma dificuldade significativa no estado da técnica relativo aos sistemas de aeração de corpos líquidos (tanto em sistemas de bioremediação aeróbica quanto em aquicultura) reside no fato de que a grande maioria de tais sistemas requer muita energia para a dissolução de ar no corpo líquido, sendo ademais pouco eficientes para aumentar significativa- e efetivamente a taxa e a quantidade da dissolução do oxigénio no corpo líquido. Neste contexto, é fato conhecido que a solubilidade do oxigénio em água é baixa, o que é agravado em temperaturas elevadas como as típicas de regiões tropicais. Assim sendo, a introdução e efetiva dissolução de ar/oxigênio em grandes corpos líquidos em condições abertas ou tropicais tem sido um grande desafio técnico, uma vez que em tais condições a quantidade de oxigénio dissolvido no corpo líquido é predominantemente baixa, sendo particularmente mais crítica quando temperatura é alta e/ou a carga orgânica é elevada. A presente invenção também proporciona uma solução para estes problemas. [0009] Existem no mercado e no estado da técnica diferentes abordagens para a dissolução forçada de gases em líquidos. Entretanto, os equipamentos da técnica têm limitações, pois nenhum deles tem, concomitantemente, elevada taxa de dissolução de gases, baixo consumo energético e alta capacidade volumétrica. São conhecidos dispositivos e equipamentos com elevada taxa de dissolução de gases e alta eficiência energética, mas com baixa capacidade volumétrica. Também são conhecidos equipamentos com alta capacidade volumétrica, porém com baixa taxa de dissolução de gases. Assim sendo, há na técnica uma demanda por equipamentos e processos que não somente proporcionem o aumento da quantidade ou da velocidade de dissolução de gases no corpo líquido, mas que tenham elevada capicadade volumétrica, baixo consumo energético e alta taxa de dissolução de gases. A presente invenção também proporciona uma soluação a estes problemas.
[0010] Os equipamentos atualmente disponíveis para a introdução de gases em líquidos apresentam ainda outras diversas dificuldades técnicas, incluindo, sem se limitar a: (i) são pouco eficientes energeticamente; (ii) têm limitada capacidade de efetiva dissolução de gases em líquidos, tanto do ponto de vista da velocidade quando da quantidade total de gases dissolvidos; (iii) a introdução de ar/oxigênio em corpos líquidos de elevadas dimensões demanda grande quantidade de energia de fonte externa, fator este que a inviabilizam prática- e/ou economicamente; (iv) é muito difícil controlar as condições ambientais em corpos líquidos de grandes dimensões, sendo a dinâmica de fluidos um fator adicional que pode modificar grandemente o perfil e concentração de substâncias presentes no corpo líquido; (v) normalmente não têm capacidade de ajuste da quantidade de gases dissolvidos e/ou da direção do fluxo de líquido de acordo com o interesse; (vi) não são disponíveis ainda equipamentos que proporcionem todas estas vantagens concomitantemente. Estas e outras dificuldades técnicas são superadas pela presente invenção.
[0011] Em decorrência das limitações dos equipamentos e processos conhecidos as abordagens para a conservação e/ou recuperação de corpos líquidos degradados são muito limitadas e em geral demandam um tempo elevado para a efetiva recuperação - isso se e quando a velocidade de degradação das cargas orgânicas presentes no corpo líquido por conta da aeração forçada é maior do que a velocidade de entrada de novas cargas orgânicas, o que frequentemente não é o caso. Assim sendo, há na técnica uma demanda por equipamentos e processos que não somente proporcionem o aumento da quantidade e da velocidade de dissolução de gases no corpo líquido para a remoção de cargas orgânicas, mas especialmente que sejam ajustáveis a diferentes condições, seja para responderem a condições climáticas, a variações de chegada de cargas orgânicas ou a outros fatores. Esta demanda/dificuldade técnica ocorre em diversos tipos de sistemas líquidos, sejam de tratamento de efluentes, seja na recuperação de corpos líquidos degradados, ou na aquicultura - onde ademais o tipo e a quantidade de peixes, camarões ou outros organismos cultivados também exercem influência na concentração de oxigénio dissolvido na água e/ou na carga orgânica que se deseja remover ou converter. Semelhantemente, a ocorrência de chuvas, marés e outras condições ambientais também impactam tanto os tanques de cultivo de peixes quanto lagoas, rios, enseadas e outras áreas abertas. A presente invenção também proporciona uma solução para estes problemas.
[0012] Na conservação e/ou recuperação de corpos líquidos é também conhecida a abordagem de introduzir grandes quantidades de microrganismos capazes de degradar as cargas orgânicas produzidas ou depositadas no corpo líquido. Este tipo de abordagem visa melhorar o desempenho da remoção de carga orgânica, proporcionando maior eficiência do processo como um todo e diminuindo o consumo de energia e/ou o tempo requerido para a recuperação. Entretanto, a introdução de microrganismos que não estão/estavam previamente presentes no corpo líquido pode ensejar preocupações ambientais e regulatórias complexas. Assim, são muito limitadas as opções de uso das capacidades ou "habilidades" de microrganismos exógenos ou exóticos para degradar substâncias indesejáveis em tais circunstâncias. Além disso, a aquisição de microrganismos previamente cultivados e adicionados na forma de pó contendo grande quantidade de esporos ou microrganismos liofilizados, não é adequada ao enriquecimento de flora microbiana específica em corpos líquidos fechados ou abertos devido a diversas limitações técnicas: o custo e disponibilidade dos microrganismos, que em geral são importados e sofrem com a variação cambial; as dificuldades logísticas de transporte e estoque; os riscos ambientais e/ou à saúde humana, por se tratar de transporte de material microbiano em grande quantidade; e, particularmente, a limitação da quantidade disponível para introdução nos corpos líquidos e o baixo estado de ativação metabólica dos organismos quando introduzidos nestas condições. Adicionalmente, um problema crítico que frequentemente impossibilita o tratamento de cursos d'água, como lagos, lagoas, rios, canais, braços de rios ou do mar, baías etc, é a proibição da introdução de microrganismos exógenos em tais cursos de água, por seu possível e/ou desconhecido impacto ambiental. A presente invenção também proporciona uma solução para estes problema, ao revelar um equipamento e processo que proporciona dissolução massiva de gases nos referidos corpos líquidos contaminados com cargas orgânicas ou efluentes de diferentes origens, situação na qual o equipamento e processo da presente invenção opcionalmente compreende também um dispositivo ou subsistema para o enriquecimento ex-situ e seletivo de organismos previamente existentes nos corpos líquidos e sua reintrodução on- site.
[0013] A dissolução intensiva de gases em líquidos proporcionada pelo equipamento e processo da invenção é também adequada à dissolução e fixação de CO2 gerado em plantas industriais. O equipamento da invenção é também útil para a dissolução de tais gases em líquidos, concretização na qual os gases (ou parte deles) contendo dióxido de carbono oriundo de fábricas são dissolvidos em água em um tanque de cultivo de algas. Esta abordagem reduz o impacto ambiental de fábricas emissoras de dióxido de carbono. As algas, As algas utilizam o CO2 para seu crescimento e/ou produção de substâncias de interesse económico, além de produzirem oxigénio. Neste contexto, é importante salientar que em temperatura ambiente o CO2 é 26 vezes mais solúvel em água do que o O2.
[0014] Em ao menos uma de tais circunstâncias, as abordagens atualmente disponíveis para a introdução de gases em líquidos apresentam diversas dificuldades técnicas, incluindo, sem se limitar a: (i) são pouco eficientes energeticamente; (ii) têm limitada capacidade de efetiva dissolução de gases em líquidos, tanto do ponto de vista da velocidade quando da quantidade total de gases dissolvidos; (iii) a introdução de ar/oxigénio em tais corpos líquidos, especialmente em elevadas dimensões, em geral demanda grande quantidade de energia de fonte externa, fatores estes que a inviabilizam prática- e/ou economicamente; (iv) é muito difícil controlar as condições ambientais em corpos líquidos de grandes dimensões, sendo a dinâmica de fluidos um fator adicional que pode modificar grandemente o perfil e concentração de substâncias presentes no corpo líquido; (v) os sistemas conhecidos normalmente não têm capacidade de ajuste da quantidade de gases dissolvidos de acordo com as condições ambientais ou disponibilidade de energia; (vi) os sistemas conhecidos normalmente não têm capacidade de deslocamento de grandes quantidades de líquido, a diferetens profundidades, sem consumo significativo de energia; (vii) nos casos de tecnologias que fazem uso de microrganismos, é de se ressaltar a proibição do uso de microrganismos exóticos ao sistema ecológico em questão, o que limita sua aplicabilidade; além disso tais abordagens dificilmente são ajustáveis em termos de quantidade de microrganismos adicionados e/ou seu estado de ativação metabólica. Estas e outras dificuldades técnicas são superadas pela presente invenção.
[0015] As buscas na literatura patentária apontaram alguns documentos parcialmente relevantes no contexto da presente invenção, que serão descritos a seguir. [0018] O documento US 7,494,534, intitulado "Method, device, and system for controlling dissoived amount of gas", revela um dispositivo para controlar a quantidade de gás dissolvido em um líquido. O referido dispositivo compreende: uma parte redutora de pressão capaz de reduzir a pressão dentro de um tanque através da conexão de uma abertura na parte superior do tanque fechado com uma bomba de vácuo através de uma tubulação; um elemento para a injeção de fluido tratado e pressurizado, dentro da parte superior do tanque com um bico (nozz/e) capaz de cobrir grande parte da área com pressão reduzida; uma parte geradora de espuma de líquido que recebe o fluido tratado em um container no centro da abertura do mesmo e gerando uma grande quantidade de bolhas na parte do fundo do mesmo. Esse arranjo converte bolhas de ar em bolhas de líquido. O dispositivo compreende ainda uma parte de bomba recuperadora que permite que as bolhas de líquido transbordem da parte superior do container e vertam a uma parte inferior, temporariamente armazenando as bolhas de líquido como fluido tratado desaerado, ao final recolhendo o fluido tratado.
[0017] O documento WO 2007/125996, intitulado " Water quaiity improving unit and water quaiity improving device", revela uma unidade de melhoria da qualidade da água. Referida unidade inclui um dispositivo que aumenta a transparência da água através da remoção da carga orgânica, que flutua na superfície da água junto com microbolhas, e pode melhorar a qualidade da água através do equilíbrio de gases dissolvidos, como oxigénio e nitrogénio. A referida unidade compreende um corpo tendo uma porção oca, formada quase rotacionalmente simetricamente e com diâmetro reduzido em direção a ambas as direções axiais. A periferia na direção tangencial da unidade compreende uma abertura para introdução de líquido. Aberturas para jatos de gás-líquido dirigidos verticalmente são dispostas de forma a se abrirem em uma direção vertical ao longo da direção axial do eixo de simetria rotacional da parte oca. São também providos, nas porções de diâmetro reduzido da parte oca, um tubo carreador de uma estrutura conectado com a abertura que dirige o jato gás- líquido para cima, havendo uma folga ou espaço entre eles. Também compreende um container gerador de bolhas de líquido conectado com a parte superior do corpo, de maneira a formar um agregado de bolhas de líquido a partir do fluxo ascendente da mistura.
[0018] O documento WO 2001/097958, intitulado "Fine air bubbíe generator and fine air bubbíe generating device with ihe generator", revela um gerador de pequenas bolhas de ar capaz de prevenir a formação de agregados de reagentes e rejeitos. Referido dispositivo proporciona a produção de grandes quantidades de pequenas bolhas de ar na água e compreende: um corpo gerador (1 a) com uma parte oca em simetria rotacional; uma abertura para a entrada e ar-líquido na direção tangencial; e aberturas para o insuflamento de ar-líquido na direção do eixo de simetria da parte oca.
[0019] O documento US 8,292,271 , intitulado "Aeration unit, aeration apparaíus equipped therewith and method of aeration" revela um equipamento e um método de aeração. Referido equipamento é de múltiplos estágios, constituído de: um difusor para produzir bolhas na água; um canal gerador de espuma de líquido, para converter bolhas de ar em bolhas de líquido; uma câmara de retenção de gases com espaço para reter o gás na água e uma parte para acumular bolhas recém formadas por baixo da câmara de retenção de gás.
[0020] O documento US 2008/018534, intitulado "Aeration method, aeration apparaíus and aeration system", revela um método e aparelho para aeração útil para a melhoria das condições de sistemas de tratamento de esgoto, do cultivo de peixes e outros organismos aquáticos, entre outros. O aparelho proporciona dissolução de gás em água de forma altamente eficiente e compreende: uma seção de spray de gás (22) para gerar partículas de bolhas de gás na água a ser tratada (1W), uma seção de ascensão de bolhas (3P) para proporcionar o movimento ascendente das bolhas geradas, na qual as bolhas de gás são empurradas até uma posição acima da superfície da água, se convertendo em bolhas de líquido ou filmes finos; e uma seção de transferência (5P) na qual a água tratada (2W) pode ser transferida. [0021] O documento EP 2558189, intitulado "A microbubble generatoi", revela um gerador de microbolhas compreendendo: uma bomba configurada para misturar um líquido em um gás, formando uma mistura gás-líquido pressurizada; uma câmara de contato em conexão hidráulica com a bomba e configurada para aumentar a dissolução de gás na referida mistura gás-líquido pressurizada; e uma válvula em conexão hidráulica com a câmara de contato, O arranjo é configurado para descarregar uma emulsão de microbolhas compreendendo o líquido e as microbolhas de gás.
[0022] O documento US 8,366,938, intitulado "Method and device for purifying liquid effluents", foi publicado em 05Fev2013. Referido documento revela um método no qual água é separada de outras substâncias pelo borbulhamento de ar, em um aparato vertical (3), em efluentes alimentados uma taxa de fluxo "D". O aparato tem uma superfície livre e inclui pelo menos dois compartimentos (4, 5, 6, 7) que se comunicam entre si para proporcionar a circulação sucessiva de cima para baixo e de baixo para cima, entre a porção inferior do aparato e um nível médio, a uma taxa de fluxo de ar pelo menos três vezes superior à taxa de fluxo do efluente. A fase sobrenadante é continuamente descarregada e a oxidação química dos líquidos ou gases do referido efluente é simultaneamente conduzida no mesmo aparato. A taxa de oxidação química e a taxa de fluxo (e tamanho) das bolhas são selecionadas de forma a obter progressivamente a separação das fases sólido/líquido e líquido/líquido na superfície do aparato para obter uma demanda química de oxigénio (DQO) abaixo de um limite predeterminado.
[0023] O documento US 2005/0279713, intitulado "System and method for dissolving gases in liquids", foi publicado em 22Dez2005. Referido documento revela um equipamento e método para dissolver gás em um líquido e compreende um tanque de saturação e uma fonte de gás pressurizado conectada a uma área de gás (head space) do tanque de saturação. O tanque de saturação contempla um tanque pressurizado que contém pelo menos um bico injetor que permite a passagem de líquido para dentro do tanque pressurizado e uma saída para o líquido contendo gás dissolvido. Mediante a passagem de líquido contendo gás em um segundo fluido, o gás é liberado na forma de microbolhas. As microbolhas auxiliam na floculação de partículas em suspensão e promovem a dissolução do gás no segundo fluido. O gás preferido é ar, oxigénio ou ozônio, sendo os aplicáveis ao uso no tratamento de rios, lagoas e instalações industriais.
[0024] O documento US 6,676,837, intitulado "Solar aeration system", foi publicado em 13Jan2004. Referido documento revela um sistema de aeração movido a energia solar compreendendo uma bateria. O dispositivo descrito no referido documento é aplicável a sistemas de aquicultura e não requer o uso de fonte externa de alimentação de energia. O dispositivo usa uma coluna laminar de água para aumentar a circulação de água no reservatório de água que se quer aerar.
[0025] O documento US 6,773,592, intitulado "Systems and methods for treating waste water using an inoculum", foi publicado em 10Ago2004. Referido documento revela um método para tratar efluentes/esgoto e envolve o tratamento do sistema de coleta antes que o efluente chegue à unidade de tratamento. Um aspecto chave do referido método é a introdução de um inoculo de microrganismos selecionados em uma zona quiescente da rede de coleta. A zona quiescente é onde o efluente é significativamente desacelerado na rede de coleta e pode ser temporariamente estacionário, ou seja, uma estação de bombeamento ou área baixa em duas seções de um duto. Microrganismos tendem a se multiplicar nestas zonas quiescentes. A introdução de inoculo de um cultivo competitivo a microrganismos indesejáveis (que prejudicam a degradação do efluente) melhora a eficiência de todo o sistema de tratamento. O referido método se assemelha à abordagem conhecida do estado da técnica, de adição de microrganismos cultivados off-site.
[0028] O documento SI 24084 A, de um inventor esloveno, revela uma turbina geradora de bolhas movida por um motor elétrico. A referida turbina, conhecida como Toring Turbine, proporciona a aeração de líquidos em larga escala mediante o efeito de ejeção de água das pás da turbina e a consequente sucção gerada no interior da turbina. A turbina é oca e conectada a um eixo oco dotado de furos na região acima do nível da água, onde se conecta com o motor elétrico. Assim, a rotação gerada pelo motor proporciona a formação de sucção de ar externo por dentro do eixo oco, sendo o fluxo de ar submetido à força de cisalhamento das pás da turbina, gerando microbolhas. O referido equipamento tem elevada capacidade volumétrica de introdução de gás no líquido, mas não proporciona elevada taxa de dissolução de gás no líquido, uma vez que forma uma mistura de macrobolhas e microbolhas. Além disso, a área de influência da turbina se restringe a um diâmetro em torno da mesma, ou seja, são necessários vários destes dispositivos em lagos ou grandes áreas de água, além de serem requeridos dispositivos de flutuação e redes elétricas até locais distantes das margens.
[0027] O documento EP 2143483 B1 = US 8,292,271 , intitulado "Aeration unit, aeration apparatus equipped therewith" revela um aparato de aeração baseado no princípio de formação de filmes finos de líquido. Referido aparato/dispositivo é considerado o mais próximo em relação ao equipamento da presente invenção, sendo constituído de: um difusor de ar para produzir bolhas convencionais de ar na água dentro de um tubo cilíndrico contendo um canal gerador de filmes finos de líquido, para converter bolhas de ar em bolhas de líquido. O que caracteriza o referido dispositivo é o fato de que acima do canal gerador de filmes finos (ou espuma de líquido) há uma câmara de retenção de gases com espaço para reter o gás na água e uma parte para acumular bolhas recém formadas por baixo da câmara de retenção de gás. O referido equipamento tem severas limitações de capacidade volumétrica de dissolução de gases em volumes massivos de líquidos. Além disso, em função da sua limitada capacidade volumétrica individual, o referido dispositivo acarreta dificuldades no uso e montagem, pois quando se deseja aerar grandes volumes de líquido são necessárias grandes quantidades de dispositivos. O dispositivo comercialmente disponível de acordo com a referida patente tem diâmetro de 4 cm na região formadora de filmes finos de líquido e capacidade máxima de aeração completa (ou seja, saturação com oxigénio) de apenas 20 litros de água por minuto. O equipamento da presente invenção, em contraste, proporciona uma escala de dissolução de gases muito maios, ordens de magnitude superior ao referido dispositivo da técnica. Os exemplos mostrados nas figuras 4, 13 e 17, proporcionam, respectivamente, a aeração completa (ou seja, saturação com oxigénio) de 1 200, 2400 e 9800 litros de água por minuto. Adicionalmente, o equipamento da invenção proporciona também outras vantagens estruturais e operacionais, como será mais detalhado a seguir.
[0028] Em resumo, são conhecidos na técnica equipamentos para a introdução de gases em líquidos e os princípios de funcionamento são basicamente os seguintes: (i) introdução de bolhas de gás de tamanho regular e uso de força mecânica para facilitar sua dissolução. Esta técnica é pouco eficiente energeticamente e proporciona baixa taxa de dissolução de gases; (ii) introdução de microbolhas, que devido à sua melhor relação área volume aumentam a taxa de dissolução de gases no líquido. Em geral estes equipamentos fazem uso da geração de fluxos de alta velocidade de líquido, gerando vácuo que proporciona a introdução de gás na forma de microbolhas, como é o caso de dispositivos tipo Venturi e outros que funcionam com base em água pressurizada, ou ainda em turbinas como a exemplificada no documento SI 24084 A. Esta técnica, em qualquer das circunstâncias citadas acima, requer elevada energia para a movimentação de líquidos com alta velocidade e com isso proporcionar a geração de microbolhas; (iii) dispositivos que proporcionam a aeração através de filmes finos de líquido, como o revelado no EP 2143483. Entretanto, este dispositivo padece da baixa capacidade volumétrica, não sendo aplicável na prática a situações de elevado volume de líquido a ser aerado, devido à complexidade de montagem e uso e ao custo.
[0029] O equipamento da presente invenção difere daqueles descritos nos referidos documentos, dentre outras, por diversas razões técnicas. De um lado, o equipamento da invenção proporciona incremento substancial da quantidade e velocidade de dissolução de gases no corpo líquido, com baixo consumo energético, baixo custo, alta capacidade de volumétrica de dissolução de gases - algumas ordens de magnitude superior aos congéneres conhecidos. Além disso, o equipamento da invenção proporciona a troca de gases (ou stripping) em vez de apenas introduzir gases em grande quantidade. Neste aspecto, uma diferença técnica fundamental é que no sistema da invenção não há injeção de espécies gasosas no líquido mas sim a troca de gases, enquanto que nos sistemas convencionais ocorre injeção de gases, que podem levar ao sério problema da saturação com gases indejesáveis. Em uma concretização, o equipamento da invenção adicionalmente compreende meios para alterar/controlar a direção do fluxo da água, sendo esta ainda outra vantagem técnica adicional que não é atingida pelos dispositivos/equipamentos do estado da técnica.
[0030] O processo da presente invenção difere dos referidos documentos, dentre outras razões técnicas, por proporcionar um processo eficiente para o incremento substancial da quantidade e velocidade de dissolução de gases no corpo líquido, com baixo consumo energético e capacidade de ajuste a diferentes circunstâncias de operação, climáticas e/ou de disponibilidade de energia de fontes externas. O processo da invenção convenientemente combina as características do equipamento da invenção com as características de outros equipamentos disponíveis no estado da técnica, proporcionando vantagens técnicas substanciais.
[0031] Com base na literatura patentária e não patentária nota-se claramente a necessidade da busca por novas soluções alternativas àquelas já existentes, para contornar as limitações dos equipamentos e processos para a diluição massiva de gases em líquidos, úteis para a conservação e/ou recuperação de corpos líquidos. O presente pedido de patente revela soluções a estes problemas. Do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção que, aos olhos dos inventores, possui novidade e atividade inventiva frente ao estado da técnica.
Sumário da Criação/Invenção
[0032] O conceito inventivo comum aos diversos contextos de proteção da presente invenção é um "Pulmão", um equipamento especificamente desenvolvido para o incremento substancial da quantidade e velocidade de dissolução de gases em tais líquidos. O equipamento da invenção tem capacidade de ajuste a diferentes circunstâncias de operação e elevada eficiência energética, operando de forma energeticamente autónoma ou com reduzida demanda de alimentação externa de energia. O equipamento é particularmente útil para dissolução massiva de gases em líquidos, sendo portanto útil para a conservação e/ou recuperação de corpos líquidos, melhoria da eficiência de estações de tratamento de efluentes, de sistemas de aquicultura, de sistemas de fixação de CO2, dentre outros.
[0033] O equipamento da invenção funciona com base no princípio de air lift em conjunto com a formação de filmes finos e líquido e tem capacidade de dissolução de mais de 1000 L de gás por minuto no líquido, havendo concretizações com capacidade de vários dissolução completa de gases, ou seja, até a saturação desejada, de vários m3/s de líquido. O equipamento opera submerso no líquido no qual se deseja dissolver o gás de interesse. A partir da introdução de gás em uma zona submersa dentro do equipamento, bolhas convencionais de gás formadas ascendem devido ao natural empuxo. Por "convencionais" na presente invenção se refere às bolhas formadas sem a necessidade de elevadas perdas de carga associadas à formação de microbolhas, por exemplo. As bolhas em ascensão passam por uma ou mais zonas de restrição de área de seção transversal, e em seguida passam por uma colméia com área de seção transversal ainda mais reduzida em relação às zonas anteriores, o que promove adensamento e/ou coalescência das bolhas. Em seguida, as bolhas passam por uma zona de expansão da área de seção transversal, o que promove a expansão das bolhas, formação de filmes finos de líquido e a explosão de tais filmes. O líquido resultante da explosão das bolhas de filme fino de líquido é saturado com os gases desejados introduzidos e extravasa por um canal, por gravidade, enquanto o gás remanescente liberado segue seu percurso de ascensão. O gás liberado em ascensão pode passar por novo ciclo equivalente ao anteriormente descrito, com subsequente recuperação de nova quantidade de líquido saturado com os gases desejados. Em uma concretização, o gás é ar e o líquido é água, mas a invenção não é limitada a essas substâncias.
[0034] É um dos objetos da invenção um equipamento para diluição massiva de gases em líquidos compreendendo:
- um corpo rígido contendo uma zona de maior área de seção transversal na região inferior e uma zona de menor área de seção transversal na região superior, o referido corpo rígido compreendendo uma ou mais região(ões) de entrada de líquido na parte inferior; uma ou mais região(ões) de saída de líquido na parte superior e/ou inferior; e uma ou mais região(ões) de saída de gases na parte superior, o referido corpo rídigo contendo, em seu interior:
- um ou mais dispositivo(s) formadores de bolhas convencionais de gás na região inferior;
- uma ou mais colmeias formadoras de filmes finos de líquido, referidas colmeias dotadas de uma pluralidade canais internos com área de seção transversal ainda mais reduzida em relação à zona de menor área de seção transversal na região superior, o líquido no qual o gás foi dissolvido sendo extravasado após passar pela referida colméia.
[0035] Em uma concretização, o equipamento da invenção adicionalmente compreende uma parede de separação no interior do referido corpo rígido, dividindo-o verticalmente ao menos parcialmente em duas regiões. Em uma concretização, o equipamento da invenção adicionalmente compreende meios para inverter a direção do fluxo de líquido que passa por seu interior, proporcionando desta forma a escolha da direção de fluxos de líquido em corpos líquidos. Referidos meios de inversão de fluxo são muito simples de fácil operação, facilitando processos de controle de fluxo e de aeração em corpos líquidos como lagoas e enseadas.
[0036] Em uma concretização, o equipamento adicionalmente inclui um ou mais conjuntos de tubulações externas, conectados à entrada e/ou à saída de líquido. Devido ao princípio de operação do equipamento da invenção, a movimentação de líquidos é viabilizada a grandes distâncias, proporcionando na prática a dissolução de gases mesmo em profundidades de vários metros. Dependendo do arranjo das tubulações de líquidos conectadas ao equipamento da invenção, efeitos técnicos como o direcionamento de fluxos e a formação de plumas de líquidos contendo gases desejáveis em regiões de interesse são viabilizados, com baixo ou nenhum consumo energético externo.
[0037] Em uma concretização, o equipamento da invenção faz uso do fluxo previamente existente de líquidos (a exemplo do caso de fluxo de rio ou de desnvível em qualquer corpo líquido) como força propulsora para a dissolução de gases. Nesta concretização, a referida força propulsora é responsável pela movimenção do líquido, pela injeção/sucção do gás ou por ambos, situação na qual o equipamento da invenção opera sem alimentação externa de energia ou com reduzida alimentação externa de energia.
[0038] Em uma concretização, o equipamento da invenção adicionalmente compreende: (i) um ou mais dispositivo(s) de dissolução de gases em líquidos, selecionado dentre geradores de microbolhas, nanobolhas, filmes finos de líquido, ou combinações dos mesmos; e/ou (ii) um ou mais subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido.
[0039] O(s) subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido é(são) selecionado(s) dentre: (iia) um ou mais sistemas de controle de acionamento de bombas, operando de acordo com a disponibilidade de energia e/ou seu custo, ou ainda de acordo com ciclos climáticos, biológicos ou geofísicos; (iib) um ou mais sistema(s) de aproveitamento de energia cinética ou potencial disponível, incluindo gravidade, fluxos de gás e/ou de líquido existentes, como por exemplo desnível de água, fluxo de rios ou de motores de barcos, bombas de recalque e/ou dispositivos pneumáticos; (iic) um ou mais subsistema(s) de geração de energia, como eólica, solar, de fluxo de maré, ou transformação química, entre outros; ou (iid) um ou mais subsistemas ex situ de enriquecimento de microrganismos, que proporciona a redução da demanda energia para a dissolução de gases no líquido em questão.
[0040] O processo da invenção faz uso do equipamento da invenção. O equipamento e o processo da invenção proporcionam: elevado incremento da taxa de dissolução de gases em líquidos e/ou da quantidade total de gases dissolvidos em líquidos; a redução do consumo energético, ou da necessidade de alimentação externa de energia para a dissolução de gases em um corpo líquido; o ajuste do equipamento às condições ambientais ou necessidades circunstanciais, ou ambos concomitantemente.
[0041] O processo da invenção é particularmente útil para a revitalização, conservação e/ou balneabilização de corpos líquidos abertos, como lagoas, rios, lagunas e enseadas, bem como no aumento da produtividade, qualidade e/ou eficiência ambiental de processos de aquicultura. Nestes casos, a invenção é útil para a remoção de cargas orgânicas indesejáveis dissolvidas ou dispersas em corpos líquidos. O processo da invenção é também útil para a dissolução de outros gases em líquidos, a exemplo de CO2 produzido em fábricas que é convenientemente dissolvido pelo equipamento e processo da invenção para fixação desta fonte de carbono e/ou sua biotransformação e outras substâncias de interesse económico. Ainda outros gases ou combinações dos mesmos são convenientemente dissolvidos em larga escala com o equipamento e/ou processo da invenção, incluindo Ozônio e mistura deste com ar e/ou outros gases.
[0042] Estes e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e pelas empresas com interesses no segmento, e serão descritos em detalhes suficientes para sua reprodução, na descrição a seguir. Breve Descrição das Figuras
[0043] A figura 1 ilustra esquematicamente o conceito inventivo, em suas diferentes concretizações e aplicações, sendo indicados: (i) Pulmão, um ou mais equipamento(s) da invenção para a dissolução massiva de gases em líquidos; B uma bomba de ar ou de líquido, que é opcional e usada em algumas concretizações; D um ou mais dispositivo(s) selecionado dentre geradores de microbolhas, nanobolhas, filmes finos de líquido, ou combinações dos mesmos, que é opcional e usado em algumas concretizações; F um dispositivo de flutuação, que é opcional e usado em algumas concretizações, podendo ser um barco; (ii) S.E.E., um ou mais sistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido selecionado dentre: (iia) um ou mais sistemas de controle de acionamento de bombas, operando de acordo com a disponibilidade de energia e/ou seu custo, ou ainda de acordo com ciclos climáticos, biológicos ou geofísicos; (iib) um ou mais sistema(s) de aproveitamento de energia cinética ou potencial disponível, incluindo gravidade, fluxos de ar ou de líquido existentes, como o caso de barcos, bombas de recalque, dispositivos pneumáticos; (iic) um ou mais subsistema(s) de geração de energia, como eólica, solar, de fluxo de maré, ou transformação química, entre outros; e/ou (iid) um ou mais subsistemas ex situ de enriquecimento de microrganismos, que proporciona a redução da demanda de dissolução de gases no líquido em questão para o crescimento de microrganismos e, portanto, reduz o consumo global de energia.
[0044] A figura 2 mostra uma representação esquemática de uma concretização de equipamento da invenção. Em A) é mostrada uma concretização de equipamento (20) para a diluição massiva de gases em líquidos visualizado em versão "explodida", que opera pelo princípio de air lift; uma bomba de gás (21 ) injeta gás na parte interna do equipamento, através de uma tubo perfurado (22); as bolhas formadas no líquido ascendem e passam por uma ou mais zonas de restrição de área de seção transversal (23, 24), passando em seguida por uma colméia (ou hive) (25), a qual é dotada de uma série de canais internos (26) com área de seção transversal ainda mais reduzida em relação às áreas inferiores (23, 24). A passagem das bolhas pela referida colméia propicia a formação de filmes fino de líquido, ao menos em parte devido à coalescência das bolhas. A formação de filmes finos de líquido proporciona tanto a saturação do líquido com o gás que entra quanto a remoção dos gases que previamente estavam no líquido (fenómeno também chamado de stripping). O equipamento da invenção é também muito útil para desaturar certos gases do líquido, ou seja, remover gases indesejados no líquido, substituindo-os por gases desejados. Em B) É mostrado o mesmo equipamento, porém em versão sólida. São mostrados: a entrada de gases (21 ) a saída de gases (22), entradas de líquido (23) e uma representação esquemática da opcional parede de separação (25). Em C) é mostrada a vista lateral em corte da colméia, em uma concretização na qual a área de cada seção de entrada de líquidos e gases (parte inferior, 1 ,2 cm2) é maior do que a área de cada seção de saída de líquidos e gases (parte superior, 1 cm2).
[0045] A figura 3 mostra uma concretização do equipamento da presente invenção. Em A) é mostrado equipamento na forma de tronco piramidal com dimensões de 60 X 44 X 100 cm, respectivamente altura, largura e comprimento. A parte superior tem 15 cm de largura. Esta configuração de tronco piramidal proporciona estabilidade em leitos ou cursos d'água e também a ascensão das bolhas convencionais de ar insufladas dentro do equipamento, sua passagem pela redução de seção transversal e subsequente passagem pela colmeia através da qual as bolhas coalescem e formam filmes finos de líquido. As bolhas de líquido do filme se rompem após passarem pela colméia, de forma que o líquido saturado de gases novos extravasa pelo duto lateral conforme indicado. Os gases restantes são liberados pela abertura superior. Esta concretização de equipamento da invenção proporciona capacidade de saturação completa de gases desejáveis (ou aeração) no líquido de 1200 litros por minuto (somente um dos lados) ou de até 2400 litros de líquido por minuto (operando em ambos os lados). Nesta concretização, o equipamento opera com dois sopradores, cada um do modelo CV-51 M (SNatural), de 0,5 CV e com capacidade de vazão de 1200 litros de ar por minuto, pressão de 1200 mm de coluna d'água, insuflando ar através de um tubo de 100mm perfurado de cada lado da parede de separação, com furos de 1 mm. Em B) é mostrada uma representação esquemática desta concretização do equipamento da invenção em versão explodida, sendo mostrados os dutos de entrada de água (33) e o duto perfurado (31 ) para insuflar gás, bem como, no topo, as saídas de líquido gaseificado/aerado (34) e o gás residual (32). Em C) é mostrada uma vista em perspectiva desta concretização do equipamento da invenção, sendo mostrado no topo a área onde se localizam duas colméias (uma de cada lado da parede central de separação) cada uma contendo 7 cm de profundidade e de largura, e 100 cm de comprimento. Nesta concretização, cada abertura quadrangular da colméia tem área de 1 cm2. Em D) é mostrada uma vista em corte lateral desta concretização do equipamento da invenção, sendo indicadas posições onde são colocados os dois tubos perfurados para insuflamento de gás (embaixo), e ascensão das bolhas. As setas indicam os fluxos de líquido provocados pela ascensão das bolhas, que passam pelas colméias e extravasam pelas laterais.
[0046] A figura 4 mostra uma vista lateral em corte de um equipamento de acordo com a figura 3, porém em uma configuração com uma parede de separação contendo apenas uma colméia (45) do lado direito, de forma que o insuflamento de gás pelo lado direito gera ascensão de bolhas e com isso gera um fluxo ascendente de líquido (43), que passa pela colméia e extravasa para o lado esquerdo (44). Nesta concretização, o equipamento opera com um soprador do modelo CV-51 M (SNatural), de 0,5 CV e com capacidade de vazão de 1200 litros de gás por minuto, pressão de 1200 mm de coluna d'água, insuflando, de um dos lados da parede de separação, gases através de um tubo (41 ) de 100cm, perfurado. Esta configuração proporciona capacidade de gaseificação/aeração completa de líquido é de até 1200 litros por minuto, com fluxo da direita para a esquerda. [0047] A figura 5 mostra detalhes da parede de separação usada no meio do equipamento descrito na figura 4. Em A) é mostrada embaixo uma tubulação (51 ) perfurada para o insuflamento de gás na parte inferior e, na parte superior, os detalhes da colméia (53) por onde o líquido e as bolhas convencionais passam, formando os filmes finos de líquido no final. A vista em perspectiva mostra somente um dos lados, como a usada na figura 4, mas a parede de separação (52) pode ter uma colméia e um tubo perfurado também do outro lado, como ilustrado na figura 3D. Em B) são mostrados detalhes de uma outra concretização de parede de separação (52) usada no equipamento descrito na figura 3 ou 4, mostrando na parte superior os detalhes da colméia (53) por onde o líquido e as bolhas convencionais passam, formando os filmes finos de líquido e logo abaixo da colméia várias pequenas extensões (54) na vertical para proporcionar separação dimensional das zonas de líquido e bolhas ascendentes. Referidas extensões se distribuem ao longo da extensão da parede de separação, perpendiculares à mesma.
[0048] A figura 6 mostra detalhes de uma outra concretização equipamento da invenção (sendo representada apenas metade do equipamento), dotado de uma divisão adicional (63) para proporcionar separação dimensional das zonas de líquido e bolhas ascendentes. Referida divisão adicional é única e disposta ao longo da extensão da parede de separação, paralela à mesma em uma dimensão e angulada em outro, para dividir proporcionalmente a área de fluxo ascendente de líquido e bolhas. Essa configuração é convenientemente usada em conjunto com a concretização mostrada na figura 4.
[0049] A figura 7 mostra uma representação esquemática de uma concretização do equipamento da invenção, que proporciona a inversão do fluxo de líquido mediante alteração de posição da parede de separação (posição 1 ou 2). Referida concretização se apresenta com uma parede de separação contendo dois tubos perfurados para injeção de gás, um de cada lado, sendo apenas um deles ativado de acordo com a direção de fluxo desejada, sabendo-se que é o fluxo ascendente de bolhas que determina a direção do fluxo de líquido devido ao princípio do air lift. Em A), a parede de separação é posicionada no ponto 1 e o gás é insuflado apenas no lado esquerdo do equipamento, proporcionando o fluxo de líquido da esquerda para a direita. Em B), a parede de separação é posicionada no ponto 2 e o gás é insuflado apenas no lado direito do equipamento, proporcionando o fluxo de líquido da direita para a esquerda.
[0050] A figura 8 mostra uma representação esquemática de uma concretização alternativa de tubo de injeção de gás/aeração, que pivota ou gira ao longo de seu eixo radial, proporcionando a alteração da direção do fluxo ascendente de bolhas. Nesta concretização, a parede de separação fica em uma posição fixa e o tubo de injeção de gás é posicionado ao final inferior da mesma, no fundo e alinhado com a parede. Em A) o fluxo de líquido é direcionado da esquerda para a direita mediante o giro do tubo de injeção de gás para a posição 1 . Em B) o fluxo de líquido é direcionado da direita para a esquerda mediante o giro do tubo de injeção de gás para a posição 2.
[0051] A figura 9 mostra uma representação esquemática de uma outra concretização do equipamento, que proporciona a inversão do fluxo de líquido sem mudança de posição da parede de separação ou giro do tubo de injeção de gás/aeração. Referida concretização se apresenta com uma parede de separação e um único tubo de injeção de gás (91 ), acima do qual existe uma meia cana que muda de posição para direcionar o gás para um dos lados do equipamento, determinando a direção do fluxo de líquido. Em A), a meia cana é posicionada no lado direito do equipamento, de forma a permitir o fluxo de bolhas somente pelo lado esquerdo, fazendo com que o fluxo de líquido ocorra da esquerda (93) para a direita (94). Em B), a meia cana é posicionada no lado esquerdo do equipamento, de forma a permitir o fluxo de bolhas somente pelo lado direito, fazendo com que o fluxo de líquido ocorra da direita (93) para a esquerda (94).
[0052] A figura 10 mostra uma vista em perspectiva de uma concretização de equipamento cuja configuração é de acordo com a figura 3A ou 9B, sendo evidenciada a meia cana posicionada no lado esquerdo e o fluxo de líquido da direita (103) para a esquerda (104).
[0053] A figura 1 1 mostra uma representação esquemática das tubulações ligadas a uma concretização de equipamento da presente invenção submerso em um tanque de água. As setas indicam a direção do fluxo de água que entra (1 13) e sai do equipamento (1 14), sendo também indicada a entrada (1 1 1 ) e saída de gases (1 12). São também mostradas no topo as válvulas à esquerda (1 15) e à direita (1 16) que proporcionam a alteração de fluxo ou fluxo bidirecional, quando ambas estão abertas. Nesta concretização, o sistema de alteração de direção de fluxo é distinto do descrito nas figuras 9-10, sendo feito através de placas deslizantes que fecham um ou outro lado do equipamento junto à placa central de separação.
[0054] A figura 12 mostra em mais detalhes as placas deslizantes de separação indicadas na figura 1 1 . À esquerda (A) é mostrada a posição aberta que permite a passagem de gases nos dois lados do equipamento; no centro da figura (B) é mostrada a posição que proporciona a passagem de gás somente do lado direito do equipamento; à direita da figura (C) é mostrada a posição das placas deslizantes que proporciona a passagem de gás somente do lado esquerdo do equipamento.
[0055] A figura 13 mostra uma visão em corte de outra concretização do equipamento da invenção, sendo mostrados dois dutos de gaseificação/insuflamento junto à região central interna do equipamento, duas tubulações dotadas de válvulas (uma à esquerda, 136, outra à direita, 137) para o extravasamento de líquido aerado e um sistema de cinco válvulas nas tubulações de insuflamento de gás (131 ), para controle da direção de insuflamento e consequentemente do fluxo de líquido.
[0056] A figura 14 mostra em A) detalhes dos tubos de gaseificação/ insuflamento de ar (141 ) numa visão em perspectiva sem o restante do equipamento descrito na figura 13. Em B) são mostrados detalhes do sistema de válvulas para as tubulações de insuflamento de ar. Com a válvula 5 fechada e as válvulas 1 -2, 3-4 abertas, o equipamento opera com duas bombas sopradoras de gás (bomba 1 , B1 , e bomba 2, B2), o fluxo de líquido sendo ascendente em ambos os lados do equipamento, que opera em sua capacidade máxima, o líquido contendo o gás dissolvido sendo extravasado pelas tubulações laterais 6 e 7 mostradas na figura 13. Com a válvula 5 aberta, ao menos quatro modos de operação são possíveis: (i) com as válvulas 1 , 2 e 4 abertas e a válvula 3 fechada, somente a bomba 1 insufla gás e alimenta os dois lados do equipamento; (ii) com as válvulas 2, 3 e 4 abertas e a válvula 1 fechada, somente a bomba 2 insufla gás e alimenta os dois lados do equipamento; (iii) com as válvulas 1 e 4 abertas e as válvulas 2 e 3 fechadas, somente a bomba 1 insufla ar e alimenta o lado direito do equipamento, enquanto o lado esquerdo serve para extravasamento (situação na qual as válvulas 6 e 7 mostradas na figura 13 ficam fechadas; (iv) com as válvulas 3 e 2 abertas e as válvulas 1 e 4 fechadas, somente a bomba 2 insufla gás e alimenta o lado esquerdo do equipamento, enquanto o lado direito serve para extravasamento (situação na qual as válvulas 6 e 7 mostradas na figura 13 ficam fechadas. Esse arranjo de válvulas proporciona muita flexibilidade na operação, segurança para a hipótese de falha de uma das bombas e também reversão do fluxo de líquido à escolha do operador com simples mudanças de válvulas. Os versados na técnica imediatamente saberão que sistemas de controle automático, pneumático e/ou eletrônico destas válvulas são facilmente implementáveis a partir da presente descrição.
[0057] A figura 15 mostra uma representação esquemática de outra concretização de equipamento da invenção, a qual é dotada de três estágios consecutivos de colméias para a formação de filmes finos. Em A) é mostrada a vista em corte lateral (somente metade do equipamento) e em B) a vista em perspectiva do equipamento como um todo. Na vista em corte são mostrados: o ponto de insuflamento de gás (151 ) e ascensão das bolhas que subsequentemente passam por uma zona de restrição de área de seção transversal e em seguida pela colméia; as bolhas coalescem e explodem ao final da colméia devido ao aumento de área; o líquido contendo gases dissolvidos extravasa pelo duto à direita da colméia, enquanto as bolhas de gás ascendem para o segundo estágio e assim por diante. A cada estágio, a ascensão das bolhas provoca o efeito airlift, fazendo com que volume de líquido equivalente ao volume de gás em ascensão seja arrastado para cima. Consequentemente, nessa concretização em três estágios, para cada 1200 litros de ar insuflados no equipamento, 3600 litros de água fluem pelo equipamento e são completamente saturados com oxigénio, sem com isso requerer energia adicional (em relação à configuração com um estágio). Assim, com 0,5HP de potência de bomba de ar na metade do equipamento, 3600 litros de água por minuto são completamente saturados com oxigénio. Para o equipamento operado com os dois lados e duas bombas (ou uma bomba com o dobro de capacidade), o equipamento desta concretização proporciona, com 1 HP de potência de bomba de ar no equipamento, 7200 litros de água por minuto completamente saturados com oxigénio.
[0058] A figura 16 mostra duas representações esquemáticas em corte lateral de outras concretizações de equipamento da invenção (mostrada somente a metade esquerda), ambos com três estágios sucessivos de formação de filmes finos. Em ambos os casos, as entradas de água a ser aerada são feitas pela região central do equipamento, ao contrário da concretização da figura 15, na qual isso é feito pelas laterais. Em A) é mostrada uma concretização na qual as divisões e passagens de água são feitas em ângulo e em B) tais elementos são mais arredondados.
[0059] A figura 17 ilustra ainda outra concretização de equipamento da invenção, a qual mostra uma vista em corte lateral de somente metade do equipamento. Nesta concretização são mostrados quatro estágios sucessivos de formação de filmes finos, o que (para as mesmas dimensões ilustradas na figura 3, o equipamento proporciona, com 0,5HP de potência de bomba de ar na metade do equipamento, a saturação completa com oxigénio de 4800 litros de água por minuto). Para o equipamento operado com os dois lados e duas bombas (ou uma bomba com o dobro de capacidade), o equipamento desta concretização proporciona, com 1 HP de potência de bomba de ar no equipamento, 9600 litros de água por minuto completamente saturados com oxigénio. Uma concretização de dimensões maiores, compreendendo uma colméia com 52,5 cm de largura, 7 cm de profundidade e 200cm de comprimento (ou duas colmeias com a metade da dimensão cada uma) e o corpo rígido tendo formato de tronco cónico com 200cm de comprimento, 100cm de altura e 150cm de largura, tem capacidade de aeração completa, ou saturação completa de água com o oxigénio do ar, de 1 m3/s de água. Para tanto, a demanda energética é da ordem de 10HP ou 7,5kW quando usado um ou mais soprador(es) movido(s) a energia elétrica externa. Esta configuração proporciona a dissolução de 38, 6g de O2/S, 138,9 kg de 02/h, ou 3,33 ton de O2/dia, o que equivale à carga orgânica diária (DBO) de esgoto doméstico de uma população de 62 mil habitantes (base de 54 gramas diárias de DBO por habitante, por IMHOFF em 2000).
[0060] A figura 18 mostra uma representação esquemática de uma concretização de processo da invenção, na qual um equipamento de acordo com a figura 4 é instalado em um tanque para cultivo de peixes. São mostrados os detalhes das instalações das tubulações (181 , 183, 184) e a posição do equipamento em relação ao nível da água (185).
[0061] A figura 1 9 mostra uma representação esquemática de uma concretização de processo da invenção, na qual tem-se uma vista por cima de um equipamento de acordo com a figura 4, porém com capacidade de aeração completa (saturação) de 1 000 litros por minuto de água, disposto em um tanque de água. O equipamento desta concretização inclui 5 tubulações de entrada de água (193) e 5 tubulações de saída de água (194), cada tubo levando ou recebendo 200 litros de água por minuto. Nas concretizações em que o equipamento da invenção proporciona a alteração da direção do fluxo de líquido, o operador escolhe para qual lado será formada uma corrente de líquido e em que momento. Esta característica técnica adicional do equipamento da invenção proporciona processos nos quais a inversão de fluxo é etapa útil no processo, com no caso de aeração de corpos líquidos sujeitos à maré e/ou influência de entradas de cargas orgânicas localizadas, bem como para facilitar a desobstrução de equipamento ou partes dele com plásticos e outros materiais sólidos que eventualmente entrem em contato com o equipamento, situação na qual o equipamento é "auto-limpante", proporcionando substanciais vantagens de controle de processo.
[0062] A figura 20 mostra uma representação esquemática de um processo de troca de gases em um tanque de cultivo para aquicultura, vista por cima. A representação mostra um equipamento de acordo com a figura 4, com capacidade de dissolução completa de gases (saturação com os gases desejados) de 1000 litros por minuto de água, instalado em um tanque de aquicultura de 40m x 30m de dimensão. Os pontos 1 -10 indicam as posições de início ou final das tubulações que se conectam ao equipamento da invenção. As entradas e saídas são escolhidas para maximizar a homogeneização do líquido do tanque, alternando os locais onde é feita a sucção do líquido (ainda não gaseificado) e a descarga do líquido já gaseificado. Neste arranjo, o ponto 1 é o local de descarga de líquido gaseificado succionado do ponto 7; o ponto 2 é o local de sucção de água ainda não gaseificada, sendo a descarga de água gaseificada feita no ponto 6; o ponto 3 é o local de descarga de líquido gaseificado succionado do ponto 10; o ponto 4 é o local de sucção de água ainda não gaseificada, sendo a descarga de água gaseificada feita no ponto 9; o ponto 5 é o local de descarga de líquido gaseificado succionado do ponto 8.
[0063] A figura 21 mostra uma representação esquemática de outra disposição de tubulações ligadas a um equipamento usado em uma concretização de processo da presente invenção. As setas indicam a direção do fluxo de água que entra e sai do equipamento.
[0064] A figura 22 ilustra esquematicamente uma concretização de processo da invenção, no qual um corpo líquido de 1000L recebe dissolução de gases com: (i) um equipamento (220) de acordo com a figura 3, conectado a um compressor (221 ) de ar limpo (Schulz); (ii) um arranjo de dois dispositivos de dissolução de gases em líquidos, sendo um dispositivo (222) gerador de microbolhas do modelo BT-50 (Riverforest Corporation) em conexão hidráulica com uma bomba de líquido (223) de 0,5 HP (WEG), e um dispositivo gerador de microbolhas e filmes finos (224) de líquido modelo FBT-50 (Riverforest Corporation) conectado hidraulicamente a uma bomba de líquido (225) de 0,5 HP (WEG); e (iii) um subsistema ex situ (226) de enriquecimento de microrganismos (B Braun), que proporciona a adicional redução da demanda energia para a dissolução de gases no líquido em questão, uma vez que o enriquecimento ex situ não demanda adicional dissoução de gás in situ.
[0065] A figura 23 mostra uma representação esquemática de uma concretização do equipamento da invenção, consistindo de uma unidade flutuante (230), também representada pelo símbolo compreendendo: uma bomba de ar (231 ) conectada por tubulação a um ou mais dispositivo(s) (232) formador(es) de filmes finos de líquido; uma bomba de água (233) conectada por tubulação a um ou mais dispositivo(s) (234) formador(es) de microbolhas e/ou de filmes finos de líquido, referido(s) dispositivo(s) (234) dotado(s) de tomada de ar junto à superfície do líquido, sendo também indicada a tubulação (235) de entrada de líquido na bomba (233); um controlador (236) de acionamento das bombas, opcionalmente ligado a um gerador a diesel de eletricidade; um painel solar (237) ligado ao controlador (236) e/ou às bombas (231 , 233); uma turbina eólica (238) de geração de energia, ligada ao controlador (236) e/ou às bombas (231 , 233); e uma representação esquemática da linha d'água (239).
[0066] A figura 24 mostra uma representação esquemática de uma concretização do equipamento da invenção, consistindo de uma outra unidade flutuante (240) compreendendo: uma bomba de ar (241 ) conectada por tubulação a um ou mais dispositivo(s) (242) formador(es) de filmes finos de líquido; um subsistema ex-situ (243) de enriquecimento de microrganismos, para incremento substancial da quantidade de microrganismos previamente existentes no corpo líquido e sua reintrodução (244), proporcionando redução da quantidade de energia necessária para a aeração no corpo líquido requerida para o crescimento dos microrganismos (o crescimento ex-situ economiza energia e proporciona crescimento mais substancial); um controlador (245) de acionamento das bombas, opcionalmente ligado a um gerador a diesel de eletricidade; um painel solar (247) ligado ao controlador (245) e/ou à bomba (241 ) ou subsistema ex-situ de enriquecimento (243); uma turbina eólica (248) de geração de energia, ligada ao controlador (245) e/ou à bomba (241 ) ou subsistema ex-situ de enriquecimento (243); e uma representação esquemática da linha d'água (249).
[0067] A figura 25 mostra uma representação esquemática do subsistema ex- situ (250) de enriquecimento de cultivos microbianos mostrado na figura 23 ou 24, para subsequente ou concomitante introdução dos microrganismos nele cultivados ao corpo líquido. São indicados: reator (250) para enriquecimento ex-situ de microrganismos; entrada de ar (251 ) no reator; filtro de ar (252), opcionalmente incluindo também um dispositivo gerador de microbolhas de ar; saída de gases (253) do reator; motor agitador (254); pás agitadoras (255); saída (256) do mosto fermentado no reator, rico em microrganismos; entrada (257) de fluido para controle da temperatura na camisa do reator; saída (258) de fluido de controle da temperatura na camisa do reator; e sonda (259) indicadora de parâmetros físico-químicos no reator, opcionalmente sendo ligado ao controle de entrada de fluido para controle de temperatura e/ou a outro elemento de controle do reator.
[0068] A figura 26 mostra um gráfico que mostra a curva de saturação de oxigénio em água (sem salinidade) de acordo com a temperatura, indicando também os limites mínimos de oxigénio no corpo líquido e respectivos fenómenos associados. Nas ordenadas são indicados os valores de concentração de oxigénio dissolvido em água, em mg/L (ou ppm); nas abscissas são indicadas as temperaturas em graus Celsius. (261 ) indica a curva de saturação ou dissolução máxima de oxigénio em água em diferentes temperaturas; (262) indica a concentração de oxigénio dissolvido mínima recomendável para o cultivo de peixes; (263) indica a concentração de oxigénio dissolvido mínima recomendável para o tratamento de água; (264) indica a concentração de oxigénio dissolvido abaixo da qual ocorre a formação de odores desagradáveis no corpo líquido.
[0069] A figura 27 mostra uma representação esquemática de uma concretização de processo da invenção, no qual é representado o equipamento e processo para a recuperação/revitalização da Enseada do Bom Jesus, na Ilha do Fundão. São mostrados em A) uma foto da Ilha do Fundão, a seta indicando a localização da Enseada do Bom Jesus; em B) uma representação esquemática da Enseada do Bom Jesus, na qual uma representação esquemática de uma concretização de equipamento da invenção proporciona o aumento da velocidade de dissolução de oxigénio, o aumento de quantidade total de oxigénio dissolvido no corpo líquido e substancial redução de energia para tal fim, sendo ademais ajustável às condições de maré e demais condições climáticas. Segundo dados do INEA (2014), a região mais crítica de toda a Baia da Guanabara em termos de carga orgânica ficam no entorno da Ilha do Fundão.
[0070] A figura 28 mostra uma representação esquemática (sem proporção de escala) de uma concretização da invenção, na qual o equipamento e o processo da invenção são utilizados para o aumento do nível de oxigénio dissolvido e da qualidade da água de uma lagoa, rio ou tanque de aquicultura. São mostrados: três unidades do equipamento da invenção (280), cada um com capacidade de aeração de 2400 L de água por minuto, colocados no corpo líquido; a representação esquemática de uma bomba de ar (281 ) com capacidade de insuflamento de ar de 7200 L de ar por minuto, opcionalmente incluindo um controlador (282) de acionamento/ajuste da bomba para momentos de demanda de aeração no corpo líquido; a tubulação de ar (283) que conecta a bomba de ar (281 ) aos equipamenros (280) para diluição massiva de ar no líquido; e uma turbina eólica (284) geradora de energia.
[0071] A figura 29 mostra uma representação esquemática de uma outra concretização da invenção, na qual o equipamento e o processo da invenção são utilizados para o aumento do nível de oxigénio dissolvido e da qualidade da água de um rio ao lado de uma autopista ou avenida. São mostrados: três unidades do equipamento da invenção (290), cada um com capacidade de aeração de 2400 L de água por minuto, colocados no corpo líquido; a representação esquemática de uma bomba de ar ou compressor de ar (291 ) com capacidade de insuflamento de ar de 7200 L de ar por minuto, opcionalmente incluindo um controlador (292) de acionamento/ajuste da bomba/compressor para momentos de demanda de aeração no corpo líquido; a tubulação de ar (293) que conecta a bomba/compressor de ar (291 ) aos equipamentos (290) para diluição massiva de ar no líquido; e uma lombada (294) geradora de energia elétrica para alimentar a bomba (291 ). A lombada (294) opcionalmente é uma lombada pneumática que alimenta o compressor (291 ) diretamente com ar.
[0072] A figura 30 mostra uma representação esquemática de uma outra concretização da invenção, na qual a energia do motor de propulsão do barco é aproveitada para a geração de microbolhas e/ou filmes finos de líquido, dispensando, desta forma, o uso de outras bombas ou outras fontes de energia. Esta concretização da invenção viabiliza, na prática, a conversão de barcos e navios em unidades de devolução de oxigénio aos corpos líquidos por onde navegam. São indicados: em A) um barco (300) com motor de centro e (301 ) o fluxo hidrodinâmico gerado na região posterior do barco, ou seja, após o efeito de propulsão. Em B) é mostrada uma representação esquemática desta concretização da invenção, na qual um barco (300) com motor de centro compreende um dispositivo gerador de microbolhas e/ou de filmes finos de líquido (302) fixado em região posterior à hélice do barco, de forma a aproveitar o fluxo hidrodinâmico gerado pela movimentação do barco. O movimento do líquido dentro do dispositivo provoca uma sucção, havendo um respiro acima da superfície do líquido por onde o ar entra no dispositivo (302) provocando a formação de microbolhas e/ou filmes finos de líquido na água (303), aerando-a.
Descrição Detalhada da Criação/Invenção
[0073] O conceito inventivo comum aos diversos contextos de proteção da presente invenção é um equipamento especificamente desenvolvido para o incremento substancial da quantidade e velocidade de dissolução de gases em tais líquidos. O equipamento da invenção tem capacidade de ajuste a diferentes circunstâncias de operação e elevada eficiência energética, operando de forma energeticamente autónoma ou com reduzida demanda de alimentação externa de energia. O equipamento é particularmente útil para dissolução massiva de gases em líquidos, sendo portanto útil para a conservação e/ou recuperação de corpos líquidos, melhoria da eficiência de estações de tratamento de efluentes, de sistemas de aquicultura, de sistemas de fixação de CO2, dentre outros.
[0074] O equipamento da invenção funciona com base no princípio de air lift em conjunto com a formação de filmes finos e líquido e tem capacidade de dissolução de mais de 1000 L de gás por minuto no líquido, sem limite definido de ampliação de escala, uma vez que o dimensionamento só depende da configuração do equipamento. O equipamento opera submerso no líquido no qual se deseja dissolver o gás de interesse. A partir da introdução de gás em uma zona submersa dentro do equipamento, bolhas convencionais de gás formadas ascendem devido ao natural empuxo. Por "convencionais" na presente invenção se refere às bolhas formadas sem a necessidade de elevadas perdas de carga associadas à formação de microbolhas, por exemplo. As bolhas em ascensão passam por uma ou mais zonas de restrição de área de seção transversal, e em seguida passam por uma colméia com área de seção transversal ainda mais reduzida em relação às zonas anteriores, o que promove adensamento e/ou coalescência das bolhas. Em seguida, as bolhas passam por uma zona de expansão da área de seção transversal, o que promove a expansão das bolhas, formação de filmes finos de líquido e a explosão de tais filmes. O líquido resultante da explosão das bolhas de filme fino de líquido é saturado com os gases desejados introduzidos e extravasa por um canal, por gravidade, enquanto o gás remanescente liberado segue seu percurso de ascensão. O gás liberado em ascensão pode passar por novo ciclo equivalente ao anteriormente descrito, com subsequente recuperação de nova quantidade de líquido saturado com os gases desejados. Em uma concretização, o gás é ar e o líquido é água, mas a invenção não é limitada a essas substâncias.
[0075] O equipamento para diluição massiva de gases em líquidos compreende:
- um corpo rígido contendo uma zona de maior área de seção transversal na região inferior e uma zona de menor área de seção transversal na região superior, o referido corpo rígido compreendendo uma ou mais região(ões) de entrada de líquido na parte inferior; uma ou mais região(ões) de saída de líquido na parte superior e/ou inferior; e uma ou mais região(ões) de saída de gases na parte superior, o referido corpo rídigo contendo, em seu interior:
- um ou mais dispositivo(s) formadores de bolhas convencionais de gás na região inferior;
- uma ou mais colmeias formadoras de filmes finos de líquido, referidas colmeias dotadas de uma pluralidade canais internos com área de seção transversal ainda mais reduzida em relação à zona de menor área de seção transversal na região superior, o líquido no qual o gás foi dissolvido sendo extravasado após passar pela referida colméia.
[0076] Em uma concretização, o corpo rígido do equipamento da invenção adicionalmente compreende uma parede de separação em seu interior, dividindo o corpo rígido verticalmente ao menos parcialmente em duas regiões. [0077] Em uma concretização, o equipamento da invenção adicionalmente compreende meios para inverter a direção do fluxo de líquido que passa por seu interior. Em uma concretização, o referido meio para inverter a direção de fluxo é selecionado dentre: rotação de um tubo perfurado para uma ou outra áera interna do equipamento da invenção; uso de barreira física que muda de posição, para desviar o fluxo de gases para uma ou outra área interna do equipamento da invenção; uso de um tubo perfurado em cada área interna do equipamento, acionando seletivamente uma, outra ou ambas as áreas mediante válvulas; ou combinações dos mesmos.
[0078] Em uma concretização, o equipamento da invenção adicionalmente compreende um ou mais conjuntos de tubulações externas, conectados à entrada e/ou à saída de líquido.
[0079] Em uma concretização, o equipamento da invenção adicionalmente compreende um meio de sucção ou injeção de gases para seu interior, cuja força motriz é um fluxo de líquidos ou de desnvível em qualquer corpo líquido.
[0080] Em uma concretização, o equipamento da invenção adicionalmente compreende: (i) um ou mais dispositivo(s) de dissolução de gases em líquidos, selecionado dentre geradores de microbolhas, nanobolhas, filmes finos de líquido, ou combinações dos mesmos; e/ou (ii) um ou mais subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido.
[0081] Em uma concretização, o(s) referido(s) subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido é(são) selecionado(s) dentre: (iia) um ou mais sistemas de controle de acionamento de bombas, operando de acordo com a disponibilidade de energia e/ou seu custo, ou ainda de acordo com ciclos climáticos, biológicos ou geofísicos; (iib) um ou mais sistema(s) de aproveitamento de energia cinética ou potencial disponível, incluindo gravidade, fluxos de gás e/ou de líquido existentes, como por exemplo desnível de água, fluxo de rios ou de motores de barcos, bombas de recalque e/ou dispositivos pneumáticos; (iic) um ou mais subsistema(s) de geração de energia, como eólica, solar, de fluxo de maré, ou transformação química, entre outros; e/ou (iid) um ou mais subsistemas ex situ de enriquecimento de microrganismos, que proporciona a redução da demanda energia para a dissolução de gases no líquido em questão.
[0082] Em uma concretização, o equipamento da invenção adicionalmente compreende meios para flutuação e/ou uma ou mais bombas de gás e/ou de líquido.
[0083] O processo para a diluição massiva de gases em líquidos da invenção compreende o uso do equipamento da invenção.
[0084] Em uma concretização, o processo da invenção compreende a dissolução do oxigénio do ar; de CO2; de ozônio e/ou outros gases; e combinações dos mesmos.
[0085] Em uma concretização, o processo da invenção compreende adicionalmente: (i) o uso de um ou mais dispositivo(s) de dissolução de gases em líquidos, selecionado dentre geradores de microbolhas, nanobolhas, filmes finos de líquido, ou combinações dos mesmos; e/ou (ii) o uso de um ou mais subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido.
[0086] O equipamento da invenção proporciona muito mais flexibilidade de operação e uma ampliação significativa da quantidade e velocidade de dissolução de gases no corpo líquido, e consequentemente da capacidade de remoção de carga orgânica. De um lado, a quantidade de oxigénio presente no ar (21 % em volume, 23% em peso) e a densidade do ar (aproximadamente 1 ,2 kg/m3), determinam que cada metro cúbico de ar tem 276g de O2. Por outro lado, 8,3 mg/L é o limite de saturação de oxigénio dissolvido em água fresca na temperatura de 25°C; e 6,6 mg/L em água do mar (35 ppm de salinidade), conforme mostram as tabelas 1 e 2 abaixo, respectivamente.
[0087] Tabela 1 - Solubilidade do Oxigénio em água fresca (sem salinidade) mm Hg 760 1520 3040
Pressão psi 14.7 29.3 58.7
abs bar 1 2 4
kPa 101 .1 202.2 404.3 Temperatura Solubilidade
°C °F μΜοΙ mg/L mUL μΜοΙ mg/L mUL μΜοΙ mg/L mUL
5 41 399 12.8 9.1 798 25.5 18.2 1595 51 .1 36.4
10 50 353 1 1 .3 8.2 705 22.6 16.4 141 1 45.1 32.8
15 59 315 10.1 7.5 630 20.2 14.9 1260 40.3 29.8
20 68 284 9.1 6.8 568 18.2 13.7 1 137 36.4 27.3
25 77 258 8.3 6.3 517 16.5 12.6 1034 33.1 25.3
30 86 236 7.6 5.9 473 15.2 1 1 .8 947 30.3 23.6
35 95 218 7 5.5 436 14 1 1 872 27.9 22.1
40 104 202 6.5 5.2 404 12.9 10.4 808 25.9 20.8
[0088] Tabela 2 - Solubilidade do Oxigénio em água do mar (salinidade 35 ppm)
Figure imgf000039_0001
[0089] No limite em que o O2 presente no ar seja totalmente dissolvido na água, cada metro cúbico de ar totalmente dissolvido na água representa a dissolução de 276g de oxigénio.
[0090] A aplicação do conceito inventivo da invenção resolve vários problemas técnicos no setor, incluindo proporcionar a elevada taxa e dissolução e elevada quantidade de gases dissolvidos em líquidos, com redução substancial do tempo para dissolução e do consumo de energia relacionado à introdução de gases (por exemplo, ar) no corpo líquido.
[0091] Em uma concretização, o equipamento da invenção é conectado a uma bomba de ar; a referida bomba pode ser suprida continuamente com energia de uma turbina eólica, ou pode ser acionada/suprida de energia em momentos de baixa demanda (por exemplo, durante a noite, quando a concentração de oxigénio dissolvido em lagoas tende a diminuir) de forma a aproveitar uma energia que não seria utilizada pelo sistema elétrico.
[0092] Em uma outra concretização, o equipamento da invenção opera de forma autónoma e sustentável, ou seja, sem input externo de energia, proporcionando dissolução de gases em líquidos de forma contínua ou semi- contínua sem consumo de energia de fonte externa.
[0093] Em uma concretização, o equipamento da invenção compreende subsistema um de controle de acionamento de bombas que opera de acordo com ciclos e/ou dimensões fluidodinâmicas. Essa concretização, descrita em mais detalhes em ao menos um exemplo na seção "descrição detalhada da invenção" é particularmente útil para o aumento de eficiência e/ou redução do consumo de energia para de dissolução de gases em corpos líquidos abertos, como é o caso de lagunas, enseadas, baías e assemelhados.
[0094] Em uma concretização, o equipamento da invenção compreende um subsistema ex-situ de enriquecimento de cultivos microbianos, para subsequente ou concomitante reintrodução no referido corpo líquido. Esta concretização proporciona a seleção de microrganismos específicos já previamente presentes no sistema ecológico do corpo líquido, seu enriquecimento e reintrodução no corpo líquido, diminuindo ou evitando, desta forma, impacto ambiental indesejado ou risco, além de reduzir a energia necessária para a dissolução de gases no corpo líquido a ser recuperado devido à maior eficiência e velocidade de recuperação do corpo líquido.
[0095] No caso do uso do equipamento e/ou do processo da invenção para a conservação, recuperação e/ou balneabilização de corpos líquidos como lagoas, rios, lagunas e enseadas, o substancial incremento da taxa de dissolução de oxigénio no corpo líquido, com baixo consumo energético para tanto e capacidade de ajuste às condições do local, proporciona diversas vantagens. Além das vantagens já citadas acima, em uma concretização o equipamento e o processo da invenção proporcionam condições para que os organismos presentes no corpo líquido tenham elevada atividade metabólica em condições aeróbicas, proporcionando degradação ou conversão da carga orgânica de forma acelerada e sem a introdução de substâncias ou organismos exógenos.
[0096] Tais concretizações, independentemente uma da outra, proporcionam, dentre outras vantagens: maior taxa (velocidade) de dissolução do oxigénio nos corpos líquidos; maior capacidade (quantidade) de introdução de gases em líquidos; baixo consumo de energia para a dissolução do oxigénio no corpo líquido e/ou redução substancial da necessidade de alimentação externa de energia; ajuste às condições ambientais; ou ambos.
[0097] Estas vantagens proporcionam: maior qualidade, produtividade e eficiência ambiental em processos de aquicultura; maior velocidade e eficiência e menor consumo de energia na remoção de cargas orgânicas de corpos líquidos; redução ou eliminação de impacto ambiental indesejado ou de risco. A invenção também proporciona a seleção de regimes de aeração compatíveis com o(s) ciclo(s) biológico(s) que se pretende promover; a estratégia de uso e reintrodução de microrganismos específicos para atuar no corpo líquido; a seleção de faixas de concentração de microrganismos para atuar no corpo líquido; a seleção do momento em que tais organismos são adicionados; a elevada velocidade de alteração de concentração de microrganismo(s) no corpo líquido, o que viabiliza o ajuste do processo de remediação acordo com as variações de carga orgânica do material de entrada no corpo líquido; elevada taxa de metabolismo dos microrganismos cultivados ex-situ e adaptados às condições ecológicas do local para degradar e/ou transformar as substâncias indesejáveis no corpo líquido. Esses fatores, isoladamente ou combinadamente, proporcionam a redução dos tempos de recuperação do corpo líquido; aumento substancial do desempenho de sistemas de bioremediação.
[0098] Além de a presente invenção proporcionar uma solução para o problema da elevada quantidade de energia requerida para a dissolução de gases em líquidos, contribui neste processo tanto por evitar a formação de gases indesejáveis quanto por proporcionar sua remoção (como metano, H2S e outros), através do equipamento da invenção.
[0099] O equipamento da invenção proporciona uma eficiente e vantajosa abordagem para a bioremediação de corpos líquidos.
[0100] As abordagens conhecidas no estado da técnica não proporcionam os mesmos efeitos técnicos que a invenção. Além disso, não proporcionam todos os efeitos técnicos da invenção de forma concomitante: a elevada velocidade de alteração de concentração de gases no corpo líquido, a elevada quantidade total de gases efetivamente dissolvidos no tempo, o ajuste do processo de dissolução de gases de acordo com as cargas orgânicas existentes ou variações da carga orgânica de entrada, como é o caso de determinadas áreas ou enseadas na Baía da Guanabara, por exemplo; a redução dos tempos de recuperação do corpo líquido; a redução ou eliminação do consumo externo de energia. O equipamento da invenção proporciona muito mais flexibilidade de operação do que os convencionais e uma ampliação significativa da capacidade e velocidade de remoção de carga orgânica - devido à ampla, veloz e energeticamente eficiente dissolução de gases como o oxigénio aos corpos líquidos.
[0101] O processo da invenção é aplicável, dentre outros, à conservação e/ou recuperação de lagos, rios, lagunas, enseadas, praias e manguezais.
[0102] Os exemplos a seguir mostrados têm o intuito somente de exemplificar algumas das inúmeras maneiras de se concretizar a invenção sem, contudo, limitar o escopo da mesma. Exemplo 1. Equipamento para dissolução massiva de gases em líquidos
[0103] A figura 3 mostra uma concretização do equipamento da presente invenção. Em A) é mostrado equipamento na forma de tronco piramidal com dimensões de 60 X 44 X 100 cm, respectivamente altura, largura e comprimento. A parte superior tem 15 cm de largura. Esta configuração de tronco piramidal proporciona estabilidade em leitos ou cursos d'água e também a ascensão das bolhas convencionais de ar insufladas dentro do equipamento, sua passagem pela redução de seção transversal e subsequente passagem pela colmeia através da qual as bolhas coalescem e formam filmes finos de líquido. As bolhas de líquido do filme se rompem após passarem pela colméia, de forma que o líquido saturado de gases novos extravasa pelo duto lateral conforme indicado. Os gases restantes são liberados pela abertura superior. Esta concretização de equipamento da invenção proporciona capacidade de saturação completa de gases desejáveis (ou aeração) no líquido de até 2400 litros de líquido por minuto. Nesta concretização, o equipamento opera com dois sopradores, cada um do modelo CV-51 M (SNatural), de 0,5 CV e com capacidade de vazão de 1200 litros de ar por minuto, pressão de 1200 mm de coluna d'água, insuflando ar através de um tubo de 100mm perfurado de cada lado da parede de separação, com furos de 1 mm. Em B) é mostrada uma representação esquemática desta concretização do equipamento da invenção em versão explodida, sendo mostrados os dutos de entrada de água (33) e o duto perfurado (31 ) para insuflar gás, bem como, no topo, as saídas de líquido gaseificado/aerado (34) e o gás residual (32). Em C) é mostrada uma vista em perspectiva desta concretização do equipamento da invenção, sendo mostrado no topo a área onde se localizam duas colméias (uma de cada lado da parede central de separação) cada uma contendo 7 cm de profundidade e de largura, e 100 cm de comprimento. Cada abertura quadrangular da colméia tem área de 1 cm2. Em D) é mostrada uma vista em corte lateral desta concretização do equipamento da invenção, sendo indicadas posições onde são colocados os dois tubos perfurados para insuflamento de gás (embaixo), e ascensão das bolhas. As setas indicam os fluxos de líquido provocados pela ascensão das bolhas, que passam pelas colméias e extravasam pelas laterais.
[0104] O equipamento desta concretização ou de qualquer de suas concretizações, proporciona muito mais flexibilidade de operação e uma ampliação significativa da quantidade e velocidade de dissolução de gases em líquido, e consequentemente da capacidade de remoção de carga orgânica indesejada. De um lado, a quantidade de oxigénio presente no ar (21 % em volume, 23% em peso) e a densidade do ar (aproximadamente 1 ,2 kg/m3), determinam que cada metro cúbico de ar tem 276g de O2. Por outro lado, 8,3 mg/L é o limite de saturação de oxigénio dissolvido em água fresca na temperatura de 25°C.
[0105] Esta concretização do equipamento da invenção (um estágio de formação de filmes finos, injeção de 1 200 litros de ar por minuto) proporciona uma capacidade de saturação de 1 200 litros de água por minuto, o que equivale à dissolução de até 9,6 g de O2 por minuto ao custo energético de 0,5 HP.
Exemplo 2. Equipamento para diluição massiva de gases em líquidos dotado de meios para alterar a direção de fluxo de líquidos
[0106] Em algumas concretizações do equipamento da invenção, ilustradas a seguir em conjunto com as figuras 4-14, uma vantagem técnica adicional é obtida. O controle da direção do fluxo de líquido dentro de um corpo líquido, sem com isso requerer energia adicional em relação à já utilizada para a aeração do liquido. A figura 4 mostra uma vista lateral em corte de um equipamento de acordo com a figura 3, porém em uma configuração com uma parede de separação contendo apenas uma colméia (45) do lado direito, de forma que o insuflamento de gás pelo lado direito gera ascensão de bolhas e com isso gera um fluxo ascendente de líquido (43), que passa pela colméia e extravasa para o lado esquerdo (44). Nesta concretização, o equipamento opera com um soprador do modelo CV-51 M (SNatural), de 0,5 CV e com capacidade de vazão de 1200 litros de gás por minuto, pressão de 1200 mm de coluna cTágua, insuflando, de um dos lados da parede de separação, gases através de um tubo (41 ) de 100cm, perfurado. Esta configuração proporciona capacidade de gaseificação/aeração completa de líquido é de até 1200 litros por minuto, com fluxo da direita para a esquerda.
[0107] A figura 5 mostra detalhes da parede de separação usada no meio do equipamento descrito na figura 4. Em A) é mostrada embaixo uma tubulação (51 ) perfurada para o insuflamento de gás na parte inferior e, na parte superior, os detalhes da colméia (53) por onde o líquido e as bolhas convencionais passam, formando os filmes finos de líquido no final. A vista em perspectiva mostra somente um dos lados, como a usada na figura 4, mas a parede de separação (52) pode ter uma colméia e um tubo perfurado também do outro lado, como ilustrado na figura 3D. Em B) são mostrados detalhes de uma outra concretização de parede de separação (52) usada no equipamento descrito na figura 3 ou 4, mostrando na parte superior os detalhes da colméia (53) por onde o líquido e as bolhas convencionais passam, formando os filmes finos de líquido e logo abaixo da colméia várias pequenas extensões (54) na vertical para proporcionar separação dimensional das zonas de líquido e bolhas ascendentes. Referidas extensões se distribuem ao longo da extensão da parede de separação, perpendiculares à mesma.
[0108] A figura 6 mostra detalhes de uma outra concretização equipamento da invenção (sendo representada apenas metade do equipamento), dotado de uma divisão adicional (63) para proporcionar separação dimensional das zonas de líquido e bolhas ascendentes. Referida divisão adicional é única e disposta ao longo da extensão da parede de separação, paralela à mesma em uma dimensão e angulada em outro, para dividir proporcionalmente a área de fluxo ascendente de líquido e bolhas. Essa configuração é convenientemente usada em conjunto com a concretização mostrada na figura 4.
[0109] A figura 7 mostra uma representação esquemática de uma concretização do equipamento da invenção, que proporciona a inversão do fluxo de líquido mediante alteração de posição da parede de separação (posição 1 ou 2). Referida concretização se apresenta com uma parede de separação contendo dois tubos perfurados para injeção de gás, um de cada lado, sendo apenas um deles ativado de acordo com a direção de fluxo desejada, sabendo-se que é o fluxo ascendente de bolhas que determina a direção do fluxo de líquido devido ao princípio do air lift. Em A), a parede de separação é posicionada no ponto 1 e o gás é insuflado apenas no lado esquerdo do equipamento, proporcionando o fluxo de líquido da esquerda para a direita. Em B), a parede de separação é posicionada no ponto 2 e o gás é insuflado apenas no lado direito do equipamento, proporcionando o fluxo de líquido da direita para a esquerda.
[0110] A figura 8 mostra uma representação esquemática de uma concretização alternativa de tubo de injeção de gás/aeração, que pivota ou gira ao longo de seu eixo radial, proporcionando a alteração da direção do fluxo ascendente de bolhas. Nesta concretização, a parede de separação fica em uma posição fixa e o tubo de injeção de gás é posicionado ao final inferior da mesma, no fundo e alinhado com a parede. Em A) o fluxo de líquido é direcionado da esquerda para a direita mediante o giro do tubo de injeção de gás para a posição 1 . Em B) o fluxo de líquido é direcionado da direita para a esquerda mediante o giro do tubo de injeção de gás para a posição 2.
[0111] A figura 9 mostra uma representação esquemática de uma outra concretização do equipamento, que proporciona a inversão do fluxo de líquido sem mudança de posição da parede de separação ou giro do tubo de injeção de gás/aeração. Referida concretização se apresenta com uma parede de separação e um único tubo de injeção de gás (91 ), acima do qual existe uma meia cana que muda de posição para direcionar o gás para um dos lados do equipamento, determinando a direção do fluxo de líquido. Em A), a meia cana é posicionada no lado direito do equipamento, de forma a permitir o fluxo de bolhas somente pelo lado esquerdo, fazendo com que o fluxo de líquido ocorra da esquerda (93) para a direita (94). Em B), a meia cana é posicionada no lado esquerdo do equipamento, de forma a permitir o fluxo de bolhas somente pelo lado direito, fazendo com que o fluxo de líquido ocorra da direita (93) para a esquerda (94).
[0112] A figura 10 mostra uma vista em perspectiva de uma concretização de equipamento cuja configuração é de acordo com a figura 3A ou 9B, sendo evidenciada a meia cana posicionada no lado esquerdo e o fluxo de líquido da direita (103) para a esquerda (104).
[0113] A figura 1 1 mostra uma representação esquemática das tubulações ligadas a uma concretização de equipamento da presente invenção submerso em um tanque de água. As setas indicam a direção do fluxo de água que entra (1 13) e sai do equipamento (1 14), sendo também indicada a entrada (1 1 1 ) e saída de gases (1 12). São também mostradas no topo as válvulas à esquerda (1 15) e à direita (1 16) que proporcionam a alteração de fluxo ou fluxo bidirecional, quando ambas estão abertas. Nesta concretização, o sistema de alteração de direção de fluxo é distinto do descrito nas figuras 9-10, sendo feito através de placas deslizantes que fecham um ou outro lado do equipamento junto à placa central de separação.
[0114] A figura 12 mostra em mais detalhes as placas deslizantes de separação indicadas na figura 1 1 . À esquerda (A) é mostrada a posição aberta que permite a passagem de gases nos dois lados do equipamento; no centro da figura (B) é mostrada a posição que proporciona a passagem de gás somente do lado direito do equipamento; à direita da figura (C) é mostrada a posição das placas deslizantes que proporciona a passagem de gás somente do lado esquerdo do equipamento.
[0115] A figura 13 mostra uma visão em corte de outra concretização do equipamento da invenção, sendo mostrados dois dutos de gaseificação/insuflamento junto à região central interna do equipamento, duas tubulações dotadas de válvulas (uma à esquerda, 136, outra à direita, 137) para o extravasamento de líquido aerado e um sistema de cinco válvulas nas tubulações de insuflamento de gás (131 ), para controle da direção de insuflamento e consequentemente do fluxo de líquido. [0116] A figura 14 mostra em A) detalhes dos tubos de gaseificação/ insuflamento de ar (141 ) numa visão em perspectiva sem o restante do equipamento descrito na figura 13. Em B) são mostrados detalhes do sistema de válvulas para as tubulações de insuflamento de ar. Com a válvula 5 fechada e as válvulas 1 -2, 3-4 abertas, o equipamento opera com duas bombas sopradoras de gás (bomba 1 , B1 , e bomba 2, B2), o fluxo de líquido sendo ascendente em ambos os lados do equipamento, que opera em sua capacidade máxima, o líquido contendo o gás dissolvido sendo extravasado pelas tubulações laterais 6 e 7 mostradas na figura 13. Com a válvula 5 aberta, ao menos quatro modos de operação são possíveis: (i) com as válvulas 1 , 2 e 4 abertas e a válvula 3 fechada, somente a bomba 1 insufla gás e alimenta os dois lados do equipamento; (ii) com as válvulas 2, 3 e 4 abertas e a válvula 1 fechada, somente a bomba 2 insufla gás e alimenta os dois lados do equipamento; (iii) com as válvulas 1 e 4 abertas e as válvulas 2 e 3 fechadas, somente a bomba 1 insufla ar e alimenta o lado direito do equipamento, enquanto o lado esquerdo serve para extravasamento (situação na qual as válvulas 6 e 7 mostradas na figura 13 ficam fechadas; (iv) com as válvulas 3 e 2 abertas e as válvulas 1 e 4 fechadas, somente a bomba 2 insufla gás e alimenta o lado esquerdo do equipamento, enquanto o lado direito serve para extravasamento (situação na qual as válvulas 6 e 7 mostradas na figura 13 ficam fechadas. Esse arranjo de válvulas proporciona muita flexibilidade na operação, segurança para a hipótese de falha de uma das bombas e também reversão do fluxo de líquido à escolha do operador com simples mudanças de válvulas. Os versados na técnica imediatamente saberão que sistemas de controle automático, pneumático e/ou eletrônico destas válvulas são facilmente implementáveis a partir da presente descrição.
Exemplo 3. Equipamento para dissolução massiva de gases em líquidos com múltiplos estágios
[0117] A figura 15 mostra uma representação esquemática de outra concretização de equipamento da invenção, a qual é dotada de três estágios consecutivos de colméias para a formação de filmes finos. Em A) é mostrada a vista em corte lateral (somente metade do equipamento) e em B) a vista em perspectiva do equipamento como um todo. Na vista em corte são mostrados: o ponto de insuflamento de gás (151 ) e ascensão das bolhas que subsequentemente passam por uma zona de restrição de área de seção transversal e em seguida pela colméia; as bolhas coalescem e explodem ao final da colméia devido ao aumento de área; o líquido contendo gases dissolvidos extravasa pelo duto à direita da colméia, enquanto as bolhas de gás ascendem para o segundo estágio e assim por diante. A cada estágio, a ascensão das bolhas provoca o efeito airlift, fazendo com que volume de líquido equivalente ao volume de gás em ascensão seja arrastado para cima. Consequentemente, nessa concretização em três estágios, para cada 1200 litros de ar insuflados no equipamento, 3600 litros de água fluem pelo equipamento e são completamente saturados com oxigénio, sem com isso requerer energia adicional (em relação à configuração com um estágio). Assim, com 0,5HP de potência de bomba de ar na metade do equipamento, 3600 litros de água por minuto são completamente saturados com oxigénio. Para o equipamento operado com os dois lados e duas bombas (ou uma bomba com o dobro de capacidade), o equipamento desta concretização proporciona, com 1 HP de potência de bomba de ar no equipamento, 7200 litros de água por minuto completamente saturados com oxigénio.
[0118] A figura 16 mostra duas representações esquemáticas em corte lateral de outras concretizações de equipamento da invenção (mostrada somente a metade esquerda), ambos com três estágios sucessivos de formação de filmes finos. Em ambos os casos, as entradas de água a ser aerada são feitas pela região central do equipamento, ao contrário da concretização da figura 15, na qual isso é feito pelas laterais. Em A) é mostrada uma concretização na qual as divisões e passagens de água são feitas em ângulo e em B) tais elementos são mais arredondados. [0119] A figura 17 ilustra ainda outra concretização de equipamento da invenção, a qual mostra uma vista em corte lateral de somente metade do equipamento. Nesta concretização são mostrados quatro estágios sucessivos de formação de filmes finos, o que (para as mesmas dimensões ilustradas na figura 3) proporciona, com 0,5HP de potência de bomba de ar na metade do equipamento, a saturação completa com oxigénio de 4800 litros de água por minuto. Para o equipamento operado com os dois lados e duas bombas (ou uma bomba com o dobro de capacidade), o equipamento desta concretização proporciona, com 1 HP de potência de bomba de ar no equipamento, 9600 litros de água por minuto completamente saturados com oxigénio. O equipamento desta concretização proporciona a dissolução de 14% do ar injetado em cada lado, ou seja, para 1200 litros de ar injetado por minuto em cada lado do equipamento, 4800 litros por minuto de água são saturados com oxigénio. O equipamento desta concretização, portanto, proporciona a dissolução de até 76,8 g de O2 por minuto e satura com oxigénio 9600 litros de água por minuto ao custo energético de 1 HP.
[0120] Testes realizados com água coletada do canal do Cunha, uma água muito mal-cheirosa devido à emissão de gás sulfídrico, demonstraram que a eliminação do cheiro ocorreu na primeira hora de aeração forçada com o equipamento desta concretização da invenção.
[0121] De se ressaltar que o equipamento da invenção proporciona o ajuste da dissolução de gases no líquido proporcionalmente à demanda de oxigénio no local e/ou ao tempo desejado de recuperação - o mesmo sendo válido para áreas maiores. Consequentemente, os versados na arte saberão, a partir dos ensinamentos ora apresentados, que o equipamento não apenas promove o aumento de eficiência e competitividade das empresas que atuam no segmento de saneamento ambiental, mas também a revitalização de áreas cuja atividade económica está estagnada parcial ou completamente por conta da degradação ambiental. O uso do equipamento, adaptado a cada situação que requeira aeração/oxigenação, em diferentes escalas, proporciona para a recuperação de corpos líquidos como a despoluição da Baía de Guanabara (e outros corpos como lagoas, lagos em parques etc), processos amplamente favorecidos em ambiente saudável e aeróbico, bem como potencialmente em tratamento de água poluída e reaproveitamento como água de reúso em sistemas de abastecimento.
Exemplo 4. Equipamento e Processo para conservação e/ou recuperação de corpos líquidos
[0122] A figura 22 ilustra esquematicamente uma concretização de processo da invenção, no qual um corpo líquido de 1000L recebe dissolução de gases com: (i) um equipamento (220) de acordo com a figura 3, conectado a um compressor (221 ) de ar limpo (Schulz); (ii) um arranjo de dois dispositivos de dissolução de gases em líquidos, sendo um dispositivo (222) gerador de microbolhas do modelo BT-50 (Riverforest Corporation) em conexão hidráulica com uma bomba de líquido (223) de 0,5 HP (WEG), e um dispositivo gerador de microbolhas e filmes finos (224) de líquido modelo FBT-50 (Riverforest Corporation) conectado hidraulicamente a uma bomba de líquido (225) de 0,5 HP (WEG); e (iii) um subsistema ex situ (226) de enriquecimento de microrganismos (B Braun), que proporciona a adicional redução da demanda energia para a dissolução de gases no líquido em questão, uma vez que o enriquecimento ex situ não demanda adicional gaseificação in situ.
[0123] Testes realizados no laboratório com o equipamento desta concretização da invenção indicam uma eficiência de 70% de dissolução do ar com o equipamento, podendo ser maior a depender das condições de operação. Nestas condições, o equipamento da invenção proporciona, para a injeção de cada metro cúbico de ar no líquido, a dissolução de 193,2g de O2 (e 161 ,2g de O2 para o caso do uso de ar com elevada umidade, cuja densidade é de aproximadamente 1 kg/m3 de ar).
[0124] Testes adicionais realizados com água coletada do canal do Cunha, uma água muito mal-cheirosa devido à emissão de gás sulfídrico, demonstraram que a eliminação do cheiro ocorreu na primeira hora de aeração forçada com o equipamento desta concretização da invenção.
Exemplo 5. Equipamento com subsistema de geração de energia
[0125] Vantagens semelhantes àquelas proporcionadas pelo equipamento dos exemplos anteriores são proporcionadas pelo equipamento de outra concretização da invenção, esquematicamente mostrado na figura 29, que mostra uma concretização de equipamento (290) da invenção utilizado para o aumento do nível de oxigénio dissolvido e da qualidade da água de uma laguna. Nesta concretização são usadas duas bombas (291 ) de ar de 7,5 HP com capacidade de insuflamento de 7m3/min de ar cada uma. Referidas bombas são controladas por um dispositivo de acionamento que comuta a alimentação de uma turbina eólica (94) de 2MW da rede elétrica para as bombas, preferencialmente durante momentos de baixa demanda de energia na rede e, portanto, de maior disponibilidade de energia. Conectados por tubulações às referidas bombas de ar (291 ) sete equipamentos (290) da invenção, com capacidade de 2000 L/min (cada um) de dissolução de ar/oxigênio na água da laguna. A Lagoa Marcelino Ramos, no Complexo Lagunar de Osório (RS) tem DBO de aproximadamente 10 mg/L (Lissner & Gruber, 2009). A região é também conhecida pela ampla proliferação de algas, que produzem oxigénio durante o dia - mas o consomem durante a noite, provocando baixa substancial da concentração de oxigénio dissolvido durante a noite. Consequentemente, a operação do equipamento da invenção durante a noite contribui para resolver o problema ambiental e também para não onerar a rede elétrica, tanto por usar um gerador eólico de energia quanto pelo fato de deixá-lo inteiramente disponível para fornecer energia à rede durante o dia.
[0126] Operando por 8 horas consecutivas durante a noite, os sete equipamentos da invenção usados neste processo proporcionam a dissolução de 65 kg de O2 por noite, a um consumo energético aproximado de 1 1 ,2kW, ou seja, 0,05% da capacidade de energia de uma única turbina eólica como a disponível no parque eólico de Osório, que tem ao todo 75 turbinas eólicas de 2MW cada uma, ou seja, o consumo energético do equipamento para operar nestas condições é de apenas 0,00066% da capacidade de geração de energia do referido parque eólico. Neste regime de operação, a quantidade de oxigénio devolvido à referida Lagoa equivale ao tratamento de aproximadamente 6.500 m3 de água (com DBO 10) por noite em regime de 8 horas de operação, ou seja, o processo da invenção desta concretização supre toda a demanda bioquímica de oxigénio (DBO) de um volume de 6.500m3 por ciclo noturno.
Exemplo 6. Equipamento e Processo para a Conservação da Qualidade da Água e Melhoria de Produtividade em Sistemas de Aquicultura
[0127] A produção intensiva de alimentos demanda uma quantidade de água substancialmente grande, sendo conhecido que o consumo de água na agricultura e pecuária pode vir a competir com o uso de água para consumo humano. Uma alternativa que vem crescendo substancialmente no mundo, inclusive no Brasil, é a Aquicultura, sistema de produção de alimentos cultivados em ambientes aquáticos. Dentre outros exemplos, a produção de peixes merece destaque por ser uma fonte de proteína e por ter elevada capacidade de ampliação de escala, notadamente no Brasil.
[0128] Entretanto, a produção de peixes em larga escala - e especialmente o aumento da produtividade destes processos de aquicultura - enfrenta problemas técnicos relacionados ao consumo de oxigénio nestes corpos líquidos e à produção de carga orgânica na água, seja devido à grande quantidade de peixes, à carga orgânica por eles produzida, ou por ambos concomitantemente. Tais problemas limitam muito a produtividade de tais processos, além de gerar problemas ambientais devido à carga orgânica descartada, à utilização de maior quantidade de água limpa, e às necessidades operacionais frequente de troca de água. Além disso, esses problemas técnicos prejudicam a qualidade da água e consequentemente os peixes que nela vivem, bem como limitam a taxa de crescimento dos peixes. A presente invenção provê uma solução a estes problemas. [0129] A figura 1 8 mostra uma representação esquemática de uma concretização de processo da invenção, na qual um equipamento de acordo com a figura 4 é instalado em um tanque para cultivo de peixes (Tambaquis). São mostrados os detalhes das instalações das tubulações (181 , 183, 184) e a posição do equipamento em relação ao nível da água (185).
[0130] A figura 20 mostra uma representação esquemática de um processo de troca de gases em um tanque de cultivo para aquicultura, vista por cima. A representação mostra um equipamento de acordo com a figura 4, com capacidade de dissolução completa de gases (saturação com os gases desejados) em 1200 litros por minuto de água, instalado em um tanque de aquicultura de 40m x 30m de dimensão. Os pontos 1 -10 indicam as posições de início ou final das tubulações que se conectam ao equipamento da invenção. As entradas e saídas são escolhidas para maximizar a homogeneização do líquido do tanque, alternando os locais onde é feita a sucção do líquido (ainda não gaseificado) e a descarga do líquido já gaseificado. Neste arranjo, o ponto 1 é o local de descarga de líquido gaseificado succionado do ponto 7; o ponto 2 é o local de sucção de água ainda não gaseificada, sendo a descarga de água gaseificada feita no ponto 6; o ponto 3 é o local de descarga de líquido gaseificado succionado do ponto 10; o ponto 4 é o local de sucção de água ainda não gaseificada, sendo a descarga de água gaseificada feita no ponto 9; o ponto 5 é o local de descarga de líquido gaseificado succionado do ponto 8.
[0131] Nesta concretização, o equipamento da invenção é aplicado à conservação/oxigenação de um tanque de 12.500m3 de água para a produção de peixes, e compreende: duas bombas de ar de 0,5 HP com capacidade de insuflamento de 1 ,2 m3/min de ar no tanque cada uma (operando em redundância com bomba(s) suplementar(es), para o caso de eventual falha de uma bomba a outra atuar em sua substituição imediata ou rapidamente). Referida(s) bomba(s) é(são) controlada(s) por um dispositivo de acionamento que comuta a alimentação de duas turbinas eólicas de 1 kW cada, modelo Gerar 246 (Enersud); um conjunto de 10 painéis solares Yingli de 250 W cada; e/ou um gerador a diesel de energia 4kVA; para a(s) bomba(s). Conectado por tubulação de ar à(s) referida(s) bomba(s) de ar está um equipamento da invenção com capacidade de 2400 L/min de dissolução de ar/oxigênio na água do tanque. É sabido que ocorre diminuição substancial da concentração de oxigénio dissolvido durante a noite. O equipamento da invenção, operando em sua capacidade máxima de dissolução de 2400 L/min de ar, proporciona a dissolução de 23,2 g de 02/min, ou 33,4 kg de O2 por dia. Em um volume de 12.500 m3, significa o equivalente à dissolução de 2,7 mg de O2/L de água em todo o tanque por dia. O equipamento da invenção é configurado para operar com a energia mais disponível durante o ciclo. Durante o dia, aproveita a energia solar e/ou eólica; à noite, a eólica; e em qualquer período a energia do gerador na medida em que não estiver disponível a energia solar ou a eólica. Operando somente com gerador a diesel, o equivalente em suprimento externo de energia é de aproximadamente 0,75 kW/h. Tal demanda é passível de ser integralmente suprida por painéis solares e/ou por turbinas eólicas enquanto estiver disponível o sol ou houver incidência de ventos.
[0132] As condições de aeração forçada avaliadas proporcionaram, no pior cenário, o incremento de 10% na produtividade de peixes cultivados em tanques, a melhoria de 5% na conversão alimentar (é sabido da literatura que peixes cultivados em águas com mais quantidade de oxigénio dissolvido têm melhor conversão alimentar, ou seja, requerem menos quantidade de ração para ganhar peso) e redução de 10% no tempo de ciclo de crescimento, ou seja, o tempo para o peixe chegar ao peso desejado.
[0133] A Introdução de ar (O2) muda muito as características do corpo líquido: Desaparece o mau cheiro; Melhora as condições do cultivo de peixes; Aumenta a conversão alimentar (ou seja, diminui a quantidade de aeração necessária para a engorda do peixe); Viabiliza a produção intensiva de peixes, ou seja, o aumento da densidade de peixes por áres de tanque, devido à grande disponibilidade de ar no líquido e a melhor qualidade da água. Além disso, o stripping dos gases constantemente renova o ar dissolvido, evitando toxicidade.
Exemplo 7. Processo para a Conservação ou Melhoria da Qualidade da Água em um Rio (Rio Arroio Fundo, Rio de Janeiro)
[0134] A grave crise hídrica mencionada neste relatório não é somente relacionada à disponibilidade de água em quantidade, mas também em qualidade. Fontes de água cujo uso não é considerado atualmente, como águas usadas ou águas de rios poluídos podem ser ao menos parcialmente tratadas no leito do próprio rio mediante aeraçãl intensiva com o equipamento da invenção. Nesta concretização, o equipamento da invenção é usado em conjunto com outros equipamentos conhecidos do estado da técnica. Fazendo- se referência ao Rio Arroio Fundo, no Rio de Janeiro, tem-se que a demanda pelo tratamento de suas águas é muito grande, devido à enorme quantidade de despejos (essencialmente esgoto doméstico de comunidades em seu entorno). No referido Rio, um arranjo no qual turbinas comercialmente disponíveis (Toring Turbine) são instaladas antes da estação de tratamento de rio, cada uma proporcionado a introdução de 1 0L/s de ar no corpo líquido na forma de microbolhas, a um custo energético de 2HP. A introdução das microbolhas ajudar a diminuir a DBO do rio também auxilia nos processo de flotação atualmente utilizados. Após a estação de tratamento do rio, equipamentos da presente invenção de acordo com a figura 3, 4 ou 17 complementam a aeração do leito do rio, diminuindo o odor. A depender da quantidade de turbinas e equipamentos da invenção instalados no rio, grande parte ou até mesmo toda a DBO pode ser suprida (através da diluição massiva de oxigénio do ar, a baixo custo energético).
Exemplo 8. Equipamento e Processo para a Recuperação da Enseada do Bom Jesus, na Ilha do Fundão
[0135] Com a grave crise hídrica que assola o País e diversas outras regiões do mundo, tornou-se ainda mais evidente a necessidade de desenvolvimento de tecnologias de conservação de recursos hídricos e/ou de recuperação de áreas degradadas. No presente exemplo, são providas soluções para a recuperação, revitalização e conservação de uma pequena enseada na Ilha do Fundão, junto ao Parque Tecnológico, na área indica na figura 27, que fica entre a antiga Ilha Bom Jesus e a antiga Ilha Sapucaia.
[0136] A Ilha do Fundão, que alberga a Cidade Universitária, com a UFRJ, o Centro de Pesquisas da Petrobrás, e o Parque Tecnológico, tem 523 hectares (mais de 5 milhões de metros quadrados) e conta com 508 domicílios (2010) na Vila Residencial - Bairro Cidade Universitária) e é margeada por um lado pelo Canal do Cunha, e por outro lado pela Baía de Guanabara (latitude 22°51 '27,24"S e longitude 43ten°13'49,38"W). Embora em ambiente potencialmente bucólico, as suas praias e enseadas são pesadamente poluídas por material flutuante (garrafas, plásticos etc), esgoto e lodo acumulado. O mau cheiro no entorno da Ilha é marcante, sendo perceptível não somente no Canal do Fundão e no Canal do Cunha, por onde passam milhares de pessoas por dia, mas também em quase toda a Ilha do Fundão.
[0137] Algumas características das origens dos contaminantes e o fluxo dos sedimentos são importantes na compreensão da problemática ambiental da Ilha do Fundão. Quanto ao transporte de sedimentos, verificou-se nas regiões Leste e Sul, entrada de sedimentos da área externa da baía para a porção central da região Leste. No Canal do Fundão, o transporte residual indicou saída de sedimentos, com transporte longitudinal à ilha, enquanto na região Norte, observou-se que o transporte residual ocorre da Ilha do Governador em direção à Ilha do Fundão. A análise ambiental do Canal do Fundão revela que os teores de matéria orgânica chegam a valores acima de 25%. As regiões Leste e Sul apresentam teores em torno de 20%, enquanto na região Norte os valores ficaram em torno de 4%, evidenciando uma possível correlação de maiores teores de matéria orgânica em regiões com sedimentos finos (Mendonça, Raphaela de Paiva e Ribeiro, Vivian Almeida Faxas, 2014). As regiões do Canal do Fundão e do Canal do Cunha encontram-se muito assoreadas, com profundidade máxima de 0,5 m em muitos lugares. Embora a dragagem (em 2007-2010) tenha minimizado inicialmente os problemas, o canal voltou rapidamente à situação inicial, já que não foram colocadas outras medidas para melhorar a situação.
[0138] O volume de aproximadamente 30.000 m3 de água, a renovação de até 100% do seu volume diariamente, devido às marés (duas ocorrências de maré ao dia, com amplitude média de 0,5 m cada), e a média de DBO na área adjacente à Enseada do Bom Jesus (de 10 a 50 mg/L, dados INEA, 2014), estabelecem os parâmetros para o cálculo do regime de operação do processo da invenção, para que o mesmo efetivamente reduza a carga orgânica. O processo desta concretização da invenção proporciona, como deve proporcionar, no mínimo, a dissolução de mais oxigénio na água do que demanda de oxigénio que chega a cada dia na Enseada, na forma de carga orgânica vinda da maré (uma vez que não há nenhum outro ponto de despejo na Enseada). Com a operação dos equipamentos da invenção na Enseada, essa passa a gradualmente diluir a carga orgânica em seu entorno, de forma que após algum tempo de operação a vizinhança da Enseada também se beneficia do efeito de oxigenação, proporcionando a revitalização e restauração de ecossistemas aeróbicos no seu entorno.
[0139] Esta concretização do processo da invenção foi desenvolvida para a recuperação de ambiental do referido corpo líquido e faz uso de 20 equipamentos da invenção como o ilustrado na figura 9, com capacidade de saturação completa com oxigénio em 1200 L de água por minuto, cada um conectado a uma bomba de ar 0,5 HP (SNatural, modelo CV-51 M) com capacidade de insuflar 1200 L/min de ar. Alternativamente, são usados 10 equipamentos da invenção com capacidade de saturação completa com oxigénio em 2400 L de água por minuto, cada um conectado a duas bombas de ar 0,5 HP (SNatural, modelo CV-51 M) com capacidade de insuflar 1200 L/min de ar cada uma. As bombas/sopradores são ligados a um gerador a diesel de eletricidade de 15 kVA. Opcionalmente, o suprimento de energia é auxiliado por dezesseis painéis solares Modelo Yingli 250, com capacidade de 250W cada um; e por quatro turbinas eólicas de geração de energia, modelo Enersud Gerar 246, com capacidade de 1 kW cada.
[0140] Operando 24h por dia, os equipamentos desta concretização da invenção proporcionam a dissolução de 334 kg O2 /dia, o suprimento equivalente à remoção diária de 334 kg de DBO. Considerando uma DBO média de 10 mg/L nas águas que chegam à Enseada do Bom Jesus, neste regime de operação, a quantidade de oxigénio devolvida à referida Enseada equivale ao tratamento de aproximadamente 33.400 m3 de água (com DBO 10) por dia. Em outras palavras, nestas condições o processo da invenção proporciona o suprimento de toda a demanda bioquímica de oxigénio (DBO) de todo o volume que entra na referida enseada diariamente, sobrando ainda a capacidade adicional de suprimento de oxigénio suficiente para a remoção de 34 kg de DBO por dia (a referida Enseada tem aproximadamente 30.000m3 de volume total. Considerando a maré, tem-se que até um igual volume de água entra e sai da Enseada a cada dia). Nestas condições, o processo desta concretização da invenção proporciona, portanto, a remoção de 1 tonelada de DBO da Enseada a cada 30 dias. Com a gradual redução da DBO das águas da Enseada, a capacidade volumétrica de recuperação aumenta proporcionalmente, até que todo o volume da Enseada seja completamente recuperado. Tudo isso a um consumo energético externo aproximado de 7,5kW/dia (sem uso de painéis solares ou turbinas eólicas).
[0141] De se ressaltar que a tecnologia da invenção proporciona o ajuste da dissolução de gases no líquido proporcionalmente à demanda de oxigénio no local e/ou ao tempo desejado de recuperação - o mesmo sendo válido para áreas maiores ou DBOs maiores.
[0142] Alternativamente, é utilizado um equipamento da invenção de acordo com a figura 17, com quatro estágios, compreendendo colméias com 52,5 cm de largura, 7 cm de profundidade e 200cm de comprimento (ou duas colmeias com a metade da dimensão cada uma) e o corpo rígido tendo formato de tronco cónico com 200cm de comprimento, 100cm de altura e 150cm de largura na base. Referida concretização de equipamento tem capacidade de aeração completa, ou saturação completa de água com o oxigénio do ar, de 1 m3/s de água. Para tanto, a demanda energética é da ordem de 10HP ou 7,5kW quando usado um ou mais soprador(es) movido(s) a energia elétrica externa. Esta configuração proporciona a dissolução de 38, 6g de O2/s, 138,9 kg de O2/h, ou 3,33 ton de O2/dia. Considerando alternativamente uma DBO média de 50 mg/L nas águas que chegam à Enseada do Bom Jesus, neste regime de operação a quantidade de oxigénio devolvida à referida Enseada equivale ao tratamento de aproximadamente 66.800 m3 de água (com DBO 50) por dia. Em outras palavras, nestas condições o processo da invenção proporciona o suprimento de toda a demanda bioquímica de oxigénio (DBO) de todo o volume que entra na referida enseada diariamente, sobrando ainda a capacidade adicional de suprimento de oxigénio suficiente para a remoção de 1 ,8 ton de DBO por dia (a referida Enseada tem aproximadamente 30.000m3 de volume total. Considerando a maré, tem-se que até um igual volume de água entra e sai da Enseada a cada dia). Nestas condições, o processo desta concretização da invenção proporciona, portanto, a remoção de 1 ,8 toneladas de DBO da Enseada por dia. Com a rápida redução da DBO das águas da Enseada, a capacidade volumétrica de recuperação aumenta proporcionalmente, até que todo o volume da Enseada seja completamente recuperado. Tudo isso a um consumo energético externo aproximado de 10 HP ou 7,5kW (sem uso de painéis solares ou turbinas eólicas). Nesta concretização, como a capacidade de dissolução de oxigénio é substancialmente superior à demanda de oxigénio relacionada à carga orgânica que entra na referida Enseada, em poucos dias após a completa recuperação das condições aeróbicas na Enseada, a mesma passa a formar uma pluma de água aerada no seu entorno, irradiando a zona aeróbica para as áreas próximas no entorno da Ilha do Fundão. Essa abordagem, dada a baixa magnitude de energia demandada, viabiliza na prática a balneabilização deste e outras regiões congéneres. [0143] Consequentemente, os versados na arte saberão, a partir dos ensinamentos ora apresentados, que a tecnologia da presente invenção não apenas promove o aumento de eficiência e competitividade das empresas que atuam no segmento de saneamento ambiental, mas também a revitalização de áreas cuja atividade económica está estagnada parcial ou completamente por conta da degradação ambiental. O uso do equipamento e do processo da invenção, adaptados à cada situação que requeira aeração/oxigenação, em diferentes escalas, proporciona para a recuperação de corpos líquidos como a despoluição de parte(s) da Baía de Guanabara (e outros corpos como lagoas, lagos em parques etc). Os referidos corpos líquidos são amplamente favorecidos pelo equipamento ou processo da invenção, que proporciona ambiente saudável e aeróbico com baixo consume energético.
[0144] O presente exemplo também contribui no estudo paramétrico e na demonstração de prova de princípio em corpos de água de maior volume. As tecnologias aqui descritas são igualmente aplicáveis a situação em água salgada (região costeira e lagoas, criação de crustáceos) quanto de água doce (lagos, criação de peixes em água doce, águas usadas).
Exemplo 9. Equipamento e Processo para a Recuperação da Lagoa Rodrigo de Freitas, Rio de Janeiro
[0145] A Lagoa Rodrido de Freitas tem volume de aproximadamente 5 milhões de m3 de água, substancial recebimento de água de rios das bacias de seu entorno e também tem comunicação com o mar, havendo momentos, devido às marés e/ou o controle do canal do Jardim de Alah, em que há fluxo de entrada da água do mar ou de saída pelo referido canal.
[0146] A Lagoa Rodrigo de Freitas é conhecida por seus episódios de mortandade de peixes, o que impacta a vida dos pescadores da região, os moradores do entorno e o potencial turístico, e lazer e esportes. Este fenómeno tem sido objeto de variados estudos e projetos para resolver este e outros problemas relacionados à contaminação de suas águas. A carga orgânica que chega à Lagoa devido a despejos clandestinos ou situações de fortes chuvas não é completamente mobilizada pelos organismos que ali vivem, resultando na estratificação de suas águas. Enquanto na superfície a aeração devido aos ventos é substancial, em zonas mais profundas a quantidade de oxigénio dissolvido cai drasticamente, havendo várias zonas contendo lodo com matária orgânica em regime essencialmente anaeróbico. Dependendo das condições climáticas, regimes de chuvas, ventos e despejos, a situação pode ficar crítica ou próxima do crítico. Dentre diversas razões, uma em especial contribui para esse quadro: a incompatibilidade entre a quantidade de carga orgânica que chega à Lagoa e sua capacidade de mobilizá-la, devido à pouca disponibilidade de oxiênio dissolvido, especialmente nas zonas mais profundas.
[0147] Esta concretização do processo da invenção foi desenvolvida para a recuperação de ambiental de uma região do referido corpo líquido e faz uso de 2 equipamentos da invenção como o ilustrado na figura 9 ou 14, com capacidade de saturação completa com oxigénio em 1200 L de água por minuto, cada um conectado a uma bomba de ar 0,5 HP (SNatural, modelo CV- 51 M) com capacidade de insuflar 1200 L/min de ar. As bombas/sopradores de ar são ligados na rede de energia do entorno da Lagoa. Opcionalmente, o suprimento de energia de cada bomba é auxiliado por quatro painéis solares Modelo Yingli 250, com capacidade de 250W cada um, que alimentam uma bateria durante o dia, sendo descarregada durante a noite para almentar a bomba de ar; ou por um pequena turbinas eólica de geração de energia, modelo Enersud Gerar 246, com capacidade de 1 kW.
[0148] Operando somente por 8 horas durante a noite (das 10 às 6), que é o momento mais crítico da concentração de oxigénio dissolvido (não produzido O2 pelas algas à noite), os equipamentos desta concretização da invenção proporcionam a dissolução de 1 1 ,1 kg O2 /noite, o suprimento equivalente à remoção diária de 1 1 ,1 kg de DBO a um custo energético de 1 HP ou 0,75kW.
[0149] Conforme ilustrado na figura 18, o equipamento da invenção proporciona o deslocamento de líquido do fundo da lagoa e sua completa aeração, sendo o líquido aerado devolvido ao fundo, ou seja, justamente a região mais crítica e com dificuldade de aeração natural, onde ademais são depositados os sedimentos, que são têm pouca capacidade de mobilização devido ao ambiente pouco aerado.
[0150] Nesta concretização, o equipamento da invenção proporciona a alteração da direção do fluxo de líquido, de forma que o operador escolhe para qual lado será formada uma corrente de líquido e em que momento. Esta característica técnica adicional do equipamento da invenção proporciona um processo de inversão de fluxo de líquido, que é particularmente útil na aeração deste corpo líquido que é sujeito à maré, à influência de entradas de cargas orgânicas localizadas, bem como para facilitar a desobstrução de equipamento ou partes dele com plásticos e outros materiais sólidos que eventualmente entrem em contato com o equipamento, ou seja, o equipamento é "auto- limpante", proporcionando substanciais vantagens de controle de processo.
[0151] Além disso, conforme ilustra a figura 19, cada unidade do equipamento da invenção, quando equipado com 5 tubulações de entrada e 5 de saída de líquido, proporciona uma grande área de influência ou formação de plumas de água aerada de acordo com a disposição dos tubos. Usando-se tubos de 50 m cada em um equipamento de capacidade de 1000L/min de fluxo, 200L/min passam por cada tubo, proprorcionando uma área de influência de um raio de até 200m no entorno. Essa recuperação é particularmente útil para a revitalização da área e para beneficar as práticas esportivas em seu entorno.
[0152] Um equipamento com esta configuração, instalado junto à Namoradeira da Lagoa, opera submerso, sem prejuízo visual, sendo operado preferencialmente à noite, proporcionando a manutenção de uma região de maior concentração de oxigénio dissolvido em seu entorno. Isso é viabilizado tanto pela capacidade de dissolução de oxigénio na água quanto devido ao ajuste da direção de fluxo de líquido nas tubulações, feito de acordo com o fluxo de água (influenciado pelos ventos e/ou condições de fluxo no canal do Jardim de Alah). [0153] Essa abordagem, dada a baixa magnitude de energia demandada, viabiliza na prática a balneabilização de áreas específicas da Lagoa ou de toda a Lagoa, dependendo da quantidade, especificação dos equipamentos e localização dos mesmos.
Exemplo 10: Processo de Tratamento de Corpo Líquido incluindo a seleção de microrganismos do próprio meio, enriquecimento dos mesmos e retorno ao corpo líquido
[0154] Uma concretização da invenção é voltada especificamente a resolver um problema regulatório, que frequentemente impossibilita o tratamento de cursos d' agua, como lagos, lagoas, rios, canais, braços de rios ou do mar, baías etc. A dificuldade docorrente da proibição da introdução de microrganismos exógenos em tais corpos, por seu possível e/ou desconhecido impacto ambiental, é resolvida pelo uso do equipamento da invenção junto a tais corpos d'água. Fazendo-se referência à figura 23, tem-se que uma concretização do equipamento da invenção consiste de uma unidade flutuante
(230), também representada pelo símbolo compreendendo: uma bomba de ar (231 ) conectada por tubulação a um ou mais dispositivo(s) (232) formador(es) de filmes finos de líquido; uma bomba de água (233) conectada por tubulação a um ou mais dispositivo(s) (234) formador(es) de microbolhas e/ou de filmes finos de líquido, referido(s) dispositivo(s) (234) dotado(s) de tomada de ar junto à superfície do líquido, sendo também indicada a tubulação (235) de entrada de líquido na bomba (233); um controlador (236) de acionamento das bombas, opcionalmente ligado a um gerador a diesel de eletricidade; um painel solar (237) ligado ao controlador (236) e/ou às bombas (231 , 233); uma turbina eólica (238) de geração de energia, ligada ao controlador (236) e/ou às bombas (231 , 233); e uma representação esquemática da linha d'água (239).
[0155] A figura 24 mostra uma representação esquemática de uma concretização do equipamento da invenção, consistindo de uma outra unidade flutuante (240) compreendendo: uma bomba de ar (241 ) conectada por tubulação a um ou mais dispositivo(s) (242) formador(es) de filmes finos de líquido; um subsistema ex-situ (243) de enriquecimento de microrganismos, para incremento substancial da quantidade de microrganismos previamente existentes no corpo líquido e sua reintrodução (244), proporcionando redução da quantidade de energia necessária para a aeração no corpo líquido requerida para o crescimento dos microrganismos (o crescimento ex-situ economiza energia e proporciona crescimento mais substancial); um controlador (245) de acionamento das bombas, opcionalmente ligado a um gerador a diesel de eletricidade; um painel solar (247) ligado ao controlador (245) e/ou à bomba (241 ) ou subsistema ex-situ de enriquecimento (243); uma turbina eólica (248) de geração de energia, ligada ao controlador (245) e/ou à bomba (241 ) ou subsistema ex-situ de enriquecimento (243); e uma representação esquemática da linha d'água (249).
[0156] Descrito em mais detalhe na figura 25 é o subsistema ex-situ de enriquecimento, para subsequente ou concomitante introdução dos microrganismos nele cultivados ao corpo líquido. São indicados: reator (250) para enriquecimento ex-situ de microrganismos; entrada de ar (251 ) no reator; filtro de ar (252), opcionalmente incluindo também um dispositivo gerador de microbolhas de ar; saída de gases (253) do reator; motor agitador (254); pás agitadoras (255); saída (256) do mosto fermentado no reator, rico em microrganismos; entrada (257) de fluido para controle da temperatura na camisa do reator; saída (258) de fluido de controle da temperatura na camisa do reator; e sonda (259) indicadora de parâmetros físico-químicos no reator, opcionalmente sendo ligado ao controle de entrada de fluido para controle de temperatura e/ou a outro elemento de controle do reator.
[0157] Nas condições convencionais no corpo líquido, a concentração do microrganismo de interesse é algumas ordens de magnitude inferior àquela obtida no reator (250), que proporciona o enriquecimento ao menos 1000 vezes maior da concentração do microrganismo de interesse. Nestas condições, o controle da população microbiana no corpo líquido é feito pela adição do conteúdo do cultivo ex-situ em uma proporção de 1 /1000 (ou ainda menor, dependendo das condições de operação de reator). É importante ressaltar que esta não é a única vantagem da presente invenção: a obtenção de elevados títulos de microrganismos fora do corpo líquido e sua subsequente reintrodução, em elevada quantidade e alto estado de ativação metabólica, potencializa a eficiência do processo de bioremediação pelas razões já indicadas neste relatório. Consequentemente, a quantidade de energia requerida para introduzir gases em tal volume menor é também substancialmente menor. Assim, a obtenção de elevadas concentrações de microrganismos no subsistema ex-situ do equipamento da invenção é viabilizada com substancial redução da energia, especialmente quando comparada à energia requerida para a introdução de gases (e semelhante concentração de microrganismos) em todo o corpo líquido.
Exemplo 11. Equipamento e Processo para a melhoria da qualidade da água de estações de tratamento de efluentes
[0158] Nesta concretização, é descrito um equipamento e um processo para a melhoria da qualidade da água de estações de tratamento de efluentes. No presente exemplo, é descrita a competa saturação da água de saída de uma estação de tratamento de efluentes, para reduzir o impacto ambiental na área onde o liquido é descartado e/ou para viabilizar ou melhorara as condições de reúso da referida água.
[0159] Tomando-se como exemplo a Estação da de Tratamento de Efluentes da Alegria, Rio de Janeiro, tem-se que a vazão atual é de 1 ,5 a 2,5 m3/s. Como o teor de matéria orgânica é de 0,2%, pode-se considerar que o volume de líquido que entra é igual ao volume que sai (desprezando evaporações). Como praticamente nenhuma estação de tratamento de efluentes nesta escla remove a totalidade da matéria orgânica, pode-se usar a premissa de que a água que sai da estação tem baixa concentração de oxigénio dissolvido.
[0160] O processo desta concretização da invenção proporciona a completa saturação da água com oxigénio, de forma que a água obtida após o referido processo é saturada, rica em oxigénio, beneficiando a região da Baia da Guanabara onde é atualmente despejada. Alternativamente, viabiliza também seu reúso. Esta concretização do processo da invenção faz uso de dois equipamentos da invenção de acordo com a figura 17, com quatro estágios, compreendendo colméias com 52,5 cm de largura, 7 cm de profundidade e 200cm de comprimento (ou duas colmeias com a metade da dimensão cada uma) e o corpo rígido tendo formato de tronco cónico com 200cm de comprimento, 100cm de altura e 150cm de largura na base. Referida concretização de equipamento tem capacidade de aeração completa, ou saturação completa de água com o oxigénio do ar, de 1 m3/s de água cada equipamento.
[0161] Para tanto, a demanda energética total é da ordem de 20HP ou 15kW quando usado um ou mais soprador(es) movido(s) a energia elétrica externa. Esta configuração proporciona a dissolução de 77,2 g de O2/s, ou 6,67 ton de 02/dia. Alternativamente, os equipamentos dessa concretização da invenção aproveitam a energia do fluxo e desnível de água disponível na zona de saída da referida estação. Especificamente, o desnível e/ou o fluxo de água é convenientenmente usado como força motriz para a sucção ou injeção de gases no interior dos equipamentos da invenção, a partir do efeito Venturi, conhecido dos versados na técnica. Assim, nesta concretização do equipamento da invenção o refeido dispositivo formador de bolhas convencionais de gás na região inferior do equipamento não é um tubo perfurado conexto a uma bomba sopradora de ar, mas o final de um tubo de Venturi configurado para succionar ar da atmosfera, aproveitando a energia do fluxo de água e/ou do desnível de água disponíveis no local.
[0162] Nesta concretização, como a capacidade de dissolução de oxigénio é muito grande, em poucos dias a água passa a formar uma pluma de água aerada no seu entorno, irradiando a zona aeróbica para as áreas próximas no entorno da Estação, potencialmente influenciando positivamente a comunidade que habita a Ilha do Fundão. Essa abordagem, dada a baixa magnitude de energia demandada, viabiliza na prática a balneabilização deste e outras regiões congéneres.
[0163] Consequentemente, os versados na arte saberão, a partir dos ensinamentos ora apresentados, que a tecnologia da presente invenção não apenas promove o aumento de eficiência e competitividade das empresas que atuam no segmento de saneamento ambiental, mas também a revitalização de áreas cuja atividade económica está estagnada parcial ou completamente por conta da degradação ambiental. O uso do equipamento e do processo da invenção, adaptados à cada situação que requeira aeração/oxigenação, em diferentes escalas, proporciona uma contribuição para a recuperação de corpos líquidos e a despoluição de parte(s) da Baía de Guanabara. Os referidos corpos líquidos são amplamente favorecidos pelo equipamento ou processo da invenção, que proporciona ambiente saudável e aeróbico com baixo consumo energético.
[0164] O presente exemplo também contribui como prova de conceito emu ma estação de tratamento de elfuentes, podendo ser subsequentemente usado o mesmo princípio no próprio tratamento do efleunte, que requer elevada quantidade de aeração e é atualmente uma demanda energética considerável. Estimativas feitas a partir da consideração da carga orgânica total (DBO vs volume) indicam que a tecnologia da presente invenção proporciona substancal redução do consumo de energia para a dissolução de oxigénio nesta e em outras estações de tratamento de efluentes, nas quais a demanda de nergia para a aeração corresponde a aproximadamente 50% de toda a demanda de energia da estação.
Exemplo 12. Economia de Tempo e/ou de Energia na Recuperação de Áreas Degradadas
[0165] Um sistema de recuperação de áreas degradadas dotado de um equipamento de acordo com a presente invenção é particularmente útil para a operação energeticamente eficiente. Além de reduzir a quantidade de energia requerida para um mesmo patamar de tratamento, referidos equipamento e processo proporcionam redução do tempo necessário à bioremediação ou remoção de carga orgânica.
[0166] Adicionalmente, o equipamento e o processo da invenção são ajustáveis à disponibilidade de energia, de forma síncrona ou anti-síncrona aos ciclos de disponibilidade de energia no sistema elétrico que os supre. Neste contexto, uma vez que o tempo médio de degradação de carga orgânica com o uso do equipamento da invenção é muito menor que o tempo de correspondente em sistemas convencionais, o processo da invenção viabiliza maior flexibilidade no ajuste da operação de acordo com o tempo de ciclo de demanda energética no sistema elétrico onde o sistema está conectado - dado que os meios para ajustar a quantidade de energia introduzida no sistema desempenham substancial alteração dos custos ou riscos energéticos de operação tanto dos equipamentos de bioremediação quanto do sistema elétrico no qual os mesmos são conectados.
[0167] A aplicação do conceito inventivo da presente invenção adicionalmente proporciona, portanto, ajuste do uso de energia no equipamento da invenção para que os momentos de maior consumo de energia do equipamento ocorram em momentos de maior disponibilidade ou menor custo de energia oferecida pelo operador do processo de bioremediação. Do ponto de vista do operador do sistema, a invenção é particularmente útil para diminuir a quantidade de energia consumida, podendo tal redução ser ampliada em momentos de pico de demanda, aumentando a segurança e reduzindo os riscos de falhas no sistema elétrico.
[0168] O uso da invenção também proporciona a redução do consumo de energia em momentos de pico, por que o equipamento da invenção pode ter o consumo de energia reduzido em tais momentos até um mínimo que não comprometa o patamar de remoção de carga orgânica atingível pelos sistemas convencionais. Estes efeitos técnicos da invenção são altamente relevantes e de difícil obtenção pelos sistemas convencionais, trazendo substanciais vantagens: do ponto de vista do operador do sistema elétrico, o uso da invenção aumenta a eficiência do sistema elétrico como um todo, notadamente em sistemas elétricos baseados em usinas hidrelétricas, nas quais a energia produzida não é armazenada, ao menos não adequadamente ou substancialmente. A invenção contribui, portanto, para reduzir o consumo de energia.
[0169] Além disso, também proporciona a redução, seletiva no tempo, do impacto de seu consumo de energia sobre sistemas elétricos, que podem assim ser operados com menos variação de demanda em momentos críticos - como é o caso de picos típicos de demanda que são critério de dimensionamento de sistemas de energia seja inferior àquele observado sem o uso da invenção.
Exemplo 13. Equipamento e Processo para a Conservação ou Melhoria da Qualidade da Água em um Rio ou Lagoa usando energia alternativa
[0170] A grave crise hídrica mencionada neste relatório não é somente relacionada à disponibilidade de água em quantidade, mas também em qualidade. Fontes de água cujo uso não é considerado atualmente, como águas usadas ou águas de rios poluídos podem ser ao menos parcialmente tratadas no leito do próprio rio mediante oxigenação com o equipamento da invenção.
[0171] Nesta concretização, ilustrada na figura 29, o equipamento e o processo da invenção são utilizados para o aumento do nível de oxigénio dissolvido e da qualidade da água de um rio ou lagoa ao lado de uma autopista ou avenida. São mostrados: três unidades do equipamento da invenção (290), cada um com capacidade de aeração de 2400 L de água por minuto, colocados no corpo líquido; a representação esquemática de uma bomba de ar ou compressor de ar (291 ) com capacidade de insuflamento de ar de 7200 L de ar por minuto, opcionalmente incluindo um controlador (292) de acionamento/ajuste da bomba/compressor para momentos de demanda de aeração no corpo líquido; a tubulação de ar (293) que conecta a bomba/compressor de ar (291 ) aos equipamentos (290) para diluição massiva de ar no líquido; e uma lombada (294) geradora de energia elétrica para alimentar a bomba (291 ). A lombada (294) opcionalmente é uma lombada pneumática que alimenta o compressor (291 ) diretamente com ar.
[0172] O equipamento desta concretização da invenção tem capacidade de dissolução de ar proporcional à quantidade de veículos que passa pela lombada a cada período. Cada conjunto de equipamentos desta concretização da invenção proporciona a dissolução de 100 kg de O2 por dia, sem consumo energético de fonte de alimentação externa. Essa quantidade de oxigénio proporciona o equivalente à remoção de 100kg de DBO por dia da água por conjunto. Para cada rio, considerando-se a vazão e a DBO lançada por dia no rio, calcula-se a quantidade de conjuntos de equipamentos desta concretização da invenção a cada trecho (distância) de pista de rodagem para proporcionar devolução de oxigénio dissolvido no corpo líquido de acordo com o parâmetro pretendido.
[0173] Neste contexto, importa ressaltar que a solução ora provida é sustentável energeticamente e praticamente não implica em custos operacionais (exceto por manutenção preventiva e/ou corretiva). Ademais, a capacidade do equipamento da invenção aumenta proporcionalmente ao aumento do fluxo de veículos, o que demonstra que a solução de invenção não só é sustentável no momento como tende a se manter sustentável no tempo: quanto maior o fluxo de veículos, mais capacidade de oxigenação do corpo líquido proporciona o equipamento da invenção.
[0174] Os versados na arte saberão, a partir dos ensinamentos desta concretização da invenção, que diferentes configurações do equipamento (capacidade de insuflamento de ar) ou diferentes fluxos de veículos podem alterar substancialmente as proporções/capacidades ora exemplificadas.
Exemplo 14. Barco dotado de sistema de aeração para aproveitamento de energia para a conservação das águas onde navega
[0175] A figura 30 mostra uma representação esquemática de uma outra concretização da invenção, na qual a energia do motor de propulsão do barco é aproveitada para a geração de microbolhas e/ou filmes finos de líquido, dispensando, desta forma, o uso de outras bombas ou outras fontes de energia. Esta concretização da invenção viabiliza, na prática, a conversão de barcos e navios em unidades de devolução de oxigénio aos corpos líquidos por onde navegam. São indicados: São indicados: em A) um barco (300) com motor de centro e (301 ) o fluxo hidrodinâmico gerado na região posterior do barco, ou seja, após o efeito de propulsão. Em B) é mostrada uma representação esquemática desta concretização da invenção, na qual um barco (300) com motor de centro compreende um dispositivo gerador de microbolhas e/ou de filmes finos de líquido (302) fixado em região posterior à hélice do barco, de forma a aproveitar o fluxo hidrodinâmico gerado pela movimentação do barco. O movimento do líquido dentro do dispositivo provoca uma sucção, havendo um respiro acima da superfície do líquido por onde o ar entra no dispositivo (302) provocando a formação de microbolhas e/ou filmes finos de líquido na água (303), aerando-a.
Exemplo 15 - Dissolução massiva de COg gerado em plantas industriais
[0176] O equipamento e processo de invenção é também adequado ao uso para a dissolução de CO2 gerado em plantas industriais, a exemplo das fábricas de cimento. Estima-se que além de consumir em torno de 2% de toda a energia global, as cimenteiras também são responsáveis por 5% da emissão de CO2 de todo o mundo. A produção de uma tonelada de cimento gera entre 600 kg a 1 ton de CO2, sendo também produzidos óxido de enxofre, gases contendo nitrogénio, monóxido de carbono, todos eles poluentes. O equipamento da invenção é também útil para a dissolução de tais gases em líquidos. Nesta concretização, parte dos gases contendo dióxido de carbono oriundo de fábrica de cimento são dissolvidos em água, em um tanque de cultivo de algas, que utilizam o CO2 para seu crescimento e produzem oxigénio, reduzindo com isso o impacto ambiental da fábrica de cimento. As algas, fixam o CO2 dissolvido e o utilizam para a produção de substâncias de interesse económico. Neste contexto, é importante salientar que em temperatura ambiente o CO2 é 26 vezes mais solúvel em água do que o O2, notadamene em condições de teor ou pressão parcial aumentada como é o caso frequente de emissão de fábricas.
[0177] Fazendo-se uso de um equipamento como o ilustrado no exemplo 1 , com capacidade de troca de gases em 1 200 L de água por minuto (com 1200 Litros de gases por minuto), saturando o referido volume de água com o CO2 presente no referido gás, tem-se que 250 g de CO2 são dissolvidos por minuto na água.
[0178] Fazendo-se uso de um equipamento de quarto estágios como o ilustrado no exemplo 17, com capacidade de troca de gases em 1 m3/s de água por minuto (com 4m3 de gases por segundo), satura-se o referido volume de água com o CO2 presente no gás, de forma que tem-se que 86,5 ton de CO2 são dissolvidos por dia na água.
[0179] Essas concretizações são idealmente feitas em um processo no qual são cultivadas algas que consomem o CO2 e o convertem em outras substâncias de interesse económico.
[0180] O depositante, ao depositar este pedido de patente perante o órgão competente/garante, busca e pretende: (i) nomear os inventores em respeito a seus respectivos direitos morais; (ii) indicar inequivocamente que é possuidor do segredo industrial e titular de qualquer forma de propriedade intelectual que dele derivar e o depositante desejar; (iii) descrever em detalhes o conteúdo objeto do segredo, comprovando sua existência nos planos físico e jurídico; (iv) estabelecer a relação entre os exemplos/concretizações e o conceito inventivo segundo a cognição do depositante e seu contexto, para demonstrar com clareza o alcance de seu bem intangível tutelado e/ou tutelável; (v) requerer e obter os direitos adicionais previstos para as patentes, se o depositante optar por prosseguir com o procedimento administrativo até o final.
[001] A eventual futura publicação do pedido de patente não constitui, em si, autorização de uso comercial por terceiros. Ainda que o conteúdo passe a integrar o mundo físico acessível a terceiros, a publicação do pedido de patente nos termos da lei não elimina o status jurídico de segredo, servindo apenas e tão somente ao espírito da Lei para: (i) indicar inequivocamente seu possuidor/titular e inventor(es); (ii) cientificar terceiros quanto à existência do referido segredo industrial, do conteúdo para o que se requer proteção patentária e da data de seu depósito, a partir da qual será iniciado o prazo de vigência da exclusividade patentária; e (iii) auxiliar no desenvolvimento tecnológico e económico do País, a partir da autorização do uso do segredo única e excepcionalmente para fins de estudos e/ou desenvolvimento de novas melhorias, evitando com isso reinvestimento paralelo por terceiros no desenvolvimento do mesmo bem.
[0181] Desde logo adverte-se que eventual uso comercial requer autorização do possuidor/titular e que o uso não autorizado enseja sanções previstas em Lei. Neste contexto, dado o amplo detalhamento segundo o qual o conceito e os exemplos foram revelados pelo depositante, os versados na arte poderão, sem muito esforço, considerar outras formas de concretizar a presente invenção de formas não idênticas às meramente exemplificadas acima. Entretanto, tais formas são ou poderão ser consideradas como dentro do escopo de uma ou mais das reivindicações anexas.

Claims

Reivindicações
1 . Equipamento para diluição massiva de gases em líquidos caracterizado por compreender:
- um corpo rígido contendo uma zona de maior área de seção transversal na região inferior e uma zona de menor área de seção transversal na região superior, o referido corpo rígido compreendendo uma ou mais região(ões) de entrada de líquido na parte inferior; uma ou mais região(ões) de saída de líquido na parte superior e/ou inferior; e uma ou mais região(ões) de saída de gases na parte superior, o referido corpo rídigo contendo, em seu interior:
- um ou mais dispositivo(s) formadores de bolhas convencionais de gás na região inferior;
- uma ou mais colmeias formadoras de filmes finos de líquido, referidas colmeias dotadas de uma pluralidade canais internos com área de seção transversal ainda mais reduzida em relação à zona de menor área de seção transversal na região superior, o líquido no qual o gás foi dissolvido sendo extravasado após passar pela referida colméia.
2. Equipamento de acordo com a reivindicação 1 caracterizado pelo fato de que o referido corpo rígido adicionalmente compreende uma parede de separação em seu interior, dividindo o corpo rígido verticalmente ao menos parcialmente em duas regiões.
3. Equipamento de acordo com a reivindicação 1 ou 2 caracterizado pelo fato de adicionalmente compreender meios para inverter a direção do fluxo de líquido que passa por seu interior.
4. Equipamento de acordo com a reivindicação 3 caracterizado pelo fato de o referido meio para inverter a direção de fluxo é selecionado dentre: rotação de um tubo perfurado para uma ou outra áera interna do equipamento da invenção; uso de barreira física que muda de posição, para desviar o fluxo de gases para uma ou outra área interna do equipamento da invenção; uso de um tubo perfurado em cada área interna do equipamento, acionando seletivamente uma, outra ou ambas as áreas mediante válvulas; ou combinações dos mesmos.
5. Equipamento de acordo com qualquer uma das reivindicações 1 -4 caracterizado por adicionalmente compreender um ou mais conjuntos de tubulações externas, conectados à entrada e/ou à saída de líquido.
6. Equipamento de acordo com qualquer uma das reivindicações 1 -5 caracterizado pelo fato de adicionalmente compreender um meio de sucção ou injeção de gases para seu interior, cuja força motriz é um fluxo de líquidos ou de desnvível em qualquer corpo líquido.
7. Equipamento de acordo com qualquer uma das reivindicações 1 -6 caracterizado pelo fato de adicionalmente compreender: (i) um ou mais dispositivo(s) de dissolução de gases em líquidos, selecionado dentre geradores de microbolhas, nanobolhas, filmes finos de líquido, ou combinações dos mesmos; e/ou (ii) um ou mais subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido.
8. Equipamento de acordo com qualquer uma das reivindicações 1 -7 caracterizado pelo fato de que o(s) referido(s) subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido é(são) selecionado(s) dentre: (iia) um ou mais sistemas de controle de acionamento de bombas, operando de acordo com a disponibilidade de energia e/ou seu custo, ou ainda de acordo com ciclos climáticos, biológicos ou geofísicos; (iib) um ou mais sistema(s) de aproveitamento de energia cinética ou potencial disponível, incluindo gravidade, fluxos de gás e/ou de líquido existentes, como por exemplo desnível de água, fluxo de rios ou de motores de barcos, bombas de recalque e/ou dispositivos pneumáticos; (iic) um ou mais subsistema(s) de geração de energia, como eólica, solar, de fluxo de maré, ou transformação química, entre outros; e/ou (iid) um ou mais subsistemas ex situ de enriquecimento de microrganismos, que proporciona a redução da demanda energia para a dissolução de gases no líquido em questão.
9. Equipamento de acordo com qualquer uma das reivindicações 1 -8 caracterizado por adicionalmente compreender meios para flutuação e/ou uma ou mais bombas de gás e/ou de líquido.
10. Processo para a diluição massiva de gases em líquidos caracterizado por compreender o uso do equipamento da reivindicação 1 .
1 1 . Processo de acordo com a reivindicação 10 caracterizado por compreender a dissolução do oxigénio do ar; de CO2; de ozônio e/ou outros gases; e combinações dos mesmos.
12. Processo de acordo com a reivindicação 10 ou 1 1 caracterizado pelo fato de adicionalmente compreender: (i) o uso de um ou mais dispositivo(s) de dissolução de gases em líquidos, selecionado dentre geradores de microbolhas, nanobolhas, filmes finos de líquido, ou combinações dos mesmos; e/ou (ii) o uso de um ou mais subsistema(s) para otimizar energeticamente a introdução/dissolução de gás no líquido.
PCT/BR2016/050092 2015-04-29 2016-04-28 Equipamento e processo para dissolução massiva de gases em líquidos WO2016172777A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112017023185A BR112017023185B1 (pt) 2015-04-29 2016-04-28 equipamento e processo para dissolução massiva de gases em líquidos
US15/570,224 US10654732B2 (en) 2015-04-29 2016-04-28 Equipment and process for massive dissolution of gases in liquids
EP16785695.4A EP3290104B1 (en) 2015-04-29 2016-04-28 Equipment and process for massive dissolution of gases in liquids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BR102015009753 2015-04-29
BRBR102015009753-0 2015-04-29
BRBR102016003779-4 2016-02-22
BR102016003779-4A BR102016003779A2 (pt) 2016-02-22 2016-02-22 Equipment and process for the massive dilution of gases in liquids

Publications (1)

Publication Number Publication Date
WO2016172777A1 true WO2016172777A1 (pt) 2016-11-03

Family

ID=57197935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/050092 WO2016172777A1 (pt) 2015-04-29 2016-04-28 Equipamento e processo para dissolução massiva de gases em líquidos

Country Status (5)

Country Link
US (1) US10654732B2 (pt)
EP (1) EP3290104B1 (pt)
BR (1) BR112017023185B1 (pt)
PT (1) PT3290104T (pt)
WO (1) WO2016172777A1 (pt)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093523A1 (zh) * 2018-11-05 2020-05-14 无锡小天鹅电器有限公司 微气泡发生器和衣物处理装置
CN109592805A (zh) * 2019-01-24 2019-04-09 刘景典 一种带有多重曝气机构的自循环式曝气池
CN112678981B (zh) * 2021-03-15 2021-06-22 山东恒基农牧机械有限公司 一种养殖场污水多功能处理设备
CN115739398B (zh) * 2022-11-11 2024-06-21 昆明理工大学 一种实验室微纳米气泡浮选设备及其浮选方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245556A (en) * 1990-06-23 1992-01-08 Dunlop Ltd Fluid supply device
JP2003334594A (ja) * 2002-05-21 2003-11-25 Mitsubishi Heavy Ind Ltd 水中曝気装置
US20100044322A1 (en) * 2007-03-30 2010-02-25 Tetsuhiko Fujisato Aeration unit, aeration apparatus equipped therewith and method of aeration

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790141A (en) * 1971-07-19 1974-02-05 Creusot Loire Apparatus for producing a flow in a liquid mixture
NL151265C (nl) * 1972-06-21 1982-04-16 Ballast Nedam Groep Nv Afscheidingsinrichting geschikt voor het zuiveren van een verontreinigde vloeistof, waarin de verontreiniging bestaat uit een olie die lichter is dan de gezuiverde vloeistof.
US4231863A (en) * 1979-04-26 1980-11-04 Sutphin Eldon M Method and apparatus for treating water
FR2473351A1 (fr) * 1980-01-09 1981-07-17 Degremont Sa Dispositif d'introduction de gaz dans un liquide
US5091315A (en) * 1985-09-03 1992-02-25 The Board Of Trustees Of Stanford University Bioconversion reactor
AU7208187A (en) * 1986-04-01 1987-10-20 Iida, K. Aeration type water treatment plant
DE3619757A1 (de) * 1986-06-12 1987-12-17 Metz Mannheim Gmbh Fischbecken zur intensiv-fischmast und verfahren zum betrieb eines derartigen fischbeckens
DE69001250T2 (de) * 1989-06-13 1993-10-14 Farm Fish Srl Vorrichtung für die neutralisation von organischen stoffen und für die beseitigung von phosphor enthaltenden verbindungen in wasserbecken.
DE4002694A1 (de) * 1990-01-26 1991-08-22 Wilke Dr Rer Nat Engelbart Verfahren und vorrichtung zum begasen von wasser in aquakulturanlagen
JPH04281895A (ja) * 1991-03-08 1992-10-07 Japan Organo Co Ltd 生物学的処理装置
AUPP439398A0 (en) 1998-06-29 1998-07-23 Bellamy, Kenneth M. Method of treating waste water
AU2001274610A1 (en) 2000-06-23 2002-01-02 Ryosaku Fujisato Fine air bubble generator and fine air bubble generating device with the generator
US6676837B2 (en) 2001-02-07 2004-01-13 Jimmie A. Keeton, Jr. Solar aeration system
CA2514240C (en) 2003-02-13 2012-04-10 Masayuki Fukagawa Method, device, and system for controlling dissolved amount of gas
US7255332B2 (en) 2004-05-25 2007-08-14 The Board Of Trustees Of The University Of Arkansas System and method for dissolving gases in liquids
JP2007111573A (ja) * 2004-06-08 2007-05-10 Tetsuhiko Fujisato 曝気方法とその装置とそのシステム
US7324046B1 (en) 2005-03-25 2008-01-29 The Boeing Company Electronic beam steering for keyhole avoidance
WO2007125996A1 (ja) 2006-04-26 2007-11-08 Ikeda, Yoshiaki 水質改善器及び水質改善装置
FR2914919B1 (fr) 2007-04-13 2011-09-16 Orege Procede et dispositif d'epuration d'effluents liquides.
EP2519641B1 (en) * 2009-09-06 2014-11-12 Lanzatech New Zealand Limited Improved fermentation of gaseous substrates
EP2558189A4 (en) 2010-04-16 2013-10-02 Univ Singapore MICRO-BUBBLE GENERATOR
SI24084A (sl) 2013-05-17 2013-11-29 Zajić Tina Potopna vpihovalna turbina

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245556A (en) * 1990-06-23 1992-01-08 Dunlop Ltd Fluid supply device
JP2003334594A (ja) * 2002-05-21 2003-11-25 Mitsubishi Heavy Ind Ltd 水中曝気装置
US20100044322A1 (en) * 2007-03-30 2010-02-25 Tetsuhiko Fujisato Aeration unit, aeration apparatus equipped therewith and method of aeration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290104A4 *

Also Published As

Publication number Publication date
US10654732B2 (en) 2020-05-19
EP3290104B1 (en) 2021-09-08
PT3290104T (pt) 2021-12-13
US20180134593A1 (en) 2018-05-17
EP3290104A4 (en) 2019-03-20
BR112017023185A2 (pt) 2018-07-31
EP3290104A1 (en) 2018-03-07
BR112017023185B1 (pt) 2020-04-14

Similar Documents

Publication Publication Date Title
CN108773970B (zh) 漂浮式综合水处理设备、水处理方法及该设备的反洗方法
US8298411B2 (en) System and method for reducing pollution in a body of water
WO2016172777A1 (pt) Equipamento e processo para dissolução massiva de gases em líquidos
US9328624B2 (en) Hydrocratic generator with membrane wall
CN107162206A (zh) 一种组合式人造水草设施净化水质的装置
BR102018068943B1 (pt) sistema para implantação ou despoluição e revitalização de lagos artificiais ou naturais
JP2010247132A (ja) 強制発泡型有機物混合液処理装置と処理方法
AU2003208968B2 (en) Disposal of waste fluids
CN207108602U (zh) 兼氧mbr一体化污水处理设备
JP2011177693A (ja) 気液混合装置
US20030173784A1 (en) Disposal of waste fluids
JP2008043882A (ja) 貧酸素化水質環境の改善処理方法及び改善処理装置
CN109293017A (zh) 一种漂浮式流体混合设备
BR102015009753A2 (pt) Equipment and process for conservation and / or recovery of liquid bodies
BR102016003779A2 (pt) Equipment and process for the massive dilution of gases in liquids
BR102017003701A2 (pt) equipamento e processo para a dissolução massiva de gases em líquidos
CN104528923A (zh) 水体净化系统
CN219259755U (zh) 一种湖泊水库水体净化强化装置
KR102551132B1 (ko) 수로 설치형 수질 정화 시스템
CN205710281U (zh) 一种用于处理有毒废水的新型分体式两相分配生物反应器
Tolstoy et al. The multifunctional power container. Water treatment
BR102014024143A2 (pt) rocesso híbrido de tratamento de águas oleosas pelo emprego simultâneo de câmaras de flotação e área alagada construída povoada por macrófitas flutuantes
WO2015188245A1 (pt) Equipamento e processo para modulação de consórcios microbianos
JPH03288592A (ja) 汚水の浄化装置
BR102015026121A2 (pt) Submarine slug treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017023185

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017023185

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171026