WO2016171333A1 - 표시 장치 - Google Patents

표시 장치 Download PDF

Info

Publication number
WO2016171333A1
WO2016171333A1 PCT/KR2015/007535 KR2015007535W WO2016171333A1 WO 2016171333 A1 WO2016171333 A1 WO 2016171333A1 KR 2015007535 W KR2015007535 W KR 2015007535W WO 2016171333 A1 WO2016171333 A1 WO 2016171333A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blue
display device
green
led
Prior art date
Application number
PCT/KR2015/007535
Other languages
English (en)
French (fr)
Inventor
박수희
정의철
이영기
Original Assignee
우리이앤엘 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우리이앤엘 주식회사 filed Critical 우리이앤엘 주식회사
Publication of WO2016171333A1 publication Critical patent/WO2016171333A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure relates to a display device as a whole, and more particularly to a display device with improved color gamut.
  • White LEDs based on light emitting diodes have been put into practical use as backlights for LCD-TVs, automotive headlamps, and general lighting, and demand is expected to expand rapidly.
  • a white light source for use as a display light source is required to have characteristics above a certain requirement in color coordinates, color temperature and color rendering index.
  • manufacturing methods of white LEDs using GaN or InGaN can be classified into four methods. There are two methods of using a single chip to obtain white color by applying fluorescent material on a blue LED chip or a NUV (near ultraviolet) LED chip, and two or three different colors of light using a multi chip. It can be divided into two ways to obtain white by combining LED chips that emit light.
  • the method of using a single chip to obtain a white color by applying a fluorescent material on a blue LED chip can simplify the packaging process and reduce power consumption. Most used.
  • This method combines a fluorescent material on one chip. For example, using a blue light emitted from a blue LED and a part of the light, Y 3 Al 5 O 12 : Ce 3 + (YAG: Ce) fluorescent material is excited. The white LED emitting white color is made by using the yellow light obtained by making it appear.
  • a combination of a near-ultraviolet LED and a fluorescent material that converts the near-ultraviolet to blue, green and red is configured to emit light similar to the light distribution of sunlight.
  • White light using such a blue LED chip and fluorescent material has high brightness, but the wide wavelength interval between blue and yellow makes it difficult to mass-produce white LEDs having the same color coordinates by color separation, and color temperature, which is an important factor in the light source for display devices. And color rendering index (CRI) are also difficult to control. Accordingly, attempts to compensate for these disadvantages by expanding the emission spectrum by adding a fluorescent material emitting a red color. With the recent availability of NUV LED chips, new alternatives are being explored for implementing white LEDs in a single chip method.
  • the method of applying blue, green, and red fluorescent material on NUV LED chip is because white light has a very wide wavelength spectrum like incandescent bulbs, so it is possible to secure excellent color stability and to control color temperature and color rendering index. It is believed to be a very good method for implementation. However, increasing NUV LED efficiency has been pointed out as a problem.
  • RGB red, green, and blue
  • This method has a problem such as unevenness of the operating voltage for each chip, a phenomenon in which the output of each chip changes according to the ambient temperature, and thus the color coordinates change. Therefore, it is suitable for special lighting purposes that require various colors to be produced by adjusting the brightness of each LED through circuit configuration rather than implementing a white LED.
  • Fluorescent material is a key material that directly affects high brightness and excellent color rendering index by converting LED light into visible light.
  • Fluorescent materials are organic and inorganic materials that absorb various forms of energy and are converted into energy of visible light.
  • oxide-based, sulfide-based, phosphate-based, selenide-based, and nitride-based compounds have been studied for applications as fluorescent materials for LEDs. Items that show the characteristics of fluorescent materials vary depending on the application field, but when used for LEDs, brightness, quantum efficiency, location (wavelength) of the appropriate light emitting band, stability to temperature and humidity, etc. are important. , Particle size distribution, minimization of impurities, single phase in crystal structure, good crystallinity, etc.
  • the recent development of fluorescent materials for white LEDs is focused on developing yellow or green fluorescent materials and red fluorescent materials that can be used in combination with blue LED chips.
  • 1 and 2 are US Patent No. as a drawing showing the luminescence spectrum of the LED disclosed in the 7,497,973 call, a blue LED chip (for example: Tb 2 91 Ce 0 09 Al 4 90 O 11 85:.... Ce 3 + ), A yellow fluorescence material, and a complex fluoride phosphor (e.g., K 2 [TiF 6 ]: Mn 4 + ) which emits red light, is shown.
  • a display device such as a liquid crystal display
  • the backlight is filtered so that light of a specific wavelength range is unnecessary or lost.
  • blue and red light have relatively narrow peak wavelength bands, but the wavelength bands are mixed from green light to yellow light.
  • a liquid crystal display device is a display device having various advantages such as small size, light weight, and low power consumption, and is used for various purposes such as a large flat-panel TV as well as a monitor for a notebook PC and a monitor for a desktop PC.
  • the display by the liquid crystal display itself is non-luminous and thus cannot be used in the absence of light.
  • a backlight assembly that is uniformly irradiated on the information display surface is mounted for the purpose of enabling use in a dark place.
  • the backlight assembly used in the liquid crystal display device is largely classified into two types. The first is an edge type backlight assembly that provides light at the side of the liquid crystal display and the second type is a direct backlight assembly that provides light directly at the rear of the liquid crystal display.
  • FIG. 14 is an exploded perspective view illustrating an example of a liquid crystal display including the general edge type backlight assembly described in Korean Patent Publication No. 10-1447244. For convenience of description, reference numerals have been changed.
  • the liquid crystal display device 1 includes a liquid crystal panel 10, a backlight assembly 20, a backlight assembly 20, and an upper cover 30 and a lower cover 40 for receiving the liquid crystal panel 10.
  • the backlight assembly 20 includes an optical film 21, a light source unit 22, a light guide plate 23, and a reflector 24.
  • Light sources used for the light source unit 22 include electroluminescence (EL), cold cathode fluorescent lamp (CCFL), hot cathode fluorescent lamp (HCFL), light emitting diode (LED), and the like. Among these, LEDs have low power consumption and excellent luminous efficiency, and thus their use is gradually increasing.
  • the light source unit using the LED is called an LED light source unit.
  • the LED light source unit 50 includes a substrate 51 and a plurality of LED packages 60.
  • the LED package 60 includes two LED chips 61 and 62 emitting different colors and an encapsulation portion 63 covering the LED chips 61 and 62.
  • the encapsulation portion 63 includes a phosphor 64, and the light excited by the phosphor 64 emits a color different from the color emitted from the LED chips 61 and 62.
  • the phosphor 64 is a blue light emitting LED chip 61. Excited by the blue light emitted from the () can emit red light.
  • a phosphor that is excited by blue light and emits red light is called a red phosphor.
  • the upper center area 70 of the LED light source unit 50 in which the plurality of LED packages 60 are arranged is mixed with red light, green light, and blue light, and white light appears, but the left area 71 shows red light and blue light,
  • the right region 72 has a color separation phenomenon in which green light appears.
  • Combinations of LED chips and phosphors emitting different colors may vary. For example, a combination of various LED chips and phosphors such that the LED chip 61 on one side emits blue light, the LED chip 62 on the other side emits red light, and the phosphor 64 emits green light. This is possible.
  • the upper center region 70 is a mixture of red light, green light and blue light to emit white light, but the left region 71 and the right region 72 are separated according to the type of LED chip and phosphor used. This happens.
  • the liquid crystal panel is covered with a considerable width by an upper cover, so that even if color separation occurs at both ends of the LED light source unit, the image quality of the liquid crystal display device may not be affected.
  • the color separation phenomenon occurring at both ends of the LED light source unit may reduce the image quality of the liquid crystal display device. It is a cause of deterioration.
  • the present disclosure is to solve the problem of deterioration of the image quality of the liquid crystal display due to the color separation phenomenon by solving the color separation phenomenon occurring at both ends of the LED light source unit.
  • a display device comprising: a liquid crystal panel; And a light source for providing light to the liquid crystal panel, comprising: a blue semiconductor light emitting part emitting blue light, a green semiconductor light emitting part emitting green light, and excited by at least one of blue light and green light to emit red light and activating Mn 4 + . It has a complex fluoride phosphor (activator) having a full width at half maximum (FWHM) of the blue light, green light and red light in the emission spectrum is less than 40nm, 60nm and 20nm, respectively, color separation from each other Provided is a display device comprising a light source.
  • a light source for providing light to the liquid crystal panel, comprising: a blue semiconductor light emitting part emitting blue light, a green semiconductor light emitting part emitting green light, and excited by at least one of blue light and green light to emit red light and activating Mn 4 + . It has a complex fluoride phosphor (activator) having a full width at half maximum (FWHM)
  • a substrate a substrate; And a plurality of LED packages arranged on the substrate along a length direction of the substrate, the plurality of LED packages including a sidewall and a plurality of LED chips emitting different colors.
  • An LED light source unit is provided, wherein the height of the side wall portion outside the LED package is lower than that of the encapsulation portion.
  • a backlight assembly includes: a light guide plate for guiding light; And a LED light source unit arranged on the substrate in the longitudinal direction of the substrate, the LED light source unit including a plurality of LED packages including sidewalls and a plurality of LED chips emitting different colors.
  • the height of the side wall portion on the outside of the LED package on both ends of the substrate of the LED package of is provided with a backlight assembly, characterized in that lower than the height of the encapsulation.
  • FIG. 1 and 2 are views showing the emission spectrum of the LED disclosed in US Patent No. 7,497,973,
  • FIG. 3 is a view for explaining examples of a display device according to the present disclosure.
  • FIG. 4 is a view for explaining an example of a light source of a display device according to the present disclosure
  • FIG. 5 is a view for explaining an example of a cross section of a light source of a display device according to the present disclosure
  • Figure 8 is a red fluorescent material excited by light of 455nm K 2 [SiF 6]: drawing showing the luminescence spectrum of the Mn + 4,
  • G9 is a diagram showing an excitation spectrum (G1) and a light emission spectrum (G2) of the nitride red fluorescent substance CaAlSiN 3 : Eu;
  • FIG. 10 is a view comparing light emission spectra of the display device according to the present example and the display devices of Comparative Examples 1 and 2;
  • FIG. 11 is a diagram comparing the characteristics of the display device according to the present example and the display devices of Comparative Examples 1 and 2 by NTSC;
  • FIG. 13 is a diagram comparing the characteristics of the display device according to the present example and the display devices of Comparative Examples 3 and 4 by NTSC;
  • FIG. 14 is an exploded perspective view showing an example of a liquid crystal display device including the general edge type backlight assembly described in Korean Patent Publication No. 10-1447244;
  • FIG. 17 is a view illustrating an example of an LED light source unit according to the present disclosure.
  • FIG. 18 is a perspective view illustrating an example of an LED package at both ends of a substrate in the LED light source unit according to the present disclosure
  • 19 is a view showing optical characteristics of an LED light source unit according to the present disclosure.
  • FIG. 20 illustrates an example of a backlight assembly using an LED light source unit according to the present disclosure.
  • FIG. 3 is a view illustrating examples of a display device according to the present disclosure, wherein the display device includes a liquid crystal panel 10 and a light source 20 that provides light required for the liquid crystal panel 10 to display an image.
  • the liquid crystal panel 10 includes a lower substrate 11 and an upper substrate 15 facing each other, and a liquid crystal layer 17 filled therebetween. Since the liquid crystal panel 10 is a non-light emitting device, the display device displays an image using light incident and reflected on the liquid crystal panel 10 or light supplied from the backlight unit provided on the rear surface of the liquid crystal panel 10.
  • the lower substrate 11 of the liquid crystal panel 10 may include a switching element for applying an electric field to the liquid crystal, and the upper substrate 15 may include an RGB color filter.
  • the liquid crystal panel 10 When an electric field is applied to the liquid crystal, the amount of light passing through the liquid crystal is changed, and the light passes through the RGB color filter so that the display device displays an image. Since the liquid crystal panel 10 is a well-known technique, detailed description thereof will be omitted.
  • the light source 20 provides white light as a backlight of the liquid crystal panel 10.
  • the light source 20 is excited by at least one of a blue semiconductor light emitting part 25 (see FIG. 4) emitting blue light, a green semiconductor light emitting part 26 (see FIG. 4) emitting green light, and blue light and green light to emit red light. It has a complex fluoride phosphor 27 (see FIG. 5).
  • Blue light from a blue semiconductor light emitting portion e.g., a blue LED chip having an InGaN active layer
  • green light from a green semiconductor light emitting portion 26 e.g., a green LED chip having an InGaN active layer
  • a composite fluorine-based fluorescent material e.g., K 2 Red light from [SiF 6 ]: Mn 4 +
  • Color reproducibility is the ratio of numerical representation in CIE color coordinates that can express original color on screen.
  • the CIE color space is expressed as X and Y values based on measurements made by spectrophotometers based on studies of human color perception.
  • CIE color coordinates represent saturation and color, excluding brightness.
  • White which has no color on the CIE color coordinate, is located in the center, and closer to pure color is located on the edge of the horseshoe-shaped diagram (see FIG. 11).
  • the color gamut is based on the NTSC color gamut (NTSC color gamut means the standard color gamut of 1953 US color TVs) on this CIE color coordinate. For example, if the color gamut is 120%, NTSC is 100% color gamut. Seen by means that has more color gamut. Referring to FIG. 11, the color reproducibility is higher in the case of New WCG than in the case of Normal.
  • the composition of the pigment constituting the color filter of the liquid crystal panel 10 is important for the display device to have excellent color reproduction, but the emission spectrum characteristic of the backlight is important. Even in the same white light, the extent of overlapping with the ranges of peak wavelengths of blue light, green light and red light constituting the white light may be different. In general, the peak wavelengths of the blue light, the green light, and the red light are narrow, so that the distinction is clear, which is advantageous for improving the color reproducibility.
  • the display device includes a direct type in which the light source 20 is disposed on the reflective plate 30 directly under the liquid crystal panel 10, and an edge type in which the light source 20 is disposed on the side of the light guide plate 50. All is possible.
  • the optical sheet 40 improves the uniformity of the light emitted from the light source 20 or the light emitted from the light guide plate 50 and provides it to the liquid crystal panel 10.
  • FIG. 4 illustrates an example of a light source of the display device according to the present disclosure
  • FIG. 5 illustrates an example of a cross section of the light source of the display device according to the present disclosure.
  • the light source 20 is a semiconductor light emitting device package. It is exposed to the mold 21 and the cavity 22 in which the cavity 22 which accommodates the blue semiconductor light emitting part 25 (hereinafter referred to as blue chip) and the green semiconductor light emitting part 26 (hereinafter referred to as green chip) is formed.
  • the blue chip 25 and the green chip 26 have Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ It consists of a compound of 1).
  • an n-type nitride semiconductor layer for example, n-GaN
  • an active layer for example, an active layer
  • a p-type nitride semiconductor layer for example, p-GaN
  • the blue chip 25 has an InGaN active layer
  • the green chip 26 has an InGaN active layer.
  • the lead electrode 23 is coupled to the mold 21, exposed to the cavity 22, and the blue chip 25 and the green chip 26 are mounted on the lead electrode 23.
  • the electrodes of the blue chip 25 and the green chip 26 are wire bonded to lead electrodes of different polarities.
  • the resin 29 fills the cavity 22 and protects the blue chip 25 and the green chip 26.
  • the composite fluorine-based fluorescent material 27 is dispersed in the resin 29.
  • the composite fluorine-based fluorescent material 27 is excited by a part of the blue light from the blue chip 25 and / or a part of the green light from the green chip 26 to emit red light. This red light, the remaining blue light, and the remaining green light come out of the resin. Therefore, blue light, green light, and red light are mixed in the human eye and recognized as white light.
  • the composite fluorine-based fluorescent material 27 may be dispersed in the resin 27, but may be coated on the surface of the blue chip 25 and / or the green chip 26.
  • the full width at half maximum (FWHM) of the blue light, the green light, and the red light is 40 nm, 60 nm, and 20 nm or less, respectively, so that color separation is good.
  • the peak wavelength of the blue light is in the range of 440 nm to 460 nm
  • the peak wavelength of the green light is in the range of 513 nm to 533 nm
  • the peak wavelength of the red light of the composite fluorine-based fluorescent material is in the range of 620 nm to 640 nm.
  • the composite fluorine-based fluorescent material is excited by at least one of blue light and green light, emits red light, and has Mn 4 + as an activator.
  • the light source is a complex nitride-based fluorescent material which is excited by blue light and / or green light to emit red light having a longer wavelength as red light than the composite fluorine-based fluorescent material to improve the visibility (visually visible) of the image displayed by the liquid crystal panel. Minor amounts (eg, up to 10% by weight).
  • the composite fluorine-based fluorescent material includes at least one of the following (A), (B), (C) and (D).
  • a 2 [MF 6 ]: Mn 4 + wherein A is Li, Na, K, Rb, Cs, NH 4 , and one selected from the group consisting of a combination thereof, M is Ge, Si, Sn, Ti, Zr and one selected from the group consisting of a combination thereof,
  • B E [MF 6 ]: and Mn 4 +, where E is Mg, Ca, Sr, Ba, Zn , and one selected from the group consisting of a combination thereof, M Is one selected from the group consisting of Ge, Si, Sn, Ti, Zr, and combinations thereof,
  • FIG. 7 is a diagram showing an emission spectrum of K 2 TiF 6 : Mn 4 + , and it can be seen that it has a peak wavelength in a wavelength range of approximately 620 nm to 640 nm. It can be seen that the composite fluorine-based fluorescent substance K 2 TiF 6 : Mn 4 + absorbs near ultraviolet or blue light and emits red light, and the emission spectrum is concentrated on red light because the FWHM (FWHM) is very small. It can be seen that.
  • FIG. 8 is a view showing an emission spectrum of a red fluorescent substance K 2 [SiF 6 ]: Mn 4 + excited with light of 455 nm, and a composite fluorine-based fluorescent substance It can be seen that red light due to K 2 [SiF 6 ]: Mn 4 + has a peak wavelength at a wavelength of about 620 nm to 640 nm, and a narrow half width at about 10 nm.
  • the nitride-based fluorescent material SCASN
  • K 2 SiF 6 Mn 4 +
  • K 2 TiF 6 saw the spectral characteristics of Mn 4 +, a composite fluorine-containing fluorescent substance set forth in the above (A), (B), (C), (D) Fig. If similar characteristics can be exhibited, therefore, as the red fluorescent material of the light source included in the display device according to the present example, K 2 SiF 6 : Mn 4+ and K 2 TiF 6 : Mn 4 + as well as the above-mentioned (A), ( The complex fluorine-based fluorescent materials shown in B), (C) and (D) can also be used sufficiently.
  • a longer wavelength red light can be obtained by using the composite nitride fluorescent material CaAlSiN 3 : Eu. Therefore, as a red fluorescent substance of the light source according to the present example, a complex fluorine-based fluorescent substance is used as a main component, and a small amount may be added to slightly adjust the color (color perceived by the human eye). This is further described below.
  • FIG. 10 is a view illustrating light emission spectra of the display device according to the present example and the display devices of Comparative Examples 1 and 2, and FIG. 11 shows characteristics of the display device and the display device of Comparative Examples 1 and 2 according to the present example as NTSC.
  • the test was carried out under the same conditions except for the light source.
  • Normal (Comparative Example 1) indicated by an asterisk dot indicates a display device (eg, an LCD) using a light source in which a green chip and a red phosphor are combined with a blue chip, or a light source in which a yellow phosphor and a red phosphor are combined with a blue chip.
  • a WCG (Comparative Example 2) display device indicated by a square dot represents a display device using a light source in which a blue chip, a green chip, and CaAlSiN 3 : Eu, which is a complex nitride-based fluorescent material, are combined.
  • the display device (N-WCG; New WCG) according to the present example indicated by a circular point is a display device using a light source in which a blue chip, a green chip, and a complex fluorine-based fluorescent substance K 2 [SiF 6 ]: Mn 4 + (KSF) are combined. Indicates.
  • the half width (FWHM) of the blue light is relatively narrow and color separation is good, but there is no distinct peak from green light to red light and color separation is not good. As shown, it can be seen that it has a color reproduction rate of about 71.9% compared to NTSC 100%.
  • the color separation of the blue light and the green light is relatively good, but the half width of the red light is relatively wide, the tail of the red light is long, and the yellow light is also significantly emitted. Similarly, it can be seen that the color reproducibility of about 102.3%.
  • the display device has a Full Width at Half Maximum (FWHM) of blue light, green light, and red light of 40 nm, 60 nm, and 20 nm or less, respectively, which are color-separated, peaked, and peak wavelength of blue light.
  • Peak wavelength is in the range of 440 nm to 460 nm
  • the peak wavelength of the green light is in the range of 515 nm to 530 nm
  • the peak wavelength of the red light of the composite fluorine-based fluorescent material is in the range of 625 nm to 635 nm.
  • Table 2 shows the experimental conditions and results.
  • the light source included in the display device NEW WCG may include a trace amount of the composite nitride-based fluorescent material compared to the composite fluorine-based fluorescent material.
  • the composite nitride-based fluorescent material is excited by at least one of blue light and green light, emits red light, and has Eu as an activator.
  • the light source may be composed of 97% to 99% K 2 [SiF 6 ]: Mn 4 + (compound fluorine type and material), and 3% to 1% CaAlSiN 3 : Eu (compound nitride fluorescent) Substance).
  • the composite fluorine-based fluorescent material has a peak wavelength of 625 nm to 635 nm, and the composite nitride-based fluorescent material has a peak wavelength of 650 nm to 665 nm.
  • a small amount of a compound nitride-based fluorescent material eg, CaAlSiN 3 : Eu
  • the NEW WCG display device was almost equivalent in color reproduction rate and had a color reproduction rate of 110% or more based on NTSC.
  • the light source may change the driving current of the blue chip and the green chip to change the color coordinates of the white light as necessary.
  • FIG. 12 is a view comparing light emission spectra of the display device according to the present example and the display devices of Comparative Examples 3 and 4, and FIG. 13 shows characteristics of the display device and the display device of Comparative Examples 3 and 4 according to the present example as NTSC. As a comparison drawing, the test was carried out under the same conditions except for the light source.
  • Comparative Example 3 indicated by an oblique line (/), shows a display device (for example, an LCD) using a light source in which a green chip (Silcate G) and a red phosphor (KSF) are combined with a blue chip.
  • Comparative Example 4 indicated by a triangle dot shows a display device using a light source in which a blue chip, a green phosphor (Nitride G), and a red phosphor (KSF) are combined.
  • a display device (New WCG) according to the present example indicated by a circular dot represents a display device using a light source combining a blue chip, a green chip, and a composite fluorine-based fluorescent material KSF (K 2 [SiF 6 ]: Mn 4+ ).
  • the display device of Comparative Example 3 has a relatively small half-width (FWHM) of blue light and good color separation, but has a low peak of green light, a large half-width, and spreads widely to both sides, thereby preventing color separation.
  • FWHM half-width
  • the color reproduction rate is about 89.2% compared to NTSC 100%.
  • the green light is widely spread, and the separation from the red light is weaker than in the case of the present example, and as shown in FIG. 13, it has a color reproducibility of about 87.3%. have.
  • the display device has a much smaller Full Width at Half Maximum (FWHM) of blue light, green light, and red light, so that color separation and distinct peaks are clear.
  • FWHM Full Width at Half Maximum
  • FIG. 13 about 110.1% of the color is shown. It has a refresh rate, showing a significant increase over NTSC 100%.
  • K 2 [SiF 6 ]: Mn 4 + is used as the red phosphor
  • the green phosphor is used instead of the green chip
  • color separation may not be good and color reproducibility may be improved.
  • color separation will not be good even if yellow phosphors are used instead of or together with green phosphors.
  • the filtering is performed as a backlight of the display device.
  • a complex fluorine-based fluorescent material for example, K 2 [SiF 6 ]: Mn 4+
  • the filtering is performed as a backlight of the display device.
  • the light loss is small and the color reproducibility is remarkably improved to 110% or more compared to NTSC 100% as described above.
  • 16 is a diagram illustrating the principle of the present disclosure.
  • the LED package 100 includes an LED chip 110, a side wall 120, a lead frame 130, and an encapsulation unit 140.
  • the direction of light exiting the LED chip may change.
  • the direction of light varies greatly depending on the height of the side walls.
  • FIGS. 16 (a) to 16 (c) briefly show that the light 150 emitted from the LED chip is gradually spread as the height of the sidewall is lowered. That is, as the height of the sidewall 120 is lower than the height of the encapsulation unit 140, the light 150 emitted from the LED chip is gradually spread.
  • FIG. 16 (a) to 16 (c) briefly show that the light 150 emitted from the LED chip is gradually spread as the height of the sidewall is lowered. That is, as the height of the sidewall 120 is lower than the height of the encapsulation unit 140, the light 150 emitted from the LED chip is gradually spread.
  • FIG. 16 (a) to 16 (c) briefly show that the light 150 emitted from the LED chip is gradually spread as the height
  • the height of the sidewall 120 is lower than the height of the LED chip 110, the light 150 emitted from the LED chip spreads most widely in the horizontal direction.
  • the height of the side wall 120 is 0, it may exhibit a characteristic as shown in FIG. 16 (c). Since the amount of light emitted from the LED chip 110 is constant, if the light spreads widely, the intensity of the light exiting to the top is reduced. Heights of the sidewalls 120, the encapsulation unit 140, and the LED chip 110 may be measured based on the upper surface 131 of the lead frame 130.
  • the sidewall 120 may have height h1, the height of the encapsulation 140 may be h2, and the height of the LED chip 110 may be h3.
  • the heights of the sidewalls, the encapsulation portion, and the LED chip are measured based on the upper surface of the lead frame.
  • 17 is a view illustrating an example of an LED light source unit according to the present disclosure.
  • the LED light source unit 200 includes a substrate 210 and a plurality of LED packages 220 arranged on the substrate 210 along the longitudinal direction of the substrate 210.
  • the substrate 210 on which the plurality of LED packages 220 are arranged may generally be a PCB substrate.
  • the plurality of LED packages 220 includes sidewalls 230, a plurality of LED chips 240 and 241 emitting different colors, a lead frame 250, and an encapsulation unit 260, respectively.
  • the plurality of LED chips 240 and 241 are a blue light emitting LED chip 240 and a green light emitting LED chip 241, and the blue light emitting LED chip 240 and the green light emitting LED chip 241 are alternately arranged along the length direction. Can be.
  • a plurality of LED chips may be two or more, and various combinations of blue light emitting LED chips, red light emitting LED chips, and green light emitting LED chips are possible.
  • the LED packages 221 and 222 at both ends of the substrate among the plurality of LED packages 220 include sidewall portions having different heights of the sidewalls 230.
  • the height of the sidewall portion 231 on the outside of the sidewalls 230 of the LED packages 221 and 222 may be lower than the height of the encapsulation 260.
  • the height of the sidewall portion 231 on the outside of the sidewalls 230 of the LED packages 221 and 222 may be lower than the height of the LED chips 240 and 241.
  • the height of the sidewall portion 231 outside the LED packages 221 and 222 at both ends of the substrate may be zero.
  • the height of the sidewall 230 refers to the height from the upper surface 251 of the lead frame 250 as described with reference to FIG. 16. Therefore, the height of the side wall portion 0 means that there is no side wall portion protruding from the upper surface 251 of the lead frame 250.
  • the height of the sidewall portion 232 on the inside of the sidewalls 230 of the LED packages 221 and 222 at both ends of the substrate may be different from the height of the sidewall portion 231 on the outside.
  • the height of the sidewall portion 232 inside the LED packages 221 and 222 at both ends of the substrate may be the same as the height of the sidewall 230 of the neighboring LED packages 223 and 224.
  • the outer sidewall portion 231 and the inner sidewall portion 232 in the LED packages 221 and 222 at both ends of the substrate will be described in detail with reference to FIG. 5.
  • the heights of the sidewalls 230 of the remaining LED packages 220 except for the LED packages 221 and 222 at both ends of the substrate may be varied as necessary. Accordingly, the height of the sidewalls 230 of the LED package 220 except for the LED packages 221 and 222 at both ends of the substrate may be higher or lower than the height of the encapsulation part 260, and the height may be zero.
  • the plurality of LED chips 240 and 241 emitting different colors. Color mixing is better between the adjacent LED package 220, including the LED light source unit 200 may emit an improved high-color white light.
  • FIG. 18 is a perspective view illustrating an example of an LED package at both ends of a substrate used in the LED light source unit according to the disclosure of FIG. 18.
  • the LED package 221 includes LED chips 240 and 241, lead frames 250, and sidewalls 230.
  • the side wall 230 may be divided into four side wall portions 231, 232, 233, and 234.
  • the LED package 222 includes LED chips 240 and 241, a lead frame 250, and sidewalls 230.
  • the side wall 230 may be divided into four side wall portions 231, 232, 233, and 234.
  • the sidewall portion near the LED chip 240 corresponds to the sidewall portion 231 located outside of FIG. 17.
  • the sidewall portion near the LED chip 241 is defined. It corresponds to the side wall part 231 located in the outer side demonstrated in FIG.
  • the side wall portion 232 opposite to the side wall portion 231 located on the outside corresponds to the side wall portion 232 located on the inner side.
  • the sidewall portions 233 horizontally with respect to the longitudinal direction of the substrate as compared with the sidewall portions 231 and 232 perpendicular to the longitudinal direction of the substrate are provided.
  • the height of 234 can be varied as needed.
  • the sidewalls of the LED package 220 other than the LED packages 221 and 222 at both ends of the substrate may be divided into four sidewall portions, and the heights of the four sidewall portions may be varied as necessary. .
  • the heights of the sidewall portions of the sidewalls 230 of the LED package 220 other than the LED packages 221 and 222 at both ends of the substrate, which are perpendicular to the longitudinal direction of the substrate, are lower than the height of the encapsulation 260.
  • the case where the case is preferred has been described in FIG. 17.
  • 19 is a view showing optical characteristics of the LED light source unit according to the present disclosure.
  • FIG. 19A shows light characteristics of the LED light source unit disclosed in FIG. 17.
  • colors emitted from the LED chip 240 of the first color and the LED chip 241 of the second color are well mixed to represent white light.
  • color separation occurs in the left region 310 and the right region 320 of the LED light source unit 200.
  • the height of the sidewall portion 231 is lower than the height of the encapsulation portion 260. Therefore, as described with reference to FIG.
  • FIG. 19B illustrates a sidewall of the LED light source unit 200 illustrated in FIG. 17, which is perpendicular to the longitudinal direction of the substrate, among the sidewalls 230 of the LED package 220 except for the LED packages 221 and 222.
  • the optical characteristic when the height of the portion is lower than the height of the encapsulation 260 is shown.
  • the height of the sidewall portion of the sidewalls 230 of the remaining LED packages 220 except for the LED packages 221 and 222, which is perpendicular to the longitudinal direction of the substrate, is the height of the encapsulation portion 260.
  • color mixing between neighboring LED packages 220 is also performed at a portion 270 that is not formed in FIG. 19A, and thus, the LED light source unit 200 may emit improved high color white light.
  • 19 (b) shows that the height of the side wall portion of the side wall 230 of the remaining LED package 220 except for the LED packages 221 and 222 in the LED light source unit 200 is perpendicular to the length direction of the substrate. The case is shown.
  • 20 is a view illustrating an example of a backlight assembly using an LED light source unit according to the present disclosure.
  • the backlight assembly 400 using the LED light source unit according to the present disclosure includes a light guide plate 410 and an LED light source unit 420.
  • a display device comprising: a liquid crystal panel; And a light source for providing light to the liquid crystal panel, comprising: a blue semiconductor light emitting part emitting blue light, a green semiconductor light emitting part emitting green light, and excited by at least one of blue light and green light to emit red light and activating Mn 4 + . It has a complex fluoride phosphor (activator) having a full width at half maximum (FWHM) of the blue light, green light and red light in the emission spectrum is less than 40nm, 60nm and 20nm, respectively, color separation from each other And a light source.
  • a complex fluoride phosphor activator
  • the present disclosure is not limited to the liquid crystal display, and may be applied to all display devices requiring a white backlight light source.
  • a composite fluorine-based fluorescent material is K 2 [SiF 6 ]: Mn 4 + .
  • the light source contains 10% or less of a composite nitride-based fluorescent material in a weight ratio relative to the composite fluorine-based fluorescent material, and the composite nitride-based fluorescent material is excited by at least one of blue light and green light, emits red light, and emits Eu to an activator ( and an activator.
  • the light source is composed of 97% to 99% K 2 [SiF 6 ]: Mn 4 + (compound fluorine type and material) and 3% to 1% CaAlSiN 3 : Eu (compound nitride fluorescent material) by weight ratio of fluorescent material.
  • Display device comprising a).
  • a composite fluorine-based fluorescent material has a peak wavelength of 625 nm to 635 nm, and a composite nitride-based fluorescent material has a peak wavelength of 650 nm to 665 nm.
  • a display device characterized by having a color reproduction ratio of 110% or more based on NTSC.
  • a display device characterized in that blue light, green light, and red light emitted by a light source are mixed to be recognized as white light.
  • the blue semiconductor light emitting portion and the green semiconductor light emitting portion are made of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • a display device comprising a compound.
  • the blue semiconductor light emitting portion and the green semiconductor light emitting portion of the light source are not limited to the group III nitride semiconductor, and may be of any type as long as the light emitting device emits blue light and green light.
  • the use of a near-ultraviolet LED in addition to the blue semiconductor light emitting unit is also included in the scope of the present disclosure. That is, the present invention includes using a near-ultraviolet LED, but using a complex fluorine-based fluorescent material as a green chip (or a chip of a different color) and a red phosphor to produce white light.
  • a display device characterized in that the composite fluorine-based fluorescent material is coated on the surface of the blue semiconductor light emitting portion and the green semiconductor light emitting portion.
  • the light source includes: a mold in which a cavity is formed to receive a blue semiconductor light emitting portion and a green semiconductor light emitting portion; A lead electrode exposed to the cavity and supplying power to the blue semiconductor light emitting unit and the green semiconductor light emitting unit; And a resin filling the cavity and having a composite fluorine-based fluorescent material dispersed therein.
  • the peak wavelength of the blue light is in the range of 440 nm to 460 nm
  • the peak wavelength of the green light is in the range of 515 nm to 530 nm
  • the peak wavelength of the red light of the composite fluorine-based fluorescent material is 625 nm to 635 nm. Display device, characterized in that the range.
  • the light source is composed of 97% to 99% K 2 [SiF 6 ]: Mn 4 + (compound fluorine type and material) and 3% to 1% CaAlSiN 3 : Eu (compound nitride fluorescent material) by weight ratio of fluorescent material.
  • a light source comprising: a mold in which a cavity is formed to receive the blue semiconductor light emitting portion and the green semiconductor light emitting portion; A lead electrode exposed to the cavity and supplying power to the blue semiconductor light emitting unit and the green semiconductor light emitting unit; And filling the cavity with K 2 [SiF 6 ]: Mn 4 + and A display device comprising CaAlSiN 3 : Resin in which Eu is dispersed.
  • the composite fluorine-containing fluorescent substance is: (A) A 2 [MF 6]: Mn 4 +, wherein A is Li, Na, K, Rb, Cs, NH 4 , and one selected from the group consisting of a combination thereof, M Is one selected from the group consisting of Ge, Si, Sn, Ti, Zr, and combinations thereof, (B) E [MF 6 ]: Mn 4 + , where E is Mg, Ca, Sr, Ba, Zn and combinations thereof One selected from the group consisting of M, Ge, Si, Sn, Ti, Zr and one selected from the group consisting of a combination thereof, (C) Ba 0 . 65 Zr 0 .35 F 2.
  • a display device comprising at least one of.
  • LED light source unit characterized in that the height of the side wall portion on the outside of the LED package is lower than the height of the encapsulation.
  • An LED light source unit characterized in that the height of the side wall portion inside the LED package at both ends of the substrate is the same as the side wall height of the neighboring LED package.
  • the height of the side wall portions of the side wall portions of the LED packages except for the LED packages at both ends of the substrate, which are perpendicular to the longitudinal direction of the substrate, is lower than the height of the encapsulation portion. LED light source unit.
  • An LED light source unit characterized in that the height of the side wall portions on the outside of the LED package at both ends of the substrate is lower than the height of the LED chip.
  • An LED light source unit characterized in that the plurality of LED chips include an LED chip of a first color and an LED chip of a second color.
  • An LED light source unit wherein the LED chip of the first color is a blue light emitting LED chip, and the LED chip of the second color is a green light emitting LED chip.
  • a backlight assembly comprising: a light guide plate for guiding light; And a LED light source unit arranged on the substrate in the longitudinal direction of the substrate, the LED light source unit including a plurality of LED packages including sidewalls and a plurality of LED chips emitting different colors.
  • a backlight assembly characterized in that the height of the side wall portions inside the LED package at both ends of the substrate is different from the height of the side wall portions outside.
  • a backlight assembly characterized in that the height of the sidewall portions inside the LED package at both ends of the substrate is equal to the height of the sidewall portions perpendicular to the longitudinal direction of the substrate among the sidewalls of the neighboring LED packages.
  • the height of the sidewall portion perpendicular to the longitudinal direction of the substrate among the sidewalls of the LED package except for the LED package at both ends of the substrate is lower than the height of the encapsulation portion.
  • a display device in which color reproducibility is remarkably improved compared to a display device using CaAlSiN 3 : Eu as a blue chip, a green chip, and a red phosphor.
  • a display device in which the color reproducibility is remarkably improved compared to the case of using a light source using a blue chip, a yellow fluorescent material, and a complex fluorine-based fluorescent material as a red fluorescent material.
  • a display device having a markedly improved color reproducibility is provided than when a light source using a blue chip, a green fluorescent material, and a complex fluorine-based fluorescent material as a red fluorescent material is used.
  • the LED light source unit it is possible to solve the problem of deterioration in image quality of the liquid crystal display due to color separation in the liquid crystal display using the LED light source unit.
  • high color white light can be obtained in a liquid crystal display device using the LED light source unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

본 개시는 표시 장치(Display Device)에 있어서, 액정 패널; 그리고 액정 패널에 광을 제공하는 광원;으로서, 청색광을 내는 청색 반도체 발광부와, 녹색 광을 내는 녹색 반도체 발광부와, 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Mn4+를 액티베이터(activator)로 가지는 복합 불소계 형광 물질(complex fluoride phosphor)을 구비하며, 발광 스펙트럼에서 청색광, 녹색광 및 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 각각 40nm, 60nm 및 20nm 이하로서, 서로 색분리되는 광원;을 포함하는 것을 특징으로 하는 표시 장치에 관한 것이다.

Description

표시 장치
본 개시(Disclosure)는 전체적으로 표시 장치(Display device)에 관한 것으로, 특히 색재현율(Color Gammut)이 향상된 표시 장치에 관한 것이다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
발광다이오드(LED; light emitting diode)를 기반으로 한 백색 LED는 LCD-TV용 백라이트, 자동차 헤드램프, 일반조명 등으로 실용화되고 있으며 그 수요가 급격하게 확대될 전망이다. 일반적으로 디스플레이 광원으로 사용하기 위한 백색 광원은 색좌표와 색온도 및 연색지수에 있어서 일정한 요구 조건 이상의 특성을 갖도록 요구된다.
현재 GaN 또는 InGaN을 이용하는 백색 LED의 제작 방법은 모두 네 가지 방식으로 분류할 수 있다. 단일 칩을 사용하는 방법으로서 청색 LED 칩이나 혹은 NUV(근자외선) LED 칩 위에 형광 소재를 도포하여 백색을 얻는 두 가지 방법과, 멀티 칩을 사용하는 형태로서 두 개나 혹은 세 개의 각기 다른 색의 빛을 내는 LED 칩들을 조합하여 백색을 얻는 두 가지 방법으로 나눌 수 있다.
단일 칩을 사용하는 방법으로써 청색 LED 칩(예: GaN 칩 또는 InGaN 칩)이나 혹은 NUV(근자외선) LED 칩 위에 형광 소재를 도포하여 백색을 얻는 방법들은 패키지 공정이 단순하고 전력 소모를 줄일 수 있어서 가장 많이 이용하고 있다. 이 방법은 하나의 칩에 형광 소재를 접목시키는 방법으로 일 예로, 청색 LED로부터 발산하는 청색광과 그 빛의 일부를 이용해서 Y3Al5O12:Ce3 +(YAG:Ce) 형광 소재를 여기시켜 얻어지는 황색광을 사용함으로써 백색을 발산하는 백색 LED가 만들어진다. 다른 예로, 근자외선 LED와 이 근자외선을 청색, 녹색 그리고 적색으로 전환하는 형광 소재를 조합하여 태양광의 광 분포와 유사한 광을 방사하도록 구성된다.
이러한 청색 LED 칩과 형광 소재(예:YAG:Ce)를 사용한 백색광은 고휘도이지만 청색과 황색의 파장 간격이 넓어서 색 분리로 색좌표가 동일한 백색 LED의 양산이 어려우며, 표시 장치용 광원에서 중요 요소인 색온도와 연색지수(Color Rendering Index: CRI)의 조절도 어렵다. 이에 따라 적색을 내는 형광 소재를 첨가하여 발광 스펙트럼을 넓혀서 이러한 단점을 보완하고자 하는 시도가 진행되고 있다. 최근 NUV LED 칩을 사용할 수 있게 됨에 따라 단일 칩 방법으로 백색 LED를 구현하는데 있어서 새로운 대안으로 연구되고 있다. NUV LED 칩 위에 청, 녹, 적색의 형광물질을 도포하는 방법은, 백색광이 백열전구와 같은 아주 넓은 파장 스펙트럼을 갖게 됨으로써 우수한 색 안정성을 확보할 수 있고 색온도와 연색지수를 조절할 수 있기 때문에 백색 광원 LED 구현을 위한 매우 우수한 방법인 것으로 여겨지고 있다. 그러나 NUV LED 효율을 높이는 것이 문제로 지적되고 있다.
멀티 칩으로 백색발광을 위한 LED를 구현하는 방법으로 처음 시도된 것은 적, 녹, 청색(RGB)의 세 가지 칩을 조합하여 제작하는 것이다. 이 방식은 각각 칩마다 동작 전압의 불균일성, 주변 온도에 따라 각 칩의 출력이 변하여 색 좌표가 달라지는 현상 등의 문제점이 있다. 그러므로 백색 LED의 구현보다는 회로 구성을 통해 각각의 LED 밝기를 조절하여 다양한 색상의 연출을 필요로 하는 특수 조명 목적에 적합하다.
형광 소재는 LED의 빛을 가시광으로 전환함으로 고휘도화 및 우수한 연색지수를 확보하는데 직접적인 영향을 미치는 핵심소재이다. 형광 소재는 다양한 형태의 에너지를 흡수하여 가시광선의 에너지로 전환되는 물질로서 유기물 및 무기물 소재가 있다. 현재 LED용 형광 소재로 응용하기 위해서 산화물계, 황화물계, 포스페이트계, 셀레나이드계, 질화물계 등이 연구되고 있다. 형광 소재 특성을 나타내는 항목은 응용 분야에 따라 차이는 있지만 LED용으로 사용되는 경우, 휘도, 양자효율, 적절한 발광밴드의 위치(파장), 온도 및 습도에 대한 안정성 등이 중요하며 이외에도 적당한 평균입자크기, 입도분포, 불순물의 최소화, 결정구조상의 단일상, 좋은 결정성 등을 가져야 한다. 최근에 이루어지고 있는 백색 LED용 형광 소재의 개발은 청색 LED 칩과의 조합에 사용될 수 있는 황색이나 녹색 형광 소재와 적색 형광 소재를 개발하는 것에 초점이 맞추어지고 있다.
도 1 및 도 2는 미국 등록특허공보 제7,497,973호에 개시된 LED의 발광 스펙트럼을 나타내는 도면들로서, 청색 LED 칩(예: Tb2 . 91Ce0 . 09Al4 . 90O11 . 85:Ce3 +)과 황색(yellow) 형광 물질과 적색광을 내는 복합 불소계 형광 물질(complex fluoride phosphor; 예: K2[TiF6]:Mn4 +)이 조합된 LED의 발광 스펙트럼을 나타낸다. 액정 표시 장치와 같은 표시 장치에서는 백라이트가 필터링되어 특정 파장대의 광은 필요가 없거나 손실된다. 또한, 색재현율 향상에서는 백색광을 만드는 청색광, 녹색광 및 적색광이 좁은 폭으로 뚜렷이 구분되는 것이 유리하다. 그러나 도 1 및 도 2의 발광 스펙트럼에서 청색광 및 적색광은 피크 파장대가 비교적 좁고 뚜렷하지만 녹색광에서 황색광까지 넓게 파장대가 혼재함을 알 수 있다.
액정 표시장치는 소형, 경량화 및 저소비전력 등 여러 장점을 갖는 디스플레이 장치로서, 노트북 PC용 모니터, 데스크탑 PC용 모니터 뿐만 아니라 대형 평판 TV 등 다양한 용도로 사용되고 있다. 음극선관 표시장치(Cathode Ray Tube; CRT), 플라즈마 표시장치(Plasma Display Panel; PDP) 등과는 달리 액정 표시장치에 의한 표시는 그 자체가 비발광성이기 때문에 빛이 없는 곳에서는 사용이 불가능하다. 이러한 단점을 보완하여 어두운 곳에서의 사용이 가능하게 할 목적으로 정보 표시면에 균일하게 조사되는 백라이트 어셈블리를 장착한다. 액정 표시장치에 사용되는 백라이트 어셈블리는 크게 2 종류로 구분된다. 첫째는 액정 표시장치의 측면에서 빛을 제공하는 에지형 백라이트 어셈블리이고 둘째는 액정 표시장치의 후면에서 빛을 직접 제공하는 직하형 백라이트 어셈블리이다.
도 14는 한국등록특허공보 제10-1447244호에 기재된 일반적인 에지형 백라이트 어셈블리를 포함하는 액정 표시장치의 일 예를 나타낸 분해 사시도 이다. 설명의 편의를 위해 도면 부호를 변경하였다.
액정 표시장치(1)는 액정패널(10), 백라이트 어셈블리(20), 백라이트 어셈블리(20) 및 액정패널(10)을 수용하는 상부 커버(30) 및 하부 커버(40)를 포함한다.
백라이트 어셈블리(20)는 광학필름(21), 광원 유닛(22), 도광판(23) 및 반사판(24)을 포함하고 있다. 광원 유닛(22)에 사용되는 광원으로는 EL(electro luminescence), CCFL(Cold cathode fluorescent lamp), HCFL(Hot cathode fluorescent lamp), LED(light emitting diode) 등이 있다. 이 중 LED는 소비전력이 낮으며 발광효율이 뛰어난 장점을 가짐에 따라 점차 사용이 증가하고 있다. LED를 사용한 광원 유닛을 LED 광원 유닛이라 한다.
도 15는 종래의 LED 광원 유닛의 문제를 보여주는 한국등록특허공보 제10-1447244호에 기재된 도면이다. 설명의 편의를 위해 도면 부호를 변경하였다.
LED 광원 유닛(50)은 기판(51) 및 다수의 LED 패키지(60)를 포함하고 있다. LED 패키지(60)는 서로 다른 색을 발광하는 2개의 LED 칩(61, 62)과 LED 칩(61, 62)을 덮는 봉지부(63)를 포함한다. 봉지부(63)는 형광체(64)를 포함하며, 형광체(64)에서 여기되는 광은 LED 칩(61, 62)에서 발광하는 색과 다른 색을 발광한다. 예를 들어 1개의 LED 패키지(60)에서 일측에 있는 LED 칩(61)은 청색 발광 칩이고, 타측에 있는 LED 칩(62)은 녹색 발광 칩일 때, 형광체(64)는 청색 발광 LED 칩(61)에서 발광한 청색광에 여기되어 적색광을 발광할 수 있다. 청색광에 여기되어 적색광을 발광하는 형광체를 적색 형광체라 한다. 이때 다수의 LED 패키지(60)가 배열된 LED 광원 유닛(50)의 상부 가운데 영역(70)은 적색광, 녹색광 및 청색광이 혼합되어 백색광이 나타나지만, 왼쪽 영역(71)은 적색광 및 청색광이 나타나게 되고, 오른쪽 영역(72)은 녹색광이 나타나는 색분리 현상이 발생한다. 서로 다른 색을 발광하는 LED 칩과 형광체의 조합은 다양할 수 있다. 예를 들어 일측에 있는 LED 칩(61)이 청색광을 발광하고, 타측에 LED 칩(62)은 적색광을 발광하고, 형광체(64)는 녹색광을 발광하게 할 수 있는 등 다양한 LED 칩과 형광체의 조합이 가능하다. 이 경우에도 상부의 가운데 영역(70)은 적색광, 녹색광 및 청색광이 혼합되어 백색광을 발광하게 되지만, 왼쪽 영역(71)과 오른쪽 영역(72)은 사용된 LED 칩 및 형광체의 종류에 따라 색분리 현상이 발생한다.
종래의 액정 표시장치에서 액정패널은 상부 커버에 의해 상당 폭으로 덮이게 되어, LED 광원 유닛의 양측 끝에서 색분리 현상이 발생하더라도, 액정 표시장치의 화질에 영향을 미치지 않는 경우가 있었다. 그러나 최근 액정 표시장치의 슬림화와 더불어, 상부 커버에 의해 덮이는 액정패널의 전면 가장자리 부분의 폭이 점점 좁아짐에 따라, LED 광원 유닛의 양측 끝에서 발생하는 색분리 현상은 액정 표시장치의 화질을 저하하는 원인이 되고 있다.
본 개시는 LED 광원 유닛의 양측 끝에서 발생하는 색분리 현상을 해결하여 색분리 현상에 의한 액정 표시장치의 화질 저하 문제를 해결하고자 한다.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 표시 장치에 있어서, 액정 패널; 그리고 액정 패널에 광을 제공하는 광원;으로서, 청색광을 내는 청색 반도체 발광부와, 녹색 광을 내는 녹색 반도체 발광부와, 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Mn4 +를 액티베이터(activator)로 가지는 복합 불소계 형광 물질(complex fluoride phosphor)을 구비하며, 발광 스펙트럼에서 청색광, 녹색광 및 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 각각 40nm, 60nm 및 20nm 이하로서, 서로 색분리되는 광원;을 포함하는 것을 특징으로 하는 표시 장치가 제공된다.
본 개시에 따른 다른 태양에 의하면(According another aspect of the present disclosure), 기판; 그리고, 기판의 길이방향을 따라 기판 위에 배열되며, 측벽 및 서로 다른 색을 발광하는 복수의 LED 칩을 포함하는 복수의 LED 패키지;를 포함하며, 기판 위에 배열된 복수의 LED 패키지 중 기판의 양단에 있는 LED 패키지의 외측에 있는 측벽부분의 높이는 봉지부의 높이보다 낮은 것을 특징으로 하는 LED 광원 유닛이 제공된다.
본 개시에 따른 또 다른 태양에 의하면(According to the other aspect of the present disclosure), 백라이트 어셈블리에 있어서, 광을 가이드하는 도광판; 그리고, 기판, 기판의 길이방향을 따라 기판 위에 배열되며, 측벽 및 서로 다른 색을 발광하는 복수의 LED 칩을 포함하는 복수의 LED 패키지를 포함하는 LED 광원 유닛;을 포함하며, 기판 위에 배열된 복수의 LED 패키지 중 기판의 양단에 있는 LED 패키지의 외측에 있는 측벽부분의 높이는 봉지부의 높이보다 낮은 것을 특징으로 하는 백라이트 어셈블리가 제공된다.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.
도 1 및 도 2는 미국 등록특허공보 제7,497,973호에 개시된 LED의 발광 스펙트럼을 나타내는 도면들,
도 3은 본 개시에 따른 표시 장치의 예들을 설명하는 도면,
도 4는 본 개시에 따른 표시 장치의 광원의 일 예를 설명하는 도면,
도 5는 본 개시에 따른 표시 장치의 광원의 단면의 일 예를 설명하는 도면,
도 6은 K2TiF6:Mn4+의 여기 스펙트럼(excitation spectrum)을 나타내는 도면,
도 7은 K2TiF6:Mn4+의 발광 스펙트럼(emission spectrum)을 나타내는 도면,
도 8은 455nm의 광으로 여기된 적색 형광 물질 K2[SiF6]:Mn4 +의 발광 스펙트럼을 나타내는 도면,
도 9는 나이트라이드계 적색 형광 물질 CaAlSiN3:Eu의 여기스펙트럼(G1)및 발광스펙트럼(G2)을 나타내는 도면,
도 10은 본 예에 따른 표시 장치와 비교예1 및 2의 표시 장치의 발광스펙트럼을 비교한 도면,
도 11은 본 예에 따른 표시 장치와 비교예1 및 2의 표시장치의 특성을 NTSC로 비교한 도면,
도 12는 본 예에 따른 표시 장치와 비교예3 및 4의 표시 장치의 발광스펙트럼을 비교한 도면,
도 13은 본 예에 따른 표시 장치와 비교예3 및 4의 표시장치의 특성을 NTSC로 비교한 도면,
도 14는 한국등록특허공보 제10-1447244호에 기재된 일반적인 에지형 백라이트 어셈블리를 포함하는 액정 표시장치의 일 예를 나타낸 분해 사시도,
도 15는 종래의 LED 광원 유닛의 문제를 보여주는 한국등록특허공보 제10-1447244호에 기재된 도면,
도 16은 본 개시의 원리를 설명하는 도면,
도 17은 본 개시에 따른 LED 광원 유닛의 일 예를 보여주는 도면,
도 18은 본 개시에 따른 LED 광원 유닛에서 기판의 양단에 있는 LED 패키지의 일 예를 보여주는 사시도,
도 19는 본 개시에 따른 LED 광원 유닛의 광 특성을 보여주는 도면,
도 20은 본 개시에 따른 LED 광원 유닛을 사용한 백라이트 어셈블리의 일 예를 보여주는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 3은 본 개시에 따른 표시 장치의 예들을 설명하는 도면으로서, 표시 장치는 액정 패널(10) 및 액정 패널(10)이 영상을 표시하는 데 필요한 광을 제공하는 광원(20)을 포함한다. 액정 패널(10)은 서로 대향하는 하부 기판(11)과 상부 기판(15), 그리고 그 사이에 충진되는 액정층(17)을 포함한다. 액정 패널(10)은 비발광소자이므로, 표시 장치는 액정 패널(10)에 입사하여 반사되는 광 또는 액정 패널(10)의 배면에 구비된 백라이트 유닛으로부터 공급되는 광을 이용하여 영상을 표시한다. 액정 패널(10)의 하부 기판(11)은 액정에 전기장을 인가하기 위한 스위칭 소자를 구비할 수 있고, 상부 기판(15)은 RGB 컬러필터를 포함할 수 있다. 액정에 전기장이 인가되면 액정을 통과하는 광량이 변경되고, 광이 RGB 컬러필터를 통과하여 표시 장치가 영상을 표시한다. 액정 패널(10)은 잘 알려진 기술이므로 상세한 설명은 생략한다.
본 예에서 광원(20)은 액정 패널(10)의 백라이트로서 백색광을 제공한다. 광원(20)은 청색광을 내는 청색 반도체 발광부(25; 도 4 참조)와, 녹색 광을 내는 녹색 반도체 발광부(26; 도 4 참조)와, 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내는 복합 불소계 형광 물질(complex fluoride phosphor; 27; 도 5 참조)을 구비한다. 청색 반도체 발광부(예: InGaN 활성층을 가지는 청색 LED 칩)로부터의 청색광, 녹색 반도체 발광부(26)(예: InGaN 활성층을 가지는 녹색 LED 칩)로부터의 녹색광 및 복합 불소계 형광 물질(예: K2[SiF6]:Mn4 +)로부터의 적색광이 백색광을 만든다.
TV, 휴대폰, 모니터와 같은 표시 장치의 화질에 대해 평가할 때는 해상도 외에도 밝기, 명암비, 색재현율(Color Gammut) 등의 기준이 있다. 색재현율은 원본의 색상을 화면에서 어느 정도 표현할 수 있는지를 CIE 색좌표에서 수치화한 비율이다. CIE 색공간은 인간 색채 인지에 대한 연구를 바탕으로 분광 광도계에 의한 측정값을 기초로 X,Y값으로 표현한 것이다. CIE 색좌표는 밝기를 제외한 채도와 색상을 표현한다. CIE 색좌표 상에서 색상을 띄지 않는 흰색은 중앙에 위치하며, 순색에 가까울수록 말굽 형태의 다이어그램 가장자리 선에 위치한다(도 11 참조). 색재현율은 이 CIE 색좌표상에서 NTSC 색상 영역(NTSC 색상 영역은 1953년 미국 컬러 TV의 표준 색 영역을 의미)을 기준으로 하는 것으로서, 예를 들어, 색재현율이 120%라고 한다면 NTSC를 100% 색영역으로 보았을 때 그 이상의 색영역을 가진 것을 의미한다. 도 11을 참조하면, Normal 경우보다 New WCG의 경우가 색재현율이 더 크다.
표시 장치가 우수한 색재현율을 가지기 위해서는 액정 패널(10)의 컬러필터를 구성하는 안료의 조성 등도 중요하지만, 백라이트의 발광 스펙트럼 특성이 중요하다. 동일한 백색광이라도 백색광을 이루는 청색광, 녹색광 및 적색광의 피크 파장의 범위와 서로 중첩되는 정도는 다를 수 있다. 일반적으로 청색광, 녹색광 및 적색광의 피크 파장의 폭이 좁아서 구분이 명확한 것이 색재현율 향상에 유리하다.
표시 장치는 도 3(a)와 같이 액정 패널(10)의 직하에 반사판(30) 위에 광원(20)이 배치된 직하타입과, 도광판(50)의 측면에 광원(20)이 배치되는 에지타입 모두 가능하다. 광학시트(40)는 광원(20)으로부터 나온 광 또는 도광판(50)으로부터 나온 광의 균일성을 향상하여 액정 패널(10)에 제공한다.
도 4는 본 개시에 따른 표시 장치의 광원의 일 예를 설명하는 도면이고, 도 5는 본 개시에 따른 표시 장치의 광원의 단면의 일 예를 설명하는 도면이다.
본 예에서 광원(20)은 반도체 발광소자 패키지이다. 청색 반도체 발광부(25; 이하, 청색칩) 및 녹색 반도체 발광부(26; 이하, 녹색칩)를 수용하는 캐비티(cavity; 22)가 형성된 몰드(21), 캐비티(22)로 노출되며, 청색칩(25) 및 녹색칩(26)에 전원을 제공하는 리드 전극(23) 그리고 캐비티(22)를 채우며 복합 불소계 형광 물질(27)이 분산된 수지(29)를 포함한다.
예를 들어, 청색칩(25) 및 녹색칩(26)은 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 일 예로, 사파이어 성장 기판 위에 차례로 형성된 n형 질화물 반도체층(예: n-GaN), 활성층, p형 질화물 반도체층(예: p-GaN)과, p형 질화물 반도체층 위에 형성된 투명전극, 투명 전극 위에 형성된 전극을 포함한다. 예를 들어, 청색칩(25)은 InGaN 활성층을 가지며, 녹색칩(26)은 InGaN 활성층을 가진다.
리드 전극(23)은 몰드(21)에 결합되며, 캐비티(22)로 노출되어 있고, 청색칩(25) 및 녹색칩(26)이 리드 전극(23)에 실장되어 있다. 청색칩(25) 및 녹색칩(26)의 전극은 다른 극성의 리드 전극에 와이어 본딩되어 있다. 수지(29)는 캐비티(22)를 채우며 청색칩(25) 및 녹색칩(26)를 보호한다. 복합 불소계 형광 물질(27)은 수지(29)에 분산되어 있다. 청색칩(25)으로부터 청색광의 일부 및/또는 녹색칩(26)으로부터의 녹색광의 일부에 의해 복합 불소계 형광 물질(27)이 여기된 후 적색광을 방출한다. 이 적색광과 나머지 청색광 및 나머지 녹색광이 수지의 외부로 나온다. 따라서 사람의 눈에는 청색광, 녹색광 및 적색광이 혼색되어 백색광으로 인식된다. 본 예와 같이, 복합 불소계 형광 물질(27)이 수지(27)에 분산될 수도 있지만, 청색칩(25) 및/또는 녹색칩(26)의 표면에 코팅될 수도 있다.
광원의 발광 스펙트럼의 일 예에서, 청색광, 녹색광 및 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 각각 40nm, 60nm 및 20nm 이하로서, 서로 색분리가 잘된다. 또한, 일 예에서, 청색광의 피크 파장(Peak Wavelength)은 440nm~460nm의 범위이고, 녹색광의 피크 파장은 513nm~533nm의 범위이며, 복합 불소계 형광 물질의 적색광의 피크 파장은 620nm~640nm의 범위이다. 복합 불소계 형광 물질은 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Mn4 +를 액티베이터(activator)로 가진다. 광원은 액정 패널로 표시되는 이미지의 시감(눈으로 보이는 것)을 향상시키기 위해 청색광 및/또는 녹색광에 의해 여기되어 복합 불소계 형광 물질보다 적색광으로서 파장이 더 긴 적색광을 내는 복합 나이트라이드계 형광 물질을 미량(예: 중량비로 10% 이하) 포함할 수 있다.
복합 불소계 형광 물질은 아래의 (A),(B),(C),(D) 중 적어도 하나를 포함한다.
(A) A2[MF6]:Mn4 +, 여기서 A는 Li, Na, K, Rb, Cs, NH4 및 이들의 조합으로 이루어진 그룹에서 선택된 하나, M은 Ge, Si, Sn, Ti, Zr 및 이들의 조합으로 이루어진 그룹에서 선택된 하나, (B) E[MF6]:Mn4 +, 여기서 E는 Mg, Ca, Sr, Ba, Zn 및 이들의 조합으로 이루어진 그룹에서 선택된 하나이고, M은 Ge, Si, Sn, Ti, Zr 및 이들의 조합으로 이루어진 그룹에서 선택된 하나이며,
(C) Ba0.65Zr0.35F2.70:Mn4+
(D)A3[ZrF7]:Mn4 + 여기서 A는 Li, Na, K, Rb, Cs, NH4 및 이들의 조합으로 이루어진 그룹에서 선택된 하나.
도 6은 K2TiF6:Mn4 +의 여기 스펙트럼(excitation spectrum)을 나타내는 도면으로서, 복합 불소계 형광 물질 K2TiF6:Mn4 +의 흡수 파장대를 보여주며, 대략 400nm~420nm 파장대를 가장 많이 흡수하는 것을 알 수 있다. 도 7은 K2TiF6:Mn4 +의 발광 스펙트럼(emission spectrum)을 나타내는 도면으로서, 대략 620nm~640nm의 파장대에서 피크 파장을 가짐을 알 수 있다. 복합 불소계 형광 물질 K2TiF6:Mn4 + 은 근자외선 또는 청색광을 흡수하고 적색광을 방출하는 것을 알 수 있고, 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 매우 작아서 발광 스펙트럼이 적색광에 집중되는 것을 알 수 있다.
도 8은 455nm의 광으로 여기된 적색 형광 물질 K2[SiF6]:Mn4 +의 발광 스펙트럼을 나타내는 도면으로서, 복합 불소계 형광물질 K2[SiF6]:Mn4 +로 인한 적색광은 대략 620nm~640nm의 파장대에서, 좁게는 630nm에서 피크 파장을 가지며 반치폭이 약 10nm 정도로 매우 좁은 것을 알 수 있다. 한편, 나이트라이드계 형광 물질(SCASN)은 적색광의 꼬리가 좀더 길게 형성되는 것을 알 수 있다.
상기 설명에서 K2SiF6:Mn4 + 와 K2TiF6:Mn4 +의 스펙트럼 특성을 보았지만, 전술된 (A),(B),(C),(D)에 제시된 복합 불소계 형광 물질도 이와 비슷한 특성을 보일 수 있으면, 따라서 본 예에 따른 표시 장치가 포함하는 광원의 적색 형광 물질로서 K2SiF6:Mn4+ 와 K2TiF6:Mn4 + 뿐만아니라 전술된 (A),(B),(C),(D)에 제시된 복합 불소계 형광 물질도 충분히 사용할 수 있다.
도 9는 나이트라이드계 적색 형광 물질 CaAlSiN3:Eu의 여기스펙트럼(G1)및 발광스펙트럼(G2)을 나타내는 도면으로서, 비교적 넓은 파장대를 흡수하며, 655nm의 발광 피크 파장을 가짐을 알 수 있다. 복합 불소계 형광 물질 K2[SiF6]:Mn4 +의 피크 파장은 630nm로서 복합 나이트라이드계 형광 물질 CaAlSiN3:Eu의 피크 파장보다 짧음을 알 수 있다. 아래 [표1]에 K2[SiF6]:Mn4+ CaAlSiN3:Eu의 특성을 비교하였다.
조성 피크파장 FWHM 색좌표 입자 사이즈
기존(Nitride) CaAlSiN3:Eu 655nm 87nm 0.682/0.318 10nm
New(KSF) K2[SiF6]:Mn4+ 630nm 10nm 0.695/0.305 30nm
상기 [표1]에서 알 수 있는 바와 같이, 복합 나이트라이드계(nitride) 형광 물질 CaAlSiN3:Eu을 사용하면 좀더 장파장의 적색광을 얻을 수 있다. 따라서 본 예에 따른 광원의 적색 형광물질로서 복합 불소계 형광 물질을 주성분으로 하되, 색감(사람의 눈에 시인되는 색감)을 약간 조정하기 위해 미량을 첨가할 수도 있다. 이에 대해서는 더 후술된다.
도 10은 본 예에 따른 표시 장치와 비교예1 및 2의 표시 장치의 발광스펙트럼을 비교한 도면이고, 도 11은 본 예에 따른 표시 장치와 비교예1 및 2의 표시장치의 특성을 NTSC로 비교한 도면으로서, 광원을 제외하고는 동등한 조건으로 테스트하였다.
별표 점으로 표시된 Normal(비교예1)은 청색칩에 녹색 형광체 및 적색 형광체를 조합한 광원 또는, 청색칩에 옐로우 형광체 및 적색 형광체를 조합한 광원을 사용한 표시 장치(예: LCD)를 나타낸다. 사각 점으로 표시된 WCG (비교예2) 표시 장치는 청색칩, 녹색칩 및 복합 나이트라이드계 형광물질인 CaAlSiN3:Eu이 조합된 광원을 사용한 표시 장치를 나타낸다. 원형점으로 표시된 본 예에 따른 표시 장치(N-WCG; New WCG)은 청색칩, 녹색칩 및 복합 불소계 형광 물질 K2[SiF6]:Mn4 + (KSF)를 조합한 광원을 사용한 표시 장치를 나타낸다.
도 10을 참조하면, 비교예1의 표시 장치는 청색광의 반치폭(FWHM)은 비교적 좁고 색분리가 잘되지만, 녹색광으로부터 적색광까지 뚜렷한 피크가 없고 색분리가 잘되지 않음을 알 수 있고, 도 11에 도시된 바와 같이 NTSC 100% 대비 약 71.9%의 색재현율을 가지는 것을 확인할 수 있다. 비교예2의 표시 장치는 청색광 및 녹색광의 색분리는 비교적 양호하지만 적색광의 반치폭이 비교적 넓고, 적색광의 꼬리가 길게 이어지는 것을 알 수 있고, 황색광도 상당히 나오는 것을 알 수 있으며, 도 11에 도시된 바와 같이, 약 102.3% 정도의 색재현율을 가짐을 알 수 있다. 반면, 본 예에 따른 표시 장치는 청색광, 녹색광 및 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 각각 40nm, 60nm 및 20nm 이하로서, 서로 색분리가 뚜렸하고 피크가 뚜렸하며, 청색광의 피크 파장(Peak Wavelength)은 440nm~460nm의 범위이고, 녹색광의 피크 파장은 515nm~530nm의 범위이며, 복합 불소계 형광 물질의 적색광의 피크 파장은 625nm~635nm의 범위인 것을 알 수 있으며, 도 11에 도시된 바와 같이, 약 110.1%의 색재현율을 가져서 NTSC 100% 대비 현저한 상승을 보여줄 뿐만아니라 비교예2에 비해서도 색재현율에 있어서 매우 큰 상승 또는 개선을 보여준다. 또한, 비교예2에 비해서 녹색광이 약간 장파장으로 이동(shift)되고 피크가 더 강하게 형성됨을 알 수 있다. 따라서, 본 예에 따른 표시 장치에 의하면, 색재현율이 현저히 향상된다.
아래 [표 2]에 실험 조건 및 결과를 제시하였다
구분 Concept
VF G Wp G VF B Wp B Iv[lm] Cx Cy
Normal Nitride Yellow + Nitride Red(540 + 630nm) 2.95@120mA 444.0 39.5 0.295 0.265
WCG B Chip + G Chip+ Nitride Red 2.98@105mA 518.35 2.98@65mA 448.40 20.57 0.2588 0.2598
NEW WCG B Chip + G Chip+ Nitride Red+KSF 2.96@105mA 523.02 2.97@65mA 449.36 27.14 0.2530 0.2821
상기 [표2]를 참조하면, 본 예에 따른 표시 장치(NEW WCG)가 구비하는 광원은 복합 불소계 형광 물질 대비 미량의 복합 나이트라이드계 형광 물질 포함할 수 있다. 복합 나이트라이드계 형광 물질은 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Eu를 액티베이터(activator)로 가진다. 예를 들어, 광원은 형광 물질의 중량비로 97%~99% K2[SiF6]:Mn4 +(복합 불소계 형과 물질)과, 3%~1% CaAlSiN3:Eu (복합 나이트라이드계 형광 물질)을 포함한다. 복합 불소계 형광 물질은 625nm~635nm의 피크 파장을 가지며, 복합 나이트라이드계 형광 물질은 650nm~665nm의 피크 파장을 가진다. 이와 같이, 본 예의 표시 장치에서 광원에 적색광을 내는 미량의 복합 나이트라이드계 형광 물질(예: CaAlSiN3:Eu)이 첨가됨으로써 색감을 약간 변경하여 사용자의 요구조건에 맞출 수 있다. 다만, 미량의 CaAlSiN3:Eu를 첨가하는 경우와 하지 않는 경우에 있어서 NEW WCG 표시 장치는 색재현율에서는 거의 동등하며, NTSC를 기준으로 110% 이상의 색재현율을 가짐을 확인하였다. 본 예에 따른 표시 장치의 광원이 제공하는 백색광의 색좌표는 Cx = 0.220~0.320, Cy = 0.200~0.340일 수 있다. 또한, 본 예에서 광원은 청색칩 및 녹색칩의 구동 전류를 변경하여 백색광의 색좌표를 필요에 따라 변경할 수 있다.
도 12는 본 예에 따른 표시 장치와 비교예3 및 4의 표시 장치의 발광스펙트럼을 비교한 도면이고, 도 13은 본 예에 따른 표시 장치와 비교예3 및 4의 표시장치의 특성을 NTSC로 비교한 도면으로서, 광원을 제외하고는 동등한 조건으로 테스트하였다.
사선(/)으로 표시된 비교예3은 청색칩에 녹색 형광체(Silcate G) 및 적색 형광체(KSF)를 조합한 광원을 사용한 표시 장치(예: LCD)를 나타낸다. 삼각형 점으로 표시된 비교예4는 청색칩, 녹색 형광체(Nitride G) 및 적색 형광체(KSF)를 조합한 광원을 사용한 표시 장치를 나타낸다. 원형 점으로 표시된 본 예에 따른 표시 장치(New WCG)은 청색칩, 녹색칩 및 복합 불소계 형광 물질 KSF(K2[SiF6]:Mn4+)를 조합한 광원을 사용한 표시 장치를 나타낸다.
도 12를 참조하면, 비교예3의 표시 장치는 청색광의 반치폭(FWHM)은 비교적 좁고 색분리가 잘되지만, 녹색광의 피크가 낮고 반치폭이 크고 양측으로 넓게 퍼져서 색분리가 잘되지 않음을 알 수 있고, 도 13에 도시된 바와 같이 NTSC 100% 대비 약 89.2%의 색재현율을 가지는 것을 확인할 수 있다. 비교예4의 표시 장치의 경우에도 녹색광의 넓게 퍼져 있고, 적색광과의 분리가 본 예의 경우보다 약한 것을 알 수 있고, 도 13에 도시된 바와 같이, 약 87.3% 정도의 색재현율을 가짐을 알 수 있다. 반면, 본 예에 따른 표시 장치는 청색광, 녹색광 및 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 훨씬 좁아 서로 색분리가 뚜렷하고 피크가 뚜렷하며, 도 13에 도시된 바와 같이, 약 110.1%의 색재현율을 가져서 NTSC 100% 대비 현저한 상승을 보여준다. 이와 같이, 적색 형광체로 K2[SiF6]:Mn4 +을 사용하더라도 녹색칩 대신 녹색 형광체를 사용하는 경우, 색분리가 좋지 못하고 색재현율 향상에 문제가 있음을 알 수 있다. 또한, 녹색 형광체 대신 또는 함께 황색 형광체를 사용하더라도 색분리가 좋지 않을 것임을 알 수 있다. 따라서, 본 예와 같이, 청색칩 및 녹색칩을 사용하고 여기에 적색 형광체로 복합 불소계 형광 물질(예: K2[SiF6]:Mn4+)을 사용하면, 표시 장치의 백라이트로서 필터링에 의한 광손실이 작고, 색재현율이 전술한 바와 같이, NTSC 100% 대비 110% 이상으로 현저히 향상된다.
도 16은 본 개시의 원리를 설명하는 도면이다.
LED 패키지(100)는 LED 칩(110), 측벽(120), 리드프레임(130) 및 봉지부(140)를 포함하고 있다. 측벽의 높이와 기울기에 따라 LED 칩으로부터 나오는 광의 방향이 변할 수 있다. 특히 측벽의 높이에 따라 광의 방향은 크게 달라진다. 예를 들어 도 16(a) 내지 도 16(c)는 측벽의 높이가 낮아짐에 따라 LED 칩으로부터 나오는 광(150)이 점점 넓게 퍼지는 것을 간략하게 보여주고 있다. 즉 측벽(120)의 높이가 봉지부(140)의 높이보다 낮아지면서 LED 칩으로부터 나오는 광(150)이 점점 넓게 퍼진다. 특히 측벽(120)의 높이가 LED 칩(110)의 높이보다 낮은 도 16(c)의 경우에 LED 칩으로부터 나오는 광(150)이 수평방향으로 가장 넓게 퍼진다. 측벽(120)의 높이가 0 인 경우 도 16(c)와 같은 특징을 나타낼 수 있다. LED 칩(110)으로부터 나오는 광의 양은 일정하기 때문에 광이 넓게 퍼지는 경우 상부로 나가는 광의 강도는 떨어지게 된다. 측벽(120), 봉지부(140) 및 LED 칩(110)의 높이는 리드프레임(130) 상면(131)을 기준으로 측정할 수 있다. 예를 들어 도 16(b)에 도시된 것처럼 측벽(120)은 높이는 h1, 봉지부(140)의 높이는 h2, LED 칩(110)의 높이는 h3 일 수 있다. 이하 도면에서도 측벽, 봉지부, 및 LED 칩의 높이는 리드프레임의 상면을 기준으로 측정하는 것을 의미한다.
도 17은 본 개시에 따른 LED 광원 유닛의 일 예를 보여주는 도면이다.
본 개시에 따른 LED 광원 유닛(200)은 기판(210) 및 기판(210)의 길이방향을 따라 기판(210) 위에 배열되는 복수의 LED 패키지(220)를 포함하고 있다.
복수의 LED 패키지(220)가 배열되는 기판(210)은 일반적으로 PCB 기판일 수 있다.
복수의 LED 패키지(220)는 각각 측벽(230), 서로 다른 색을 발광하는 복수의 LED 칩(240, 241), 리드프레임(250) 및 봉지부(260)를 포함하고 있다. 복수의 LED 칩(240, 241)은 청색 발광 LED 칩(240) 및 녹색 발광 LED 칩(241)이며, 청색 발광 LED 칩(240)과 녹색 발광 LED 칩(241)이 길이방향을 따라 교대로 배열될 수 있다. 그러나 복수의 LED 칩은 2개 이상일 수 있으며, 청색 발광 LED 칩, 적색 발광 LED 칩, 녹색 발광 LED 칩의 다양한 조합이 가능하다. 복수의 LED 패키지(220) 중 기판의 양단에 있는 LED 패키지(221, 222)는 측벽(230)의 높이가 다른 측벽부분을 포함하고 있다. 예를 들어 도 17에서 보여주는 것처럼, LED 패키지(221, 222)의 측벽(230) 중 외측에 있는 측벽부분(231)의 높이는 봉지부(260)의 높이보다 낮을 수 있다. 또한 LED 패키지(221, 222)의 측벽(230) 중 외측에 있는 측벽부분(231)의 높이는 LED 칩(240, 241)의 높이보다 낮은 것이 바람직하다. 더 나아가 기판의 양단에 있는 LED 패키지(221, 222)의 외측에 있는 측벽부분(231)의 높이는 0일 수도 있다. 측벽(230)의 높이는 도 16에서 설명한 것처럼 리드프레임(250)의 상부면(251)으로부터의 높이를 의미한다. 따라서 측벽부분의 높이가 0이라는 것은 리드프레임(250)의 상부면(251)으로부터 돌출된 측벽부분이 없다는 것을 의미한다. 또한 기판의 양단에 있는 LED 패키지(221, 222)의 측벽(230) 중 내측에 있는 측벽부분(232)의 높이는 외측에 있는 측벽부분(231)의 높이와 다를 수 있다. 또한 기판의 양단에 있는 LED 패키지(221, 222)의 내측에 있는 측벽부분(232)의 높이는 이웃한 LED 패키지(223, 224)의 측벽(230) 높이와 동일할 수 있다. 기판의 양단에 있는 LED 패키지(221, 222)에서 외측에 있는 측벽부분(231) 및 내측에 있는 측벽부분(232)에 대한 설명은 도 5에서 자세히 한다. 또한 기판의 양단에 있는 LED 패키지(221, 222)를 제외한 나머지 LED 패키지(220)의 측벽(230)의 높이는 필요에 따라 다양하게 할 수 있다. 따라서 기판의 양단에 있는 LED 패키지(221, 222)를 제외한 나머지 LED 패키지(220)의 측벽(230)의 높이는 봉지부(260)의 높이보다 높을 수도 있고 낮을 수도 있으며, 높이가 0일 수도 있다. 다만 LED 패키지(221, 222)를 제외한 나머지 LED 패키지(220)의 측벽(230)의 높이가 봉지부(260)의 높이보다 낮은 경우, 서로 다른 색을 발광하는 복수의 LED 칩(240, 241)을 포함하고 있는 이웃한 LED 패키지(220) 간에 색혼합이 더 잘되어 LED 광원 유닛(200)은 향상된 고색상의 백색광을 발광할 수 있다.
도 18의 개시에 따른 LED 광원 유닛에서 사용된 기판의 양단에 있는 LED 패키지의 일 예를 보여주는 사시도 이다.
LED 패키지(221)는 LED 칩(240, 241), 리드프레임(250) 및 측벽(230)을 포함하고 있다. 측벽(230)은 4개의 측벽부분(231, 232, 233, 234)으로 나눌 수 있다.
LED 패키지(222)는 LED 칩(240, 241), 리드프레임(250) 및 측벽(230)을 포함하고 있다. 측벽(230)은 4개의 측벽부분(231, 232, 233, 234)으로 나눌 수 있다. LED 패키지(221)와 LED 패키지(222)를 비교했을 때, 측벽부분(231)의 위치가 서로 다른 것을 알 수 있다. LED 패키지(221)에서는 LED 칩(240) 근처의 측벽부분이 도 17에서 설명하는 외측에 위치하는 측벽부분(231)에 해당하지만, LED 패키지(222)에서는 LED 칩(241) 근처의 측벽부분이 도 17에서 설명하는 외측에 위치하는 측벽부분(231)에 해당한다. 외측에 위치하는 측벽부분(231)에 대향하는 측벽부분(232)이 내측에 위치하는 측벽부분(232)에 해당한다. 또한 LED 패키지(221, 222)가 기판에 배치되었을 때, 기판의 길이방향에 대해 수직방향으로 있는 측벽부분(231, 232)과 비교하여 기판의 길이방향에 대해 수평방향으로 있는 측벽부분(233, 234)의 높이는 필요에 따라 다양하게 할 수 있다. 또한 도시하지는 않았지만, 기판의 양단에 있는 LED 패키지(221, 222) 이외의 LED 패키지(220)의 측벽도 4개의 측벽부분으로 나눌 수 있으며, 4개의 측벽부분의 높이는 필요에 따라 다양하게 할 수 있다. 특히 기판의 양단에 있는 LED 패키지(221, 222) 이외의 LED 패키지(220)의 측벽(230) 중 기판의 길이방향에 대해 수직방향으로 있는 측벽부분의 높이가 봉지부(260)의 높이보다 낮은 경우가 바람직한 것에 대해서는 도 17에서 설명하였다.
도 19는 본 개시에 따른 LED 광원 유닛의 광 특성을 보여주는 도면이다.
도 19(a)는 도 17에 개시된 LED 광원 유닛의 광 특성을 보여준다. 본 개시에 따른 LED 광원 유닛(200)의 가운데 영역(300)은 제1 색상의 LED 칩(240)과 제2 색상의 LED 칩(241)에서 나오는 색이 잘 혼합되어 백색광을 나타낸다. 또한 LED 광원 유닛(200)의 왼쪽 영역(310)과 오른쪽 영역(320)에서는 색분리 현상이 발생한다. 그러나 본 개시에 따른 LED 광원 유닛(200)의 양단에 있는 LED 패키지(221, 222)의 측벽(230)의 높이 중 외측에 있는 측벽부분(231)의 높이가 봉지부(260)의 높이보다 낮기 때문에, 도 16에서 설명한 것처럼 LED 칩(240.241)에서 나오는 광이 왼쪽 영역(310)과 오른쪽 영역(320)에서 넓게 퍼지게 되어, 상부로 올라가는 색분리가 된 광의 양이 적어진다. 따라서 왼쪽 영역(310)과 오른쪽 영역(320)에서의 색분리 현상이 완화될 수 있다. 도 19(b)는 도 17에 도시된 LED 광원 유닛(200)에서 LED 패키지(221, 222)를 제외한 나머지 LED 패키지(220)의 측벽(230) 중 기판의 길이방향에 대해 수직방향으로 있는 측벽부분의 높이가 봉지부(260)의 높이보다 낮은 경우의 광 특성을 보여준다. LED 광원 유닛(200)에서 LED 패키지(221, 222)를 제외한 나머지 LED 패키지(220)의 측벽(230) 중 기판의 길이방향에 대해 수직방향으로 있는 측벽부분의 높이가 봉지부(260)의 높이보다 낮은 경우, 이웃한 LED 패키지(220) 간에 색혼합이 도 19(a)에서는 이루어지지 않는 부분(270)에서도 이루어져 LED 광원 유닛(200)은 향상된 고색상의 백색광을 발광할 수 있다. 도 19(b)는 LED 광원 유닛(200)에서 LED 패키지(221, 222)를 제외한 나머지 LED 패키지(220)의 측벽(230) 중 기판의 길이방향에 대해 수직방향으로 있는 측벽부분의 높이가 0인 경우를 도시하고 있다.
도 20은 본 개시에 따른 LED 광원 유닛을 사용한 백라이트 어셈블리의 일 예를 보여주는 도면이다.
본 개시에 따른 LED 광원 유닛을 사용한 백라이트 어셈블리(400)는, 도광판(410) 및 LED 광원 유닛(420)을 포함하고 있다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 표시 장치에 있어서, 액정 패널; 그리고 액정 패널에 광을 제공하는 광원;으로서, 청색광을 내는 청색 반도체 발광부와, 녹색 광을 내는 녹색 반도체 발광부와, 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Mn4 +를 액티베이터(activator)로 가지는 복합 불소계 형광 물질(complex fluoride phosphor)을 구비하며, 발광 스펙트럼에서 청색광, 녹색광 및 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 각각 40nm, 60nm 및 20nm 이하로서, 서로 색분리되는 광원;을 포함하는 것을 특징으로 하는 표시 장치.
본 개시는 액정 표시 장치에 한정되지 않으며, 백색의 백라이트 광원이 필요한 표시 장치에 모두 적용될 수 있다.
(2) 복합 불소계 형광 물질은 K2[SiF6]:Mn4 +인 것을 특징으로 하는 표시 장치.
(3) 광원은 복합 불소계 형광 물질 대비 중량비로 10% 이하의 복합 나이트라이드계 형광 물질을 포함하며, 복합 나이트라이드계 형광 물질은 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Eu를 액티베이터(activator)로 가지는 것을 특징으로 하는 표시 장치.
(4) 광원은 형광 물질의 중량비로 97%~99% K2[SiF6]:Mn4 +(복합 불소계 형과 물질)과, 3%~1% CaAlSiN3:Eu (복합 나이트라이드계 형광 물질)을 포함하는 것을 특징으로 하는 표시 장치.
(5) 복합 불소계 형광 물질은 625nm~635nm의 피크 파장을 가지며, 복합 나이트라이드계 형광 물질은 650nm~665nm의 피크 파장을 가지는 것을 특징으로 하는 표시 장치.
(6) NTSC를 기준으로 110% 이상의 색재현율을 가지는 것을 특징으로 하는 표시 장치.
(7) 광원이 발산하는 청색광, 녹색광 및 적색광은 혼색되어 백색광으로 시인되는 것을 특징으로 하는 표시 장치.
(8) 청색 반도체 발광부 및 녹색 반도체 발광부는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진 것을 특징으로 하는 표시 장치.
본 개시에서 광원의 청색 반도체 발광부 및 녹색 반도체 발광부는 3족 질화물 반도체에 한정되지 않으며, 청색광 및 녹색광을 내는 발광소자라면 어떤 형태라도 무방하다.
또한, 청색 반도체 발광부 외에도 근자외선 LED를 사용하는 것도 본 개시의 범위에 포함된다. 즉 근자외선 LED를 사용하되, 녹색칩(또는 다른 색의 칩) 및 적색 형광체로서, 복합 불소계 형광 물질을 사용하여 백색광을 만드는 것도 본 개시에 포함된다.
(9) 복합 불소계 형광 물질은 청색 반도체 발광부 및 녹색 반도체 발광부의 표면에 코팅된 것을 특징으로 하는 표시 장치.
(10) 광원은: 청색 반도체 발광부 및 녹색 반도체 발광부를 수용하는 캐비티(cavity)가 형성된 몰드; 캐비티로 노출되며, 청색 반도체 발광부 및 녹색 반도체 발광부에 전원을 제공하는 리드 전극; 그리고 캐비티를 채우며 복합 불소계 형광 물질이 분산된 수지;를 포함하는 것을 특징으로 하는 표시 장치.
(11) 광원의 발광 스펙트럼에서, 청색광의 피크 파장(Peak Wavelength)은 440nm~460nm의 범위이고, 녹색광의 피크 파장은 515nm~530nm의 범위이며, 복합 불소계 형광 물질의 적색광의 피크 파장은 625nm~635nm의 범위인 것을 특징으로 하는 표시 장치.
(12) 광원이 제공하는 백색광의 색좌표는 Cx = 0.220~0.320, Cy = 0.200~0.340인 것을 특징으로 하는 표시 장치.
(13) 광원은 형광 물질의 중량비로 97%~99% K2[SiF6]:Mn4 +(복합 불소계 형과 물질)과, 3%~1% CaAlSiN3:Eu (복합 나이트라이드계 형광 물질)을 포함하며, 광원은: 청색 반도체 발광부 및 녹색 반도체 발광부를 수용하는 캐비티(cavity)가 형성된 몰드; 캐비티로 노출되며, 청색 반도체 발광부 및 녹색 반도체 발광부에 전원을 제공하는 리드 전극; 그리고 캐비티를 채우며 K2[SiF6]:Mn4 + CaAlSiN3:Eu이 분산된 수지;를 포함하는 것을 특징으로 하는 표시 장치.
(14) 복합 불소계 형광 물질은: (A) A2[MF6]:Mn4 +, 여기서 A는 Li, Na, K, Rb, Cs, NH4 및 이들의 조합으로 이루어진 그룹에서 선택된 하나, M은 Ge, Si, Sn, Ti, Zr 및 이들의 조합으로 이루어진 그룹에서 선택된 하나, (B) E[MF6]:Mn4 +, 여기서 E는 Mg, Ca, Sr, Ba, Zn 및 이들의 조합으로 이루어진 그룹에서 선택된 하나이고, M은 Ge, Si, Sn, Ti, Zr 및 이들의 조합으로 이루어진 그룹에서 선택된 하나이며, (C) Ba0 . 65Zr0 .35F2. 70:Mn4 +; (D)A3[ZrF7]:Mn4 + 여기서 A는 Li, Na, K, Rb, Cs, NH4 및 이들의 조합으로 이루어진 그룹에서 선택된 하나; 중 적어도 하나를 포함하는 것을 특징으로 하는 표시 장치.
(15) 기판; 그리고, 기판의 길이방향을 따라 기판 위에 배열되며, 측벽 및 서로 다른 색을 발광하는 복수의 LED 칩을 포함하는 복수의 LED 패키지;를 포함하며,기판 위에 배열된 복수의 LED 패키지 중 기판의 양단에 있는 LED 패키지의 외측에 있는 측벽부분의 높이는 봉지부의 높이보다 낮은 것을 특징으로 하는 LED 광원 유닛.
(16) 기판의 양단에 있는 LED 패키지의 내측에 있는 측벽부분의 높이는 외측에 있는 측벽부분의 높이와 다른 것을 특징으로 하는 LED 광원 유닛.
(17) 기판의 양단에 있는 LED 패키지의 내측에 있는 측벽부분의 높이는 이웃한 LED 패키지의 측벽 높이와 동일한 것을 특징으로 하는 LED 광원 유닛.
(18) 기판 위에 배열된 복수의 LED 패키지 중 기판의 양단에 있는 LED 패키지를 제외한 나머지 LED 패키지의 측벽부분 중 기판의 길이방향에 대해 수직방향에 있는 측벽부분의 높이는 봉지부의 높이보다 낮은 것을 특징으로 하는 LED 광원 유닛.
(19) 기판의 양단에 있는 LED 패키지의 외측에 있는 측벽부분의 높이가 0 인 것을 특징으로 하는 LED 광원 유닛.
(20) 기판의 양단에 있는 LED 패키지의 외측에 있는 측벽부분의 높이가 LED 칩의 높이보다 낮은 것을 특징으로 하는 LED 광원 유닛.
(21) 복수의 LED 칩은 제1 색상의 LED 칩과 제2 색상의 LED 칩을 포함하는 것을 특징으로 하는 LED 광원 유닛.
(22) 제1 색상의 LED 칩과 제2 색상의 LED 칩이 기판의 길이방향을 따라 교대로 배열되는 것을 특징으로 하는 LED 광원 유닛.
(23) 제1 색상의 LED 칩은 청색 발광 LED 칩이고, 제2 색상의 LED 칩은 녹색 발광 LED 칩인 것을 특징으로 하는 LED 광원 유닛.
(24) 백라이트 어셈블리에 있어서, 광을 가이드하는 도광판; 그리고, 기판, 기판의 길이방향을 따라 기판 위에 배열되며, 측벽 및 서로 다른 색을 발광하는 복수의 LED 칩을 포함하는 복수의 LED 패키지를 포함하는 LED 광원 유닛;을 포함하며, 기판 위에 배열된 복수의 LED 패키지 중 기판의 양단에 있는 LED 패키지의 외측에 있는 측벽부분의 높이는 봉지부의 높이보다 낮은 것을 특징으로 하는 백라이트 어셈블리.
(25) 기판의 양단에 있는 LED 패키지의 내측에 있는 측벽부분의 높이는 외측에 있는 측벽부분의 높이와 다른 것을 특징으로 하는 백라이트 어셈블리.
(26) 기판의 양단에 있는 LED 패키지의 내측에 있는 측벽부분의 높이는 이웃한 LED 패키지의 측벽 중 기판의 길이방향에 대해 수직방향으로 있는 측벽부분의 높이와 동일한 것을 특징으로 하는 백라이트 어셈블리.
(27) 기판 위에 배열된 복수의 LED 패키지 중 기판의 양단에 있는 LED 패키지를 제외한 나머지 LED 패키지의 측벽 중 기판의 길이방향에 대해 수직방향으로 있는 측벽부분의 높이는 봉지부의 높이보다 낮은 것을 특징으로 하는 백라이트 어셈블리.
(28) 기판의 양단에 있는 LED 패키지의 외측에 있는 측벽부분의 높이가 0 인 것을 특징으로 하는 백라이트 어셈블리.
본 개시에 따른 하나의 표시 장치에 의하면, 청색칩, 녹색칩 및 적색 형광체로서 CaAlSiN3:Eu을 사용한 표시 장치보다 색재현율이 현저히 향상된 표시 장치가 제공된다.
본 개시에 따른 다른 하나의 표시 장치에 의하면, 청색칩과 황색 형광 물질 및 적색 형광 물질로서 복합 불소계 형광물질을 사용한 광원을 사용하는 경우보다 색재현율이 현저히 향상된 표시 장치가 제공된다.
본 개시에 따른 또 다른 하나의 표시 장치에 의하면, 청색칩과 녹색 형광 물질 및 적색 형광 물질로서 복합 불소계 형광물질을 사용한 광원을 사용하는 경우보다 색재현율이 현저히 향상된 표시 장치가 제공된다.
본 개시에 따른 LED 광원 유닛에 의하면, LED 광원 유닛을 사용한 액정 표시장치에서 색분리 현상에 의한 액정 표시장치의 화질 저하 문제를 해결할 수 있다.
본 개시에 따른 LED 광원 유닛에 의하면, LED 광원 유닛을 사용한 액정 표시장치에서 고색성의 백색광을 얻을 수 있다.

Claims (14)

  1. 표시 장치에 있어서,
    액정 패널; 그리고
    액정 패널에 광을 제공하는 광원;으로서, 청색광을 내는 청색 반도체 발광부와, 녹색 광을 내는 녹색 반도체 발광부와, 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Mn4 +를 액티베이터(activator)로 가지는 복합 불소계 형광 물질(complex fluoride phosphor)을 구비하며, 발광 스펙트럼에서 청색광, 녹색광 및 적색광의 반치폭(FWHM; Full Width at Half Maximum)이 각각 40nm, 60nm 및 20nm 이하로서, 서로 색분리되는 광원;을 포함하는 것을 특징으로 하는 표시 장치.
  2. 청구항 1에 있어서,
    복합 불소계 형광 물질은 K2[SiF6]:Mn4+인 것을 특징으로 하는 표시 장치.
  3. 청구항 1에 있어서,
    광원은 복합 불소계 형광 물질 대비 중량비로 10% 이하의 복합 나이트라이드계 형광 물질을 포함하며, 복합 나이트라이드계 형광 물질은 청색광 및 녹색광 중 적어도 하나에 의해 여기되어 적색광을 내며 Eu를 액티베이터(activator)로 가지는 것을 특징으로 하는 표시 장치.
  4. 청구항 3에 있어서,
    광원은 형광 물질의 중량비로 97%~99% K2[SiF6]:Mn4 +(복합 불소계 형과 물질)과, 3%~1% CaAlSiN3:Eu (복합 나이트라이드계 형광 물질)을 포함하는 것을 특징으로 하는 표시 장치.
  5. 청구항 3에 있어서,
    복합 불소계 형광 물질은 625nm~635nm의 피크 파장을 가지며,
    복합 나이트라이드계 형광 물질은 650nm~665nm의 피크 파장을 가지는 것을 특징으로 하는 표시 장치.
  6. 청구항 1 내지 청구항 5 중 어느 하나의 항에 있어서,
    NTSC를 기준으로 110% 이상의 색재현율을 가지는 것을 특징으로 하는 표시 장치.
  7. 청구항 1에 있어서,
    광원이 발산하는 청색광, 녹색광 및 적색광은 혼색되어 백색광으로 시인되는 것을 특징으로 하는 표시 장치.
  8. 청구항 1에 있어서,
    청색 반도체 발광부 및 녹색 반도체 발광부는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진 것을 특징으로 하는 표시 장치.
  9. 청구항 1에 있어서,
    복합 불소계 형광 물질은 청색 반도체 발광부 및 녹색 반도체 발광부의 표면에 코팅된 것을 특징으로 하는 표시 장치.
  10. 청구항 1에 있어서,
    광원은:
    청색 반도체 발광부 및 녹색 반도체 발광부를 수용하는 캐비티(cavity)가 형성된 몰드;
    캐비티로 노출되며, 청색 반도체 발광부 및 녹색 반도체 발광부에 전원을 제공하는 리드 전극; 그리고
    캐비티를 채우며 복합 불소계 형광 물질이 분산된 수지;를 포함하는 것을 특징으로 하는 표시 장치.
  11. 청구항 1에 있어서,
    광원의 발광 스펙트럼에서,
    청색광의 피크 파장(Peak Wavelength)은 440nm~460nm의 범위이고,
    녹색광의 피크 파장은 515nm~530nm의 범위이며,
    복합 불소계 형광 물질의 적색광의 피크 파장은 625nm~635nm의 범위인 것을 특징으로 하는 표시 장치.
  12. 청구항 1에 있어서,
    광원이 제공하는 백색광의 색좌표는 Cx = 0.220~0.320, Cy = 0.200~0.340인 것을 특징으로 하는 표시 장치.
  13. 청구항 1에 있어서,
    광원은 형광 물질의 중량비로 97%~99% K2[SiF6]:Mn4 +(복합 불소계 형과 물질)과, 3%~1% CaAlSiN3:Eu (복합 나이트라이드계 형광 물질)을 포함하며,
    광원은:
    청색 반도체 발광부 및 녹색 반도체 발광부를 수용하는 캐비티(cavity)가 형성된 몰드;
    캐비티로 노출되며, 청색 반도체 발광부 및 녹색 반도체 발광부에 전원을 제공하는 리드 전극; 그리고
    캐비티를 채우며 K2[SiF6]:Mn4 + CaAlSiN3:Eu이 분산된 수지;를 포함하는 것을 특징으로 하는 표시 장치.
  14. 청구항 1에 있어서,
    복합 불소계 형광 물질은:
    (A) A2[MF6]:Mn4 +, 여기서 A는 Li, Na, K, Rb, Cs, NH4 및 이들의 조합으로 이루어진 그룹에서 선택된 하나, M은 Ge, Si, Sn, Ti, Zr 및 이들의 조합으로 이루어진 그룹에서 선택된 하나,
    (B) E[MF6]:Mn4 +, 여기서 E는 Mg, Ca, Sr, Ba, Zn 및 이들의 조합으로 이루어진 그룹에서 선택된 하나이고, M은 Ge, Si, Sn, Ti, Zr 및 이들의 조합으로 이루어진 그룹에서 선택된 하나이며,
    (C) Ba0 . 65Zr0 .35F2. 70:Mn4 +;
    (D)A3[ZrF7]:Mn4 + 여기서 A는 Li, Na, K, Rb, Cs, NH4 및 이들의 조합으로 이루어진 그룹에서 선택된 하나; 중 적어도 하나를 포함하는 것을 특징으로 하는 표시 장치.
PCT/KR2015/007535 2015-04-21 2015-07-21 표시 장치 WO2016171333A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150055827A KR101694702B1 (ko) 2015-04-21 2015-04-21 Led 광원 유닛 및 이를 이용한 백라이트 어셈블리
KR10-2015-0055827 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016171333A1 true WO2016171333A1 (ko) 2016-10-27

Family

ID=57143227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007535 WO2016171333A1 (ko) 2015-04-21 2015-07-21 표시 장치

Country Status (2)

Country Link
KR (1) KR101694702B1 (ko)
WO (1) WO2016171333A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319071A (zh) * 2017-01-17 2018-07-24 群创光电股份有限公司 显示装置
TWI636286B (zh) * 2017-03-31 2018-09-21 友達光電股份有限公司 顯示裝置
CN110856453A (zh) * 2018-06-05 2020-02-28 株式会社矽因赛德 用于实现led有源矩阵显示的led像素封装

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421222B1 (ko) * 2017-07-21 2022-07-15 엘지디스플레이 주식회사 엘이디 패키지 및 엘이디 패키지를 포함하는 백라이트 유닛

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184910A (ja) * 1999-12-28 2001-07-06 Toshiba Lighting & Technology Corp 発光ダイオードを用いた照明用光源および照明装置
KR20070016723A (ko) * 2005-08-05 2007-02-08 삼성전자주식회사 백라이트 유닛 및 이를 사용한 액정 표시 장치
KR20110124366A (ko) * 2009-03-10 2011-11-16 가부시끼가이샤 도시바 백색 led 및 그것을 사용한 백라이트 및 ebu 규격 대응 액정 표시 장치
JP2012178574A (ja) * 2010-10-15 2012-09-13 Mitsubishi Chemicals Corp 白色発光装置及び照明器具
KR20140117054A (ko) * 2013-03-26 2014-10-07 우리이앤엘 주식회사 백라이트 유닛 및 이를 포함하는 액정표시장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955500B1 (ko) * 2008-07-07 2010-04-30 희성전자 주식회사 미세패턴이 형성된 led패키지 제조방법
JP2012204370A (ja) * 2011-03-23 2012-10-22 Sony Corp 光源回路ユニットおよび照明装置、並びに表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184910A (ja) * 1999-12-28 2001-07-06 Toshiba Lighting & Technology Corp 発光ダイオードを用いた照明用光源および照明装置
KR20070016723A (ko) * 2005-08-05 2007-02-08 삼성전자주식회사 백라이트 유닛 및 이를 사용한 액정 표시 장치
KR20110124366A (ko) * 2009-03-10 2011-11-16 가부시끼가이샤 도시바 백색 led 및 그것을 사용한 백라이트 및 ebu 규격 대응 액정 표시 장치
JP2012178574A (ja) * 2010-10-15 2012-09-13 Mitsubishi Chemicals Corp 白色発光装置及び照明器具
KR20140117054A (ko) * 2013-03-26 2014-10-07 우리이앤엘 주식회사 백라이트 유닛 및 이를 포함하는 액정표시장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319071A (zh) * 2017-01-17 2018-07-24 群创光电股份有限公司 显示装置
TWI636286B (zh) * 2017-03-31 2018-09-21 友達光電股份有限公司 顯示裝置
CN110856453A (zh) * 2018-06-05 2020-02-28 株式会社矽因赛德 用于实现led有源矩阵显示的led像素封装
CN110856453B (zh) * 2018-06-05 2022-03-29 株式会社矽因赛德 用于实现led有源矩阵显示的led像素封装

Also Published As

Publication number Publication date
KR20160125092A (ko) 2016-10-31
KR101694702B1 (ko) 2017-01-11

Similar Documents

Publication Publication Date Title
US9507200B2 (en) Method of manufacturing image display device and method of selecting color filter
JP5878579B2 (ja) 表示装置及びテレビ受信装置
US8415870B2 (en) Semiconductor light emitting device and backlight source, backlight source system, display device and electronic device using the same
TWI442139B (zh) 液晶顯示裝置
US20120087108A1 (en) LED Apparatus
US20110211336A1 (en) Light emitting device, and illumination light source, display unit and electronic apparatus including the light emitting device
US10613385B2 (en) Display device and method for manufacturing the same and method for converting color gamuts of display device
WO2012026718A2 (ko) 멀티칩 백색 led 소자
US11611020B2 (en) Wide color gamut light-emitting element
TW202030526A (zh) 背光模組、顯示裝置及其驅動方法
KR20150135935A (ko) 표시 장치
WO2017002781A1 (ja) 表示装置及びテレビ受信装置
WO2016171333A1 (ko) 표시 장치
WO2013015597A2 (ko) 백색 led 장치
CN105355760A (zh) 一种广色域显示的led器件
JP2018533210A (ja) オプトエレクトロニクス部品、ディスプレイ用背景照明およびオプトエレクトロニクス部品の製造方法
WO2013051771A1 (ko) 파장 변환층을 포함하는 디스플레이 장치
KR20100098463A (ko) 발광모듈
KR20090108171A (ko) 백라이트용 백색 발광소자
US9691320B2 (en) Display apparatus with color filters and light sources and method of controlling the same
CN1854858A (zh) 发光装置、液晶显示装置和照明装置
US20200124786A1 (en) Display devices using led backlight units and led packages for the backlight units
KR20150094034A (ko) 색재현율 개선제를 이용한 디스플레이 백라이트 유닛(blu)용 발광다이오드 소자
WO2017043851A1 (ko) 발광 장치
JP4344526B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889999

Country of ref document: EP

Kind code of ref document: A1