WO2016171290A1 - Metal substrate-using dye-sensitive solar cell having excellent corrosion resistance and back leakage current cut-off effect, and manufacturing method therefor - Google Patents

Metal substrate-using dye-sensitive solar cell having excellent corrosion resistance and back leakage current cut-off effect, and manufacturing method therefor Download PDF

Info

Publication number
WO2016171290A1
WO2016171290A1 PCT/KR2015/003938 KR2015003938W WO2016171290A1 WO 2016171290 A1 WO2016171290 A1 WO 2016171290A1 KR 2015003938 W KR2015003938 W KR 2015003938W WO 2016171290 A1 WO2016171290 A1 WO 2016171290A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
dye
leakage current
solar cell
metal substrate
Prior art date
Application number
PCT/KR2015/003938
Other languages
French (fr)
Korean (ko)
Inventor
강정현
이재호
이동규
전유택
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2016171290A1 publication Critical patent/WO2016171290A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell manufacturing technology, and more particularly, to a dye-sensitized solar cell using a metal substrate excellent in corrosion resistance and reverse leakage current blocking effect and a manufacturing method thereof.
  • FIG. 1 schematically shows a general dye-sensitized solar cell.
  • a dye-sensitized solar cell is formed between a pair of glass substrates 110 and 130.
  • the dye-sensitized solar cell includes a semiconductor electrode 120 to which a dye that receives electrons is generated, a counter electrode 140 facing the semiconductor electrode, and an electrolyte 150 interposed therebetween. It includes.
  • the pair of glass substrates 110 and 130 are coated with a conductive transparent electrode on its surface.
  • This conductive transparent electrode is mainly formed of fluorine doped tin oxide (FTO).
  • FTO fluorine doped tin oxide
  • the reactivity with the electrolyte is low, there is a stable advantage even for long time use.
  • FTO coated glass substrates are very expensive and have a higher resistance than metals. Furthermore, FTO-coated glass substrates have a disadvantage of being fragile and are not easily bent, so that application to flexible solar cells is difficult.
  • One object of the present invention is to provide a dye-sensitized solar cell having excellent corrosion resistance and excellent back leakage current (Back Leakage Current) blocking effect.
  • Another object of the present invention is to provide a method suitable for producing the dye-sensitized solar cell.
  • Dye-sensitized solar cell for achieving the above object is a first substrate; A semiconductor electrode formed on the first substrate and having dye adsorbed thereon; A second substrate facing the first substrate; A counter electrode formed on the second substrate; And an electrolyte formed between the semiconductor electrode and the counter electrode, wherein the first substrate includes a metal substrate and a titanium layer formed on the metal substrate, and between the metal substrate and the titanium layer.
  • the reverse leakage current blocking layer is formed to block back leakage current generated when electrons generated in the semiconductor electrode move from the titanium layer toward the metal substrate.
  • the metal substrate may be formed of a single layer or multiple layers of a material including at least one of stainless steel, titanium, aluminum, platinum, and nickel.
  • the reverse leakage current blocking layer may be formed of a metal nitride containing at least one of titanium and chromium.
  • the reverse leakage current blocking layer is preferably formed to a thickness of 20 ⁇ 50nm.
  • the titanium layer is preferably formed to a thickness of 0.5 ⁇ 1 ⁇ m.
  • the first substrate includes a metal substrate, a reverse leakage current blocking layer formed on the metal substrate, and the reverse leakage.
  • Including a titanium layer formed on the current blocking layer characterized in that for forming the reverse leakage current blocking layer by PVD (Physical Vapor Deposition) method.
  • the reverse leakage current blocking layer may be formed of a metal nitride containing at least one of titanium and chromium.
  • the reverse leakage current blocking layer is preferably formed to a thickness of 20 ⁇ 50nm.
  • the dye-sensitized solar cell according to the present invention is inexpensive as compared to the FTO coated glass substrate by using a thin metal substrate, and can exhibit flexible characteristics with higher conductivity.
  • the dye-sensitized solar cell according to the present invention is easy to secure the price and corrosion resistance by applying a low-cost metal substrate and a titanium layer excellent in corrosion resistance as the first substrate.
  • a reverse leakage current blocking layer is formed between the metal substrate and the titanium layer.
  • FIG. 1 schematically shows a general dye-sensitized solar cell.
  • Figure 2 schematically shows a dye-sensitized solar cell according to an embodiment of the present invention.
  • FIG. 3 schematically shows an example of a first substrate applied to the present invention.
  • Figure 2 schematically shows a dye-sensitized solar cell according to an embodiment of the present invention.
  • the illustrated dye-sensitized solar cell includes a first substrate 210, a semiconductor electrode 220, a second substrate 230, a counter electrode 240, and an electrolyte 250.
  • the first substrate 210 is a substrate on which a semiconductor electrode is formed.
  • a metal substrate is used to provide flexible characteristics.
  • the first substrate 210 a substrate made of a polymer material having more flexible characteristics may be used.
  • a metal substrate is used as the first substrate 210.
  • the semiconductor electrode 220 is formed on the first substrate 210, more specifically, on the titanium layer 212 of the first substrate 210.
  • the semiconductor electrode 220 includes titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zirconium dioxide (ZrO 2 ), silicon dioxide (SiO 2 ), magnesium oxide (MgO), niobium pentoxide (Nb 2 O 5 ), and oxide It may be formed of zinc (ZnO) or the like, and more preferably a semiconductor electrode made of titanium dioxide.
  • the semiconductor electrode 220 includes a ruthenium-based dye such as Ruthenium 535-bisTBA (N719) or Ruthenium 620-1H3TBA (Black dye), an organic dye, an organic dye, a quantum dot or a natural dye. The same dye is adsorbed.
  • a ruthenium-based dye such as Ruthenium 535-bisTBA (N719) or Ruthenium 620-1H3TBA (Black dye
  • an organic dye an organic dye, a quantum dot or a natural dye. The same dye is adsorbed.
  • the method of forming the semiconductor electrode 220 is as follows, for example.
  • TiO 2 paste is printed on the first substrate 210 by using a screen printing method, a doctor blade method, a spray coating method, or the like. Thereafter, heat treatment is performed at 400 to 500 ° C. for about 20 to 60 minutes. Subsequently, the dye is adsorbed by impregnating a dye solution such as a ruthenium-based dye solution for 6 to 24 hours.
  • a dye solution such as a ruthenium-based dye solution for 6 to 24 hours.
  • the second substrate 230 faces the first substrate.
  • the second substrate 230 may be formed of glass, it is more preferable that the second substrate 230 is formed of a polymer material having excellent transparency and flexible characteristics.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • the second substrate is coated with a transparent conductive material such as ITO and FTO.
  • the counter electrode 240 is formed on the second substrate, more specifically on the conductive material coated on the second substrate.
  • the counter electrode 240 is in contact with the electrolyte 250 to participate in the reduction process of the electrolyte 250.
  • the counter electrode 240 may be formed of platinum (Pt), silver (Ag), carbon black, or the like.
  • the electrolyte 250 is formed between the semiconductor electrode 220 and the counter electrode 240.
  • electrolytes include 3-propyl-1,2-dimethyl imidazolium iodide (DMPImI), lithium iodide (LiI) and I 2 in acetonitrile. It may be presented to the electrolyte-dissolved I 3 - / I.
  • the electrolyte is an oxidation-supplies the electron to the dye through a reduction (for example, I 3 - - ⁇ 3I) .
  • FIG. 3 schematically shows an example of a first substrate applied to the present invention.
  • the illustrated first substrate includes a metal substrate 211 and a titanium layer 212.
  • the first substrate applied to the present invention further includes a back leakage current blocking layer 213 between the metal substrate 211 and the titanium layer 212.
  • the metal substrates 211 and 212 may be formed of a material including at least one of stainless steel, titanium, aluminum, platinum, and nickel.
  • the metal substrate may be formed in a single layer.
  • a stainless steel substrate has an advantage in terms of cost, but is weak in corrosion resistance.
  • the titanium substrate is excellent in corrosion resistance but weak in price.
  • a metal substrate in which a titanium layer 212 is formed on a metal substrate 211 such as stainless steel as shown in FIG. 3.
  • a metal substrate 211 such as stainless steel
  • FIG. 3 shows an example in which a titanium layer 212 is formed on a stainless steel substrate 211.
  • the titanium layer 212 when the titanium layer 212 is formed on the metal substrate 211, a reverse current leakage problem may occur. That is, the electrons generated by the semiconductor electrode 220 may be provided to the outside through the titanium layer 212, but some of the electrons may move toward the metal substrate 211, thereby reducing photoelectric efficiency.
  • the inventors of the present invention have formed a functional layer on the order of tens of nanometers (nm) between the titanium layer 212 and the metal substrate 211, thereby significantly reducing the problem of reverse current leakage. It was found that the corrosion resistance is improved.
  • the reverse current leakage blocking layer 213 may be formed of a metal nitride layer including at least one of titanium (Ti) and chromium (Cr) such as TiN, CrN, TiAlN, and the like.
  • Ti titanium
  • Cr chromium
  • the electrical conductivity is relatively lower than that of the titanium layer and the metal substrate, and the corrosion resistance of the electrolyte is excellent.
  • the reverse current leakage blocking layer 213 is preferably formed to a thickness of 20 ⁇ 50nm.
  • the thickness of the reverse current leakage blocking layer is less than 20 nm, the reverse current leakage blocking effect is insufficient. Conversely, if the thickness of the reverse current leakage blocking layer exceeds 50nm, the electrical conductivity is reduced and the coating cost can be greatly increased.
  • the reverse current leakage blocking layer 213 may be formed by a physical vapor deposition (PVD) method such as sputtering.
  • PVD physical vapor deposition
  • the titanium layer 212 is preferably formed to a thickness of 0.5 ⁇ 1 ⁇ m. If the thickness of the titanium layer is less than 0.5 ⁇ m insufficient corrosion resistance reinforcement effect, if the thickness of the titanium layer is more than 1 ⁇ m may increase only the substrate manufacturing cost without further corrosion resistance.
  • the titanium layer 212 may be formed by a deposition method such as PVD, and may be formed by various known methods.
  • the dye-sensitized solar cell according to the present invention includes a first substrate, a second substrate preparing step, a bonding step, and an electrolyte injection step as in a conventional method.
  • the first substrate may be prepared by forming a semiconductor electrode on the metal substrate and then adsorbing the dye.
  • the second substrate may be prepared by forming a counter electrode on the polymer or glass substrate using platinum or the like.
  • the electrolyte injection process may be performed by a method of injecting electrolyte in a state in which the first electrode and the second substrate are bonded to each other such that the semiconductor electrode and the counter electrode face each other. Thereafter, a process such as sealing the electrolyte injection hole may be included.
  • the first substrate includes a metal substrate, a reverse leakage current blocking layer formed on the metal substrate, and a titanium layer formed on the reverse leakage current blocking layer.
  • the reverse leakage current blocking layer may be formed by a physical vapor deposition (PVD) method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A metal substrate-using dye-sensitive solar cell having an excellent corrosion resistance and back leakage current cut-off effect, and a manufacturing method therefor are disclosed. The dye-sensitive solar cell according to the present invention comprises: a first substrate; a semiconductor electrode formed on the first substrate and in which dye is adsorbed; a second substrate facing the first substrate; a counterpart electrode formed on the second substrate; and an electrolyte formed between the semiconductor electrode and the counterpart electrode, wherein the first substrate includes the metal substrate, a back leakage current cut-off layer, and a titanium layer.

Description

내식성 및 역누설전류 차단 효과가 우수한 금속기판을 이용한 염료감응 태양전지 및 그 제조 방법Dye-sensitized solar cell using metal substrate with excellent corrosion resistance and reverse leakage current blocking effect and manufacturing method thereof
본 발명은 염료감응 태양전지 제조 기술에 관한 것으로, 더욱 상세하게는 내식성 및 역누설전류 차단 효과가 우수한 금속기판을 이용한 염료감응 태양전지 및 그 제조 방법에 관한 것이다.The present invention relates to a dye-sensitized solar cell manufacturing technology, and more particularly, to a dye-sensitized solar cell using a metal substrate excellent in corrosion resistance and reverse leakage current blocking effect and a manufacturing method thereof.
도 1은 일반적인 염료감응 태양전지를 개략적으로 나타낸 것이다.1 schematically shows a general dye-sensitized solar cell.
도 1을 참조하면, 염료감응 태양전지는 한 쌍의 유리기판(110, 130) 사이에 형성된다. 보다 상세하게, 염료감응 태양전지는 빛을 받아 전자를 발생시키는 염료(dye)가 흡착된 반도체 전극(120), 상기 반도체 전극에 대향되는 상대 전극(140) 및 이들 사이에 개재된 전해질(150)을 포함한다. Referring to FIG. 1, a dye-sensitized solar cell is formed between a pair of glass substrates 110 and 130. In more detail, the dye-sensitized solar cell includes a semiconductor electrode 120 to which a dye that receives electrons is generated, a counter electrode 140 facing the semiconductor electrode, and an electrolyte 150 interposed therebetween. It includes.
상기 한 쌍의 유리기판(110, 130)은 표면에 도전성 투명전극이 코팅되어 있다. 이 도전성 투명전극은 주로 FTO(fluorine doped tin oxide)로 형성된다. FTO의 경우, 전해질과의 반응성이 낮아 장시간의 사용에도 안정한 장점이 있다.The pair of glass substrates 110 and 130 are coated with a conductive transparent electrode on its surface. This conductive transparent electrode is mainly formed of fluorine doped tin oxide (FTO). In the case of FTO, the reactivity with the electrolyte is low, there is a stable advantage even for long time use.
그러나, FTO가 코팅된 유리기판은 매우 고가이며, 금속에 비하여 저항이 크다. 나아가, FTO가 코팅된 유리기판은 깨지기 쉬운 단점이 있으며, 쉽게 휘어지지 않기 때문에, 플렉서블한 태양전지로의 응용이 어렵다.However, FTO coated glass substrates are very expensive and have a higher resistance than metals. Furthermore, FTO-coated glass substrates have a disadvantage of being fragile and are not easily bent, so that application to flexible solar cells is difficult.
플렉서블한 염료감응 태양전지는 유리 기판을 대신하여 금속 기판이나 고분자 기판을 이용하고 있다. 그러나, 금속 기판의 경우, 전해질에 의한 부식 문제가 있다. 고분자 기판의 경우 열에 취약한 고분자 특성상 반도체 전극 열처리가 어려운 문제가 있다. Flexible dye-sensitized solar cells use metal substrates or polymer substrates instead of glass substrates. However, in the case of a metal substrate, there is a problem of corrosion by the electrolyte. In the case of the polymer substrate, there is a problem in that heat treatment of the semiconductor electrode is difficult due to the nature of the polymer vulnerable to heat.
본 발명에 관련된 배경기술로는 대한민국 등록특허공보 제10-1449301호(2014.10.17. 공고)에 개시된 누설전류 차단형 염료감응 태양전지 어레이가 있다.Background art related to the present invention is a leakage current blocking type dye-sensitized solar cell array disclosed in Republic of Korea Patent Publication No. 10-1449301 (2014.10.17.).
본 발명의 하나의 목적은 내식성이 우수하며, 역누설전류(Back Leakage Current) 차단 효과가 우수한 염료감응 태양전지를 제공하는 것이다.One object of the present invention is to provide a dye-sensitized solar cell having excellent corrosion resistance and excellent back leakage current (Back Leakage Current) blocking effect.
본 발명의 다른 목적은 상기의 염료감응 태양전지를 제조하는데 적합한 방법을 제공하는 것이다.Another object of the present invention is to provide a method suitable for producing the dye-sensitized solar cell.
상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 염료감응 태양전지는 제1 기판; 상기 제1 기판 상에 형성되며, 염료가 흡착된 반도체 전극; 상기 제1 기판에 대향하는 제2 기판; 상기 제2 기판 상에 형성된 상대 전극; 및 상기 반도체 전극과 상기 상대 전극 사이에 형성된 전해질;을 포함하고, 상기 제1 기판은, 금속 기판과, 상기 금속 기판 상에 형성되는 티타늄층을 포함하고, 상기 금속 기판과 티타늄층 사이에, 상기 반도체 전극에서 생성되는 전자가 상기 티타늄층에서 상기 금속 기판 쪽으로 이동하여 발생하는 역누설전류(Back Leakage Current)를 차단하는 역누설전류 차단층이 형성되어 있는 것을 특징으로 한다. Dye-sensitized solar cell according to an embodiment of the present invention for achieving the above object is a first substrate; A semiconductor electrode formed on the first substrate and having dye adsorbed thereon; A second substrate facing the first substrate; A counter electrode formed on the second substrate; And an electrolyte formed between the semiconductor electrode and the counter electrode, wherein the first substrate includes a metal substrate and a titanium layer formed on the metal substrate, and between the metal substrate and the titanium layer. The reverse leakage current blocking layer is formed to block back leakage current generated when electrons generated in the semiconductor electrode move from the titanium layer toward the metal substrate.
이때, 상기 금속 기판은 스테인리스 스틸, 티타늄, 알루미늄, 백금, 니켈 중에서 1종 이상을 포함하는 재질로 단층 또는 다층으로 형성될 수 있다. In this case, the metal substrate may be formed of a single layer or multiple layers of a material including at least one of stainless steel, titanium, aluminum, platinum, and nickel.
또한, 상기 역누설전류 차단층은 티타늄 및 크롬 중 1종 이상을 포함하는 금속질화물로 형성될 수 있다. In addition, the reverse leakage current blocking layer may be formed of a metal nitride containing at least one of titanium and chromium.
또한, 상기 역누설전류 차단층은 20~50nm 두께로 형성되는 것이 바람직하다. In addition, the reverse leakage current blocking layer is preferably formed to a thickness of 20 ~ 50nm.
또한, 상기 티타늄층은 0.5~1㎛ 두께로 형성되는 것이 바람직하다. In addition, the titanium layer is preferably formed to a thickness of 0.5 ~ 1㎛.
상기 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 염료감응 태양전지 제조 방법은 염료가 흡착된 반도체 전극을 포함하는 제1 기판 및 상대 전극을 포함하는 제2 기판을 각각 마련하는 단계; 및 상기 반도체 전극과 상대 전극이 서로 마주보도록 한 상태에서 전해질을 주입하는 단계;를 포함하고, 상기 제1 기판은 금속 기판과, 상기 금속 기판 상에 형성되는 역누설전류 차단층과, 상기 역누설전류차단층 상에 형성된 티타늄층을 포함하되, 상기 역누설전류차단층을 PVD(Physical Vapor Deposition) 방식으로 형성하는 것을 특징으로 한다. Dye-sensitized solar cell manufacturing method according to an embodiment of the present invention for achieving the other object comprises the steps of preparing a first substrate comprising a semiconductor electrode adsorbed by a dye and a second substrate comprising a counter electrode; And injecting an electrolyte in such a state that the semiconductor electrode and the counter electrode face each other, wherein the first substrate includes a metal substrate, a reverse leakage current blocking layer formed on the metal substrate, and the reverse leakage. Including a titanium layer formed on the current blocking layer, characterized in that for forming the reverse leakage current blocking layer by PVD (Physical Vapor Deposition) method.
이때, 상기 역누설전류 차단층은 티타늄 및 크롬 중 1종 이상을 포함하는 금속질화물로 형성될 수 있다. In this case, the reverse leakage current blocking layer may be formed of a metal nitride containing at least one of titanium and chromium.
또한, 상기 역누설전류 차단층은 20~50nm 두께로 형성되는 것이 바람직하다.In addition, the reverse leakage current blocking layer is preferably formed to a thickness of 20 ~ 50nm.
본 발명에 따른 염료감응 태양전지는 박판 형태의 금속 기판을 사용함으로써 FTO 코팅 유리 기판에 비하여 저가이고, 보다 높은 전도성과 함께 플렉서블 특성을 발휘할 수 있다. The dye-sensitized solar cell according to the present invention is inexpensive as compared to the FTO coated glass substrate by using a thin metal substrate, and can exhibit flexible characteristics with higher conductivity.
아울러, 본 발명에 따른 염료감응 태양전지는 제 1 기판으로 저가의 금속 기판 및 내식성이 우수한 티타늄층을 복합 적용함으로써 가격 및 내식성 확보가 용이하다. In addition, the dye-sensitized solar cell according to the present invention is easy to secure the price and corrosion resistance by applying a low-cost metal substrate and a titanium layer excellent in corrosion resistance as the first substrate.
특히, 본 발명에 따른 염료감응 태양전지는 금속 기판과 티타늄층 사이에 역누설전류 차단층이 형성되어 있다. 이를 통하여, 전해질에 대한 내식성을 향상시킬 수 있음과 더불어, 전자가 티타늄층을 통과하여 금속 기판으로 이동하여 발생하는 역누설전류 현상(Back Leakage Current)을 억제할 수 있어, 광전변환 효율을 향상시킬 수 있다.In particular, in the dye-sensitized solar cell according to the present invention, a reverse leakage current blocking layer is formed between the metal substrate and the titanium layer. Through this, the corrosion resistance of the electrolyte can be improved, and the back leakage current caused by the electrons moving through the titanium layer to the metal substrate can be suppressed, thereby improving the photoelectric conversion efficiency. Can be.
도 1은 일반적인 염료감응 태양전지를 개략적으로 나타낸 것이다.1 schematically shows a general dye-sensitized solar cell.
도 2는 본 발명의 실시예에 따른 염료감응 태양전지를 개략적으로 나타낸 것이다.Figure 2 schematically shows a dye-sensitized solar cell according to an embodiment of the present invention.
도 3은 본 발명에 적용되는 제1 기판의 예를 개략적으로 나타낸 것이다.3 schematically shows an example of a first substrate applied to the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 내식성 및 역누설전류 차단 효과가 우수한 금속 기판을 이용한 염료감응 태양전지 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a dye-sensitized solar cell using a metal substrate having excellent corrosion resistance and reverse leakage current blocking effect according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시예에 따른 염료감응 태양전지를 개략적으로 나타낸 것이다.Figure 2 schematically shows a dye-sensitized solar cell according to an embodiment of the present invention.
도 2를 참조하면, 도시된 염료감응 태양전지는 제1 기판(210), 반도체 전극(220), 제2 기판(230), 상대 전극(240) 및 전해질(250)을 포함한다.Referring to FIG. 2, the illustrated dye-sensitized solar cell includes a first substrate 210, a semiconductor electrode 220, a second substrate 230, a counter electrode 240, and an electrolyte 250.
제1 기판(210)은 반도체 전극이 형성되는 기판으로, 본 발명에서는 플렉서블 특성 부여를 위하여 금속 재질의 기판이 이용된다. The first substrate 210 is a substrate on which a semiconductor electrode is formed. In the present invention, a metal substrate is used to provide flexible characteristics.
제1 기판(210)으로 플렉서블 특성이 보다 우수한 고분자 재질의 기판을 이용할 수도 있다. 그러나, 이 경우, 반도체 전극을 형성할 때 열처리 온도를 높게 할 수 없는 바, 태양전지 구동시 광전 효율 저하가 문제될 수 있다. 따라서, 본 발명에서는 제1 기판(210)으로 금속 재질의 기판을 이용하였다. As the first substrate 210, a substrate made of a polymer material having more flexible characteristics may be used. However, in this case, since the heat treatment temperature cannot be increased when forming the semiconductor electrode, a decrease in photoelectric efficiency may be a problem when driving a solar cell. Therefore, in the present invention, a metal substrate is used as the first substrate 210.
제1 기판(210)의 세부적인 설명은 도 3에서 후술하기로 한다. A detailed description of the first substrate 210 will be described later with reference to FIG. 3.
반도체 전극(220)은 제1 기판(210) 상, 보다 구체적으로는 제1 기판(210)의 티타늄층(212) 상에 형성된다. 반도체 전극(220)은 이산화티탄(TiO2), 이산화주석(SnO2), 이산화지르코늄(ZrO2), 이산화규소(SiO2), 산화마그네슘(MgO), 오산화니오븀(Nb2O5), 산화아연(ZnO) 등으로 형성될 수 있으며, 보다 바람직하게는 이산화티탄 재질의 반도체 전극을 제시할 수 있다. The semiconductor electrode 220 is formed on the first substrate 210, more specifically, on the titanium layer 212 of the first substrate 210. The semiconductor electrode 220 includes titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zirconium dioxide (ZrO 2 ), silicon dioxide (SiO 2 ), magnesium oxide (MgO), niobium pentoxide (Nb 2 O 5 ), and oxide It may be formed of zinc (ZnO) or the like, and more preferably a semiconductor electrode made of titanium dioxide.
반도체 전극(220)에는 Ruthenium 535-bisTBA(N719) 또는 Ruthenium 620-1H3TBA(Black dye) 등과 같은 루테늄계 염료나, 유기 염료(organic dye), 양자점(quantum-dot) 또는 자연 염료(natural dye) 등과 같은 염료가 흡착된다. The semiconductor electrode 220 includes a ruthenium-based dye such as Ruthenium 535-bisTBA (N719) or Ruthenium 620-1H3TBA (Black dye), an organic dye, an organic dye, a quantum dot or a natural dye. The same dye is adsorbed.
반도체 전극(220)을 형성하는 방법은, 예를 들면 다음과 같다.The method of forming the semiconductor electrode 220 is as follows, for example.
우선, 스크린 인쇄법, 닥터 블레이드법, 스프레이 코팅법 등을 이용하여, TiO2 페이스트를 제1 기판(210) 상에 인쇄한다. 이후, 400~500℃에서 대략 20~60분동안 열처리를 수행한다. 이후, 루테늄계 염료용액과 같은 염료용액에 6~24시간 정도 함침하여 염료를 흡착한다. First, TiO 2 paste is printed on the first substrate 210 by using a screen printing method, a doctor blade method, a spray coating method, or the like. Thereafter, heat treatment is performed at 400 to 500 ° C. for about 20 to 60 minutes. Subsequently, the dye is adsorbed by impregnating a dye solution such as a ruthenium-based dye solution for 6 to 24 hours.
제2 기판(230)은 제1 기판에 대향한다. 제2 기판(230)은 유리로 형성될 수 있으나, 수광을 위한 투명성, 그리고 플렉서블 특성이 우수한 고분자 재질로 형성되는 것이 보다 바람직하다. 이러한 예로, 폴리에틸렌나프탈레이트(PEN), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리이미드(PI) 등이 이용될 수 있다. 제2 기판에는 ITO, FTO 등의 투명 전도성 물질이 코팅된다. The second substrate 230 faces the first substrate. Although the second substrate 230 may be formed of glass, it is more preferable that the second substrate 230 is formed of a polymer material having excellent transparency and flexible characteristics. In this example, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), or the like may be used. The second substrate is coated with a transparent conductive material such as ITO and FTO.
상대 전극(240)은 제2 기판 상에, 보다 구체적으로는 제2 기판에 코팅된 전도성 물질 상에 형성된다. 상대 전극(240)은 전해질(250)의 환원 과정에 참여할 수 있도록 전해질(250) 과 접촉된다. 상대 전극(240)은 백금(Pt), 은(Ag), 카본블랙 등으로 형성될 수 있다 The counter electrode 240 is formed on the second substrate, more specifically on the conductive material coated on the second substrate. The counter electrode 240 is in contact with the electrolyte 250 to participate in the reduction process of the electrolyte 250. The counter electrode 240 may be formed of platinum (Pt), silver (Ag), carbon black, or the like.
전해질(250)은 반도체 전극(220)과 상대 전극(240) 사이에 형성된다. 전해질의 예로, 3-프로필-1,2-디메틸 이미다졸륨 아이오다이드(3-propyl-1,2-dimethyl imidazolium iodide; DMPImI), 요오드화리튬(LiI) 및 I2를 아세토니트릴(acetonitrile) 에 용해시킨 I3 -/I-의 전해액을 제시할 수 있다. 전해질은 산화-환원(예를 들어, I3 - ↔ 3I-)을 통하여 염료에 전자를 공급한다. The electrolyte 250 is formed between the semiconductor electrode 220 and the counter electrode 240. Examples of electrolytes include 3-propyl-1,2-dimethyl imidazolium iodide (DMPImI), lithium iodide (LiI) and I 2 in acetonitrile. It may be presented to the electrolyte-dissolved I 3 - / I. The electrolyte is an oxidation-supplies the electron to the dye through a reduction (for example, I 3 - - ↔ 3I) .
도 3은 본 발명에 적용되는 제1 기판의 예를 개략적으로 나타낸 것이다.3 schematically shows an example of a first substrate applied to the present invention.
도 3을 참조하면, 도시된 제1 기판은 금속 기판(211) 및 티타늄층(212)을 포함한다. 특히, 본 발명에 적용되는 제1 기판은 금속 기판(211) 및 티타늄층(212) 사이에 역전류누설(Back Leakage Current) 차단층(213)을 더 포함한다. Referring to FIG. 3, the illustrated first substrate includes a metal substrate 211 and a titanium layer 212. In particular, the first substrate applied to the present invention further includes a back leakage current blocking layer 213 between the metal substrate 211 and the titanium layer 212.
금속 기판(211, 212)은 스테인리스 스틸, 티타늄, 알루미늄, 백금, 니켈 중에서 1종 이상을 포함하는 재질로 형성될 수 있다. 금속 기판은 단층으로 형성될 수 있다. 그러나, 예를 들어, 스테인리스 스틸 재질의 기판의 경우 가격적인 측면에 장점이 있으나, 내식성 측면에서 취약하다. 아울러, 티타늄 재질의 기판의 경우 내식성 측면은 우수하나 가격적인 측면에서 취약하다. The metal substrates 211 and 212 may be formed of a material including at least one of stainless steel, titanium, aluminum, platinum, and nickel. The metal substrate may be formed in a single layer. However, for example, a stainless steel substrate has an advantage in terms of cost, but is weak in corrosion resistance. In addition, the titanium substrate is excellent in corrosion resistance but weak in price.
따라서, 이러한 가격적인 측면 및 내식성 측면을 모두 고려할 때, 도 3에 도시된 예와 같이 스테인리스 스틸과 같은 금속 기판(211) 상에 티타늄층(212)이 형성되어 있는 형태의 금속 기판을 이용하는 것이 바람직하다. 도 3에는 스테인리스 스틸 기판(211) 상에 티타늄층(212)이 형성된 예를 나타내었다.Therefore, in consideration of both of these cost and corrosion resistance aspects, it is preferable to use a metal substrate in which a titanium layer 212 is formed on a metal substrate 211 such as stainless steel as shown in FIG. 3. Do. 3 shows an example in which a titanium layer 212 is formed on a stainless steel substrate 211.
다만, 금속 기판(211) 상에 티타늄층(212)이 형성되어 있는 경우, 역전류누설 문제가 발생할 수 있다. 즉, 반도체 전극(220)에서 생성된 전자는 티타늄층(212)을 통하여 외부로 제공되는 것이 바람직하나, 일부는 금속 기판(211) 쪽으로 이동하게 되어 광전 효율을 저하시킬 수 있다. However, when the titanium layer 212 is formed on the metal substrate 211, a reverse current leakage problem may occur. That is, the electrons generated by the semiconductor electrode 220 may be provided to the outside through the titanium layer 212, but some of the electrons may move toward the metal substrate 211, thereby reducing photoelectric efficiency.
이에 본 발명의 발명자들은 오랜 연구 결과, 티타늄층(212)과 금속 기판(211) 사이에 수십 나노미터(nm) 정도의 기능층을 형성한 결과, 역전류누설 문제가 현저히 감소하고 아울러 금속 기판의 내식성이 보다 향상되는 것을 알아내었다. As a result of long research, the inventors of the present invention have formed a functional layer on the order of tens of nanometers (nm) between the titanium layer 212 and the metal substrate 211, thereby significantly reducing the problem of reverse current leakage. It was found that the corrosion resistance is improved.
이러한 역전류누설 차단층(213)은 TiN, CrN, TiAlN 등과 같은 티타늄(Ti) 및 크롬(Cr) 중 1종 이상을 포함하는 금속질화물층으로 형성될 수 있다. 이들 질화물층의 경우, 전기 전도도가 티타늄층 및 금속 기판의 전기 전도도보다 상대적으로 낮으며, 전해질에 대한 내식성이 우수한 특징이 있다. The reverse current leakage blocking layer 213 may be formed of a metal nitride layer including at least one of titanium (Ti) and chromium (Cr) such as TiN, CrN, TiAlN, and the like. In the case of these nitride layers, the electrical conductivity is relatively lower than that of the titanium layer and the metal substrate, and the corrosion resistance of the electrolyte is excellent.
또한, 역전류누설 차단층(213)은 20~50nm 두께로 형성되는 것이 바람직하다. 역전류누설 차단층의 두께가 20nm 미만일 경우 역전류누설 차단 효과가 불충분하다. 반대로, 역전류누설 차단층의 두께가 50nm를 초과하는 경우 전기전도성이 감소하며 코팅 비용이 크게 증가할 수 있다. In addition, the reverse current leakage blocking layer 213 is preferably formed to a thickness of 20 ~ 50nm. When the thickness of the reverse current leakage blocking layer is less than 20 nm, the reverse current leakage blocking effect is insufficient. Conversely, if the thickness of the reverse current leakage blocking layer exceeds 50nm, the electrical conductivity is reduced and the coating cost can be greatly increased.
이러한 역전류누설 차단층(213)은 스퍼터링과 같은 PVD(Physical Vapor Deposition) 방식으로 형성될 수 있다. The reverse current leakage blocking layer 213 may be formed by a physical vapor deposition (PVD) method such as sputtering.
티타늄층(212)은 0.5~1㎛ 두께로 형성되는 것이 바람직하다. 티타늄층의 두께가 0.5㎛ 미만일 경우 내식성 보강 효과가 불충분하고, 티타늄층의 두께가 1㎛를 초과하는 경우 더 이상의 내식성 향상없이 기판 제조 비용만 증가할 수 있다.The titanium layer 212 is preferably formed to a thickness of 0.5 ~ 1㎛. If the thickness of the titanium layer is less than 0.5㎛ insufficient corrosion resistance reinforcement effect, if the thickness of the titanium layer is more than 1㎛ may increase only the substrate manufacturing cost without further corrosion resistance.
티타늄층(212)은 PVD와 같은 증착 방법으로 형성할 수 있으며, 이외에도 공지된 다양한 방법으로 형성할 수 있다. The titanium layer 212 may be formed by a deposition method such as PVD, and may be formed by various known methods.
이하, 본 발명에 따른 염료감응 태양전지의 제조 방법에 대하여 설명한다. Hereinafter, the manufacturing method of the dye-sensitized solar cell according to the present invention will be described.
본 발명에 따른 염료감응 태양전지는 통상의 방법과 같이 제1 기판, 제2 기판 마련 단계, 접합 단계 및 전해질 주입 단계를 포함한다. The dye-sensitized solar cell according to the present invention includes a first substrate, a second substrate preparing step, a bonding step, and an electrolyte injection step as in a conventional method.
금속 기판 상에 반도체 전극을 형성한 후 염료를 흡착하는 과정을 통하여 제1 기판을 마련할 수 있다. The first substrate may be prepared by forming a semiconductor electrode on the metal substrate and then adsorbing the dye.
고분자나 글래스 기판 상에 백금 등으로 상대 전극을 형성하는 과정을 통하여 제2 기판을 마련할 수 있다. The second substrate may be prepared by forming a counter electrode on the polymer or glass substrate using platinum or the like.
전해질 주입 과정은, 반도체 전극과 상대 전극이 서로 마주보도록 하여 제1 기판과 제2 기판을 접합한 상태에서 전해질을 주입하는 방법으로 실시될 수 있다. 이후, 전해질 주입구를 밀봉하는 등의 과정이 포함될 수 있다. The electrolyte injection process may be performed by a method of injecting electrolyte in a state in which the first electrode and the second substrate are bonded to each other such that the semiconductor electrode and the counter electrode face each other. Thereafter, a process such as sealing the electrolyte injection hole may be included.
이때, 본 발명에서는 전술한 바와 같이, 제1 기판이 금속 기판과, 금속 기판 상에 형성되는 역누설전류 차단층과, 역누설전류차단층 상에 형성된 티타늄층을 포함한다. 그리고, 역누설전류차단층은 PVD(Physical Vapor Deposition) 방식으로 형성될 수 있다. At this time, in the present invention, as described above, the first substrate includes a metal substrate, a reverse leakage current blocking layer formed on the metal substrate, and a titanium layer formed on the reverse leakage current blocking layer. The reverse leakage current blocking layer may be formed by a physical vapor deposition (PVD) method.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above has been described with reference to the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the technical idea provided by the present invention. Therefore, the scope of the present invention will be determined by the claims described below.
본 PCT 국제출원은 2012.06.01~2015.05.31 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다.(No. 20123010010070)This PCT international application is a research project carried out with the support of the Korea Institute of Energy and Technology Evaluation and Development (KETEP) from the Ministry of Trade, Industry and Energy (January 1, 2012 ~ May 31, 2015). (No. 20123010010070)

Claims (8)

  1. 제1 기판;A first substrate;
    상기 제1 기판 상에 형성되며, 염료가 흡착된 반도체 전극;A semiconductor electrode formed on the first substrate and having dye adsorbed thereon;
    상기 제1 기판에 대향하는 제2 기판;A second substrate facing the first substrate;
    상기 제2 기판 상에 형성된 상대 전극; 및A counter electrode formed on the second substrate; And
    상기 반도체 전극과 상기 상대 전극 사이에 형성된 전해질;을 포함하고,And an electrolyte formed between the semiconductor electrode and the counter electrode.
    상기 제1 기판은, 금속 기판과, 상기 금속 기판 상에 형성되는 티타늄층을 포함하고, 상기 금속 기판과 티타늄층 사이에, 상기 반도체 전극에서 생성되는 전자가 상기 티타늄층에서 상기 금속 기판 쪽으로 이동하여 발생하는 역누설전류(Back Leakage Current)를 차단하는 역누설전류 차단층이 형성되어 있는 것을 특징으로 하는 염료감응 태양전지. The first substrate includes a metal substrate and a titanium layer formed on the metal substrate, and electrons generated at the semiconductor electrode are moved from the titanium layer toward the metal substrate between the metal substrate and the titanium layer. Dye-sensitized solar cell, characterized in that the reverse leakage current blocking layer is formed to block the generated back leakage current (Back Leakage Current).
  2. 제1항에 있어서,The method of claim 1,
    상기 금속 기판은 스테인리스 스틸, 티타늄, 알루미늄, 백금, 니켈 중에서 1종 이상을 포함하는 재질로 단층 또는 다층으로 형성된 것을 특징으로 하는 염료감응 태양전지. The metal substrate is a dye-sensitized solar cell, characterized in that formed of a single layer or multiple layers of a material containing at least one of stainless steel, titanium, aluminum, platinum, nickel.
  3. 제1항에 있어서,The method of claim 1,
    상기 역누설전류 차단층은The reverse leakage current blocking layer
    티타늄 및 크롬 중 1종 이상을 포함하는 금속질화물로 형성되는 것을 특징으로 하는 염료감응 태양전지.Dye-sensitized solar cell, characterized in that formed of a metal nitride containing at least one of titanium and chromium.
  4. 제1항에 있어서,The method of claim 1,
    상기 역누설전류 차단층은 20~50nm 두께로 형성되는 것을 특징으로 하는 염료감응 태양전지.The reverse leakage current blocking layer is a dye-sensitized solar cell, characterized in that formed in 20 ~ 50nm thickness.
  5. 제1항에 있어서,The method of claim 1,
    상기 티타늄층은 0.5~1㎛ 두께로 형성된 것을 특징으로 하는 염료감응 태양전지.The titanium layer is a dye-sensitized solar cell, characterized in that formed in 0.5 ~ 1㎛ thickness.
  6. 염료가 흡착된 반도체 전극을 포함하는 제1 기판 및 상대 전극을 포함하는 제2 기판을 각각 마련하는 단계; 및Preparing a first substrate including a semiconductor electrode adsorbed with a dye and a second substrate including a counter electrode; And
    상기 반도체 전극과 상대 전극이 서로 마주보도록 한 상태에서 전해질을 주입하는 단계;를 포함하고,Injecting an electrolyte in a state in which the semiconductor electrode and the counter electrode face each other;
    상기 제1 기판은 금속 기판과, 상기 금속 기판 상에 형성되는 역누설전류 차단층과, 상기 역누설전류차단층 상에 형성된 티타늄층을 포함하되, 상기 역누설전류차단층을 PVD(Physical Vapor Deposition) 방식으로 형성하는 것을 특징으로 하는 염료감응 태양전지 제조 방법.The first substrate includes a metal substrate, a reverse leakage current blocking layer formed on the metal substrate, and a titanium layer formed on the reverse leakage current blocking layer, wherein the reverse leakage current blocking layer is formed of PVD (Physical Vapor Deposition). Dye-sensitized solar cell manufacturing method characterized in that it is formed in a) method.
  7. 제6항에 있어서,The method of claim 6,
    상기 역누설전류 차단층은The reverse leakage current blocking layer
    티타늄 및 크롬 중 1종 이상을 포함하는 금속질화물로 형성되는 것을 특징으로 하는 염료감응 태양전지 제조 방법.Dye-sensitized solar cell manufacturing method characterized in that formed of a metal nitride containing at least one of titanium and chromium.
  8. 제6항에 있어서,The method of claim 6,
    상기 역누설전류 차단층은 20~50nm 두께로 형성되는 것을 특징으로 하는 염료감응 태양전지 제조 방법.The reverse leakage current blocking layer is a dye-sensitized solar cell manufacturing method, characterized in that formed in 20 ~ 50nm thickness.
PCT/KR2015/003938 2015-04-20 2015-04-20 Metal substrate-using dye-sensitive solar cell having excellent corrosion resistance and back leakage current cut-off effect, and manufacturing method therefor WO2016171290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0055333 2015-04-20
KR1020150055333A KR101617583B1 (en) 2015-04-20 2015-04-20 Flexible solar cells using metal substrate with excellent corrosion resistance and preventing back leakage current

Publications (1)

Publication Number Publication Date
WO2016171290A1 true WO2016171290A1 (en) 2016-10-27

Family

ID=56022698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003938 WO2016171290A1 (en) 2015-04-20 2015-04-20 Metal substrate-using dye-sensitive solar cell having excellent corrosion resistance and back leakage current cut-off effect, and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101617583B1 (en)
WO (1) WO2016171290A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120007677A (en) * 2010-07-15 2012-01-25 주식회사 이건창호 Dye sensitized solar cell
KR20130053582A (en) * 2011-11-15 2013-05-24 현대하이스코 주식회사 Dye-sensitized solar cell using the substrate having functional coating layer
KR20130104048A (en) * 2012-03-12 2013-09-25 현대하이스코 주식회사 Method for forming semiconductor electrode of dye-sensitized solar cells using metal substrate and dye-sensitized solar cells manufactured by the same
KR20130106966A (en) * 2012-03-21 2013-10-01 현대하이스코 주식회사 Dye-sensitized solar cells using metal substrate with excellent effect of preventing electron recombination and method for manufacturing the same
KR20140057435A (en) * 2012-10-31 2014-05-13 현대하이스코 주식회사 Method of manufacturing of flexible dye-sensitized solar cells with excellent sealability and dye-sensitized solar cells manufactured by thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120007677A (en) * 2010-07-15 2012-01-25 주식회사 이건창호 Dye sensitized solar cell
KR20130053582A (en) * 2011-11-15 2013-05-24 현대하이스코 주식회사 Dye-sensitized solar cell using the substrate having functional coating layer
KR20130104048A (en) * 2012-03-12 2013-09-25 현대하이스코 주식회사 Method for forming semiconductor electrode of dye-sensitized solar cells using metal substrate and dye-sensitized solar cells manufactured by the same
KR20130106966A (en) * 2012-03-21 2013-10-01 현대하이스코 주식회사 Dye-sensitized solar cells using metal substrate with excellent effect of preventing electron recombination and method for manufacturing the same
KR20140057435A (en) * 2012-10-31 2014-05-13 현대하이스코 주식회사 Method of manufacturing of flexible dye-sensitized solar cells with excellent sealability and dye-sensitized solar cells manufactured by thereof

Also Published As

Publication number Publication date
KR101617583B1 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
US20110299149A1 (en) Transparent electrochromic plate and method for manufacture thereof
EP1605479A2 (en) Flexible dye-sentitized solar cell using conducting metal substrate
US8299352B2 (en) Dye-sensitized solar cell using conductive fiber electrode
EP1359626A1 (en) Substrate for transparent electrodes
CN102237152A (en) Transparent conductive film and photoelectric converion element
KR20110053957A (en) Dye-sensitized solar cell and method for manufacturing same
WO2013122285A1 (en) Flexible dye-sensitized solar cell using fiber
US10395845B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
KR100734853B1 (en) Dye-sensitized solar cell using conducting metal substrates as an anode and fabrication method thereof
JP2008147037A (en) Wet type solar cell and its manufacturing method
Nonomura et al. Blocking the charge recombination with diiodide radicals by TiO2 compact layer in dye-sensitized solar cells
KR20160139986A (en) Perovskite solar cell and preparation method thereof
WO2016171290A1 (en) Metal substrate-using dye-sensitive solar cell having excellent corrosion resistance and back leakage current cut-off effect, and manufacturing method therefor
WO2016171289A1 (en) Dye-sensitized solar cell using surface processing of metal substrate, and production method therefor
CN114121346A (en) Corrosion-resistant silver nanowire composite transparent electrode and preparation method thereof
CN208872988U (en) Electrochromic device component and electrochromic device
KR101546585B1 (en) Method of forming electrode for dye sensitive solar cell using surface pattering
KR101438689B1 (en) Method for forming semiconductor electrode of dye-sensitized solar cells using metal substrate and dye-sensitized solar cells manufactured by the same
KR101546583B1 (en) Flexible solar cells using metal substrate with excellent corrosion resistance
EP3223288B1 (en) Dye-sensitized photoelectric conversion element
JP2004119129A (en) Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell obtained by it
KR20130053582A (en) Dye-sensitized solar cell using the substrate having functional coating layer
JP2009193813A (en) Dye-sensitized solar cell module and its manufacturing method
KR20230099657A (en) electrochromic device
EP3544037A1 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889956

Country of ref document: EP

Kind code of ref document: A1