WO2016171140A1 - 生体情報読取装置 - Google Patents

生体情報読取装置 Download PDF

Info

Publication number
WO2016171140A1
WO2016171140A1 PCT/JP2016/062405 JP2016062405W WO2016171140A1 WO 2016171140 A1 WO2016171140 A1 WO 2016171140A1 JP 2016062405 W JP2016062405 W JP 2016062405W WO 2016171140 A1 WO2016171140 A1 WO 2016171140A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological information
biological
pulse wave
sensor
pressure sensor
Prior art date
Application number
PCT/JP2016/062405
Other languages
English (en)
French (fr)
Inventor
中村 浩行
徹次 土肥
工藤 耕太
Original Assignee
シナノケンシ株式会社
学校法人 中央大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナノケンシ株式会社, 学校法人 中央大学 filed Critical シナノケンシ株式会社
Priority to EP16783161.9A priority Critical patent/EP3287069B1/en
Priority to US15/567,881 priority patent/US10537257B2/en
Priority claimed from JP2016083812A external-priority patent/JP6676451B2/ja
Publication of WO2016171140A1 publication Critical patent/WO2016171140A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present invention relates to a biological information reader that reads a pulse wave as a biological signal with a pressure sensor.
  • the present invention relates to a biological information reader that measures blood pressure using a pulse wave waveform.
  • the oscillometric method and the tonometry method are known as blood pressure measurement methods.
  • a cuff is wound around the upper arm or wrist, the blood vessel is compressed, the blood flow is stopped, the pressure of the cuff is loosened, and the pressure of the blood vessel is synchronized with the pulsation of the heart.
  • the blood pressure value is measured by checking the cuff pressure reflecting the vibration.
  • Blood pressure measurement by the oscillometric method using this cuff is non-invasive and non-invasive, and in recent years, automatic measurement by a machine is possible, and blood pressure measurement can be easily performed.
  • the blood pressure measurement device is large for portable use, and the time required for measurement is as long as several tens of seconds to 1 minute, and it must be kept quiet during blood pressure measurement. There is a problem that interferes with daily life.
  • the tonometry method is a method of obtaining a blood pressure value by pressing a sensor having a flat contact pressure against an artery and measuring fluctuations in the internal pressure of the pulsating artery against the sensor.
  • a conceptual diagram of blood pressure measurement by the tonometry method is shown in FIG. It is a cross-sectional schematic diagram near a human wrist, meaning that the radial artery is on the radius and the sensor array is placed on the skin just above it.
  • the sensor array is generally flat, and when pressing it against the skin, the skin facing the sensor contact surface is also spread flat.
  • the sensor array a plurality of sensors are arranged in an array as the name suggests, and a sensor directly above the radial artery can capture the pulse wave of the artery with the widest dynamic range. Therefore, if the sensor array is larger than a certain size, the position of the blood vessel is roughly grasped, the sensor array is mounted, and the signal having the largest dynamic range among the signals obtained from each sensor may be adopted.
  • JP 2011-239840 A Japanese Patent Laid-Open No. 2005-253865 JP 2007-007075 A
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-239840 discloses a technique for correcting the pressing direction of an existing tonometry sensor using a triaxial pressure sensor. However, there is no suggestion about improvement of the degree of freedom of mounting of the measuring device or improvement of measurement stability, and it does not create an environment for continuously and stably measuring blood pressure.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-253865 discloses a technique for detecting body movement by providing an acceleration sensor in addition to a biological information acquisition sensor.
  • an acceleration sensor in addition to a biological information acquisition sensor.
  • the pulse wave waveform during body motion is only handled as invalid, it cannot be used in situations where the body is constantly moving (sports, etc.), and this is a requirement for continuous blood pressure measurement. I can't respond.
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-007075 discloses a technique for calculating a blood pressure value from a pulse wave.
  • the calculation is based on the premise that the pulse wave can be acquired stably, and does not take into account the fact that it is difficult to acquire the pulse wave of a human being who lives in daily life. Can't meet the demand.
  • the present invention is a biological information reader that can be mounted on a human body and continuously obtain a pulse wave signal, which is biological information, and can perform highly accurate measurement by removing the influence of disturbance due to body movements as much as possible.
  • the purpose is to provide.
  • a first aspect of the present invention is a biological information reading device that reads biological information, a biological signal acquisition unit that acquires a biological signal from the biological body, and a disturbance component that is superimposed on the biological signal acquired by the biological signal acquisition unit And a biological information calculation unit that calculates biological information based on the biological signal from which the disturbance has been removed.
  • the biological signal acquisition unit is a multiaxial pressure sensor, The direction components of the pressure detection axis of the pressure sensor are different from each other.
  • Another aspect of the present invention is a biological information reading apparatus that reads biological information, and includes a biological signal acquisition unit that acquires a biological signal from the biological body, and a disturbance component that is superimposed on the biological signal acquired by the biological signal acquisition unit.
  • a disturbance removal unit to be removed, and a biological information calculation unit that calculates biological information based on the biological signal from which the disturbance removal unit has removed the disturbance, and the biological signal acquisition unit is a plurality of single-axis pressure sensors. It is characterized by.
  • Another aspect of the present invention is a biological information reading device that reads biological information, and a biological signal acquisition unit that acquires a biological signal from the living body, and a disturbance that is superimposed on the biological signal acquired by the biological signal acquisition unit.
  • a disturbance removing unit that removes a component, and a biological information calculating unit that calculates biological information based on the biological signal from which the disturbance removing unit has removed the disturbance, and the biological signal acquisition unit includes a multi-axis pressure sensor and a uniaxial pressure It is a sensor, The direction component of the pressure detection axis
  • the disturbance removing unit can remove one or both of the influence of the displacement of the multi-axis pressure sensor or the single-axis pressure sensor from the position immediately above the blood vessel and the influence of body movement, which is the movement of the living body.
  • the biological information calculation unit is configured to start each of the starting points of the starting pulse, the percussion wave, the tidal wave, and the dicrotic wave, which are characteristic points in the side pulse wave signal for one beat obtained from the stable pulse wave. It is possible to have a side pulse circulation dynamics calculation unit that calculates biological information by adopting at least one of the intervals and the time intervals with the feature points in the front and rear side pulse signals as the side pulse circulation dynamic values.
  • the side pulse wave circulatory dynamics calculation unit has a speed side pulse wave calculation unit that performs first-order differentiation of the stable side pulse wave signal, and from the zero cross point of the speed side pulse wave, Starting Point, Percussion Wave, Tidal Wave , Dicrotic Wave information can be acquired.
  • the multi-axis pressure sensor or the single-axis pressure sensor may be a MEMS sensor or a capacitance sensor.
  • Waveform a indicates the output waveform of the pulse wave detection sensor
  • waveform b indicates the output waveform of the inertial force detection sensor
  • waveform c indicates the output waveform after calibration. It is a figure which shows the change of the blood pressure by a body posture. It is a figure which shows the correlation of a pulse wave rise time and a blood pressure value. It is a figure which shows the prior art using a sensor array.
  • the side pulse wave means a pulse wave detected by the pressure of the blood vessel
  • the stable side pulse wave means a side pulse wave from which the positional deviation of the sensor and the influence of body motion are removed.
  • FIG. 1 shows the configuration of a pulse wave acquisition device as biological information according to the first embodiment of the present invention.
  • this pulse wave acquisition device includes an orthogonal triaxial pressure sensor 11 that detects pressures in three orthogonal X, Y, and Z directions as a sensor of a detection unit that acquires a human body pulse wave. It is provided.
  • An orthogonal three-axis pressure sensor (hereinafter referred to as a three-axis pressure sensor) is attached to the mounting body 13 via an elastic body 12.
  • the mounting body 13 is for pressing the triaxial pressure sensor 11 so as to be in close contact with the skin near the radial artery of the wrist of the human body to be measured.
  • FIG. 2 shows a state in which the triaxial pressure sensor 11 is attached to the mounting body 13.
  • the mounting body 13 has a curved resin structure that can bring the triaxial pressure sensor 11 into contact with the skin of the wrist of the human body.
  • the sensor can be fixed to the wrist.
  • the triaxial pressure sensor 11 is attached to the mounting body 13 via the elastic body 12 so that the triaxial pressure sensor 11 is pressed against the skin with an appropriate pressure.
  • the attachment body 13 is provided with a band for fixing when fitted on the wrist, so that one of the conventional attachments is opened and fitted to the wrist to press and fix the triaxial pressure sensor 11 against the wrist skin.
  • This wrist fixing structure is the same as a conventional cuff that fits on the wrist to acquire a pulse wave.
  • the mounting body 13 may be a flexible material such as a cloth like the cuff, as long as the triaxial pressure sensor 11 can contact the skin with an appropriate pressure.
  • FIG. 1 shows a block configuration of a pulse wave reading device according to the present embodiment.
  • the pulse wave reading device of the present embodiment receives the detection output of the triaxial pressure sensor 11 attached to the mounting body 13 and calculates a pulse wave waveform and blood pressure by removing disturbance from the detected triaxial pressure information.
  • a blood pressure information estimated and calculated from a waveform or a pulse wave is displayed, or a display unit 23 that displays operation information such as an operation instruction, and an operation unit 24 that inputs operation information such as detection start and end.
  • the triaxial pressure sensor corresponds to a biological signal acquisition unit referred to in the claims
  • the signal processing unit 21 and the storage unit 22 correspond to a disturbance removal unit and a biological information calculation unit that calculates biological information described in the claims.
  • the wave reader corresponds to a biological information reader.
  • the display unit 23 and the operation unit 24 may be integrated. For example, if the operation input is a touch-panel input method, the display and the operation input can be integrated.
  • the signal processing unit 21, the storage unit 22, the display unit 23, and the operation unit 24 can be housed in a housing separate from the mounting body 13, but may be provided in the mounting body 13 when the size is reduced. . Further, although not shown, the housing has a power source for operating the pulse wave acquisition device.
  • the power source may be a battery or may be obtained from a commercial power source.
  • This pulse wave reading device includes an external interface (not shown), and the output of the signal processing unit 21 can be output to an external device via an external interface (not shown).
  • the external interface can be used when the pulse wave reading device is used as a patient monitoring device or when the pulse wave waveform is collected by an external device such as acquiring a pulse wave waveform during exercise.
  • FIG. 2 is a diagram for explaining the measurement principle of the pulse wave acquired by the pulse wave reading device of the present embodiment.
  • a triaxial pressure sensor 11 is placed on the surface of the skin near the radial artery of the wrist to detect the pressure in the XYZ triaxial directions.
  • the Z-axis direction is the upward direction of the skin surface of the wrist, that is, the direction in which the arterial pressure is pushed toward the skin direction
  • the X-axis direction is the lateral direction of the wrist
  • the Y-axis direction is the longitudinal direction of the wrist.
  • the removal of disturbance will be described with reference to FIGS.
  • the triaxial pressure sensor 11 is used as the sensor, and the pulse wave waveform acquired by body motion is disturbed as a disturbance.
  • the triaxial pressure sensor 11 is disposed immediately above the radial artery.
  • body movement occurs in the X-axis direction.
  • Attention is paid to the Z-axis sensor signal and the X-axis sensor signal as pulse wave waveform signals of the 3-axis pressure sensor 11.
  • the Z-axis sensor signal is suitable for acquiring a pulse waveform
  • the X-axis sensor signal is suitable for acquiring a body motion component in the X direction.
  • the output of the Z-axis sensor and the output of the X-axis sensor are input to the operational amplifier 211 to remove the body motion component generated in the X-axis direction. To do. As a result, the body motion component can be removed from the output signal of the operational amplifier 211 as shown in FIG.
  • the pulse wave Since the pulse wave is generated by the increase or decrease of the blood flow, when viewed from the cross section of the blood vessel, the pulse wave expands and contracts in the radial direction, and a pressure wave in substantially the same direction is generated from the center of the blood vessel to the outside. Therefore, on the skin close to the blood vessel, the pulse wave is captured as a pressure wave strongly against the Z-axis component of the three-axis pressure sensor, but the absolute value is relatively small, but the X-axis sensor or the Y-axis sensor. Will also include a pulse wave component.
  • the three-axis pressure sensor is not necessarily obtained by synthesizing sensor signals of these axes or performing hardware / software calculations.
  • a stable side pulse wave can be acquired even if it is not located immediately above the blood vessel, and the same degree of freedom of arrangement as in the sensor array system can be enjoyed.
  • an appropriate arrangement position of the three-axis pressure sensor can be determined from the X-axis and Y-axis sensor waveforms, it is possible to find an appropriate position while viewing the sensor waveforms. For the sensor proper position search, a method of guiding by a change in volume, sound wave length, light amount, and light wavelength is suitable.
  • a MEMS Micro-Electro-Mechanical-System
  • a capacitance-type sensor As the three-axis pressure sensor, specifically, a MEMS (Micro-Electro-Mechanical-System) called a micro machine or a capacitance-type sensor can be applied.
  • MEMS Micro-Electro-Mechanical-System
  • the description of this embodiment is an example of a circuit that uses an operational amplifier that excels in amplification of a minute output signal such as a sensor output and has excellent common-mode noise removal performance, but an inverting / non-inverting amplifier circuit, an amplifier circuit that uses a transistor, Further, even when a filter circuit is added, this can be realized.
  • FIG. 5 is substantially the same as FIG. 3, but as a second embodiment, two triaxial pressure sensors are used as sensors, and one is arranged directly above the radial artery as a sensor for detecting a pulse wave. One is arranged in the vicinity of the blood vessel as a sensor for detecting inertial force when there is a body motion.
  • FIG. 6 is a block diagram showing a configuration of a pulse waveform reading device according to the second embodiment using two sensors.
  • sensors a pulse wave detection sensor 112 and an inertial force detection sensor 113 for detecting body movement are used. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • FIG. 7 is a vector display of the forces acting on the pulse wave detection sensor 112 and the inertial force detection sensor 113.
  • the pulse wave detection sensor 112 detects a force obtained by combining the blood pressure of the radial artery and the inertial force acting on the pulse wave detection sensor 112 due to body movement.
  • the inertial force detection sensor 113 detects only the inertial force without applying the blood pressure of the radial artery. For this reason, as expressed by the following equation, the output detected by the inertial force detection sensor 113 is subtracted from the output of the pulse wave detection sensor 112, thereby causing a body motion added to the pulse wave waveform output by the pulse wave detection sensor 112. Disturbance (noise) due to inertial force can be removed.
  • Blood pressure pulse wave pulse wave detection sensor (blood pressure pulse wave + inertial force)-inertial force detection sensor (inertial force)
  • FIG. 8 shows the Z-axis component waveform of the pulse wave detection sensor 112, the Z-axis component waveform of the inertial force detection sensor 113, and the inertial force when the wrist is moved in the X-axis direction (horizontal left and right) as body movements.
  • the waveform which calibrated about is shown. 8 shows the output waveform of the pulse wave detection sensor 112
  • the waveform b of FIG. 8 shows the output waveform of the inertial force detection sensor 113
  • the waveform c of FIG. 8 shows the waveform after calibration.
  • the inertial force detection sensor is arranged in the vicinity of the pulse wave detection sensor, and the inertial force that acts on the sensor by body movement is performed by subtracting the output from the inertial force detection sensor from the output of the pulse wave detection sensor.
  • the variation of the pulse wave waveform due to can be reduced.
  • the second embodiment described above shows a case where the second embodiment is added in the Z-axis direction as in the example of the first embodiment.
  • the pulse wave detection sensor 112 is arranged immediately above the blood vessel, and the inertial force detection sensor 113 is arranged at a different position from the pulse wave detection sensor 112, but the mutual positional relationship between the inertial force detection sensor 113 and the pulse wave detection sensor 112 is directly Should not be specified.
  • the mutual position of the two sensors is not fixed with a mounting tool or the like, and each sensor is mounted with a bandage-like one. In short, it should be handled so as not to lose the elasticity of the skin.
  • a triaxial pressure sensor may be used as the above-described pulse wave detection sensor 112 and inertial force detection sensor 113, and pulse wave waveform acquisition and removal by body movement may be performed using only the pressure in the Z-axis direction. Further, it is more preferable to use two triaxial pressure sensors and perform body motion removal for each axis by using each axis component of each sensor. Further, a single-axis pressure sensor is used as the inertial force detection sensor 113, and the pulse wave waveform is acquired and the body is obtained by using the three-axis component of the pulse wave detection sensor 112 and the single-axis component of the inertial force detection sensor 113. It is also possible to remove dynamic components.
  • the detection direction of the inertial force detection sensor 113 is specifically designed for a specific use situation, which is suitable for removing body motion components.
  • the body movement in the arm is in the Z-axis direction, so the detection direction of the single-axis pressure sensor may be parallel to the Z-axis.
  • the detection direction of the single-axis pressure sensor should be parallel to the X-axis.
  • the detection direction of the single-axis pressure sensor does not necessarily have to be parallel to any of the X, Y, and Z axes, and may be set as appropriate according to an arbitrary use situation.
  • an analog circuit operational amplifier is used as the waveform processing method, and the outputs of the pulse wave detection sensor 112 and the inertial force detection sensor 113 are input to the operational amplifier to detect the pulse wave.
  • the skin condition is the dominant factor in the mutual positional relationship between the pulse wave detection sensor 112 and the inertial force detection sensor 113.
  • the portion where the sensor is present is pressed against the skin surface with a constant pressure, so that the elasticity of the skin is lost and the pressure wave derived from the pulse wave directly above the blood vessel is also attenuated. Therefore, in the sensor array method, it is necessary to strictly manage the pressure to be pressed, but if there is body movement in the Z-axis direction, the sensor cannot be pressed with a constant pressure, and a pulse wave waveform is acquired during that time. Can not.
  • the sensor array type sensor has a large mass as compared with a normal pressure sensor, so vibration associated with body movement becomes excessive, and as a result, stable pulse wave acquisition becomes difficult.
  • a body motion signal can be effectively removed by using a plurality (two or more) of light and small pressure sensors.
  • FIG. 9 shows the results of measuring how the wrist blood pressure changes depending on the body position. Even with the same wrist, there was a difference of 131 mmHg to 96 mmHg depending on the posture. This means that the blood pressure varies greatly depending on the posture, and the blood pressure measurement in a resting state without body movement cannot reflect the actual blood pressure fluctuation. This shows the importance of being able to measure blood pressure properly in any posture.
  • the relationship between the pulse waveform and blood pressure will be described. Although it is not described in detail in this specification that the characteristics of the pulse waveform are correlated with blood pressure, it has been found by experiments of the inventors themselves that there is a correlation as shown in FIG. 10 with a certain degree of accuracy. In fact, the fact that there is a correlation is a fact in general.
  • the biological information calculation unit described in the claims performs the operation of calculating the blood pressure value from such a pulse wave waveform.
  • the side pulse wave signal detected by the pressure sensor has the waveform rising position as “Starting Point”, the first peak as “Percussion Wave”, the second peak as “Tidal Wave”, and the third peak as “ Dicrotic Wave ".
  • the analysis of the pulse wave waveform is based on these feature points as the base points, and the time interval between each other and the feature points in the preceding and following side pulse wave signals is adopted as the side pulse wave circulation dynamic value. Extraction and pulse waveform analysis are performed.
  • the velocity side pulse wave is obtained by performing the first derivative of the obtained stable side pulse wave signal, and the “Starting Point”, “Percussion Wave” is obtained from the zero cross point of the speed side pulse wave. ”,“ Tidal Wave ”,“ Dicrotic Wave ”information.
  • the pulse wave waveform analysis can be performed by obtaining the acceleration pulse wave by differentiating the velocity pulse wave.
  • Blood pressure can be measured using an analog circuit or a digital circuit composed of mass-produced pressure sensors and general-purpose parts, which has the effect of improving the efficiency of work such as grasping signs of changes in the body. ing.

Abstract

脈波波形に基づく生体情報を取得する方法は種々あるが、生体情報読取装置として常時安定して動作させることができなかった。 多軸圧力センサや複数の単軸圧力センサによって取得した脈波信号から外乱成分を除去して高精度化するとともに、圧力センサの小型軽量である特徴を生かし、被験者に常時装着して連続観察が可能な生体情報読取装置を実現する。

Description

生体情報読取装置
 本発明は、圧力センサで生体信号としての脈波を読み取る生体情報読取装置に関する。特に脈波波形によって血圧を測定する生体情報読取装置に関する。
 従来、血圧測定方法として、オシロメトリック法とトノメトリ法が知られている。オシロメトリック法は、上腕や手首にカフを巻いて、血管を圧迫し、一旦血液の流れを止めてから、カフの圧力をゆるめて減圧していく過程で、心臓の脈動に同調した血管壁の振動を反映したカフ圧をチェックして血圧値を測定するものである。このカフを用いるオシロメトリック法による血圧測定は、非観血かつ非侵襲であり近年では機械による自動測定も可能となっており、気軽に血圧測定を行うことができる。しかし、血圧測定用の装置は携行用途としては大きい上に測定に必要な時間も数十秒~1分と長く、更に血圧測定の間は安静にしていなくてはならないため、血圧測定の頻度が日常生活に支障を来してしまう問題がある。
 トノメトリ法は、動脈に偏平な接触圧をもつセンサを押し当てて、そのセンサに抗して脈動する動脈の内圧の変動を測定して血圧値を得る方法である。トノメトリ法での血圧測定の概念図を図11に示す。人間の手首附近の断面模式図であり、撓骨の上に撓骨動脈があり、その直上の皮膚の上にセンサアレイが載置されている様子を意味する。センサアレイは一般に平面状であり、これを皮膚に押圧する際にはセンサ接触面と対向する皮膚も平面状に押し広げられる。
 センサアレイには、複数のセンサがその名のとおりアレイ状に配置されており、撓骨動脈直上附近のセンサが動脈の脈波を最も広いダイナミックレンジで捉えることができる。よって、センサアレイがある程度以上の大きさであれば、血管の位置を大まかに把握してセンサアレイを装着し、各センサから得られた信号のうち最もダイナミックレンジの大きなものを採用すれば良い。
特開2011-239840号公報 特開2005-253865号公報 特開2007-007075号公報
 特許文献1(特開2011-239840号公報)は、3軸圧力センサを利用して既存のトノメトリ法のセンサの押圧方向を補正する技術が開示されている。しかし、測定装置の装着自由度の向上や測定安定度の向上などについては示唆がなく、連続して安定した血圧測定を行う環境を産み出すものとなっていない。
 また、特許文献2(特開2005-253865号公報)には、生体情報取得センサとは別に加速度センサを設けて、体動を検知する技術が開示されている。しかしながら、体動が検知できたとしても体動時の脈波波形を無効と取扱うだけであれば、常時体を動かすような状況(スポーツなど)では利用できないこととなり、連続した血圧測定の要求に応えることができない。
 また、異なる例として特許文献3(特開2007-007075号公報)によって、脈波から血圧値を演算する技術が開示されている。しかしながら、脈波が安定して取得できることが前提での演算であり、日常生活を送る人間の脈波を取得するのが困難であるという事情を一切考慮しておらず、やはり連続した血圧測定の要求に応えることができない。
 このように、従来の技術では、疾病の重要な予測要因であり且つ周囲環境や身体・精神状態により短期・突発的に生ずる血圧変動を精度よく捉えることができない。このため、体動があってもこれらの外乱を除去してさらなる高精度な測定が可能な方法が求められている。
 本発明は、人体に装着して常時連続して生体情報である脈波信号を取得可能であり、かつ体動等による外乱の影響をできるだけ除去して高精度な測定が可能な生体情報読取装置を提供することを目的とする。
 本発明の第一の側面は、生体情報読取を行う生体情報読取装置であって、生体からの生体信号を取得する生体信号取得部と、生体信号取得部が取得した生体信号に重畳する外乱成分を除去する外乱除去部と、外乱除去部が外乱を除去した生体信号に基づいて生体情報を演算する生体情報演算部と、を具備し、生体信号取得部は多軸圧力センサであり、多軸圧力センサの圧力検出軸の方向成分がそれぞれ異なる、ことを特徴とする。
 本発明の他の側面は、生体情報読取を行う生体情報読取装置であって、生体からの生体信号を取得する生体信号取得部と、生体信号取得部が取得した生体信号に重畳する外乱成分を除去する外乱除去部と、外乱除去部が外乱を除去した生体信号に基づいて生体情報を演算する生体情報演算部と、を具備し、生体信号取得部は複数の単軸圧力センサである、ことを特徴とする。
 また、本発明の他の側面は、生体情報読取を行う生体情報読取装置であって、生体からの生体信号を取得する生体信号取得部と、生体信号取得部が取得した生体信号に重畳する外乱成分を除去する外乱除去部と、外乱除去部が外乱を除去した生体信号に基づいて生体情報を演算する生体情報演算部と、を具備し、生体信号取得部は多軸圧力センサと単軸圧力センサであり、多軸圧力センサの圧力検出軸の方向成分がそれぞれ異なる、ことを特徴とする。
 なお、外乱除去部は、多軸圧力センサまたは単軸圧力センサの血管直上位置よりのずれによる影響と生体の動きである体動の影響とのうち1つまたは両方を除去することができる。
 なお、前記生体情報演算部は、安定側脈波より得られる1拍分の側脈波信号中の特徴点であるStarting Point、Percussion Wave、Tidal Wave、Dicrotic Wave のそれぞれを起点とした相互の時間間隔および前後の側脈波信号中の特徴点との時間間隔のうち少なくとも1つを側脈波循環動態値として採用し生体情報を演算する側脈波循環動態演算部を有する、ことができる。
 また、前記側脈波循環動態演算部は、安定側脈波信号の一次微分を行う速度側脈波演算部を有し、該速度側脈波のゼロクロス点より、Starting Point、Percussion Wave、Tidal Wave、Dicrotic Wave情報を取得することができる。
 また、前記多軸圧力センサまたは前記単軸圧力センサは、MEMS式センサであり、あるいは静電容量式センサであることができる。
 本発明により、高精度で連続した脈波信号の測定が実現でき、結果として常時連続した生体情報取得が可能となる。
本発明の一実施形態の脈波波形取得装置の構成を示すブロック図である。 本発明の第一の実施形態の概念を示す図である。 本発明の第一の実施形態のセンサの配置を示す図である。 本発明の第一の実施形態の信号処理の概念を示す図である。 本発明の第二の実施形態のセンサの配置を示す図である。 本発明の第二の実施形態の脈波波形取得装置の構成を示すブロック図である。 本発明の第二の実施形態の体動の影響によるセンサが検出する力を説明する図である。 本発明の第二の実施形態の信号処理を説明する図である。波形aは、脈波検出センサの出力波形、波形bは、慣性力検出センサの出力波形、波形cは、較正後の出力波形を示す。 体位による血圧の変化を示す図である。 脈波立ち上がり時間と血圧値の相関を示す図である。 センサアレイを用いる従来技術を示す図である。
 以下、図面を参照して、本発明の実施の形態を説明する。
 詳細な説明の前に、本明細書内で共通の事項について説明する。
 本発明において、側脈波とは、血管の圧力で検出した脈波をいい、安定側脈波とは、センサの位置ズレ及び体動の影響が除去された側脈波を意味するものとする。
 図1は、本発明の第一の実施形態の生体情報としての脈波取得装置の構成を示すものである。この脈波取得装置は、図1に示すように、人体の脈波を取得する検出部のセンサとして、直交するX,Y,Zの3軸方向の圧力を検出する直交3軸圧力センサ11を備えたものである。直交3軸圧力センサ(以下3軸圧力センサという)は、弾性体12を介して装着体13に取り付けられる。装着体13は、3軸圧力センサ11を測定すべき人体の手首の撓骨動脈の近傍の皮膚に密着するように押し当てるためのものである。図2は、装着体13に3軸圧力センサ11が取り付けられた状態を示すものである。装着体13は、人体の手首の皮膚に3軸圧力センサ11を接触させることができる湾曲した樹脂構造のものであり、その平坦な内面部分に3軸圧力センサ11が取り付けられて、3軸圧力センサを手首に固定できる。3軸圧力センサ11の装着体13への取り付けは、3軸圧力センサ11が皮膚に適切な圧力で押し当てられるように、弾性体12を介して取り付けられている。
 装着体13は、従来の一方が開口して、手首に嵌めて3軸圧力センサ11を手首の皮膚に押し当てて固定するために、手首にはめたときに固定するためのバンドを備えている。この手首への固定構造は、脈波を取得するために手首に嵌める従来のカフと機能としては変わらない。また、装着体13はカフと同様に柔軟な素材のたとえば布製のものでもよく、3軸圧力センサ11を適切な圧力で皮膚に接することができる構造であればよい。
 図1は、本実施の形態の脈波読取装置のブロック構成を示すものである。本実施形態の脈波読取装置は、装着体13に取り付けられた3軸圧力センサ11の検出出力が入力され、検出した3軸の圧力情報から外乱を除去して脈波波形や血圧を演算する信号処理部21、信号処理部21で血圧を演算するためのパラメータや演算式等の情報、演算結果の波形データや3軸圧力センサ11からのデータ等を記憶する記憶部22、取得した脈波波形や脈波から推定演算した血圧情報を表示し、あるいは操作指示等の操作情報を表示する表示部23、検出開始や終了等の操作情報を入力する操作部24を備える。
 3軸圧力センサは、請求項でいう生体信号取得部に相当し、信号処理部21、記憶部22は、請求項でいう外乱除去部および生体情報を演算する生体情報演算部に相当し、脈波読取装置は生体情報読取装置に相当する。
 ここで、表示部23、操作部24は一体化してもよい。たとえば操作入力をタッチパネル方式の入力方式とすれば、表示と操作入力とを一体化できる。
 信号処理部21、記憶部22、表示部23、操作部24は、装着体13とは別の筐体に収納することができるが、小型化した場合には、装着体13に設けてもよい。また、筐体には、図示しないが、脈波取得装置を動作させる電源を有する。電源は、電池を用いてもよいし、商用電源から取得してもよい。
 この脈波読取装置は、図示しない外部インタフェースを備えており、信号処理部21の出力は、図示しない外部インタフェースを介して、外部の装置に出力することができる。外部インタフェースは、脈波読取装置を患者のモニタ装置として用いる場合、あるいは運動時の脈波波形を取得する等、外部装置で脈波波形を収集する場合に使用することができる。
 図2は、本実施形態の脈波読取装置で取得する脈波の測定原理を説明する図である。手首の撓骨動脈の近傍の皮膚表面に3軸圧力センサ11を置き、XYZの3軸方向の圧力を検出する。Z軸方向が手首の皮膚表面の上方向、すなわち、動脈圧が皮膚方向に押す方向であり、X軸方向は、手首の横方向、Y軸方向は手首の縦方向になる。
 外乱の除去について図3と図4を用いて説明する。
 上述のようにセンサとして3軸圧力センサを1つ用い、外乱として体動によって取得する脈波波形が乱れるものを想定している。
 図3にある通り、3軸圧力センサ11が撓骨動脈の直上に配置されている。このとき、X軸方向に体動が発生したものとする。3軸圧力センサ11の脈波波形信号として、Z軸センサ信号とX軸センサ信号とに着目する。Z軸センサ信号は脈波波形取得に適しており、X軸センサ信号はX方向の体動成分取得に適している。
 そこで、図4に示すように、3軸圧力センサの出力信号のうち、Z軸センサの出力とX軸センサの出力を演算増幅器211に入力して、X軸方向で生じた体動成分を除去する。これにより、図4に示すように演算増幅器211の出力信号から体動成分を除去することができる。
 脈波は血流の増減によって発生するので血管断面を基準に見ると径方向へ伸縮する態様となり、血管の中心から外側へ略等方向の圧力波が発生することになる。よって、血管至近の皮膚上においては3軸圧力センサのうちのZ軸成分に強く脈波が圧力波として捉えられることとなるが、絶対値は相対的に小さくなるもののX軸センサやY軸センサにも脈波成分が含まれることになる。
 なお、上述の説明では、説明を簡略にするためY軸については省いたが、当然Y軸センサの信号も加味すればより良いものとなる。
 また、図4の説明では、Z軸センサ信号からX軸センサ信号の成分除去をアナログ回路の演算増幅器で実現する例で説明したが、信号処理部21内での外乱除去、脈波波形から血圧値を演算する等の信号処理を、ディジタル演算回路で実現できることはいうまでもない。
 なお、このようにZ軸センサ以外にX軸やY軸のセンサにも脈波成分が重畳するので、これら各軸のセンサ信号を合成またはハードウェア・ソフトウェア演算することにより3軸圧力センサが必ずしも血管の直上に位置しなくても安定側脈波を取得することが可能であり、センサアレイ方式と同様の配置自由度を享受できる。また、X軸およびY軸のセンサ波形より3軸圧力センサの適正な配置位置が判るので、センサの波形を見ながら適正な位置を探し出すことも可能となる。
 センサ適正位置探索には、音量・音波長や光量・光波長の変化によりガイドする方法が好適である。
 3軸圧力センサとしては、具体的にはマイクロマシンと称されるMEMS(Micro Electro Mechanical Systems)を用いたものや静電容量方式のものなどが適用可能である。
 本実施形態の説明は、センサ出力のような微小出力信号の増幅と同相ノイズ除去性能に優れる演算増幅器を用いた回路を一例としたが、反転・非反転増幅回路やトランジスタを用いた増幅回路や、さらにはフィルタ回路を追加した場合であっても実現可能である。
 上述の第一の実施の形態の説明は、ひとつの3軸圧力センサを用いた場合について説明してきたが、これ以外の方式も可能であることを図5から図8を参照しながら説明する。
 図5は図3と略同じであるが、第二の実施の形態として、センサとして3軸圧力センサを2つ用い、ひとつは、脈波検出用のセンサとして撓骨動脈直上に配置し、もうひとつは、体動があったときの慣性力検出用のセンサとして、血管の近傍に配置される。
 図6は、ふたつのセンサを用いた第二の実施の形態の脈波波形読取装置の構成を示すブロック図である。センサとして、脈波検出センサ112と、体動を検出する体動検出用の慣性力検出センサ113とを用いる。他の構成は第一の実施の形態と同じであるので説明は省略する。
 図7は、脈波検出センサ112と慣性力検出センサ113に働く力をベクトル表示したものである。脈波検出センサ112は、撓骨動脈の血圧と、体動によって脈波検出センサ112に働く慣性力とが合成された力を検出する。慣性力検出センサ113は、撓骨動脈の血圧は働かず、慣性力のみを検出する。このため、下記の式で表すように、脈波検出センサ112の出力から慣性力検出センサ113で検出した出力を引くことで、脈波検出センサ112が出力する脈波波形に加わる体動によって生ずる慣性力による外乱(ノイズ)を除去することができる。
 血圧脈波=脈波検出センサ(血圧脈波+慣性力)-慣性力検出センサ(慣性力)
 図8は、体動として、手首をX軸方向(左右に水平)に動かしたときの、脈波検出センサ112のZ軸成分波形と、慣性力検出センサ113のZ軸成分波形と、慣性力について較正した波形を示すものである。図8の波形aは、脈波検出センサ112の出力波形、図8の波形bは、慣性力検出センサ113の出力波形、図8の波形cは、較正後の波形を示している。
 このように、脈波検出センサの近傍に慣性力検出センサを配置して、脈波検出センサの出力から慣性力検出センサからの出力を引く処理を行うことで、体動によってセンサに働く慣性力による脈波波形のばらつきを低減できる。
 上述の第二の実施形態は、第一の実施形態の例と同じくZ軸方向に加わる場合を示すものであった。
 脈波検出センサ112は血管直上に配置され、慣性力検出センサ113は脈波検出センサ112と異なる位置に配置するが、慣性力検出センサ113と脈波検出センサ112との相互の位置関係は直接的に規定されないようにする。具体的には、装着用具などで2つのセンサの相互位置を固定せず、各センサ個別に絆創膏状のもので装着するなどする。要するに、皮膚の弾性を失わないように取扱うということである。
 また、上述の脈波検出センサ112、慣性力検出センサ113として、3軸圧力センサを用い、Z軸方向の圧力のみを用いて脈波波形取得と体動による除去を行ってもよい。また、3軸圧力センサをふたつ用い、各センサの各軸成分を利用して、各軸ごとに体動除去を行うとさらによい。
 また、慣性力検出センサ113として、単軸圧力センサを用い、脈波検出センサ112の3軸成分と、慣性力検出センサ113の単軸成分とを利用することで、脈波波形の取得と体動成分の除去とを行うことも可能である。
 この場合、慣性力検出センサ113の検出方向を特定の利用状況に特化して設計することにより、体動成分の除去に好適である。たとえば、テニスラケットでボールを打つ状況下では、腕における体動はZ軸方向になるので、単軸圧力センサの検出方向をZ軸と平行にするとよい。ランニング状況下では、腕における体動はX軸方向になるので、単軸圧力センサの検出方向をX軸と平行にするとよい。ボクシングでジャブを繰り出す状況下では、腕における体動はY軸方向になるので、単軸圧力センサの検出方向をY軸と平行とするとよい。
 また、単軸圧力センサの検出方向は必ずしもX・Y・Z軸のいずれかと平行とする必要はなく、任意の利用状況に応じて適宜設定可能なようにしてもよい。
 また、第一の実施の形態と同じく、波形処理方法として、アナログ回路の演算増幅器を用い、この演算増幅器に、脈波検出センサ112と慣性力検出用センサ113の出力を入力して脈波検出センサの検出波形から慣性力検出センサの検出波形との差分をとる波形処理を行うことで、体動による外乱の影響を低減することが可能である。
 なお、脈波検出センサ112と慣性力検出センサ113の相互位置関係を規定するものは皮膚の状態が支配要因となる。センサアレイ方式ではセンサの存在する部分は皮膚表面に一定の圧力で押圧されるので皮膚の弾性が失われてしまい、血管直上の脈波由来の圧力波も減衰してしまう。よってセンサアレイ方式では押圧する圧力が一定になるよう厳密に管理する必要があるが、Z軸方向の体動があるとセンサを一定の圧力で押圧できなくなってしまい、その間は脈波波形を取得できない。特にセンサアレイ方式のセンサは通常の圧力センサと比較して質量が大きいので体動に伴う振動も過大になり、結果として安定した脈波取得が困難となる。
 その点、本発明の方式だと軽量小型の圧力センサを複数(2つ以上)使用することで効果的に体動信号を除去できる。
 ここまで外乱として体動の除去について説明してきたが、改めて体動の影響度の大きさについて説明する。
 図9は体位によって手首の血圧がどのように変化するかを測定した結果についてである。同じ手首であっても姿勢により131mmHgから96mmHgの違いがあった。これは、血圧は姿勢によって大きく変動しており、体動の無い安静な状態での血圧測定が実際の血圧変動を反映できていないということを意味する。
 このことより、どのような姿勢であっても血圧をきちんと測定できることの重大性が判る。
 さらに、脈波波形と血圧の関係について説明する。
 脈波波形の特徴が血圧と相関があることは詳細に本明細書内で記載することはしないが、発明者自身の実験では一定の精度で図10のような相関があることが分かっており、相関があること自体は一般論として事実である。
 請求の範囲に記載の生体情報演算部はこのような脈波波形から血圧値を演算する作業を行うものである。
 ここで、脈波波形の形状と、その波形解析について説明する。
 圧力センサで検出された一拍の側脈波信号は、波形立ち上がり位置を「Starting Point」、第一のピークを「Percussion Wave」、第二のピークを「Tidal Wave」、第三のピークを「Dicrotic Wave」という。脈波波形の解析は、これらの特徴点を基点として相互の時間間隔および前後の側脈波信号中の特徴点との時間間隔を側脈波循環動態値として採用し、脈波波形のパラメータを抽出して、脈波波形解析を行っている。
 さらに、この脈波波形解析では、取得した安定側脈波信号の一次微分を行うことで、速度側脈波を得て、その速度側脈波のゼロクロス点より、「Starting Point」、「Percussion Wave」、「Tidal Wave」、「Dicrotic Wave」情報を取得できる。
 さらには、速度側脈波を微分することで、加速度側脈波を得て脈波波形解析を行うこともできる。
 これらの取得した脈波信号により、血圧測定ができ、また、波形解析により血圧値だけでなく、血管の硬さの程度、心臓疾患の診断等ひとの健康状態の判断に資することが可能となっている。
 以上、本発明について好適な実施例を挙げて説明したが、本発明はこれらの実施例に限定されるものではなく、発明の精神を逸脱しない限り多くの改変を施すことが可能であるのは勿論である。
 量産可能な圧力センサおよび汎用部品より構成されたアナログ回路、あるいはディジタル回路を用いて血圧測定を行うことができ、身体の異変の予兆の把握などの作業の効率を向上させるなどの効果を有している。
 11…3軸圧力センサ
 112…脈波検出センサ
 113…慣性力検出センサ
 12…弾性体
 13…装着体
 21…信号処理部
 211…演算増幅器
 22…記憶部
 23…表示部
 24…操作部

Claims (8)

  1.  生体情報読取を行う生体情報読取装置であって、
     生体からの生体信号を電気信号として取得する生体信号取得部と、前記生体信号取得部が取得した電気信号に重畳する外乱成分を除去する外乱除去部と、前記外乱除去部が外乱を除去した前記電気信号に基づいて生体情報を演算する生体情報演算部と、を具備し、
     前記生体信号取得部は多軸圧力センサであり、
     該多軸圧力センサの圧力検出軸の方向成分がそれぞれ異なる、
     ことを特徴とする生体情報読取装置。
  2.  生体情報読取を行う生体情報読取装置であって、
     生体からの生体信号を電気信号として取得する生体信号取得部と、前記生体信号取得部が取得した電気信号に重畳する外乱成分を除去する外乱除去部と、前記外乱除去部が外乱を除去した前記電気信号に基づいて生体情報を演算する生体情報演算部と、を具備し、
     前記生体信号取得部は複数の単軸圧力センサである、
     ことを特徴とする生体情報読取装置。
  3.  生体情報読取を行う生体情報読取装置であって、
     生体からの生体信号を電気信号として取得する生体信号取得部と、前記生体信号取得部が取得した電気信号に重畳する外乱成分を除去する外乱除去部と、前記外乱除去部が外乱を除去した前記電気信号に基づいて生体情報を演算する生体情報演算部と、を具備し、
     前記生体信号取得部は多軸圧力センサと単軸圧力センサであり、
     該多軸圧力センサの圧力検出軸の方向成分がそれぞれ異なる、
     ことを特徴とする生体情報読取装置。
  4.  請求項1から3のいずれか1項に記載の生体情報読取装置であって、
     前記外乱除去部は、前記多軸圧力センサまたは前記単軸圧力センサの血管直上位置よりのずれによる影響と生体の動きである体動の影響とのうち1つまたは両方を除去する
     ことを特徴とする生体情報読取装置。
  5.  請求項1から4のいずれか1項に記載の生体情報読取装置であって、
     前記生体情報演算部は、安定側脈波より得られる1拍分の側脈波信号中の特徴点であるStarting Point、Percussion Wave、Tidal Wave、Dicrotic Wave のそれぞれを起点とした相互の時間間隔および前後の側脈波信号中の特徴点との時間間隔のうち少なくとも1つを側脈波循環動態値として採用し生体情報を演算する側脈波循環動態演算部を有する、
     ことを特徴とする生体情報読取装置。
  6.  請求項5に記載の生体情報読取装置であって、
     前記側脈波循環動態演算部は、安定側脈波信号の一次微分を行う速度側脈波演算部を有し、
     該速度側脈波のゼロクロス点より、Starting Point、Percussion Wave、Tidal Wave、Dicrotic Wave情報を取得する
     ことを特徴とする生体情報読取装置。
  7.  請求項1から6のいずれか1項に記載の生体情報読取装置であって、
     前記多軸圧力センサまたは前記単軸圧力センサは、MEMS式センサである
     ことを特徴とする生体情報読取装置。
  8.  請求項1から6のいずれか1項に記載の生体情報読取装置であって、
     前記多軸圧力センサまたは前記単軸圧力センサは、静電容量式センサである
     ことを特徴とする生体情報読取装置。
PCT/JP2016/062405 2015-04-21 2016-04-19 生体情報読取装置 WO2016171140A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16783161.9A EP3287069B1 (en) 2015-04-21 2016-04-19 Biological information reading device
US15/567,881 US10537257B2 (en) 2015-04-21 2016-04-19 Biological information reading device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015087155 2015-04-21
JP2015-087155 2015-04-21
JP2016-083812 2016-04-19
JP2016083812A JP6676451B2 (ja) 2015-04-21 2016-04-19 生体情報読取装置

Publications (1)

Publication Number Publication Date
WO2016171140A1 true WO2016171140A1 (ja) 2016-10-27

Family

ID=57143096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062405 WO2016171140A1 (ja) 2015-04-21 2016-04-19 生体情報読取装置

Country Status (1)

Country Link
WO (1) WO2016171140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168812A1 (ja) * 2017-03-14 2018-09-20 オムロンヘルスケア株式会社 血圧データ処理装置、血圧データ処理方法および血圧データ処理プログラム
CN110072446A (zh) * 2016-12-28 2019-07-30 欧姆龙株式会社 脉波测量装置、脉波测量方法以及血压测量装置
CN110167436A (zh) * 2017-01-04 2019-08-23 欧姆龙株式会社 血压测定装置、系统、方法和程序

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313468A (ja) * 2003-04-16 2004-11-11 Omron Healthcare Co Ltd 脈波測定装置および生体波解析プログラム
JP2006192288A (ja) * 2006-03-13 2006-07-27 Toshiba Corp 脈波計測モジュール
JP2010194108A (ja) * 2009-02-25 2010-09-09 Omron Healthcare Co Ltd 血圧情報測定装置および動脈硬化度指標算出プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313468A (ja) * 2003-04-16 2004-11-11 Omron Healthcare Co Ltd 脈波測定装置および生体波解析プログラム
JP2006192288A (ja) * 2006-03-13 2006-07-27 Toshiba Corp 脈波計測モジュール
JP2010194108A (ja) * 2009-02-25 2010-09-09 Omron Healthcare Co Ltd 血圧情報測定装置および動脈硬化度指標算出プログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072446A (zh) * 2016-12-28 2019-07-30 欧姆龙株式会社 脉波测量装置、脉波测量方法以及血压测量装置
CN110072446B (zh) * 2016-12-28 2021-11-02 欧姆龙株式会社 脉波测量装置、脉波测量方法以及血压测量装置
CN110167436A (zh) * 2017-01-04 2019-08-23 欧姆龙株式会社 血压测定装置、系统、方法和程序
CN110167436B (zh) * 2017-01-04 2021-11-12 欧姆龙株式会社 血压测定装置、系统和存储介质
WO2018168812A1 (ja) * 2017-03-14 2018-09-20 オムロンヘルスケア株式会社 血圧データ処理装置、血圧データ処理方法および血圧データ処理プログラム
JP2018149182A (ja) * 2017-03-14 2018-09-27 オムロンヘルスケア株式会社 血圧データ処理装置、血圧データ処理方法および血圧データ処理プログラム
CN110392548A (zh) * 2017-03-14 2019-10-29 欧姆龙健康医疗事业株式会社 血压数据处理装置、血压数据处理方法以及血压数据处理程序

Similar Documents

Publication Publication Date Title
US20060195020A1 (en) Methods, systems, and apparatus for measuring a pulse rate
JP4357503B2 (ja) 生体情報計測装置、生体情報計測方法および生体情報計測プログラム
JP5981718B2 (ja) 呼吸モニタ及び監視方法
US20150057506A1 (en) Arrayed electrodes in a wearable device for determining physiological characteristics
WO2013132844A1 (ja) 脈拍計及びプログラム
US20040186387A1 (en) Pulse meter, method for controlling pulse meter, wristwatch-type information device, control program, storage medium, blood vessel simulation sensor, and living organism information measurement device
WO2007053146A1 (en) Methods, systems and apparatus for measuring a pulse rate
WO2017074713A1 (en) Non-invasive continuous blood pressure monitoring with reduced motion artifacts
WO2016171140A1 (ja) 生体情報読取装置
JP5578515B2 (ja) 生体情報処理プログラム、生体情報処理装置、生体情報処理方法および生体情報処理システム
JP6676451B2 (ja) 生体情報読取装置
WO2008007361A2 (en) Wearable, ambulatory, continuous, non-invasive blood pressure measuring method and system
CN110402102B (zh) 生物信息记录装置、系统和存储介质
JP2004305268A (ja) 心音検出装置
WO2017119187A1 (ja) 血圧補正情報生成装置、血圧測定装置、血圧補正情報生成方法、血圧補正情報生成プログラム
JP6631121B2 (ja) 血圧解析装置、血圧測定装置、血圧解析装置の作動方法、血圧解析プログラム
JP6191284B2 (ja) 判定装置、方法及びプログラム
EP3311736B1 (en) Biological information acquiring device
JP5660608B2 (ja) ダイナミック膝関節複合診断装置
JP2013031568A (ja) 呼吸モニタリング方法および呼吸モニタリング装置、並びに呼吸モニタリング機能付血圧計
WO2016204281A1 (ja) 生体情報取得装置
JP3815663B2 (ja) 脈に関する情報を検出可能な測定装置
Hernandez et al. Respiratory effort monitoring system for sleep apnea screening for both supine and lateral recumbent positions
WO2023199334A1 (en) A blood pressure determining system and method thereof
CN115633947B (zh) 一种可穿戴血压监测装置及血压监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567881

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE