WO2016170720A1 - Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus - Google Patents

Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus Download PDF

Info

Publication number
WO2016170720A1
WO2016170720A1 PCT/JP2016/001013 JP2016001013W WO2016170720A1 WO 2016170720 A1 WO2016170720 A1 WO 2016170720A1 JP 2016001013 W JP2016001013 W JP 2016001013W WO 2016170720 A1 WO2016170720 A1 WO 2016170720A1
Authority
WO
WIPO (PCT)
Prior art keywords
snout
molten metal
steel strip
bath
temperature
Prior art date
Application number
PCT/JP2016/001013
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015166199A external-priority patent/JP6361606B2/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020177030349A priority Critical patent/KR101953506B1/en
Priority to US15/565,986 priority patent/US20180105916A1/en
Priority to AU2016252162A priority patent/AU2016252162B2/en
Priority to MX2017013461A priority patent/MX2017013461A/en
Priority to CN201680022565.7A priority patent/CN107532269B/en
Publication of WO2016170720A1 publication Critical patent/WO2016170720A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a continuous molten metal plating method and a continuous molten metal plating facility used for, for example, continuously producing a hot dip galvanized steel sheet.
  • the steel strips whose surfaces have been cleaned are usually annealed continuously in an annealing furnace, cooled to a predetermined temperature, and then entered into a hot dip zinc bath to apply hot dip galvanization to the steel strips. .
  • the annealing / cooling process in the annealing furnace is performed in a reducing atmosphere.
  • the steel strip passage is cut off from the atmosphere, and the steel strip can pass through the reducing atmosphere.
  • a snout is provided between the plating tank in which the molten zinc bath is formed.
  • a sink roll is installed in the molten zinc bath, and the steel strip that has entered the molten zinc bath changes its traveling direction by the sink roll and rises in the vertical direction.
  • the steel strip pulled up from the molten zinc bath is adjusted to a predetermined plating thickness by a gas wiping nozzle, then cooled and guided to a subsequent process.
  • the snout Since the snout is connected to the cooling zone (steel strip exit side) of the annealing furnace, the inside is usually a reducing atmosphere. Therefore, an oxide film is hardly formed on the molten zinc bath surface in the snout, and only a thin oxide film is formed. Since the oxide film formed on the molten zinc bath surface in the snout is not strong as described above, when the steel strip enters the molten zinc bath, the molten zinc is exposed to the bath surface due to vibrations, etc. Zinc evaporates inside. In this case, the molten zinc evaporates to a saturated vapor pressure at the ambient temperature inside the snout.
  • Zinc vapor reacts with a small amount of oxygen in the reducing atmosphere gas to form an oxide. Even when the zinc vapor is not oxidized, when the vapor pressure of the zinc vapor becomes equal to or higher than the saturated vapor pressure, a part of the zinc vapor changes into a liquid phase or solid phase zinc. In particular, since the snout is only composed of a thin heat-resistant material, the temperature of the inner wall surface of the snout is easily affected by the outside air and is likely to be below the saturation temperature of the vapor pressure of zinc vapor. Zinc vapor turns into zinc powder and adheres to the inner surface of the snout.
  • defects due to ash When such oxides and deposits (so-called ash) adhere to the steel strip, quality defects such as unplated parts occur.
  • quality defects such as non-plated portions caused by ash generated due to zinc vapor in the snout are hereinafter referred to as “defects due to ash” in the present specification.
  • Patent Document 1 There are the following technologies for suppressing defects caused by ash.
  • the snout is heated with a heater, the outside of the heater is further insulated with a heat insulating material, and the temperature difference between the atmospheric temperature in the snout and the inner wall temperature and the plating bath temperature is set to 150 ° C. or less.
  • a technique for preventing ash adhesion to the inner wall of the snout is described.
  • Patent Document 2 a suction blower is installed in the plating bath, and a suction pipe having a suction port at a position higher than the bath surface in the snout is connected to the suction side of the suction blower, so that zinc vapor in the snout is used as a system.
  • Patent Document 3 describes a technique for suppressing the generation of fume (zinc vapor) by making the atmosphere in the snout non-oxidizing gas for the steel sheet and oxidizing gas for the molten zinc. .
  • Patent Document 1 can suppress crystallization of zinc vapor on the inner wall of the snout, that is, generation of ash to some extent by heating the snout.
  • generation of zinc vapor from the molten zinc bath surface itself cannot be prevented, the generation of ash in an unheated place is unavoidable, and the potential danger of ash adhering to the steel strip cannot be excluded.
  • Patent Documents 1 to 3 have the following problems. That is, the suitable oxidizing power of the atmosphere in the snout (particularly in the vicinity of the bath surface) varies depending on the operating conditions such as the composition of the steel strip, the annealing conditions in the annealing process, and the components of the molten metal bath. For this reason, when operating conditions are switched, the oxidizing power of the atmosphere in the snout is also required to be switched quickly.
  • the techniques of Patent Documents 1 to 3 have a problem that the oxidizing power of the atmosphere in the snout cannot be changed stably and quickly. In particular, in Patent Document 3, since large natural convection exists in the snout, the oxidizing power of the atmosphere in the snout cannot be changed stably and quickly.
  • An object of the present invention is to provide a continuous molten metal plating method and a continuous molten metal plating facility capable of stably and quickly changing the oxidizing power of the atmosphere in the snout.
  • the present invention has been completed based on the above findings, and the gist of the present invention is as follows. (1) a step of continuously annealing a steel strip in an annealing furnace; A method of continuously supplying the steel strip after annealing to a plating tank containing a molten metal and forming a molten metal bath, and performing metal plating on the steel strip.
  • the operation condition is any one of the above (3) to (6), wherein the operation condition is at least one of a component composition of the steel strip, an annealing condition in the annealing step, and a component of the molten metal bath. Continuous molten metal plating method.
  • An annealing furnace for continuously annealing the steel strip A plating tank containing molten metal and forming a molten metal bath; Provided on the steel strip exit side of the annealing furnace, the end is positioned so as to be immersed in the molten metal bath, and defines a space through which the steel strip continuously supplied from the annealing furnace into the molten metal bath passes Snout to do, A heating body provided on an outer wall of the snout and an upper portion in the snout; A gas supply mechanism connected to the snout; The heating body and the gas supply mechanism are controlled to supply an oxidizing gas into the snout, and the temperature of the inner wall surface of the snout is not less than (plating bath temperature ⁇ 150 ° C.) and the inside of the snout A control unit that makes the upper atmosphere temperature (plating bath temperature –100 ° C) or higher, A continuous molten metal plating facility characterized by comprising:
  • both non-plating caused by metal vapor generated in the snout and non-plating caused by the oxide film on the molten metal bath surface in the snout are suppressed.
  • the oxidizing power of the atmosphere in the snout can be changed stably and quickly.
  • FIG. 1 It is a schematic diagram of the continuous hot dip galvanizing equipment 100 by one Embodiment of this invention. It is the figure which showed only the half from the width direction center of the steel strip P among the insides of the snout 14 in FIG. It is an expansion schematic diagram of the snout 14 in FIG. It is a graph which shows the relationship between the oxidizing power of a bath surface atmosphere, and a defect rate.
  • A is a graph which shows the relationship between the oxidizing power of a bath surface atmosphere and a defect rate about high Si content steel and low Si content steel
  • (B) is about high Al content bath and low Al content bath
  • (A) and (B) are graphs showing the relationship between the dew point in the snout and the defect rate in steel types A and B, respectively.
  • 6 is a graph showing the dew point fluctuation in the snout in Invention Examples 1 to 3 and Comparative Examples 1 and 2.
  • the continuous hot dip galvanizing equipment 100 includes an annealing furnace 10, a plating tank 12, and a snout 14.
  • the annealing furnace 10 is an apparatus for continuously annealing the steel strip P passing through the inside thereof, and is arranged in the order of the heating zone, the soaking zone, and the cooling zone.
  • FIG. 1 shows only the cooling zone.
  • a well-known or arbitrary thing can be used as an annealing furnace.
  • a reducing gas or a non-oxidizing gas is supplied into the annealing furnace.
  • a mixed gas of H 2 —N 2 is usually used, for example, H 2 : 1 to 20% by volume, and the balance is composed of N 2 and inevitable impurities (dew point: about ⁇ 60 ° C.) Is mentioned.
  • non-oxidizing gas examples include a gas having a composition composed of N 2 and inevitable impurities (dew point: about ⁇ 60 ° C.).
  • the annealed steel strip P is cooled to about 470-500 ° C. in the cooling zone.
  • the plating tank 12 contains molten zinc, and a molten zinc bath 12A is formed.
  • the snout 14 is provided on the steel strip exit side of the annealing furnace 10 in connection with the cooling zone in this embodiment.
  • the snout end 14A is positioned so as to be immersed in the molten zinc bath 12A.
  • the snout 14 is a member that partitions a space through which the steel strip P continuously supplied from the annealing furnace 10 into the molten zinc bath 12A passes.
  • a turn-down roll 26 that changes the traveling direction of the steel strip P from the horizontal direction to an obliquely downward direction is disposed on the upper part of the snout 14.
  • a portion that divides the space through which the steel strip P after passing through the turn-down roll 26 passes is rectangular in a sectional view perpendicular to the traveling direction of the steel strip P.
  • the steel strip P passes through the inside of the snout 14 and continuously enters the molten zinc bath 12A.
  • a sink roll 28 and a support roll 30 are installed in the molten zinc bath 12A, and the steel strip P that has entered the molten zinc bath 12A is changed in the sheet passing direction upward by the sink roll 28. It is guided to the support roll 30 and leaves the molten zinc bath 12A. In this way, hot dip galvanization is applied to the steel strip P.
  • the continuous galvanizing equipment 100 has a gas supply mechanism 20 connected to the snout 14.
  • the gas supply mechanism 20 is attached to the first pipe 22A through which hydrogen gas passes, the second pipe 22B through which nitrogen gas passes, the third pipe 22C through which water vapor as an oxidizing gas passes, and these pipes.
  • a valve 24 for adjusting the flow rate, a fourth pipe 22D through which a mixed gas obtained by mixing gases supplied from these pipes passes, and the fourth pipe 22D are connected to each other, and the tip is located inside the snout 14. 5th piping 22E.
  • the first piping 22A and the third piping 22C are connected to the second piping 22B, and by adjusting the valve 24, hydrogen, nitrogen, and water vapor can be mixed at an arbitrary flow rate ratio.
  • the oxidizing gas examples include gas containing water vapor, oxygen, carbon dioxide, and the like, and are not particularly limited. However, since the oxidizing power is not too high, it is easy to manage, the cost is low, and the oxidizing power can be easily measured with a dew point meter.
  • a heater 16 as a heating body is disposed on the outer wall of the snout 14, and the heater 16 is further covered with a heat insulating material 18.
  • the heater 16 covers the entire outer wall except for the tip of the snout 14 (near the bath surface).
  • a heater 17 as a heating body is also arranged in the upper part in the snout. Since the upper part of the snout has a great influence on the generation of thermal convection as will be described later, the ambient temperature of the upper part of the snout can be reliably increased by providing the heater 17.
  • the heaters 16 and 17 and the gas supply mechanism 20 are controlled by a control unit (not shown) to supply the oxidizing gas into the snout 14 and to set the temperature of the inner wall surface of the snout 14 (plating bath temperature ⁇ 150). It is important that the temperature of the atmosphere in the upper part of the snout 14 is controlled to (plating bath temperature ⁇ 100 ° C.) or higher. The technical significance will be described in detail below.
  • FIG. 4 is a diagram showing the concept. If the oxidization property is low, an oxide film is not formed on the bath surface, or even if it is formed, it is very thin, so defects due to the oxide film are difficult to occur, but zinc evaporation occurs actively, so defects due to ash increase. . On the other hand, when the oxidizing property is high, since the thick oxide film becomes a protective film and the evaporation of zinc hardly occurs, defects due to ash hardly occur, but many defects due to the oxide film occur.
  • the oxidizing power of the atmosphere near the bath surface is controlled by supplying a gas containing water vapor into the snout
  • the dew point of the atmosphere near the bath surface is strictly limited to a predetermined point (target dew point) ⁇ 4 ° C.
  • target dew point can be determined by the method described later if operating conditions other than the target dew point are determined.
  • the convection in the snout mainly includes the accompanying flow generated by the movement of the steel strip, the thermal convection due to the temperature difference in the snout, and the pressure flow due to the pressure difference in the snout. Then, the influence of thermal convection is dominant. For example, when the steel strip temperature is 500 ° C. and the plating bath temperature is 450 ° C., the inside of the snout has a temperature difference of 400 ° C. or more from the outside of the snout.
  • the upper part of the snout is connected to the cooling zone, so the atmospheric temperature of the upper part of the snout is often 200 to 300 ° C.
  • the wind speed due to thermal convection is about 4-5 m / s, which is considerably higher than 1 m / s, which is the typical value of the steel strip wake.
  • the present inventor is most likely to suppress zinc evaporation itself in order to strictly control the dew point near the bath surface and suppress both defects due to ash and defects due to oxide films. In order to achieve this, it was concluded that it is best to supply the minimum amount of oxidizing gas into the snout while suppressing thermal convection in the snout.
  • the present inventor aimed to reduce the temperature difference in the snout, which is the cause of such heat convection.
  • the steel strip has the highest temperature inside the snout, the normal steel strip is only about 10 ° C. higher than the bath temperature. Therefore, in the present invention, the temperature standard is the plating bath temperature. Further, since the thermal convection and the steel strip accompanying flow are in opposite directions, the convection in the snout can be greatly suppressed if the size of the thermal convection can be made twice or less the size of the steel strip accompanying flow.
  • the temperature of the inner wall surface of the snout is set to (plating bath temperature -150 ° C) or higher, the convection of the atmosphere in the snout can be suppressed to a fluid state that ignores the temperature effect.
  • the atmosphere temperature in the upper part of the snout has a larger influence on the heat convection, so it is necessary to set it to (plating bath temperature ⁇ 100 ° C.) or higher. This is because the density flow has a higher flow velocity when a gas having a high density exists at a high position. (The flow resulting from the density is proportional to ⁇ gh. H is the difference in height position, and if there is a high density at a high position, the flow velocity will be faster.)
  • the atmosphere temperature of the upper part in a snout shall be below (plating bath temperature +100 degreeC).
  • the higher the ambient temperature of the upper part the more the convection in the snout is stabilized (the state where there is a low-density substance in the upper part is stable), but the stabilizing effect exceeds (plating bath temperature + 100 ° C) This is because it becomes a peak.
  • the temperature of the inner wall surface of a snout shall be (plating bath temperature +0 degreeC) or less.
  • the “upper part in the snout” is defined as an area within the snout within 1 m from the surface of the turndown roll. In FIG. 3, the distance is within 1 m from the surface of the turndown roll 26 in the snout 14.
  • the oxidation state of the bath surface in the snout can be ideally maintained, both defects due to ash and defects due to the oxide film can be almost eliminated. Furthermore, the effect that the oxidizing power of the atmosphere in the snout can be changed stably and quickly can also be obtained. Therefore, when switching the operating conditions, the oxidizing power of the atmosphere in the snout can be switched quickly according to the changed operating conditions.
  • the oxidizing gas supplied into the snout is preferably nitrogen gas containing water vapor or a nitrogen / hydrogen mixed gas containing water vapor, and the dew point is appropriately determined depending on the components of the plating bath, the type of steel to be produced, and other operating conditions. It may be set, but in many cases it becomes good in the range of -20 to -35 ° C.
  • the supply amount of the oxidizing gas is affected by various operating conditions, but when the same conditions other than the temperature of the inner wall surface of the snout and the atmospheric temperature of the upper part of the snout are compared with the conditions outside the present invention, The same dew point can be achieved with a supply amount of about 1/4. Therefore, the supply amount of the oxidizing gas can be set to a minimum amount necessary for forming an appropriate oxide film.
  • the oxidizing gas is preferably supplied into the snout 14 from both ends of the snout in the steel strip width direction.
  • the reason why the fifth pipe 22E having the gas inlet is installed on the side surface of the snout 12 is that the temperature in the vicinity of the side surface in the snout often decreases. This is because the oxidizing gas can be efficiently reached.
  • the height of the gas inlet from the bath surface can be about 100 to 3000 mm. If it is less than 100 mm, there is a high possibility that the gas directly reaches the bath surface, and as a result, the concentration distribution of the oxidizing gas in the vicinity of the bath surface becomes large. On the other hand, if the distance exceeds 3000 mm, the distance from the bath surface is large, so that the gas concentration decreases, and as a result, a large amount of gas is required.
  • the suitable oxidizing power of the atmosphere in the vicinity of the bath surface in the snout varies depending on the operating conditions such as the composition of the steel strip, the annealing conditions in the annealing process, the components of the molten zinc bath, and the like. That is, the two curves shown in FIG. 4 can be shifted left and right depending on the operating conditions. This will be described below with reference to FIGS. 5A and 5B.
  • both the defect due to ash and the defect due to the oxide film correlate with the oxide film thickness formed on the bath surface.
  • the ash defect is related to the ash generation amount and its adhesion rate, and the oxide film defect depends on the oxide film amount and its adhesion rate.
  • FIG. 5 (A) shows an example of the influence of the composition of the steel strip on the suitable oxidizing power of the atmosphere in the vicinity of the bath surface in the snout.
  • the steel strip contains a large amount of so-called oxidizable elements such as Si, Mn, and Al
  • a large amount of surface concentrate is generated on the surface of the steel strip immediately before entering the plating bath.
  • the oxide film is likely to adhere to the steel strip, that is, the deposition rate of the oxide film is increased, and defects due to the oxide film are likely to occur.
  • the component composition of the steel strip has little effect on defects due to ash.
  • the annealing conditions also affect the probability of defects due to oxide films, but the ash defects are almost affected. do not do.
  • FIG. 5 (B) shows an example of the influence of the components of the molten zinc bath on the suitable oxidizing power of the atmosphere in the vicinity of the bath surface in the snout.
  • the higher the Al concentration in the bath the easier the oxide film is formed on the bath surface. Therefore, the higher the Al-containing bath, the less likely the defects due to ash occur, and the more likely the defects due to the oxide film occur. That is, the two curves in FIG. 4 shift to the left.
  • the oxidizing power of the oxidizing gas it is preferable to change the oxidizing power of the oxidizing gas according to the operating conditions. That is, when the oxidizing gas contains water vapor, the suitable dew point of the atmosphere in the vicinity of the bath surface, that is, the target dew point varies depending on the operating conditions, so the amount of water vapor in the oxidizing gas can be changed according to the operating conditions. That's fine.
  • the amount of water vapor in the oxidizing gas is usually 100 ppm or more.
  • the relationship between the dew point in the snout and the defect rate of defects due to ash and defects due to oxide films (that is, the information in FIG. 4) is investigated in advance, and within the snout under the operating conditions.
  • a target dew point can be determined.
  • steam in oxidizing gas can be determined based on the target dew point determined for every operating condition.
  • the amount of water vapor in the oxidizing gas may be changed based on the target dew point corresponding to the changed operating conditions.
  • the relationship between the dew point in the snout and the defect rate of defects due to ash and oxides is as follows. It can be obtained by grasping the trend of rates in advance. The presence or absence of each defect can be determined visually. The size of the defect that can be visually identified is about 100 ⁇ m or more. Then, the defect mixture rate per 0.5 m length is defined as “defect rate”. A defect rate of 1% is equivalent to 1 piece / 50m.
  • the dew point in the above-mentioned snout needs to be a dew point directly above the bath surface (near the bath surface). If the location where the dew point is actually measured is not directly above the bath surface, consider the following. First, if the present invention is applied and the thermal convection in the snout is eliminated, the measured dew point may be used as it is because there is almost no dew point distribution in the snout. However, when there is thermal convection in the snout, the measured dew point is corrected to the dew point near the bath surface. This correction can be performed using the dew point distribution predicted from the flow analysis.
  • the difference between the two is + 5 ° C and the difference in the water ratio is 150 ppm. . Therefore, a dew point obtained by always adding 150 ppm to the actually measured dew point value at a height of 500 mm can be adopted as the bath surface dew point.
  • the operating conditions that affect the suitable oxidizing power of the atmosphere near the bath surface in the snout are steel grades (component composition of the steel strip) ), Annealing conditions in the annealing step and components of the molten zinc bath. Therefore, it is preferable to obtain the information of FIG. 4 in advance in consideration of at least one of these. For example, in a specific continuous hot dip galvanizing facility, if it is known that the annealing conditions and the components of the hot dip zinc bath are not changed, the information in FIG. 4 is investigated in advance for each steel type to be passed through the facility, The target dew point should be determined. And when switching a steel type, what is necessary is just to change the water vapor
  • the present invention is not limited to the above embodiment, and the same applies to the case where a steel strip is continuously subjected to molten metal plating.
  • Example 1> Using the continuous hot dip galvanizing equipment shown in FIGS. 1 to 3, the component composition is mass%, C: 0.001%, Si: 0.01%, Mn: 0.1%, P: 0.003%, S: 0.005%, Al: A steel strip (hereinafter referred to as “steel type A”) containing 0.03% and the balance of Fe and inevitable impurities, having a thickness of 0.6 to 1.2 mm, a width of 900 to 1250 mm, and a tensile strength of 270 MPa is referred to as a steel plate speed 60 to A hot dip galvanized steel sheet was manufactured by entering the hot dip galvanized bath at 100 mpm. As shown in FIG.
  • the 5th piping which has a gas inlet was installed in the side surface of the snout, and the height from the bath surface of the gas inlet was 500 mm.
  • the relationship between the dew point in the snout and the defect rate of defects due to ash and defects due to oxide films was investigated in advance. The results are shown in FIG. Based on FIG. 6 (A), the target dew point in the snout was determined to be ⁇ 30 ° C. Then, it was found that if the dew point in the snout can be controlled within a range of about ⁇ 30 ° C. ⁇ 4 ° C., both defects due to ash and defects due to oxide films can be suppressed to a low level.
  • Test Examples No. 1 to 5 When the steel strip passes through the snout, in Test Examples No. 1 to 5, a nitrogen / hydrogen mixed gas containing water vapor is supplied (indicated as “water vapor supply available” in Table 1). In Nos. 6 and 7, a nitrogen / hydrogen mixed gas that does not contain water vapor (indicated as “water vapor supply, none” in Table 1) was supplied from the gas inlet.
  • the dew points of the input gases in Test Examples No. 1 to 5 were measured with a dew point meter provided in the dew point measurement hole 32A in the fifth pipe in FIG.
  • the temperature of the inner wall surface of the snout and the atmospheric temperature of the upper part of the snout when the steel strip passes through the snout were controlled as shown in Table 1.
  • Heating by a heater provided on the outer wall of the snout and the upper part in the snout was not performed.
  • the dew point of the atmosphere in the snout was measured over time with a dew point meter provided in the dew point measurement hole 32B at the center of the back surface of the snout and at a height of 500 mm shown in FIG.
  • the input gas flow rate was changed so that the measured dew point approached the target dew point based on the difference between the measured dew point and the target dew point ( ⁇ 30 ° C.).
  • This control was performed by general PID control logic.
  • Table 2 shows the histograms of measured dew points in each of Test Examples No. 1 to No. 7.
  • Test Examples No. 1 to 5 the ratio of the volume of water vapor to the total volume of the input gas under test is shown as “Moisture content” in Table 1, and the total input flow rate of the gas under test is No. 5
  • Table 1 shows the index as 1.
  • the dew point to be managed is the dew point directly above the bath surface
  • the position of the dew point meter should be close to the lower bath surface, but according to the present invention, almost no dew point is present in the snout. Since the distribution cannot be obtained, even if the dew point is measured at a height of 500 mm, the dew point near the bath surface can be grasped with high accuracy.
  • the dew point meter may not be installed under the snout. Many.
  • water vapor is used as the oxidizing gas
  • the gas measuring device is a dew point meter.
  • an oxidizing gas other than water vapor it is naturally necessary to install a measuring device for detecting the gas. There is.
  • defect rate evaluation The defect rates of the ash defects and the oxide film defects were evaluated by the following methods. The presence or absence of each defect was determined visually. The size of the defect that can be visually identified is about 100 ⁇ m or more. The defect mixing rate per 0.5 m length was defined as “defect rate” and shown in Table 1. A defect rate of 1% is equivalent to 1 piece / 50m.
  • No. 1 (invention example) is an example in which there is no temperature difference between the bath temperature, wall surface temperature, and top temperature, and there is almost no dew point fluctuation. As a result, almost no defects due to ash and no defects due to oxide films have occurred.
  • No.2 (invention example) is an example where the wall temperature is low
  • No.3 (invention example) is an example where the atmosphere temperature at the top of the snout is low, but the dew point of the atmosphere inside the snout is within the control range (-30 ° C ⁇ 4 ° C) )
  • the defect rate is also kept low.
  • the gas input flow rate could be made sufficiently lower than No. 5.
  • No. 4 is an example in which the wall surface temperature is outside the scope of the present invention
  • No. 5 is an example in which the ambient temperature at the top of the snout is outside the scope of the present invention.
  • the dew point could not be kept within the control range (-30 ° C ⁇ 4 ° C).
  • No. 6 is an example in which no steam was added and no heating with a heater was performed. In this case, since the dew point was low around -40 ° C., defects due to the oxide film did not occur, but very many defects due to ash occurred.
  • No. 7 (comparative example), the temperature difference was not applied, so the dew point was stable, but since it was low around -40 ° C, defects due to ash were still generated.
  • Example 2 In place of the steel strip of steel type A, the composition is C: 0.12%, Si: 1.0%, Mn: 1.7%, P: 0.006%, S: 0.006%, Al: 0.03%, with the balance being Fe.
  • steel type B a steel strip having a plate thickness of 0.6 to 1.2 mm, a plate width of 900 to 1250 mm, and a tensile strength of 780 MPa was used. The relationship between the dew point in the snout and the defect rate of defects due to ash and defects due to oxide films was determined. The results are shown in FIG.
  • both steel types A and B have dew points that can sufficiently suppress both defects due to ash and defects due to oxide films, but steel type B has an optimum value, that is, a target dew point. It can be seen that the dew point range in which both defect rates are sufficiently low is also narrow. From this, it can be seen that, for example, when switching from steel type A to B, it is necessary to change the atmospheric dew point accurately in a short time.
  • Example 3 Switching the dew point of the nitrogen / hydrogen mixed gas containing water vapor when the bath temperature, wall surface temperature and top temperature are No. 1 to 5 (Invention Examples 1 to 3 and Comparative Examples 1 and 2) shown in Table 1. Investigated the speed. As shown in FIG. 7, the input dew point was switched from ⁇ 35 ° C. to ⁇ 20 ° C. at 50 minutes.
  • both non-plating caused by metal vapor generated in the snout and non-plating caused by the oxide film on the molten metal bath surface in the snout are suppressed. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A continuous hot-dip metal plating method is provided with which it is possible to inhibit both non-plating attributable to metal vapor generated inside the snout and non-plating attributable to an oxide film on the molten-metal-bath surface inside the snout and to stably and rapidly change the oxidizing ability of the atmosphere inside the snout. The continuous hot-dip metal plating method according to the present invention is characterized by supplying an oxidizing gas to the inside of a snout 14, regulating the temperature of the inner wall of the snout to a temperature not lower than (plating bath temperature)-150°C, and regulating the temperature of the upper atmosphere inside the snout to a temperature not lower than (plating bath temperature)-100°C.

Description

連続溶融金属めっき方法及び連続溶融金属めっき設備Continuous molten metal plating method and continuous molten metal plating equipment
 本発明は、例えば溶融亜鉛めっき鋼板を連続的に製造するために用いる、連続溶融金属めっき方法及び連続溶融金属めっき設備に関する。 The present invention relates to a continuous molten metal plating method and a continuous molten metal plating facility used for, for example, continuously producing a hot dip galvanized steel sheet.
 鋼帯の連続溶融亜鉛めっきラインでは、通常、表面を洗浄した鋼帯を焼鈍炉で連続的に焼鈍し、所定温度に冷却後、溶融亜鉛浴に進入させて、鋼帯に溶融亜鉛めっきを施す。通常、焼鈍炉での焼鈍・冷却工程は還元雰囲気にて行われる。そして、鋼帯が焼鈍炉を出て、溶融亜鉛めっき浴に進入するまでの間、鋼帯通板路を大気から遮断し、鋼帯が還元雰囲気中を通過できるようにするため、焼鈍炉と溶融亜鉛浴を形成しためっき槽との間には、スナウトと呼ばれる矩形断面の通路が設けられている。溶融亜鉛浴内にはシンクロールが設置されており、溶融亜鉛浴に進入した鋼帯は、シンクロールによって走行方向を転換されて鉛直方向に上昇する。溶融亜鉛浴から引き上げられた鋼帯は、ガスワイピングノズルで所定のめっき厚みに調整された後に、冷却されて後工程に導かれる。 In continuous hot dip galvanizing lines for steel strips, the steel strips whose surfaces have been cleaned are usually annealed continuously in an annealing furnace, cooled to a predetermined temperature, and then entered into a hot dip zinc bath to apply hot dip galvanization to the steel strips. . Usually, the annealing / cooling process in the annealing furnace is performed in a reducing atmosphere. And until the steel strip exits the annealing furnace and enters the hot dip galvanizing bath, the steel strip passage is cut off from the atmosphere, and the steel strip can pass through the reducing atmosphere. Between the plating tank in which the molten zinc bath is formed, a rectangular cross-section passage called a snout is provided. A sink roll is installed in the molten zinc bath, and the steel strip that has entered the molten zinc bath changes its traveling direction by the sink roll and rises in the vertical direction. The steel strip pulled up from the molten zinc bath is adjusted to a predetermined plating thickness by a gas wiping nozzle, then cooled and guided to a subsequent process.
 スナウトは焼鈍炉の冷却帯(鋼帯出側)と繋がっているため、その内部は通常、還元雰囲気である。したがって、スナウト内の溶融亜鉛浴面には酸化膜が形成されにくく、薄い酸化膜が形成されるのみである。このようにスナウト内の溶融亜鉛浴面に形成される酸化膜は強固なものではないため、鋼帯が溶融亜鉛浴に進入する際、振動等により溶融亜鉛が浴面に露出し、そこからスナウト内に亜鉛が蒸発する。この場合、溶融亜鉛は、スナウト内部の雰囲気温度における飽和蒸気圧まで蒸発する。 Since the snout is connected to the cooling zone (steel strip exit side) of the annealing furnace, the inside is usually a reducing atmosphere. Therefore, an oxide film is hardly formed on the molten zinc bath surface in the snout, and only a thin oxide film is formed. Since the oxide film formed on the molten zinc bath surface in the snout is not strong as described above, when the steel strip enters the molten zinc bath, the molten zinc is exposed to the bath surface due to vibrations, etc. Zinc evaporates inside. In this case, the molten zinc evaporates to a saturated vapor pressure at the ambient temperature inside the snout.
 亜鉛蒸気は、還元雰囲気ガス内に微少量存在する酸素と反応して酸化物を形成する。また、亜鉛蒸気が酸化されない場合でも、亜鉛蒸気の蒸気圧が飽和蒸気圧以上になると、亜鉛蒸気の一部は、液相あるいは固相の亜鉛に相変化する。特に、スナウトは薄い耐熱材料で構成されているだけなので、スナウト内壁面の温度は、外気の影響を受けて、亜鉛蒸気の蒸気圧における飽和温度以下の温度になりやすく、その温度以下になった部位で亜鉛蒸気が亜鉛粉になり、スナウト内面に付着する。 Zinc vapor reacts with a small amount of oxygen in the reducing atmosphere gas to form an oxide. Even when the zinc vapor is not oxidized, when the vapor pressure of the zinc vapor becomes equal to or higher than the saturated vapor pressure, a part of the zinc vapor changes into a liquid phase or solid phase zinc. In particular, since the snout is only composed of a thin heat-resistant material, the temperature of the inner wall surface of the snout is easily affected by the outside air and is likely to be below the saturation temperature of the vapor pressure of zinc vapor. Zinc vapor turns into zinc powder and adheres to the inner surface of the snout.
 以上のような酸化物や付着物(いわゆるアッシュ)が鋼帯に付着すると、不めっき部を生じる等の品質欠陥が発生する。このように、スナウト内の亜鉛蒸気に起因して生成するアッシュに起因して生じる不めっき部等の品質欠陥を、以後本明細書では「アッシュによる欠陥」と称する。 When such oxides and deposits (so-called ash) adhere to the steel strip, quality defects such as unplated parts occur. Thus, quality defects such as non-plated portions caused by ash generated due to zinc vapor in the snout are hereinafter referred to as “defects due to ash” in the present specification.
 アッシュによる欠陥を抑制する技術としては、以下のようなものがある。特許文献1には、スナウトをヒーターで加熱し、さらに該ヒーター外側を断熱材で断熱して、スナウト内の雰囲気温度および内壁温度とめっき浴温との温度差を150℃以下とすることで、スナウト内壁へのアッシュ付着を防止する技術が記載されている。特許文献2には、めっき浴中に吸引ブロアを設置し、この吸引ブロアの吸引側にスナウト内の浴面より高い位置に吸引口を有する吸引管を連結して、スナウト内の亜鉛蒸気を系外に排出する技術が記載されている。特許文献3には、スナウト内の雰囲気を鋼板に対しては非酸化性で溶融亜鉛に対しては酸化性のガスにすることで、ヒューム(亜鉛蒸気)の発生を抑える技術が記載されている。 There are the following technologies for suppressing defects caused by ash. In Patent Document 1, the snout is heated with a heater, the outside of the heater is further insulated with a heat insulating material, and the temperature difference between the atmospheric temperature in the snout and the inner wall temperature and the plating bath temperature is set to 150 ° C. or less. A technique for preventing ash adhesion to the inner wall of the snout is described. In Patent Document 2, a suction blower is installed in the plating bath, and a suction pipe having a suction port at a position higher than the bath surface in the snout is connected to the suction side of the suction blower, so that zinc vapor in the snout is used as a system. The technology to discharge outside is described. Patent Document 3 describes a technique for suppressing the generation of fume (zinc vapor) by making the atmosphere in the snout non-oxidizing gas for the steel sheet and oxidizing gas for the molten zinc. .
特開平8-176773号公報JP-A-8-176773 特開平8-302453号公報JP-A-8-302453 特開平6-330271号公報JP-A-6-330271
 特許文献1の技術は、スナウトを加熱することで、スナウト内壁での亜鉛蒸気の結晶化、すなわちアッシュの生成をある程度抑制することは可能である。しかしながら、溶融亜鉛浴面からの亜鉛蒸気の発生自体は防止できないため、加熱していない場所でのアッシュの生成は避けられず、アッシュが鋼帯に付着する潜在的な危険性を排除できない。 The technology of Patent Document 1 can suppress crystallization of zinc vapor on the inner wall of the snout, that is, generation of ash to some extent by heating the snout. However, since the generation of zinc vapor from the molten zinc bath surface itself cannot be prevented, the generation of ash in an unheated place is unavoidable, and the potential danger of ash adhering to the steel strip cannot be excluded.
 特許文献2の技術では、スナウト内の亜鉛蒸気を確実に排出できないため、排出されなかった亜鉛蒸気がスナウト内壁に付着し、アッシュが生成するため、アッシュによる欠陥を防止する効果が不十分である。また、亜鉛蒸気を排出することは、むしろ溶融亜鉛の蒸発を促進する面があるため、効果的でない場合も多い。 In the technique of Patent Document 2, since the zinc vapor in the snout cannot be reliably discharged, the zinc vapor that has not been discharged adheres to the inner wall of the snout and ash is generated, so that the effect of preventing defects due to ash is insufficient. . In addition, discharging zinc vapor is often not effective because it promotes evaporation of molten zinc.
 特許文献3の技術では、スナウト内にかなり早いガスの対流が存在する。そのため、投入した多くの酸化性ガスは浴面に留まらずに系外に放出される。そのため、非常に多くのガスを投入しないと適切な酸化膜を形成することができず、溶融亜鉛の蒸発を防止することは困難である。 In the technique of Patent Document 3, there is a fairly fast gas convection in the snout. For this reason, a large amount of the oxidizing gas that has been added is released from the system without remaining on the bath surface. Therefore, an appropriate oxide film cannot be formed unless a very large amount of gas is input, and it is difficult to prevent evaporation of molten zinc.
 このように特許文献1~3の技術では、アッシュによる欠陥を抑制する効果が不十分であった。さらに、本発明者の検討によれば、酸化膜が厚すぎる場合には、鋼帯が溶融亜鉛浴に進入する際、鋼帯表面に酸化膜が付着し、これも不めっき部を生じる等の品質欠陥の原因となることが判明した。このように、スナウト内の溶融亜鉛浴面の酸化膜に起因して生じる不めっき部等の品質欠陥を、以後本明細書では「酸化膜による欠陥」と称する。 As described above, the techniques of Patent Documents 1 to 3 are insufficient in the effect of suppressing defects caused by ash. Furthermore, according to the inventor's study, when the oxide film is too thick, when the steel strip enters the molten zinc bath, the oxide film adheres to the surface of the steel strip, which also causes a non-plated portion. It was found to cause quality defects. Thus, quality defects such as non-plated parts caused by the oxide film on the surface of the molten zinc bath in the snout are hereinafter referred to as “defects due to oxide film” in the present specification.
 さらに特許文献1~3の技術には以下のような問題もある。すなわち、スナウト内の(特に浴面近傍の)雰囲気の好適な酸化力は、鋼帯の成分組成、焼鈍工程での焼鈍条件、溶融金属浴の成分等の操業条件によって変動する。このため、操業条件を切り替える場合には、スナウト内の雰囲気の酸化力も、迅速に切り替えることが求められる。しかし、特許文献1~3の技術では、スナウト内の雰囲気の酸化力を安定的かつ迅速に変更することができないという問題がある。特に特許文献3では、スナウト内に大きな自然対流が存在するため、スナウト内の雰囲気の酸化力を安定的かつ迅速に変更することができない。 Furthermore, the techniques of Patent Documents 1 to 3 have the following problems. That is, the suitable oxidizing power of the atmosphere in the snout (particularly in the vicinity of the bath surface) varies depending on the operating conditions such as the composition of the steel strip, the annealing conditions in the annealing process, and the components of the molten metal bath. For this reason, when operating conditions are switched, the oxidizing power of the atmosphere in the snout is also required to be switched quickly. However, the techniques of Patent Documents 1 to 3 have a problem that the oxidizing power of the atmosphere in the snout cannot be changed stably and quickly. In particular, in Patent Document 3, since large natural convection exists in the snout, the oxidizing power of the atmosphere in the snout cannot be changed stably and quickly.
 これらの課題は、溶融亜鉛めっきに限らず、溶融金属めっきの場合全般にも当てはまる。 These problems apply not only to hot dip galvanizing but also to hot metal plating in general.
 そこで本発明は、上記課題に鑑み、スナウト内で発生する金属蒸気に起因する不めっきと、スナウト内の溶融金属浴面の酸化膜に起因する不めっきを共に抑制することが可能で、さらに、スナウト内の雰囲気の酸化力を安定的かつ迅速に変更することが可能な連続溶融金属めっき方法及び連続溶融金属めっき設備を提供することを目的とする。 Therefore, in view of the above problems, the present invention can suppress both non-plating caused by metal vapor generated in the snout and non-plating caused by the oxide film on the molten metal bath surface in the snout. An object of the present invention is to provide a continuous molten metal plating method and a continuous molten metal plating facility capable of stably and quickly changing the oxidizing power of the atmosphere in the snout.
 上記課題を解決すべく本発明者が検討した結果、以下の知見を得た。
 (A)溶融亜鉛の蒸発(亜鉛蒸気の発生)を抑制して、アッシュによる欠陥を抑制するには、ある一定厚み以上の酸化膜を浴面に形成する必要がある。一方で、酸化膜による欠陥を抑制するには、ある一定厚み以下に酸化膜を抑制する必要がある。つまり、アッシュによる欠陥と酸化膜による欠陥の両方を抑制するには、最適な厚みの酸化膜を形成しなければならない。
 (B)このように最適な厚みの酸化膜を形成するには、スナウト内の雰囲気の対流を抑えた上で、スナウト内に酸化性ガスを供給することによって、スナウト内の溶融亜鉛浴面近傍の雰囲気の露点を、厳密に管理する必要がある。そのためには、スナウト内の雰囲気の熱対流を抑制した状態で、必要最小限の酸化性ガスをスナウト内に供給するのが最善である。このようにすれば、浴面近傍に供給された酸化性ガスを、ほぼそのまま浴面近傍に滞留させることができるからである。
 (C)その結果、スナウト内の雰囲気の酸化力を安定的かつ迅速に変更できるという効果も得ることができる。そのため、操業条件を切り替える際に、スナウト内の雰囲気の酸化力を、変更後の操業条件に合わせて迅速に切り替えることができる。
As a result of investigation by the present inventor to solve the above problems, the following knowledge was obtained.
(A) In order to suppress evaporation of molten zinc (generation of zinc vapor) and to suppress defects due to ash, it is necessary to form an oxide film having a certain thickness or more on the bath surface. On the other hand, in order to suppress defects due to the oxide film, it is necessary to suppress the oxide film to a certain thickness or less. That is, in order to suppress both defects due to ash and defects due to oxide films, an oxide film having an optimum thickness must be formed.
(B) In order to form an oxide film having an optimum thickness as described above, by suppressing the convection of the atmosphere in the snout and supplying an oxidizing gas into the snout, the vicinity of the molten zinc bath surface in the snout It is necessary to strictly control the dew point of the atmosphere. For that purpose, it is best to supply the minimum necessary oxidizing gas into the snout while suppressing the thermal convection of the atmosphere in the snout. This is because the oxidizing gas supplied in the vicinity of the bath surface can be retained in the vicinity of the bath surface almost as it is.
(C) As a result, the effect that the oxidizing power of the atmosphere in the snout can be changed stably and quickly can also be obtained. Therefore, when switching the operating conditions, the oxidizing power of the atmosphere in the snout can be switched quickly according to the changed operating conditions.
 本発明は、上記知見に基づいて完成されたものであり、その要旨構成は以下のとおりである。
 (1)鋼帯を焼鈍炉で連続的に焼鈍する工程と、
 溶融金属を収容し、溶融金属浴を形成しためっき槽に、焼鈍後の前記鋼帯を連続的に供給して、前記鋼帯に金属めっきを施す工程と、を有する連続溶融金属めっき方法であって、
 前記焼鈍炉の鋼帯出側に設けられ、端部が前記溶融金属浴に浸漬するように位置するスナウトが区画する空間を、前記焼鈍炉から前記溶融金属浴に向けて前記鋼帯が通過する際に、前記スナウト内に酸化性ガスを供給するとともに、前記スナウトの内壁面の温度を(めっき浴温-150℃)以上に、かつ、前記スナウト内の上部の雰囲気温度を(めっき浴温-100℃)以上にすることを特徴とする連続溶融金属めっき方法。
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
(1) a step of continuously annealing a steel strip in an annealing furnace;
A method of continuously supplying the steel strip after annealing to a plating tank containing a molten metal and forming a molten metal bath, and performing metal plating on the steel strip. And
When the steel strip passes from the annealing furnace toward the molten metal bath through a space defined by a snout positioned on the steel strip exit side of the annealing furnace and having an end portion immersed in the molten metal bath In addition, an oxidizing gas is supplied into the snout, the temperature of the inner wall surface of the snout is set to (plating bath temperature −150 ° C.) or more, and the ambient temperature in the upper portion of the snout is set to (plating bath temperature−100 ° C) or more. A continuous molten metal plating method characterized by the above.
 (2)前記酸化性ガスは、水蒸気を含む窒素ガス、又は、水蒸気を含む窒素・水素混合ガスである上記(1)に記載の連続溶融金属めっき方法。 (2) The continuous molten metal plating method according to (1), wherein the oxidizing gas is a nitrogen gas containing water vapor or a nitrogen / hydrogen mixed gas containing water vapor.
 (3)操業条件に応じて、前記酸化性ガスの酸化力を変更する上記(1)に記載の連続溶融金属めっき方法。 (3) The continuous molten metal plating method according to (1), wherein the oxidizing power of the oxidizing gas is changed according to operating conditions.
 (4)操業条件に応じて、前記酸化性ガス中の水蒸気量を変更する上記(2)に記載の連続溶融金属めっき方法。 (4) The continuous molten metal plating method according to (2) above, wherein the amount of water vapor in the oxidizing gas is changed according to operating conditions.
 (5)操業条件ごとに、前記スナウト内の露点と、当該操業条件で金属めっきを施された前記鋼帯の不めっきによる欠陥量との関係を事前に調査して、当該操業条件における前記スナウト内の目標露点を決定する工程をさらに有し、
 前記操業条件ごとに決定された目標露点に基づいて、前記酸化性ガス中の水蒸気量を決定する、上記(2)に記載の連続溶融金属めっき方法。
(5) For each operating condition, the relationship between the dew point in the snout and the amount of defects due to non-plating of the steel strip plated with metal under the operating condition is investigated in advance, and the snout in the operating condition is checked. Further comprising the step of determining a target dew point in
The continuous molten metal plating method according to (2), wherein an amount of water vapor in the oxidizing gas is determined based on a target dew point determined for each operating condition.
 (6)操業条件が切り替わる際に、変更後の操業条件に対応する目標露点に基づいて、前記酸化性ガス中の水蒸気量を変更する、上記(5)に記載の連続溶融金属めっき方法。 (6) The continuous molten metal plating method according to (5), wherein the amount of water vapor in the oxidizing gas is changed based on a target dew point corresponding to the changed operating condition when the operating condition is switched.
 (7)前記操業条件が、前記鋼帯の成分組成、前記焼鈍工程での焼鈍条件及び前記溶融金属浴の成分の少なくとも1つである上記(3)~(6)のいずれか一項に記載の連続溶融金属めっき方法。 (7) The operation condition is any one of the above (3) to (6), wherein the operation condition is at least one of a component composition of the steel strip, an annealing condition in the annealing step, and a component of the molten metal bath. Continuous molten metal plating method.
 (8)前記操業条件が、前記鋼帯の成分組成である上記(3)~(6)のいずれか一項に記載の連続溶融金属めっき方法。 (8) The continuous molten metal plating method according to any one of (3) to (6), wherein the operation condition is a component composition of the steel strip.
 (9)鋼帯幅方向における前記スナウトの両端部から前記酸化性ガスを供給する上記(1)~(8)のいずれか一項に記載の連続溶融金属めっき方法。 (9) The continuous molten metal plating method according to any one of (1) to (8), wherein the oxidizing gas is supplied from both ends of the snout in the steel strip width direction.
 (10)鋼帯を連続的に焼鈍する焼鈍炉と、
 溶融金属を収容し、溶融金属浴を形成しためっき槽と、
 前記焼鈍炉の鋼帯出側に設けられ、端部が前記溶融金属浴に浸漬するように位置し、前記焼鈍炉から前記溶融金属浴中に連続的に供給される鋼帯が通過する空間を区画するスナウトと、
 前記スナウトの外壁及び前記スナウト内の上部に設けられた加熱体と、
 前記スナウトに連結したガス供給機構と、
 前記加熱体及び前記ガス供給機構を制御して、前記スナウト内に酸化性ガスを供給するとともに、前記スナウトの内壁面の温度を(めっき浴温-150℃)以上に、かつ、前記スナウト内の上部の雰囲気温度を(めっき浴温-100℃)以上にする制御部と、
を有することを特徴とする連続溶融金属めっき設備。
(10) An annealing furnace for continuously annealing the steel strip;
A plating tank containing molten metal and forming a molten metal bath;
Provided on the steel strip exit side of the annealing furnace, the end is positioned so as to be immersed in the molten metal bath, and defines a space through which the steel strip continuously supplied from the annealing furnace into the molten metal bath passes Snout to do,
A heating body provided on an outer wall of the snout and an upper portion in the snout;
A gas supply mechanism connected to the snout;
The heating body and the gas supply mechanism are controlled to supply an oxidizing gas into the snout, and the temperature of the inner wall surface of the snout is not less than (plating bath temperature −150 ° C.) and the inside of the snout A control unit that makes the upper atmosphere temperature (plating bath temperature –100 ° C) or higher,
A continuous molten metal plating facility characterized by comprising:
 本発明の連続溶融金属めっき方法及び連続溶融金属めっき設備によれば、スナウト内で発生する金属蒸気に起因する不めっきと、スナウト内の溶融金属浴面の酸化膜に起因する不めっきを共に抑制することができ、さらに、スナウト内の雰囲気の酸化力を安定的かつ迅速に変更することができる。 According to the continuous molten metal plating method and the continuous molten metal plating facility of the present invention, both non-plating caused by metal vapor generated in the snout and non-plating caused by the oxide film on the molten metal bath surface in the snout are suppressed. In addition, the oxidizing power of the atmosphere in the snout can be changed stably and quickly.
本発明の一実施形態による連続溶融亜鉛めっき設備100の模式図である。It is a schematic diagram of the continuous hot dip galvanizing equipment 100 by one Embodiment of this invention. 図1におけるスナウト14の内部のうち、鋼帯Pの幅方向中心から半分のみを示した図である。It is the figure which showed only the half from the width direction center of the steel strip P among the insides of the snout 14 in FIG. 図1におけるスナウト14の拡大模式図である。It is an expansion schematic diagram of the snout 14 in FIG. 浴面雰囲気の酸化力と欠陥率との関係を示すグラフである。It is a graph which shows the relationship between the oxidizing power of a bath surface atmosphere, and a defect rate. (A)は、高Si含有鋼と低Si含有鋼について、浴面雰囲気の酸化力と欠陥率との関係を示すグラフであり、(B)は、高Al含有浴と低Al含有浴について、浴面雰囲気の酸化力と酸化膜厚との関係を示すグラフである。(A) is a graph which shows the relationship between the oxidizing power of a bath surface atmosphere and a defect rate about high Si content steel and low Si content steel, (B) is about high Al content bath and low Al content bath, It is a graph which shows the relationship between the oxidizing power of a bath surface atmosphere, and an oxide film thickness. (A),(B)はそれぞれ、鋼種A,Bにおける、スナウト内の露点と欠陥率との関係を示すグラフである。(A) and (B) are graphs showing the relationship between the dew point in the snout and the defect rate in steel types A and B, respectively. 発明例1~3及び比較例1,2におけるスナウト内の露点変動を示すグラフである。6 is a graph showing the dew point fluctuation in the snout in Invention Examples 1 to 3 and Comparative Examples 1 and 2.
 以下、本発明の一実施形態による連続溶融亜鉛めっき設備100及びこれを用いた連続溶融亜鉛めっき方法を説明する。 Hereinafter, a continuous hot dip galvanizing facility 100 according to an embodiment of the present invention and a continuous hot dip galvanizing method using the same will be described.
 図1を参照して、連続溶融亜鉛めっき設備100は、焼鈍炉10、めっき槽12、スナウト14を有する。 1, the continuous hot dip galvanizing equipment 100 includes an annealing furnace 10, a plating tank 12, and a snout 14.
 焼鈍炉10は、その内部を通過する鋼帯Pを連続的に焼鈍する装置であり、加熱帯、均熱帯及び冷却帯の順に並置されている。図1には冷却帯のみ図示する。焼鈍炉としては、公知の又は任意の構成のものを用いることができる。焼鈍炉の内部には、通常、還元性ガス又は非酸化性ガスが供給される。還元性ガスとしては、通常H2-N2混合ガスが用いられ、例えばH2:1~20体積%、残部がN2および不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。また、非酸化性ガスとしては、N2および不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。焼鈍された鋼帯Pは、冷却帯で470~500℃程度にまで冷却される。 The annealing furnace 10 is an apparatus for continuously annealing the steel strip P passing through the inside thereof, and is arranged in the order of the heating zone, the soaking zone, and the cooling zone. FIG. 1 shows only the cooling zone. A well-known or arbitrary thing can be used as an annealing furnace. Usually, a reducing gas or a non-oxidizing gas is supplied into the annealing furnace. As the reducing gas, a mixed gas of H 2 —N 2 is usually used, for example, H 2 : 1 to 20% by volume, and the balance is composed of N 2 and inevitable impurities (dew point: about −60 ° C.) Is mentioned. Examples of the non-oxidizing gas include a gas having a composition composed of N 2 and inevitable impurities (dew point: about −60 ° C.). The annealed steel strip P is cooled to about 470-500 ° C. in the cooling zone.
 めっき槽12には、溶融亜鉛が収容され、溶融亜鉛浴12Aが形成される。スナウト14は、焼鈍炉10の鋼帯出側に、本実施形態では冷却帯と連結して設けられる。スナウトの端部14Aは、溶融亜鉛浴12Aに浸漬するように位置する。スナウト14は、焼鈍炉10から溶融亜鉛浴12A中に連続的に供給される鋼帯Pが通過する空間を区画する部材である。スナウト14の上部には、鋼帯Pの進行方向を水平方向から斜め下方に変更するターンダウンロール26が配置されている。ターンダウンロール26を通過後の鋼帯Pが通過する空間を区画する部分は、鋼帯Pの進行方向に垂直な断面視で矩形となっている。 The plating tank 12 contains molten zinc, and a molten zinc bath 12A is formed. The snout 14 is provided on the steel strip exit side of the annealing furnace 10 in connection with the cooling zone in this embodiment. The snout end 14A is positioned so as to be immersed in the molten zinc bath 12A. The snout 14 is a member that partitions a space through which the steel strip P continuously supplied from the annealing furnace 10 into the molten zinc bath 12A passes. A turn-down roll 26 that changes the traveling direction of the steel strip P from the horizontal direction to an obliquely downward direction is disposed on the upper part of the snout 14. A portion that divides the space through which the steel strip P after passing through the turn-down roll 26 passes is rectangular in a sectional view perpendicular to the traveling direction of the steel strip P.
 鋼帯Pはスナウト14の内部を通過して、溶融亜鉛浴12Aに連続的に進入する。溶融亜鉛浴12Aの中にはシンクロール28とサポートロール30が設置されており、溶融亜鉛浴12Aの中に進入した鋼帯Pは、シンクロール28によって通板方向を上向きに変更された後、サポートロール30に導かれて溶融亜鉛浴12Aから出て行く。このようにして、鋼帯Pに溶融亜鉛めっきが施される。 The steel strip P passes through the inside of the snout 14 and continuously enters the molten zinc bath 12A. A sink roll 28 and a support roll 30 are installed in the molten zinc bath 12A, and the steel strip P that has entered the molten zinc bath 12A is changed in the sheet passing direction upward by the sink roll 28. It is guided to the support roll 30 and leaves the molten zinc bath 12A. In this way, hot dip galvanization is applied to the steel strip P.
 図2を参照して、連続溶融亜鉛めっき設備100は、スナウト14に連結したガス供給機構20を有する。ガス供給機構20は、水素ガスが通過する第1配管22Aと、窒素ガスが通過する第2配管22Bと、酸化性ガスとしての水蒸気が通過する第3配管22Cと、これらの配管に取り付けられた流量調整用のバルブ24と、これらの配管から供給されたガスが混合してなる混合ガスが通過する第4配管22Dと、この第4配管22Dに連結し、先端がスナウト14の内部に位置する第5配管22Eと、を含む。第1配管22A及び第3配管22Cは、第2配管22Bに連結されており、バルブ24を調整することによって、水素、窒素、及び水蒸気を任意の流量比で混合できる。 Referring to FIG. 2, the continuous galvanizing equipment 100 has a gas supply mechanism 20 connected to the snout 14. The gas supply mechanism 20 is attached to the first pipe 22A through which hydrogen gas passes, the second pipe 22B through which nitrogen gas passes, the third pipe 22C through which water vapor as an oxidizing gas passes, and these pipes. A valve 24 for adjusting the flow rate, a fourth pipe 22D through which a mixed gas obtained by mixing gases supplied from these pipes passes, and the fourth pipe 22D are connected to each other, and the tip is located inside the snout 14. 5th piping 22E. The first piping 22A and the third piping 22C are connected to the second piping 22B, and by adjusting the valve 24, hydrogen, nitrogen, and water vapor can be mixed at an arbitrary flow rate ratio.
 酸化性ガスとしては、水蒸気、酸素、二酸化炭素などを含有するガスを挙げることができ、特に限定されない。しかし、酸化力が高すぎないため管理しやすいこと、コストが低いこと、酸化力を露点計で容易に測定できることから、水蒸気を含むガスとすることが好ましい。 Examples of the oxidizing gas include gas containing water vapor, oxygen, carbon dioxide, and the like, and are not particularly limited. However, since the oxidizing power is not too high, it is easy to manage, the cost is low, and the oxidizing power can be easily measured with a dew point meter.
 図3を参照して、スナウト14の外壁には加熱体としてのヒーター16が配置され、さらにヒーター16は断熱材18によって覆われている。なお、ヒーター16は、スナウト14の先端部(浴面近傍)を除き、外壁の全面を覆っている。また、スナウト内の上部にも、加熱体としてのヒーター17が配置されている。スナウト上部は、後述のように、熱対流の生成に影響が大きいため、ヒーター17を設けることで、スナウト上部の雰囲気温度を確実に上昇させられる。 Referring to FIG. 3, a heater 16 as a heating body is disposed on the outer wall of the snout 14, and the heater 16 is further covered with a heat insulating material 18. The heater 16 covers the entire outer wall except for the tip of the snout 14 (near the bath surface). In addition, a heater 17 as a heating body is also arranged in the upper part in the snout. Since the upper part of the snout has a great influence on the generation of thermal convection as will be described later, the ambient temperature of the upper part of the snout can be reliably increased by providing the heater 17.
 本実施形態では、図示しない制御部によってヒーター16,17及びガス供給機構20を制御して、スナウト14内に酸化性ガスを供給するとともに、スナウト14の内壁面の温度を(めっき浴温-150℃)以上に、かつ、スナウト14内の上部の雰囲気温度が(めっき浴温-100℃)以上に管理することが肝要である。以下、この技術的意義について詳説する。 In the present embodiment, the heaters 16 and 17 and the gas supply mechanism 20 are controlled by a control unit (not shown) to supply the oxidizing gas into the snout 14 and to set the temperature of the inner wall surface of the snout 14 (plating bath temperature −150). It is important that the temperature of the atmosphere in the upper part of the snout 14 is controlled to (plating bath temperature−100 ° C.) or higher. The technical significance will be described in detail below.
 既述のとおり、スナウト内の雰囲気には、その酸化性に関して最適値が存在する。図4はその概念を示した図である。酸化性が低いと、浴面に酸化膜が生成しないか、生成しても非常に薄いため、酸化膜による欠陥は発生しにくいが、亜鉛の蒸発が活発に起きるため、アッシュによる欠陥は増大する。逆に酸化性が高い場合、厚い酸化膜が保護膜になり亜鉛の蒸発はほとんど起きないため、アッシュによる欠陥は発生しにくいが、酸化膜による欠陥が多く発生する。 As already mentioned, there is an optimum value for the oxidizability of the atmosphere inside the snout. FIG. 4 is a diagram showing the concept. If the oxidization property is low, an oxide film is not formed on the bath surface, or even if it is formed, it is very thin, so defects due to the oxide film are difficult to occur, but zinc evaporation occurs actively, so defects due to ash increase. . On the other hand, when the oxidizing property is high, since the thick oxide film becomes a protective film and the evaporation of zinc hardly occurs, defects due to ash hardly occur, but many defects due to the oxide film occur.
 したがって、亜鉛が蒸発・酸化する浴面近傍の雰囲気の酸化力を、最適レベル(図4の中央部分)に厳密に制御する必要がある。例えば、スナウト内に水蒸気を含むガスを供給することで浴面近傍の雰囲気の酸化力を制御する場合、浴面近傍の雰囲気の露点を、所定点(目標露点)±4℃程度の範囲に厳密に制御すれば、アッシュによる欠陥と酸化膜による欠陥の両方を低いレベルに抑制できることを、本発明者は見出した。なお、目標露点は、当該目標露点以外の操業条件が定まれば、後述の方法で決定することができる。 Therefore, it is necessary to strictly control the oxidizing power of the atmosphere in the vicinity of the bath surface where zinc evaporates and oxidizes to the optimum level (center portion in FIG. 4). For example, when the oxidizing power of the atmosphere near the bath surface is controlled by supplying a gas containing water vapor into the snout, the dew point of the atmosphere near the bath surface is strictly limited to a predetermined point (target dew point) ± 4 ° C. The present inventor has found that both the defects caused by ash and the defects caused by oxide films can be suppressed to a low level by controlling to a low level. Note that the target dew point can be determined by the method described later if operating conditions other than the target dew point are determined.
 ここで浴面近傍の露点管理を困難にするのが、スナウト内の雰囲気の対流である。スナウト内の対流としては、鋼帯の移動により発生する随伴流、スナウト内の温度差に伴う熱対流、及びスナウト内の圧力差に起因する圧力流が主に挙げられるが、通常のスナウト条件下では、熱対流による影響が支配的である。例えば、鋼帯温度500℃、めっき浴温450℃の場合、スナウト内部は、スナウト外部とは400℃以上の温度差がある。また通常、スナウト上部は冷却帯に連結しているため、スナウト上部の雰囲気温度は200~300℃になる場合が多い。この場合、熱対流による風速は4~5m/s程度となり、鋼帯随伴流の典型値である1m/sに比較してかなり大きい。 対 Convection of the atmosphere in the snout makes it difficult to control the dew point near the bath surface. The convection in the snout mainly includes the accompanying flow generated by the movement of the steel strip, the thermal convection due to the temperature difference in the snout, and the pressure flow due to the pressure difference in the snout. Then, the influence of thermal convection is dominant. For example, when the steel strip temperature is 500 ° C. and the plating bath temperature is 450 ° C., the inside of the snout has a temperature difference of 400 ° C. or more from the outside of the snout. Usually, the upper part of the snout is connected to the cooling zone, so the atmospheric temperature of the upper part of the snout is often 200 to 300 ° C. In this case, the wind speed due to thermal convection is about 4-5 m / s, which is considerably higher than 1 m / s, which is the typical value of the steel strip wake.
 この状況下で浴面酸化を促進するガス、例えば水蒸気を含むガスを投入しても、そのほとんどは浴面には留まらないため、アッシュによる欠陥を抑制するのに適切な厚さの酸化膜を生成するには、大量の水蒸気を投入しなければならない。それに加え、酸化膜による欠陥を抑制するには、酸化膜は極力薄い方が有利であるため、結局、浴面近傍での酸化性ガスの濃度分布を極小化する必要がある。しかし、熱対流が大きい条件下では、浴面近傍での酸化性ガスの濃度分布が大きくなる(すなわち、濃度が面内で不均一になる)ため、浴面近傍の露点管理は困難を極める。 Even if a gas that promotes bath surface oxidation, for example, a gas containing water vapor, is introduced in this situation, most of the gas does not stay on the bath surface. Therefore, an oxide film having an appropriate thickness to suppress defects due to ash is formed. To produce it, a large amount of water vapor must be added. In addition, in order to suppress defects due to the oxide film, it is advantageous that the oxide film is as thin as possible. Consequently, it is necessary to minimize the concentration distribution of the oxidizing gas in the vicinity of the bath surface. However, under conditions where the thermal convection is large, the concentration distribution of the oxidizing gas in the vicinity of the bath surface becomes large (that is, the concentration becomes non-uniform in the surface), so dew point management near the bath surface is extremely difficult.
 上記の知見に基づき、本発明者は、浴面近傍の露点を厳密に管理して、アッシュによる欠陥と酸化膜による欠陥の両方を抑制するためには、亜鉛の蒸発そのものを抑制するのが最も効果的であり、そのためには、スナウト内の熱対流を抑制した上で、必要最小限の酸化性ガスをスナウト内に供給するのが最善であるとの結論に至った。 Based on the above knowledge, the present inventor is most likely to suppress zinc evaporation itself in order to strictly control the dew point near the bath surface and suppress both defects due to ash and defects due to oxide films. In order to achieve this, it was concluded that it is best to supply the minimum amount of oxidizing gas into the snout while suppressing thermal convection in the snout.
 そこで本発明者は、このような熱対流を起こす原因である、スナウト内の温度差を小さくすることを志向した。スナウト内部で最も温度が高いのは鋼帯であるが、通常鋼帯は浴温より10℃程度高いだけであるため、本発明においては、温度の基準をめっき浴温とした。また、熱対流と鋼帯随伴流は逆方向であるので、熱対流の大きさを鋼帯随伴流の大きさの2倍以下にできればスナウト内の対流は大きく抑制できる。 Therefore, the present inventor aimed to reduce the temperature difference in the snout, which is the cause of such heat convection. Although the steel strip has the highest temperature inside the snout, the normal steel strip is only about 10 ° C. higher than the bath temperature. Therefore, in the present invention, the temperature standard is the plating bath temperature. Further, since the thermal convection and the steel strip accompanying flow are in opposite directions, the convection in the snout can be greatly suppressed if the size of the thermal convection can be made twice or less the size of the steel strip accompanying flow.
 種々検討を重ねた結果、スナウトの内壁面の温度を(めっき浴温-150℃)以上に設定すれば、温度影響を無視した流動状態程度まで、スナウト内の雰囲気の対流を抑制できることを見出した。ただし、スナウト内の上部の雰囲気温度は、熱対流に与える影響がより大きいため、(めっき浴温-100℃)以上に設定する必要がある。これは、密度流は密度の大きい気体が高い位置に存在する場合、より流速が大きくなるからである。(密度に起因する流れはΔρghに比例する。hが高さ位置の差であり、高い位置に高密度のものがあると流速が早くなる。) As a result of various investigations, it was found that if the temperature of the inner wall surface of the snout is set to (plating bath temperature -150 ° C) or higher, the convection of the atmosphere in the snout can be suppressed to a fluid state that ignores the temperature effect. . However, the atmosphere temperature in the upper part of the snout has a larger influence on the heat convection, so it is necessary to set it to (plating bath temperature−100 ° C.) or higher. This is because the density flow has a higher flow velocity when a gas having a high density exists at a high position. (The flow resulting from the density is proportional to Δρgh. H is the difference in height position, and if there is a high density at a high position, the flow velocity will be faster.)
 なお、スナウト内の上部の雰囲気温度は、(めっき浴温+100℃)以下とすることが好ましい。上部の雰囲気温度は、高ければ高いほどスナウト内の対流は安定化する(上部に低密度物質がある状態は安定的である)が、その安定化効果は(めっき浴温+100℃)を超えると頭打ちになるからである。また、スナウトの内壁面の温度は、(めっき浴温+0℃)以下とすることが好ましい。内壁面の温度がめっき浴温より高い場合、スナウト内の側壁付近に上昇中が発生し、その影響で中央部には下降流が生成される。この流れは鋼帯随伴流で生成される流れと同方向であるため、スナウト内に大きな流動を起こすことになる。したがって、内壁面の温度をめっき浴温超えにする必然性はなく、むしろ流動を大きくする可能性が高いといえる。 In addition, it is preferable that the atmosphere temperature of the upper part in a snout shall be below (plating bath temperature +100 degreeC). The higher the ambient temperature of the upper part, the more the convection in the snout is stabilized (the state where there is a low-density substance in the upper part is stable), but the stabilizing effect exceeds (plating bath temperature + 100 ° C) This is because it becomes a peak. Moreover, it is preferable that the temperature of the inner wall surface of a snout shall be (plating bath temperature +0 degreeC) or less. When the temperature of the inner wall surface is higher than the plating bath temperature, rising is generated near the side wall in the snout, and a downward flow is generated in the central portion due to the influence. Since this flow is in the same direction as the flow generated by the steel strip accompanying flow, a large flow will occur in the snout. Therefore, it is not necessarily necessary to make the temperature of the inner wall surface exceed the plating bath temperature, but rather it is highly possible to increase the flow.
 なお、本発明において「スナウト内の上部」は、ターンダウンロールの表面から1m以内の、スナウト内の領域を指すものと定義する。図3においては、スナウト14内のターンダウンロール26の表面から1mの範囲内となる。 In the present invention, the “upper part in the snout” is defined as an area within the snout within 1 m from the surface of the turndown roll. In FIG. 3, the distance is within 1 m from the surface of the turndown roll 26 in the snout 14.
 このように、スナウトの内壁面の温度及びスナウト内の上部の雰囲気温度を管理した状態で、スナウト内に酸化性ガスを供給することによって、浴面近傍に到達した酸化性ガスのほとんどを浴面に留めておくことができるため、より少ないガス量で、亜鉛蒸気の発生を抑制できる。また、スナウト内に供給したガス成分は、ほぼそのままで浴面近傍に存在することになるため、雰囲気制御が容易となり、浴面近傍の雰囲気の露点の変動を抑えることができる。その結果、酸化膜による欠陥も抑制できる。このように、スナウト内の浴面の酸化状態を理想的に保てるようになるため、アッシュによる欠陥と酸化膜による欠陥の両方を、ほとんど撲滅することができるようになる。さらに、スナウト内の雰囲気の酸化力を安定的かつ迅速に変更できるという効果も得ることができる。そのため、操業条件を切り替える際に、スナウト内の雰囲気の酸化力を、変更後の操業条件に合わせて迅速に切り替えることができる。 In this way, by controlling the temperature of the inner wall surface of the snout and the atmospheric temperature of the upper part of the snout, by supplying the oxidizing gas into the snout, most of the oxidizing gas that has reached the vicinity of the bath surface is bathed. Therefore, the generation of zinc vapor can be suppressed with a smaller amount of gas. Further, since the gas component supplied into the snout is present in the vicinity of the bath surface almost as it is, the atmosphere control is facilitated, and the fluctuation of the dew point of the atmosphere near the bath surface can be suppressed. As a result, defects due to the oxide film can be suppressed. As described above, since the oxidation state of the bath surface in the snout can be ideally maintained, both defects due to ash and defects due to the oxide film can be almost eliminated. Furthermore, the effect that the oxidizing power of the atmosphere in the snout can be changed stably and quickly can also be obtained. Therefore, when switching the operating conditions, the oxidizing power of the atmosphere in the snout can be switched quickly according to the changed operating conditions.
 スナウト内に供給する酸化性ガスは、水蒸気を含む窒素ガス、又は、水蒸気を含む窒素・水素混合ガスであることが好ましく、露点は、めっき浴の成分や製造する鋼種、その他の操業条件によって適宜設定すればよいが、概ね-20~-35℃の範囲で良好となる場合が多い。また、酸化性ガスの供給量は、各種操業条件に影響されるが、スナウトの内壁面の温度及びスナウト内の上部の雰囲気温度以外が同一条件の場合、本発明外の条件と比較して、1/4程度の供給量で、同一露点を実現できる。このため酸化性ガスの供給量を、適度な酸化膜を形成するための必要最小限の量とすることができる。 The oxidizing gas supplied into the snout is preferably nitrogen gas containing water vapor or a nitrogen / hydrogen mixed gas containing water vapor, and the dew point is appropriately determined depending on the components of the plating bath, the type of steel to be produced, and other operating conditions. It may be set, but in many cases it becomes good in the range of -20 to -35 ° C. In addition, the supply amount of the oxidizing gas is affected by various operating conditions, but when the same conditions other than the temperature of the inner wall surface of the snout and the atmospheric temperature of the upper part of the snout are compared with the conditions outside the present invention, The same dew point can be achieved with a supply amount of about 1/4. Therefore, the supply amount of the oxidizing gas can be set to a minimum amount necessary for forming an appropriate oxide film.
 図2に示すように、酸化性ガスは、鋼帯幅方向におけるスナウトの両端部からスナウト14内に供給することが好ましい。ガス投入口を有する第5配管22Eをスナウト12の側面に設置したのは、スナウト内の側面近傍は温度が低くなる場合が多いため、通常、側面近傍では下降流となるため、浴面付近に効率良く酸化性ガスを到達させられるためである。ガス投入口の浴面からの高さは、100~3000mm程度とすることができる。100mm未満では、浴面に直接ガスが到達する可能性が高く、結果として浴面近傍での酸化性ガスの濃度分布が大きくなる。また、3000mm超えでは、浴面からの距離が大きいため、ガス濃度が低下し、その結果として、大量のガスが必要となる。 As shown in FIG. 2, the oxidizing gas is preferably supplied into the snout 14 from both ends of the snout in the steel strip width direction. The reason why the fifth pipe 22E having the gas inlet is installed on the side surface of the snout 12 is that the temperature in the vicinity of the side surface in the snout often decreases. This is because the oxidizing gas can be efficiently reached. The height of the gas inlet from the bath surface can be about 100 to 3000 mm. If it is less than 100 mm, there is a high possibility that the gas directly reaches the bath surface, and as a result, the concentration distribution of the oxidizing gas in the vicinity of the bath surface becomes large. On the other hand, if the distance exceeds 3000 mm, the distance from the bath surface is large, so that the gas concentration decreases, and as a result, a large amount of gas is required.
 ここで、スナウト内の浴面近傍の雰囲気の好適な酸化力は、鋼帯の成分組成、焼鈍工程での焼鈍条件、溶融亜鉛浴の成分等の操業条件によって変動する。つまり、図4で示した2つの曲線は、操業条件によって左右にシフトし得る。このことを図5(A),(B)を例に以下で説明する。 Here, the suitable oxidizing power of the atmosphere in the vicinity of the bath surface in the snout varies depending on the operating conditions such as the composition of the steel strip, the annealing conditions in the annealing process, the components of the molten zinc bath, and the like. That is, the two curves shown in FIG. 4 can be shifted left and right depending on the operating conditions. This will be described below with reference to FIGS. 5A and 5B.
 まず、既述のとおり、アッシュによる欠陥、酸化膜による欠陥ともに、浴面に形成される酸化膜厚と相関する。具体的には、アッシュによる欠陥は、アッシュ生成量とその付着率に関係し、酸化膜による欠陥は、酸化膜量とその付着率に依存する。 First, as described above, both the defect due to ash and the defect due to the oxide film correlate with the oxide film thickness formed on the bath surface. Specifically, the ash defect is related to the ash generation amount and its adhesion rate, and the oxide film defect depends on the oxide film amount and its adhesion rate.
 図5(A)は、鋼帯の成分組成がスナウト内の浴面近傍の雰囲気の好適な酸化力に及ぼす影響の一例を示している。鋼帯がSi,Mn,Alなど、いわゆる易酸化性元素を多く含有する場合、めっき浴進入直前の鋼帯表面に表面濃化物が多く生成している。このような表面濃化状態でめっきすると、酸化膜が鋼帯に付着しやすくなる、すなわち酸化膜の付着率が上がるため、酸化膜による欠陥が生じやすくなる。一方で、アッシュ生成量は鋼帯の表面濃化状態にはほとんど依存しないため、鋼帯の成分組成は、アッシュによる欠陥にはほとんど影響しない。 FIG. 5 (A) shows an example of the influence of the composition of the steel strip on the suitable oxidizing power of the atmosphere in the vicinity of the bath surface in the snout. When the steel strip contains a large amount of so-called oxidizable elements such as Si, Mn, and Al, a large amount of surface concentrate is generated on the surface of the steel strip immediately before entering the plating bath. When plating is performed in such a surface-enriched state, the oxide film is likely to adhere to the steel strip, that is, the deposition rate of the oxide film is increased, and defects due to the oxide film are likely to occur. On the other hand, since the amount of ash produced hardly depends on the surface enriched state of the steel strip, the component composition of the steel strip has little effect on defects due to ash.
 また、焼鈍温度や炉内露点などの焼鈍条件によっても、鋼帯の表面濃化状態は異なるため、焼鈍条件も酸化膜による欠陥の生じやすさに影響を及ぼすものの、アッシュによる欠陥にはほぼ影響しない。 Also, because the surface enrichment state of the steel strip differs depending on the annealing conditions such as the annealing temperature and the dew point in the furnace, the annealing conditions also affect the probability of defects due to oxide films, but the ash defects are almost affected. do not do.
 図5(B)は、溶融亜鉛浴の成分がスナウト内の浴面近傍の雰囲気の好適な酸化力に及ぼす影響の一例を示している。図5(B)に示すように、浴中のAl濃度が高いほど、浴面に酸化膜が形成されやすい。そのため、高Al含有浴ほど、アッシュによる欠陥は生じにくく、酸化膜による欠陥は生じやすい。つまり、図4の2つの曲線は左にシフトする。 FIG. 5 (B) shows an example of the influence of the components of the molten zinc bath on the suitable oxidizing power of the atmosphere in the vicinity of the bath surface in the snout. As shown in FIG. 5B, the higher the Al concentration in the bath, the easier the oxide film is formed on the bath surface. Therefore, the higher the Al-containing bath, the less likely the defects due to ash occur, and the more likely the defects due to the oxide film occur. That is, the two curves in FIG. 4 shift to the left.
 そのため、操業条件に応じて、酸化性ガスの酸化力を変更することが好ましい。すなわち、酸化性ガスが水蒸気を含む場合には、浴面近傍の雰囲気の好適な露点、すなわち目標露点が操業条件によって異なるため、操業条件に応じて、酸化性ガス中の水蒸気量を変更させればよい。なお、酸化性ガス中の水蒸気量は、通常100ppm以上となる。 Therefore, it is preferable to change the oxidizing power of the oxidizing gas according to the operating conditions. That is, when the oxidizing gas contains water vapor, the suitable dew point of the atmosphere in the vicinity of the bath surface, that is, the target dew point varies depending on the operating conditions, so the amount of water vapor in the oxidizing gas can be changed according to the operating conditions. That's fine. The amount of water vapor in the oxidizing gas is usually 100 ppm or more.
 この場合、操業条件ごとに、スナウト内の露点と、アッシュによる欠陥及び酸化膜による欠陥の欠陥率との関係(すなわち、図4の情報)を事前に調査して、当該操業条件におけるスナウト内の目標露点を決定することができる。そして、操業条件ごとに決定された目標露点に基づいて、酸化性ガス中の水蒸気量を決定することができる。操業条件が切り替わる際には、変更後の操業条件に対応する目標露点に基づいて、酸化性ガス中の水蒸気量を変更すればよい。 In this case, for each operating condition, the relationship between the dew point in the snout and the defect rate of defects due to ash and defects due to oxide films (that is, the information in FIG. 4) is investigated in advance, and within the snout under the operating conditions. A target dew point can be determined. And the amount of water vapor | steam in oxidizing gas can be determined based on the target dew point determined for every operating condition. When the operating conditions are switched, the amount of water vapor in the oxidizing gas may be changed based on the target dew point corresponding to the changed operating conditions.
 ここで、図4に示すような、スナウト内の露点と、アッシュによる欠陥及び酸化膜による欠陥の欠陥率との関係は、過去の操業時に、スナウト内の露点と、その際の各欠陥の欠陥率の傾向を事前に把握しておくことで、求めることができる。各欠陥の有無は目視で判定できる。目視で判別できる欠陥の大きさは、100μm程度以上である。そして、長さ0.5m当たりの欠陥混入率を「欠陥率」と定義する。欠陥率1%は、1個/50mに相当する。 Here, as shown in FIG. 4, the relationship between the dew point in the snout and the defect rate of defects due to ash and oxides is as follows. It can be obtained by grasping the trend of rates in advance. The presence or absence of each defect can be determined visually. The size of the defect that can be visually identified is about 100 μm or more. Then, the defect mixture rate per 0.5 m length is defined as “defect rate”. A defect rate of 1% is equivalent to 1 piece / 50m.
 なお、上記のスナウト内の露点は、浴面直上(浴面近傍)の露点である必要がある。実際に露点を測定する箇所が浴面直上ではない場合には、以下の配慮を行う。まず、本発明を適用して、スナウト内の熱対流をなくした状態であれば、スナウト内にはほとんど露点分布がつかないため、実測露点をそのまま用いてよい。しかし、スナウト内に熱対流がある場合には、実測露点を浴面近傍露点に補正する。この補正は、流動解析から予測される露点分布を用いて行うことができる。例えば、流動解析で浴面から500mmの高さでの露点が-35℃、浴面近傍での露点が-30℃である場合、両者の差は+5℃で、水分比の差は150ppmになる。そこで、実測した500mmの高さでの露点値に常に150ppm分を加算した露点を浴面露点として採用することができる。 The dew point in the above-mentioned snout needs to be a dew point directly above the bath surface (near the bath surface). If the location where the dew point is actually measured is not directly above the bath surface, consider the following. First, if the present invention is applied and the thermal convection in the snout is eliminated, the measured dew point may be used as it is because there is almost no dew point distribution in the snout. However, when there is thermal convection in the snout, the measured dew point is corrected to the dew point near the bath surface. This correction can be performed using the dew point distribution predicted from the flow analysis. For example, if the dew point at a height of 500 mm from the bath surface is -35 ° C and the dew point near the bath surface is -30 ° C in the flow analysis, the difference between the two is + 5 ° C and the difference in the water ratio is 150 ppm. . Therefore, a dew point obtained by always adding 150 ppm to the actually measured dew point value at a height of 500 mm can be adopted as the bath surface dew point.
 スナウト内の浴面近傍の雰囲気の好適な酸化力(酸化性ガスが水蒸気を含む場合には、浴面近傍の雰囲気の目標露点)に影響を及ぼす操業条件としては、鋼種(鋼帯の成分組成)、焼鈍工程での焼鈍条件及び溶融亜鉛浴の成分を挙げることができる。そのため、これらの少なくとも1つを考慮して、事前に図4の情報を求めておくことが好ましい。例えば、特定の連続溶融亜鉛めっき設備において、焼鈍条件と溶融亜鉛浴の成分に変更がないことが既知の場合、当該設備に通板する予定の鋼種ごとに、図4の情報を予め調査し、目標露点を決定しておけばよい。そして、鋼種を切り替える際には、変更後の鋼種に対応した目標露点になるように、酸化性ガス中の水蒸気量を変更すればよい。 The operating conditions that affect the suitable oxidizing power of the atmosphere near the bath surface in the snout (if the oxidizing gas contains water vapor, the target dew point of the atmosphere near the bath surface) are steel grades (component composition of the steel strip) ), Annealing conditions in the annealing step and components of the molten zinc bath. Therefore, it is preferable to obtain the information of FIG. 4 in advance in consideration of at least one of these. For example, in a specific continuous hot dip galvanizing facility, if it is known that the annealing conditions and the components of the hot dip zinc bath are not changed, the information in FIG. 4 is investigated in advance for each steel type to be passed through the facility, The target dew point should be determined. And when switching a steel type, what is necessary is just to change the water vapor | steam amount in oxidizing gas so that it may become the target dew point corresponding to the steel type after a change.
 本発明は、上記の実施形態に限定されず、鋼帯を連続的に溶融金属めっきする場合にも同様である。 The present invention is not limited to the above embodiment, and the same applies to the case where a steel strip is continuously subjected to molten metal plating.
 <実施例1>
 図1~図3に記載の連続溶融亜鉛めっき設備を用いて、成分組成が質量%でC:0.001%、Si:0.01%、Mn:0.1%、P:0.003%、S:0.005%、Al:0.03%を含み、残部がFe及び不可避的不純物からなり、板厚0.6~1.2mm、板幅900~1250mm、引張強さ270MPaの鋼帯(以下、鋼種Aと称する。)を通板速度60~100mpmで溶融亜鉛浴に進入させて、溶融亜鉛めっき鋼板を製造した。図2に示すように、ガス投入口を有する第5配管はスナウトの側面に設置し、ガス投入口の浴面からの高さは500mmとした。過去の操業データから、スナウト内の露点と、アッシュによる欠陥及び酸化膜による欠陥の欠陥率との関係を事前に調査した。結果を図6(A)に示す。図6(A)に基づいて、スナウト内の目標露点は-30℃と決定した。そして、スナウト内の露点を-30℃±4℃程度の範囲に制御できれば、アッシュによる欠陥と酸化膜による欠陥の両方を低いレベルに抑制できることがわかった。
<Example 1>
Using the continuous hot dip galvanizing equipment shown in FIGS. 1 to 3, the component composition is mass%, C: 0.001%, Si: 0.01%, Mn: 0.1%, P: 0.003%, S: 0.005%, Al: A steel strip (hereinafter referred to as “steel type A”) containing 0.03% and the balance of Fe and inevitable impurities, having a thickness of 0.6 to 1.2 mm, a width of 900 to 1250 mm, and a tensile strength of 270 MPa is referred to as a steel plate speed 60 to A hot dip galvanized steel sheet was manufactured by entering the hot dip galvanized bath at 100 mpm. As shown in FIG. 2, the 5th piping which has a gas inlet was installed in the side surface of the snout, and the height from the bath surface of the gas inlet was 500 mm. From past operational data, the relationship between the dew point in the snout and the defect rate of defects due to ash and defects due to oxide films was investigated in advance. The results are shown in FIG. Based on FIG. 6 (A), the target dew point in the snout was determined to be −30 ° C. Then, it was found that if the dew point in the snout can be controlled within a range of about −30 ° C. ± 4 ° C., both defects due to ash and defects due to oxide films can be suppressed to a low level.
 スナウト内を鋼帯が通過する際に、試験例No.1~5では、水蒸気を含有する窒素・水素混合ガスを供給し(表1中「水蒸気の供給、あり」で表記。)、試験例No.6,7では、水蒸気を含有しない窒素・水素混合ガス(表1中「水蒸気の供給、なし」で表記。)をガス投入口から供給した。試験例No.1~5における投入ガスの露点は、図2における第5配管中の露点測定孔32Aに設けた露点計で測定したものであり、表1に示した。 When the steel strip passes through the snout, in Test Examples No. 1 to 5, a nitrogen / hydrogen mixed gas containing water vapor is supplied (indicated as “water vapor supply available” in Table 1). In Nos. 6 and 7, a nitrogen / hydrogen mixed gas that does not contain water vapor (indicated as “water vapor supply, none” in Table 1) was supplied from the gas inlet. The dew points of the input gases in Test Examples No. 1 to 5 were measured with a dew point meter provided in the dew point measurement hole 32A in the fifth pipe in FIG.
 スナウト内を鋼帯が通過する際の、スナウト内壁面の温度及びスナウト内の上部の雰囲気温度は、表1に示すものに管理した。試験例No.6では、スナウト外壁及びスナウト内の上部に設けたヒーターによる加熱を行わなかった。 The temperature of the inner wall surface of the snout and the atmospheric temperature of the upper part of the snout when the steel strip passes through the snout were controlled as shown in Table 1. In Test Example No. 6, heating by a heater provided on the outer wall of the snout and the upper part in the snout was not performed.
 各試験例とも、図2に示す、スナウトの裏面中央、高さ500mmの位置の露点測定孔32Bに設けた露点計で、スナウト内の雰囲気の露点を経時的に測定した。そして、各試験例No.1~7では、測定露点と目標露点(-30℃)との差に基づいて、測定露点が目標露点に近づくように、投入ガスの流量を変更した。この制御は、一般的なPID制御ロジックで行った。各試験例No.1~7における、測定露点のヒストグラムを表2に示した。また、試験例No.1~5では、試験中の投入ガスの全体積に対する水蒸気の体積の割合を「水分量」として表1に示し、試験中のガスの全投入流量を、No.5を1とする指数表示で表1に示した。 In each test example, the dew point of the atmosphere in the snout was measured over time with a dew point meter provided in the dew point measurement hole 32B at the center of the back surface of the snout and at a height of 500 mm shown in FIG. In each of Test Examples Nos. 1 to 7, the input gas flow rate was changed so that the measured dew point approached the target dew point based on the difference between the measured dew point and the target dew point (−30 ° C.). This control was performed by general PID control logic. Table 2 shows the histograms of measured dew points in each of Test Examples No. 1 to No. 7. In Test Examples No. 1 to 5, the ratio of the volume of water vapor to the total volume of the input gas under test is shown as “Moisture content” in Table 1, and the total input flow rate of the gas under test is No. 5 Table 1 shows the index as 1.
 なお、管理すべき露点が浴面直上の露点であることを考えると、露点計の位置は本来、より低い浴面近傍にすべきであるが、本発明によれば、スナウト内にはほとんど露点分布がつかないため、高さ500mmの位置で露点を測定しても、浴面近傍の露点を高精度に把握できる。なお、亜鉛蒸気が発生する比較例の場合、浴面から100mm程度の低い位置では、露点計のセンサー部に亜鉛蒸気が付着してしまう危険があるため、スナウト下部に露点計は設置できない場合が多い。なお、本発明例では酸化性ガスに水蒸気を使用するため、ガス測定器は露点計としたが、水蒸気以外の酸化性ガスを用いる場合は、当然ながらそのガスを検知する測定器を設置する必要がある。 Considering that the dew point to be managed is the dew point directly above the bath surface, the position of the dew point meter should be close to the lower bath surface, but according to the present invention, almost no dew point is present in the snout. Since the distribution cannot be obtained, even if the dew point is measured at a height of 500 mm, the dew point near the bath surface can be grasped with high accuracy. In the case of a comparative example where zinc vapor is generated, there is a risk that zinc vapor may adhere to the sensor part of the dew point meter at a position as low as about 100 mm from the bath surface, so the dew point meter may not be installed under the snout. Many. In the present invention example, water vapor is used as the oxidizing gas, so the gas measuring device is a dew point meter. However, when using an oxidizing gas other than water vapor, it is naturally necessary to install a measuring device for detecting the gas. There is.
 (欠陥率の評価)
 以下の方法で、アッシュによる欠陥と酸化膜による欠陥それぞれの欠陥率を評価した。各欠陥の有無は目視で判定した。目視で判別できる欠陥の大きさは、100μm程度以上である。そして、長さ0.5m当たりの欠陥混入率を「欠陥率」と定義し、表1に示した。欠陥率1%は、1個/50mに相当する。
(Defect rate evaluation)
The defect rates of the ash defects and the oxide film defects were evaluated by the following methods. The presence or absence of each defect was determined visually. The size of the defect that can be visually identified is about 100 μm or more. The defect mixing rate per 0.5 m length was defined as “defect rate” and shown in Table 1. A defect rate of 1% is equivalent to 1 piece / 50m.
 (評価結果)
 表1,2を参照して、評価結果を説明する。No.1(発明例)は、浴温、壁面温度、及び上部温度に温度差をつけない例で、露点変動もほとんどなく、その結果、アッシュによる欠陥及び酸化膜による欠陥ともにほとんど発生しなかった。No.2(発明例)は壁面温度が低い例、No.3(発明例)はスナウト上部の雰囲気温度が低い例であるが、スナウト内の雰囲気の露点を管理範囲(-30℃±4℃)に抑えることができており、各欠陥率も低い状態を保てている。しかも、No.1~3では、ガスの投入流量をNo.5よりも十分に低くすることができた。
(Evaluation results)
The evaluation results will be described with reference to Tables 1 and 2. No. 1 (invention example) is an example in which there is no temperature difference between the bath temperature, wall surface temperature, and top temperature, and there is almost no dew point fluctuation. As a result, almost no defects due to ash and no defects due to oxide films have occurred. . No.2 (invention example) is an example where the wall temperature is low, and No.3 (invention example) is an example where the atmosphere temperature at the top of the snout is low, but the dew point of the atmosphere inside the snout is within the control range (-30 ° C ± 4 ° C) ) And the defect rate is also kept low. Moreover, in Nos. 1 to 3, the gas input flow rate could be made sufficiently lower than No. 5.
 これに対し、No.4(比較例)は壁面温度が本発明範囲を外れる例、No.5(比較例)はスナウト上部の雰囲気温度が本発明範囲を外れる例であり、スナウト内の雰囲気の露点を管理範囲(-30℃±4℃)に抑えることができなかった。その結果、アッシュによる欠陥又は酸化膜による欠陥が多く発生した。No.6(比較例)は、水蒸気の投入を行わず、ヒーターによる加熱を行わなかった例である。この場合、露点は-40℃前後で低くなっているため、酸化膜による欠陥は発生しないが、アッシュによる欠陥が非常に多く発生した。No.7(比較例)では、温度差はつけないため露点は安定するが、-40℃前後で低くなっているため、やはりアッシュによる欠陥が非常に多く発生した。 In contrast, No. 4 (comparative example) is an example in which the wall surface temperature is outside the scope of the present invention, and No. 5 (comparative example) is an example in which the ambient temperature at the top of the snout is outside the scope of the present invention. The dew point could not be kept within the control range (-30 ° C ± 4 ° C). As a result, many defects caused by ash or oxide films occurred. No. 6 (Comparative Example) is an example in which no steam was added and no heating with a heater was performed. In this case, since the dew point was low around -40 ° C., defects due to the oxide film did not occur, but very many defects due to ash occurred. In No. 7 (comparative example), the temperature difference was not applied, so the dew point was stable, but since it was low around -40 ° C, defects due to ash were still generated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例2>
 鋼種Aの鋼帯に替えて、成分組成が質量%でC:0.12%、Si:1.0%、Mn:1.7%、P:0.006%、S:0.006%、Al:0.03%を含み、残部がFe及び不可避的不純物からなり、板厚0.6~1.2mm、板幅900~1250mm、引張強さ780MPaの鋼帯(以下、鋼種Bと称する。)を用いた以外は、実施例1と同様にして、スナウト内の露点と、アッシュによる欠陥及び酸化膜による欠陥の欠陥率との関係を求めた。結果を図6(B)に示す。
<Example 2>
In place of the steel strip of steel type A, the composition is C: 0.12%, Si: 1.0%, Mn: 1.7%, P: 0.006%, S: 0.006%, Al: 0.03%, with the balance being Fe. In the same manner as in Example 1 except that a steel strip (hereinafter referred to as steel type B) having a plate thickness of 0.6 to 1.2 mm, a plate width of 900 to 1250 mm, and a tensile strength of 780 MPa was used. The relationship between the dew point in the snout and the defect rate of defects due to ash and defects due to oxide films was determined. The results are shown in FIG.
 図6(A),(B)を参照すると、鋼種A,Bともに、アッシュによる欠陥及び酸化膜による欠陥の両方が十分に抑制できる露点が存在するが、鋼種Bの方が最適値すなわち目標露点は低く、また両方の欠陥率が十分に低くなる露点範囲も狭くなっていることがわかる。このことから、例えば鋼種AからBに切り替える際は、短時間で精度よく雰囲気露点を変更する必要があることが分かる。 6 (A) and 6 (B), both steel types A and B have dew points that can sufficiently suppress both defects due to ash and defects due to oxide films, but steel type B has an optimum value, that is, a target dew point. It can be seen that the dew point range in which both defect rates are sufficiently low is also narrow. From this, it can be seen that, for example, when switching from steel type A to B, it is necessary to change the atmospheric dew point accurately in a short time.
 <実施例3>
 浴温、壁面温度及び上部温度を表1に記載のNo.1~5(発明例1~3及び比較例1,2)とした際の、水蒸気を含有する窒素・水素混合ガスの露点の切り替えの早さを調査した。図7に示すように、投入露点を50分の時点で-35℃から-20℃に切り替えた。
<Example 3>
Switching the dew point of the nitrogen / hydrogen mixed gas containing water vapor when the bath temperature, wall surface temperature and top temperature are No. 1 to 5 (Invention Examples 1 to 3 and Comparative Examples 1 and 2) shown in Table 1. Investigated the speed. As shown in FIG. 7, the input dew point was switched from −35 ° C. to −20 ° C. at 50 minutes.
 発明例1は浴温、壁面温度及び上部温度を全て450℃に設定したため、熱対流がほとんど発生していない。このため、測定露点の変動は、投入ガスの露点変動とほぼ同じ挙動を示した。したがって、供給ガスの露点で直接的にスナウト内の露点を制御できるため、品質管理上非常に優位である。発明例2,3も、発明例1に比較して、切り替え後の露点に追従遅れが認められるが、30分ほどすると投入露点なりに露点は変更できているため、品質管理上は十分である。 In Invention Example 1, since the bath temperature, wall surface temperature, and upper part temperature were all set to 450 ° C., almost no thermal convection occurred. Therefore, the measured dew point variation showed almost the same behavior as the input gas dew point variation. Therefore, since the dew point in the snout can be directly controlled by the dew point of the supply gas, it is very advantageous in quality control. Inventive Examples 2 and 3 also have a follow-up delay in the dew point after switching compared to Inventive Example 1, but after 30 minutes the dew point can be changed as the input dew point, which is sufficient for quality control. .
 一方、比較例1,2では,投入露点を切り替えた後もスナウト内の露点は変動しながらも緩やかに上昇しつづけており、1時間後でも安定化したとは言い難い。このような状態では、例えば鋼種AからBに切り替わった際の目標露点の変更に対応することは困難である。 On the other hand, in Comparative Examples 1 and 2, the dew point in the snout fluctuates slowly even after switching the input dew point, and it is difficult to say that it has stabilized even after one hour. In such a state, for example, it is difficult to cope with a change in the target dew point when the steel type A is switched to B.
 本発明の連続溶融金属めっき方法及び連続溶融金属めっき設備によれば、スナウト内で発生する金属蒸気に起因する不めっきと、スナウト内の溶融金属浴面の酸化膜に起因する不めっきを共に抑制することができる。 According to the continuous molten metal plating method and the continuous molten metal plating facility of the present invention, both non-plating caused by metal vapor generated in the snout and non-plating caused by the oxide film on the molten metal bath surface in the snout are suppressed. can do.
 100 連続溶融亜鉛めっき設備
 10 焼鈍炉
 12 めっき槽
 12A 溶融亜鉛浴
 14 スナウト
 14A スナウトの端部
 16,17 ヒーター
 18 断熱材
 20 ガス供給機構
 22A,22B,22C,22D,22E 配管
 24 バルブ
 26 ターンダウンロール
 28 シンクロール
 30 サポートロール
 32A,32B 露点測定孔
 P 鋼帯
DESCRIPTION OF SYMBOLS 100 Continuous hot dip galvanization equipment 10 Annealing furnace 12 Plating tank 12A Hot dip zinc bath 14 Snout 14A End part of a snout 16, 17 Heater 18 Heat insulating material 20 Gas supply mechanism 22A, 22B, 22C, 22D, 22E Piping 24 Valve 26 Turn down roll 28 Sink roll 30 Support roll 32A, 32B Dew point measurement hole P Steel strip

Claims (10)

  1.  鋼帯を焼鈍炉で連続的に焼鈍する工程と、
     溶融金属を収容し、溶融金属浴を形成しためっき槽に、焼鈍後の前記鋼帯を連続的に供給して、前記鋼帯に金属めっきを施す工程と、を有する連続溶融金属めっき方法であって、
     前記焼鈍炉の鋼帯出側に設けられ、端部が前記溶融金属浴に浸漬するように位置するスナウトが区画する空間を、前記焼鈍炉から前記溶融金属浴に向けて前記鋼帯が通過する際に、前記スナウト内に酸化性ガスを供給するとともに、前記スナウトの内壁面の温度を(めっき浴温-150℃)以上に、かつ、前記スナウト内の上部の雰囲気温度を(めっき浴温-100℃)以上にすることを特徴とする連続溶融金属めっき方法。
    A step of continuously annealing a steel strip in an annealing furnace;
    A method of continuously supplying the steel strip after annealing to a plating tank containing a molten metal and forming a molten metal bath, and performing metal plating on the steel strip. And
    When the steel strip passes from the annealing furnace toward the molten metal bath through a space defined by a snout positioned on the steel strip exit side of the annealing furnace and having an end portion immersed in the molten metal bath In addition, an oxidizing gas is supplied into the snout, the temperature of the inner wall surface of the snout is set to (plating bath temperature −150 ° C.) or more, and the ambient temperature in the upper portion of the snout is set to (plating bath temperature−100 ° C) or more. A continuous molten metal plating method characterized by the above.
  2.  前記酸化性ガスは、水蒸気を含む窒素ガス、又は、水蒸気を含む窒素・水素混合ガスである請求項1に記載の連続溶融金属めっき方法。 The continuous molten metal plating method according to claim 1, wherein the oxidizing gas is a nitrogen gas containing water vapor or a nitrogen / hydrogen mixed gas containing water vapor.
  3.  操業条件に応じて、前記酸化性ガスの酸化力を変更する請求項1に記載の連続溶融金属めっき方法。 The continuous molten metal plating method according to claim 1, wherein the oxidizing power of the oxidizing gas is changed according to operating conditions.
  4.  操業条件に応じて、前記酸化性ガス中の水蒸気量を変更する請求項2に記載の連続溶融金属めっき方法。 The continuous molten metal plating method according to claim 2, wherein the amount of water vapor in the oxidizing gas is changed according to operating conditions.
  5.  操業条件ごとに、前記スナウト内の露点と、当該操業条件で金属めっきを施された前記鋼帯の不めっきによる欠陥量との関係を事前に調査して、当該操業条件における前記スナウト内の目標露点を決定する工程をさらに有し、
     前記操業条件ごとに決定された目標露点に基づいて、前記酸化性ガス中の水蒸気量を決定する、請求項2に記載の連続溶融金属めっき方法。
    For each operating condition, investigate in advance the relationship between the dew point in the snout and the amount of defects due to non-plating of the steel strip that has been metal-plated under the operating condition, and the target within the snout in the operating condition Further comprising the step of determining a dew point;
    The continuous molten metal plating method according to claim 2, wherein an amount of water vapor in the oxidizing gas is determined based on a target dew point determined for each operation condition.
  6.  操業条件が切り替わる際に、変更後の操業条件に対応する目標露点に基づいて、前記酸化性ガス中の水蒸気量を変更する、請求項5に記載の連続溶融金属めっき方法。 6. The continuous molten metal plating method according to claim 5, wherein when the operating conditions are switched, the amount of water vapor in the oxidizing gas is changed based on a target dew point corresponding to the changed operating conditions.
  7.  前記操業条件が、前記鋼帯の成分組成、前記焼鈍工程での焼鈍条件及び前記溶融金属浴の成分の少なくとも1つである請求項3~6のいずれか一項に記載の連続溶融金属めっき方法。 The continuous molten metal plating method according to any one of claims 3 to 6, wherein the operation condition is at least one of a component composition of the steel strip, an annealing condition in the annealing step, and a component of the molten metal bath. .
  8.  前記操業条件が、前記鋼帯の成分組成である請求項3~6のいずれか一項に記載の連続溶融金属めっき方法。 The continuous molten metal plating method according to any one of claims 3 to 6, wherein the operating condition is a component composition of the steel strip.
  9.  鋼帯幅方向における前記スナウトの両端部から前記酸化性ガスを供給する請求項1~8のいずれか一項に記載の連続溶融金属めっき方法。 The continuous molten metal plating method according to any one of claims 1 to 8, wherein the oxidizing gas is supplied from both ends of the snout in a steel strip width direction.
  10.  鋼帯を連続的に焼鈍する焼鈍炉と、
     溶融金属を収容し、溶融金属浴を形成しためっき槽と、
     前記焼鈍炉の鋼帯出側に設けられ、端部が前記溶融金属浴に浸漬するように位置し、前記焼鈍炉から前記溶融金属浴中に連続的に供給される鋼帯が通過する空間を区画するスナウトと、
     前記スナウトの外壁及び前記スナウト内の上部に設けられた加熱体と、
     前記スナウトに連結したガス供給機構と、
     前記加熱体及び前記ガス供給機構を制御して、前記スナウト内に酸化性ガスを供給するとともに、前記スナウトの内壁面の温度を(めっき浴温-150℃)以上に、かつ、前記スナウト内の上部の雰囲気温度を(めっき浴温-100℃)以上にする制御部と、
    を有することを特徴とする連続溶融金属めっき設備。
    An annealing furnace for continuously annealing the steel strip;
    A plating tank containing molten metal and forming a molten metal bath;
    Provided on the steel strip exit side of the annealing furnace, the end is positioned so as to be immersed in the molten metal bath, and defines a space through which the steel strip continuously supplied from the annealing furnace into the molten metal bath passes Snout to do,
    A heating body provided on an outer wall of the snout and an upper portion in the snout;
    A gas supply mechanism connected to the snout;
    The heating body and the gas supply mechanism are controlled to supply an oxidizing gas into the snout, and the temperature of the inner wall surface of the snout is not less than (plating bath temperature −150 ° C.) and the inside of the snout A control unit that makes the upper atmosphere temperature (plating bath temperature –100 ° C) or higher,
    A continuous molten metal plating facility characterized by comprising:
PCT/JP2016/001013 2015-04-21 2016-02-25 Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus WO2016170720A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177030349A KR101953506B1 (en) 2015-04-21 2016-02-25 Continuous hot-dip metal coating method and continuous hot-dip metal coating line
US15/565,986 US20180105916A1 (en) 2015-04-21 2016-02-25 Continuous hot-dip metal coating method and continuous hot-dip metal coating line
AU2016252162A AU2016252162B2 (en) 2015-04-21 2016-02-25 Continuous hot-dip metal coating method and continuous hot-dip metal coating line
MX2017013461A MX2017013461A (en) 2015-04-21 2016-02-25 Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus.
CN201680022565.7A CN107532269B (en) 2015-04-21 2016-02-25 Continuous molten metal method for plating and continuous molten metal plating apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-086992 2015-04-21
JP2015086992 2015-04-21
JP2015166199A JP6361606B2 (en) 2015-04-21 2015-08-25 Continuous molten metal plating method and continuous molten metal plating equipment
JP2015-166199 2015-08-25

Publications (1)

Publication Number Publication Date
WO2016170720A1 true WO2016170720A1 (en) 2016-10-27

Family

ID=57143067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001013 WO2016170720A1 (en) 2015-04-21 2016-02-25 Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus

Country Status (1)

Country Link
WO (1) WO2016170720A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181091A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Method for producing hot-dip plated steel strip
CN113046668A (en) * 2019-12-28 2021-06-29 上海东新冶金技术工程有限公司 Electric heating device for hot galvanizing furnace nose and use method thereof
CN114250430A (en) * 2020-09-21 2022-03-29 宝山钢铁股份有限公司 Furnace nose inner atmosphere temperature control method and heating device beneficial to zinc ash inhibition
WO2023286501A1 (en) * 2021-07-14 2023-01-19 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925550A (en) * 1995-07-12 1997-01-28 Nkk Corp Aluminum-containing galvanized steel sheet and its production
JPH11286762A (en) * 1998-04-01 1999-10-19 Nippon Steel Corp Continuous hot dipping method and apparatus therefor
JP2002327256A (en) * 2001-04-26 2002-11-15 Nkk Corp Method and apparatus for continuous hot-dip metal plating
JP2014043633A (en) * 2012-08-29 2014-03-13 Jfe Steel Corp Continuous hot dip galvanization method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925550A (en) * 1995-07-12 1997-01-28 Nkk Corp Aluminum-containing galvanized steel sheet and its production
JPH11286762A (en) * 1998-04-01 1999-10-19 Nippon Steel Corp Continuous hot dipping method and apparatus therefor
JP2002327256A (en) * 2001-04-26 2002-11-15 Nkk Corp Method and apparatus for continuous hot-dip metal plating
JP2014043633A (en) * 2012-08-29 2014-03-13 Jfe Steel Corp Continuous hot dip galvanization method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181091A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Method for producing hot-dip plated steel strip
JPWO2018181091A1 (en) * 2017-03-31 2019-04-04 Jfeスチール株式会社 Method for producing hot-dip steel strip
CN113046668A (en) * 2019-12-28 2021-06-29 上海东新冶金技术工程有限公司 Electric heating device for hot galvanizing furnace nose and use method thereof
CN114250430A (en) * 2020-09-21 2022-03-29 宝山钢铁股份有限公司 Furnace nose inner atmosphere temperature control method and heating device beneficial to zinc ash inhibition
CN114250430B (en) * 2020-09-21 2024-01-09 宝山钢铁股份有限公司 Furnace nose internal atmosphere temperature control method and heating device beneficial to inhibiting zinc ash
WO2023286501A1 (en) * 2021-07-14 2023-01-19 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JPWO2023286501A1 (en) * 2021-07-14 2023-01-19
JP7364092B2 (en) 2021-07-14 2023-10-18 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet

Similar Documents

Publication Publication Date Title
JP6361606B2 (en) Continuous molten metal plating method and continuous molten metal plating equipment
JP5071551B2 (en) Continuous annealing method for steel strip, hot dip galvanizing method
KR101011897B1 (en) Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping
WO2016170720A1 (en) Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus
US11421312B2 (en) Method for manufacturing hot-dip galvanized steel sheet
JP5505430B2 (en) Continuous annealing furnace and continuous annealing method for steel strip
JP6052464B2 (en) Reduction furnace dew point control method and reduction furnace
JP4770428B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
WO2013187039A1 (en) Method of continuous annealing of steel strip, device for continuous annealing of steel strip, method of manufacturing hot-dip galvanized steel strip, and device for manufacturing hot-dip galvanized steel strip
WO2016006159A1 (en) Production method for alloyed hot-dip-galvanized steel sheet
JP2019189894A (en) Method for manufacturing continuous hot-dip galvanized steel sheet
JP7111059B2 (en) Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method
JP5915569B2 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
JP6792561B2 (en) Methods and equipment for reaction control
JP6418175B2 (en) Dew point control method and method for producing hot dip galvanized steel sheet
WO2021117516A1 (en) Heat treatment apparatus
JP7364092B2 (en) Manufacturing method of hot-dip galvanized steel sheet
CN109722516A (en) The device and method of gas dew point in a kind of quick regulation annealing furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565986

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/013461

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177030349

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016252162

Country of ref document: AU

Date of ref document: 20160225

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16782750

Country of ref document: EP

Kind code of ref document: A1