JP2014043633A - Continuous hot dip galvanization method - Google Patents

Continuous hot dip galvanization method Download PDF

Info

Publication number
JP2014043633A
JP2014043633A JP2012188139A JP2012188139A JP2014043633A JP 2014043633 A JP2014043633 A JP 2014043633A JP 2012188139 A JP2012188139 A JP 2012188139A JP 2012188139 A JP2012188139 A JP 2012188139A JP 2014043633 A JP2014043633 A JP 2014043633A
Authority
JP
Japan
Prior art keywords
snout
amount
hot dip
zinc vapor
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012188139A
Other languages
Japanese (ja)
Inventor
Yoshitake Abe
吉剛 阿部
Katsuichi Suzuki
克一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012188139A priority Critical patent/JP2014043633A/en
Publication of JP2014043633A publication Critical patent/JP2014043633A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous hot dip galvanizing method which may suppress generation of quality defects attributed to molten zinc vapor generated in a snout, and furthermore may prevent generation of non-plated parts, and to provide an apparatus for the hot dip galvanizing.SOLUTION: In a continuous hot dip galvanizing method in which steel strips are continuously heat-treated in a continuous heat treatment furnace followed by introducing the strips into a plating tank holding molten zinc to perform hot dip galvanizing, atmosphere gas within a snout installed between the continuous heat treatment furnace and the plating tank is introduced to outside the snout, the amount of zinc vapor in the atmosphere gas is measured, and then the dew-point of the atmosphere gas is controlled such that the measured amount of zinc vapor is equal to a predetermined amount of zinc vapor in the atmosphere gas.

Description

本発明は、スナウト内で発生する溶融亜鉛蒸気に起因する品質欠陥の発生を防止する連続溶融亜鉛めっき方法に関するものである。   The present invention relates to a continuous hot dip galvanizing method for preventing the occurrence of quality defects due to hot dip zinc vapor generated in a snout.

鋼帯の連続溶融亜鉛めっき製造ラインでは、通常、表面を洗浄した鋼帯を連続熱処理炉で連続的に焼鈍し、所定温度に冷却後、図3に示す連続溶融亜鉛めっき装置に導入し、溶融亜鉛が満たされているめっき槽2内を通板させて溶融亜鉛めっきを行う。通常、連続熱処理炉での焼鈍・冷却工程は還元雰囲気下で行われており、鋼帯Sが連続熱処理炉を出てめっき槽2に達するまでの間の鋼帯通板路を大気から遮断し、鋼帯Sが還元雰囲気中を通板できるようにするため、連続熱処理炉とめっき槽2の間にスナウト1と呼ばれる矩形断面の通路が設けられている。めっき槽内にはシンクロール4が設置されており、鋼帯Sはシンクロール4で走行方向を転換されて鉛直方向に上昇する。めっき槽2から引き上げられた鋼帯Sはガスワイピングノズル6で所定のめっき厚みに調整された後に、冷却されて後工程に導かれる。   In the continuous hot dip galvanizing production line of steel strip, the steel strip whose surface has been cleaned is usually annealed continuously in a continuous heat treatment furnace, cooled to a predetermined temperature, and then introduced into the continuous hot dip galvanizing apparatus shown in FIG. Hot-dip galvanization is performed by passing the inside of the plating tank 2 filled with zinc. Normally, annealing and cooling processes in a continuous heat treatment furnace are performed in a reducing atmosphere, and the steel strip passageway between the steel strip S leaving the continuous heat treatment furnace and reaching the plating tank 2 is cut off from the atmosphere. In order to allow the steel strip S to pass through in a reducing atmosphere, a rectangular cross-section passage called a snout 1 is provided between the continuous heat treatment furnace and the plating tank 2. A sink roll 4 is installed in the plating tank, and the steel strip S is moved in the vertical direction by changing the traveling direction by the sink roll 4. The steel strip S pulled up from the plating tank 2 is adjusted to a predetermined plating thickness by the gas wiping nozzle 6 and then cooled and guided to a subsequent process.

この連続溶融亜鉛めっき装置では、スナウト1内は還元雰囲気であるために、スナウト1内のめっき浴面には酸化膜が形成されにくく、薄い酸化膜が形成されているだけである。このようにスナウト内のめっき浴面に形成される酸化膜は強固なものではないため、鋼帯Sがめっき浴3に進入する際、振動等により溶融亜鉛が浴面に露出し、そこからスナウト1内に溶融亜鉛が蒸発する。この場合、溶融亜鉛は、その飽和蒸気圧まで還元雰囲気ガス内に蒸発する。   In this continuous hot dip galvanizing apparatus, since the inside of the snout 1 is a reducing atmosphere, an oxide film is hardly formed on the plating bath surface in the snout 1, and only a thin oxide film is formed. As described above, since the oxide film formed on the plating bath surface in the snout is not strong, when the steel strip S enters the plating bath 3, the molten zinc is exposed to the bath surface due to vibration or the like, from which the snout is formed. In 1, molten zinc evaporates. In this case, the molten zinc evaporates into the reducing atmosphere gas up to its saturated vapor pressure.

蒸発した溶融亜鉛の蒸気は、還元雰囲気ガス内に微少量存在する酸素と反応して酸化物(通常固体)を形成する。また、蒸発した溶融亜鉛が酸化されない場合でも溶融亜鉛の蒸気圧が飽和蒸気圧以上になると、蒸発した溶融亜鉛の一部は、液相あるいは固相の亜鉛に相変化する。特に、スナウト1は薄い耐熱材料で構成されているだけなので、スナウト1内壁の温度は外気の影響を受けて蒸発した溶融亜鉛の蒸気圧における飽和温度以下の温度になりやすく、その温度以下になった部位で蒸気が亜鉛粉になり、スナウト1内面に付着する。   The evaporated molten zinc vapor reacts with a small amount of oxygen in the reducing atmosphere gas to form an oxide (usually a solid). Even when the evaporated molten zinc is not oxidized, when the vapor pressure of the molten zinc becomes equal to or higher than the saturated vapor pressure, a part of the evaporated molten zinc changes into a liquid phase or solid phase zinc. In particular, since the snout 1 is only composed of a thin heat-resistant material, the temperature of the inner wall of the snout 1 tends to be lower than the saturation temperature in the vapor pressure of the molten zinc evaporated under the influence of outside air, and becomes lower than that temperature. Vapor turns into zinc powder and adheres to the inner surface of snout 1.

以上のような酸化物や付着物(いわゆるアッシュ)が、清浄化された鋼帯Sに直接付着した場合、めっきが不均一になったり、不めっき部を生じさせる等の品質欠陥が発生する。また、酸化物がスナウト1内のめっき浴面に落下した場合、酸化物の溶融温度は溶融亜鉛浴の温度よりも高いために溶融亜鉛浴に再溶解しない。さらに、付着物がスナウト1内のめっき浴面に落下した場合、付着物が溶融亜鉛と同じ亜鉛の場合には再溶解するが、多くの場合、付着物には不純物が混入しているため、付着物も溶融亜鉛浴に再溶解しないことが多い。したがって、こうした再溶解しない酸化物や付着物は、スナウト内の浴面を浮遊し、スナウト内を走行してめっき浴3に進入する鋼帯Sに随伴する溶融亜鉛浴の流れにのり、鋼帯S側に移動して鋼帯S表面に付着する。この場合も、再溶解しない酸化物や付着物は、鋼帯Sのめっきを阻害する要因として作用し、その結果、めっき厚が薄くなったり、不めっきになったりして、品質欠陥が発生する。   When such oxides and deposits (so-called ash) directly adhere to the cleaned steel strip S, quality defects such as uneven plating and non-plated portions occur. Further, when the oxide falls on the plating bath surface in the snout 1, the melting temperature of the oxide is higher than the temperature of the molten zinc bath, so that it does not redissolve in the molten zinc bath. Furthermore, when the deposit falls on the plating bath surface in the snout 1, it is dissolved again when the deposit is the same zinc as the molten zinc, but in many cases, the deposit is contaminated with impurities. Often the deposits do not redissolve in the molten zinc bath. Therefore, the oxides and deposits that do not re-dissolve float on the bath surface in the snout, travel in the snout and flow in the molten zinc bath accompanying the steel strip S entering the plating bath 3, and the steel strip It moves to the S side and adheres to the surface of the steel strip S. In this case as well, oxides and deposits that do not re-dissolve act as a factor that inhibits the plating of the steel strip S, and as a result, the plating thickness becomes thin or non-plating, resulting in quality defects. .

このようなスナウト内で発生する溶融亜鉛蒸気に起因する品質欠陥(以下、アッシュ性品質欠陥と称することもある。)の発生を解決する方法が従来から多数提案されている。例えば、特許文献1には、スナウト浴面にセラミックボールを浮遊させて亜鉛蒸気を低減させる方法が開示されている。また、特許文献2にはスナウト内壁をヒータで加熱し、さらに該ヒータ外側を断熱材で断熱し、浴温とスナウト部の温度差を150℃以下とすることで内壁へのアッシュ付着を防止する方法が開示されている。さらに、特許文献3及び4には、炉内ガスに含まれる金属ヒュームをスナウトから炉外に排出してアッシュにして回収除去し、次いで、金属ヒュームを除去した炉内ガスをスナウトから放散管を介して外気中に放散する方法が開示されている。特許文献5には、めっき浴中に吸引ブロアを設置し、この吸引ブロアの吸引側にスナウト内の浴面より高い位置に吸引口を有する吸引管を連結してスナウト内の亜鉛蒸気を系外に排出する方法が開示されている。特許文献6には、スナウト内の雰囲気の酸素濃度と露点を管理して、亜鉛浴面に亜鉛酸化物膜を形成させて、スナウト内の亜鉛蒸気量を低減させる技術が開示されている。また、特許文献7には、母材鋼板中のSiとAlの濃度の和とスナウト内の雰囲気の露点との関係について開示されている。   Many methods have been proposed in the past for solving the occurrence of quality defects (hereinafter sometimes referred to as ash quality defects) caused by molten zinc vapor generated in the snout. For example, Patent Document 1 discloses a method of reducing zinc vapor by suspending a ceramic ball on a snout bath surface. In Patent Document 2, the inner wall of the snout is heated with a heater, and the outside of the heater is further insulated with a heat insulating material, and the temperature difference between the bath temperature and the snout portion is set to 150 ° C. or less to prevent ash adhesion to the inner wall. A method is disclosed. Further, in Patent Documents 3 and 4, the metal fume contained in the furnace gas is discharged from the snout outside the furnace and recovered by ashing, and then the furnace gas from which the metal fume has been removed is provided with a diffusion tube from the snout. A method for dissipating into the outside air is disclosed. In Patent Document 5, a suction blower is installed in the plating bath, and a suction pipe having a suction port at a position higher than the bath surface in the snout is connected to the suction side of the suction blower to remove zinc vapor in the snout outside the system. A method of discharging is disclosed. Patent Document 6 discloses a technique for reducing the amount of zinc vapor in the snout by managing the oxygen concentration and dew point of the atmosphere in the snout to form a zinc oxide film on the zinc bath surface. Patent Document 7 discloses the relationship between the sum of the concentrations of Si and Al in the base steel sheet and the dew point of the atmosphere in the snout.

特開平7−62512号公報JP-A-7-62512 特開平8−176773号公報JP-A-8-176773 特開平11−100650号公報Japanese Patent Application Laid-Open No. 11-100550 特開2003−328098号公報JP 2003-328098 A 特開平8−302453号公報JP-A-8-302453 特開平7−150320号公報JP-A-7-150320 特開2006−111893号公報JP 2006-111893 A

しかし、特許文献1のスナウト浴面にセラミックボールを浮遊させる方法では、スナウト壁に付着したアッシュが直接鋼帯表面に落下することにより発生する品質欠陥を防止することが全く考慮されておらず、またセラミックボールが浴内に混入することによる欠陥発生の問題が懸念される。
特許文献2の方法では、十分な効果を奏するには、大規模なヒータと断熱材が必要であり、また、熱応力による設備破損の危険性も高いため、現実的ではない。
また、特許文献3、4の排気口を設ける方法では、確かにめっき浴面から生成されるアッシュを排気口から排出するので一定の効果は認められるが、アッシュ性品質欠陥を完全に防止するためには大きな排出流量が必要であり、ガス放出のためのコスト上昇や炉圧確保等の操業上の問題が数多く発生するため、実現が困難である。
また特許文献5の方法は、スナウト内の亜鉛蒸気を確実に排出できないため、排出されなかった亜鉛蒸気がスナウト壁に付着し、スナウト内の亜鉛蒸気に起因する品質欠陥を防止する効果が不十分である。
特許文献6、7の方法では、スナウト内雰囲気露点とアッシュ性品質欠陥発生原因であるスナウト内の亜鉛蒸気量との関係に変動幅があるために、露点と酸素濃度の制御では確実なアッシュ性品質欠陥抑制が難しいという問題がある。
However, in the method of floating ceramic balls on the snout bath surface of Patent Document 1, it is not considered at all to prevent quality defects caused by the ash adhering to the snout wall falling directly on the surface of the steel strip, In addition, there is a concern about the occurrence of defects due to ceramic balls mixed in the bath.
The method of Patent Document 2 is not realistic because a large-scale heater and a heat insulating material are necessary to obtain a sufficient effect, and the risk of equipment damage due to thermal stress is high.
Moreover, in the method of providing the exhaust port of patent document 3, 4, since the ash produced | generated from a plating bath surface is certainly discharged | emitted from an exhaust port, a fixed effect is recognized, but in order to completely prevent an ash quality defect Requires a large discharge flow rate, and many operational problems such as an increase in cost for gas discharge and securing of furnace pressure occur, which are difficult to realize.
Moreover, since the method of patent document 5 cannot discharge | emit the zinc vapor | steam in a snout reliably, the zinc vapor | steam which was not discharged adheres to a snout wall, and the effect which prevents the quality defect resulting from the zinc vapor | steam in a snout is insufficient. It is.
In the methods of Patent Documents 6 and 7, there is a fluctuation range in the relationship between the atmospheric dew point in the snout and the amount of zinc vapor in the snout that is the cause of the ash quality defect. There is a problem that it is difficult to suppress quality defects.

本発明は、上記事情に鑑みてなされたものであって、スナウト内で発生する溶融亜鉛蒸気に起因する品質欠陥の発生を抑制し、さらに不めっきの発生を防止できる連続溶融亜鉛めっき方法および装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a continuous hot dip galvanizing method and apparatus capable of suppressing the occurrence of quality defects due to hot zinc vapor generated in a snout and further preventing the occurrence of non-plating. The purpose is to provide.

本発明の要旨は、以下の通りである。
[1]鋼帯を連続熱処理炉で連続的に熱処理した後、溶融亜鉛を保持しためっき槽に導入して溶融亜鉛めっきを行う連続溶融亜鉛めっき方法において、連続熱処理炉とめっき槽の間に設けられたスナウト内雰囲気ガスをスナウト外に導いて、前記雰囲気ガス中の亜鉛蒸気量を計測し、該計測した亜鉛蒸気量が予め設定した雰囲気ガス中の亜鉛蒸気量となるように、雰囲気ガスの露点を制御することを特徴とする連続溶融亜鉛めっき方法。
The gist of the present invention is as follows.
[1] In a continuous hot dip galvanizing method in which a steel strip is continuously heat treated in a continuous heat treatment furnace and then introduced into a plating tank holding molten zinc to perform hot dip galvanization, it is provided between the continuous heat treatment furnace and the plating tank. Introducing the generated atmospheric gas in the snout outside the snout, measuring the amount of zinc vapor in the atmospheric gas, and so that the measured amount of zinc vapor is the amount of zinc vapor in the preset atmospheric gas A continuous hot dip galvanizing method characterized by controlling a dew point.

本発明によれば、スナウト内雰囲気の亜鉛蒸気量を直接計測し、露点制御することによって、スナウト内雰囲気の適正な亜鉛蒸気量を維持することができる。その結果、スナウト内で発生する溶融亜鉛蒸気に起因する品質欠陥の発生を抑制し、さらに不めっきの発生を防止して良好な外観の溶融亜鉛めっき鋼板が製造可能となる。   According to the present invention, the proper amount of zinc vapor in the snout atmosphere can be maintained by directly measuring the amount of zinc vapor in the snout atmosphere and controlling the dew point. As a result, it is possible to suppress the occurrence of quality defects due to the molten zinc vapor generated in the snout, and to prevent the occurrence of non-plating, and to produce a hot-dip galvanized steel sheet having a good appearance.

スナウト露点と亜鉛蒸気量(Zn蒸気捕集量)との関係を示すグラフである。It is a graph which shows the relationship between a snout dew point and zinc vapor quantity (Zn vapor collection amount). 従来の連続溶融亜鉛めっき装置を示す説明図である。It is explanatory drawing which shows the conventional continuous hot dip galvanizing apparatus.

本発明者らは、スナウト内雰囲気中の露点を変化させて、スナウト内雰囲気中の亜鉛蒸気量と不めっき発生率を測定した。まず、スナウト内雰囲気ガスをスナウト外に導いて、スナウト内雰囲気ガス中の亜鉛蒸気量を測定した。具体的には、吸引ポンプにより一定流量のガスをスナウト内から吸引し、スナウト内雰囲気ガスをフィルターに通過させた。フィルター通過ガス量を亜鉛蒸気量とし、フィルター面積1mで1時間あたりの亜鉛蒸気量(g/m・Hr)を求めた。そして、許容されるスナウト内雰囲気中の亜鉛蒸気量の目標値を13−17g/m・Hrに設定し、露点を制御した。 The inventors changed the dew point in the atmosphere inside the snout and measured the amount of zinc vapor and the non-plating occurrence rate in the atmosphere inside the snout. First, the atmosphere gas in the snout was led out of the snout, and the amount of zinc vapor in the atmosphere gas in the snout was measured. Specifically, a gas at a constant flow rate was sucked from the inside of the snout by the suction pump, and the atmospheric gas in the snout was passed through the filter. The filter passing gas amount and the zinc vapor amount to determine the zinc vapor per hour in filter area 1m 2 (g / m 2 · Hr). And the target value of the zinc vapor | steam amount in the atmosphere in a permitted snout was set to 13-17 g / m < 2 > * Hr, and the dew point was controlled.

スナウト内雰囲気中の露点とスナウト内雰囲気中の亜鉛蒸気量および酸化膜厚(ZnO)との関係を図1に示す。スナウト内では、亜鉛浴表面でHO+Zn=H+ZnOの平衡反応が起こっている。スナウト内の露点が高い場合、ZnOの形成が促進されて亜鉛蒸気量は抑制される。一方、露点が低い場合、ZnOの形成が不十分となるため、亜鉛蒸気量は増加する。本発明者らは、スナウト内雰囲気の露点とスナウト内雰囲気中の亜鉛蒸気量と酸化膜厚との関係は、通常の連続溶融亜鉛めっき設備では共通であるが、図1に示すような曲線の位置は、溶融亜鉛めっき設備のスナウト部構造、亜鉛浴温度等の製造条件により露点軸方向に変動し、一定ではないという知見を得た。したがって、露点の絶対値では亜鉛蒸発量を好ましい範囲に制御できない。 FIG. 1 shows the relationship between the dew point in the snout atmosphere, the amount of zinc vapor in the snout atmosphere, and the oxide film thickness (ZnO). In the snout, an equilibrium reaction of H 2 O + Zn = H 2 + ZnO occurs on the surface of the zinc bath. When the dew point in the snout is high, the formation of ZnO is promoted and the amount of zinc vapor is suppressed. On the other hand, when the dew point is low, the formation of ZnO becomes insufficient, and the amount of zinc vapor increases. The inventors of the present invention have the same relationship between the dew point of the atmosphere in the snout, the amount of zinc vapor in the atmosphere in the snout, and the oxide film thickness in a normal continuous hot dip galvanizing facility. The position was fluctuated in the dew point axis direction according to the manufacturing conditions such as the snout structure of the hot dip galvanizing equipment and the zinc bath temperature, and it was found that the position was not constant. Therefore, the absolute value of the dew point cannot control the zinc evaporation amount within a preferable range.

そこで、本発明では、実際に亜鉛蒸気量を測定して亜鉛蒸気量を好ましい範囲に制御することを特徴とする。亜鉛蒸気量を制御することにより、露点を制御することができる。すなわち、スナウト内雰囲気中の亜鉛蒸気量を下げるのには露点を上げ、亜鉛蒸気量を上げるのには露点を下げるという手法は、図1の結果から有効であるといえる。したがって、スナウト内雰囲気中の亜鉛蒸気量を適宜設定することにより、露点の制御が可能である。   Therefore, the present invention is characterized in that the amount of zinc vapor is actually measured to control the amount of zinc vapor within a preferable range. By controlling the amount of zinc vapor, the dew point can be controlled. That is, it can be said that the technique of raising the dew point to lower the amount of zinc vapor in the atmosphere inside the snout and lowering the dew point to raise the amount of zinc vapor is effective from the results of FIG. Therefore, the dew point can be controlled by appropriately setting the amount of zinc vapor in the atmosphere inside the snout.

本発明において、スナウト雰囲気ガス中に含まれる亜鉛蒸気量は、雰囲気ガス中に含まれる亜鉛濃度のことである。スナウト雰囲気ガス中に含まれる亜鉛蒸気量の測定方法としては、上述したように、吸引ポンプにより一定流量のガスをスナウト内から吸引すればよい。吸引ポンプで吸引する際は、スナウト内雰囲気ガスをフィルターに通過させることによりろ過し、ろ過後のガスを予め設定する。スナウト内雰囲気ガス中の亜鉛蒸気量は、商品によって設定値が異なる。   In the present invention, the amount of zinc vapor contained in the snout atmosphere gas is the concentration of zinc contained in the atmosphere gas. As described above, as a method for measuring the amount of zinc vapor contained in the snout atmosphere gas, a gas having a constant flow rate may be sucked from the inside of the snout by the suction pump. When sucking with a suction pump, the gas inside the snout is filtered by passing through the filter, and the filtered gas is preset. The amount of zinc vapor in the atmosphere gas in the snout varies depending on the product.

図2に示す装置を用いて、鋼帯に溶融亜鉛めっきを行った。鋼帯幅は1.5mであり、平均鋼帯処理速度は120mpmである。
スナウト内雰囲気の露点を変化させながら、スナウト内雰囲気ガスをスナウト外へ吸引し、一定量フィルターで濾過させることにより、スナウト内雰囲気中の亜鉛蒸気量を測定した。亜鉛蒸気量の測定は濾過した亜鉛を酸溶解して、分析することで求めた。具体的には、塩酸で溶解してICPで定量分析した。同時に、アッシュ性品質欠陥の発生量と不めっき発生率を測定した。商品出荷判定基準に基づき、許容範囲のアッシュ性品質欠陥の発生率と不めっき発生率が得られるスナウト内雰囲気の亜鉛蒸気量の上下限を13−17(g/m2・Hr)に設定した。
The steel strip was hot dip galvanized using the apparatus shown in FIG. The steel strip width is 1.5 m and the average steel strip processing speed is 120 mpm.
While changing the dew point of the atmosphere inside the snout, the amount of zinc vapor in the atmosphere inside the snout was measured by sucking the atmosphere gas inside the snout out of the snout and filtering it with a fixed amount filter. The measurement of the amount of zinc vapor was obtained by analyzing the dissolved zinc dissolved in acid. Specifically, it was dissolved in hydrochloric acid and quantitatively analyzed by ICP. At the same time, the amount of ash quality defects and the rate of non-plating were measured. Based on merchandise shipment criteria, the upper and lower limits of the amount of zinc vapor in the atmosphere in the snout that gives acceptable ash quality defect generation rates and non-plating generation rates were set to 13-17 (g / m 2 · Hr).

アッシュ性品質欠陥の発生率、不めっき発生率は、装入量に対する欠陥発生量の割合をそれぞれの発生率として算出した。なお、スナウト内雰囲気の露点は、露点を上げる場合は加湿器を通したNガスをスナウト内に導入することで、また、露点を下げる場合は水分を除去して乾燥させた露点が約−50℃のNガスを導入することで、制御した。 The rate of occurrence of ash quality defects and the rate of non-plating were calculated as the rate of occurrence of defects relative to the charged amount. In addition, the dew point of the atmosphere in the snout is about the dew point that is obtained by introducing N 2 gas through a humidifier into the snout when the dew point is raised, and when the dew point is lowered and the moisture is removed and dried. It was controlled by introducing N 2 gas at 50 ° C.

スナウト内雰囲気の亜鉛蒸気量を上記で設定した上下限内に維持するように露点を制御しながら約1000トンの溶融亜鉛めっき鋼板を製造した。亜鉛蒸気量を制御した本発明の場合、アッシュ性品質欠陥の発生率は0.10%、不めっき発生率は0.12%となった。スナウト内雰囲気の亜鉛量を測定することなく、スナウト内の露点を一定基準内に制御する従来技術の場合、アッシュ性品質欠陥の発生率は0.43%、不めっき発生率は0.33%となった。したがって、本発明により、アッシュ性品質欠陥の発生率、不めっき発生率共に大幅に低下した。   About 1000 tons of hot-dip galvanized steel sheet was produced while controlling the dew point so that the amount of zinc vapor in the snout atmosphere was maintained within the upper and lower limits set above. In the case of the present invention in which the amount of zinc vapor was controlled, the occurrence rate of ash quality defects was 0.10%, and the non-plating occurrence rate was 0.12%. In the case of the conventional technology in which the dew point in the snout is controlled within a certain standard without measuring the amount of zinc in the snout atmosphere, the ash quality defect occurrence rate is 0.43% and the non-plating occurrence rate is 0.33%. It became. Therefore, according to the present invention, both the occurrence rate of ash quality defects and the non-plating occurrence rate are greatly reduced.

1 スナウト
20 スナウト上壁部
30 スナウト下壁部
2 めっき槽
3 めっき浴
4 シンクロール
5 サポートロール
6 ガスワイピングノズル
7 タッチロール
S 鋼帯
DESCRIPTION OF SYMBOLS 1 Snout 20 Snout upper wall part 30 Snout lower wall part 2 Plating tank 3 Plating bath 4 Sink roll 5 Support roll 6 Gas wiping nozzle 7 Touch roll S Steel strip

Claims (1)

鋼帯を連続熱処理炉で連続的に熱処理した後、溶融亜鉛を保持しためっき槽に導入して溶融亜鉛めっきを行う連続溶融亜鉛めっき方法において、連続熱処理炉とめっき槽の間に設けられたスナウト内雰囲気ガスをスナウト外に導いて、前記雰囲気ガス中の亜鉛蒸気量を計測し、該計測した亜鉛蒸気量が予め設定した雰囲気ガス中の亜鉛蒸気量となるように、雰囲気ガスの露点を制御することを特徴とする連続溶融亜鉛めっき方法。   In a continuous hot dip galvanizing method in which a steel strip is continuously heat-treated in a continuous heat treatment furnace and then introduced into a plating tank holding molten zinc to perform hot dip galvanization, a snout provided between the continuous heat treatment furnace and the plating tank The internal atmospheric gas is led out of the snout, the amount of zinc vapor in the atmospheric gas is measured, and the dew point of the atmospheric gas is controlled so that the measured amount of zinc vapor becomes the preset amount of zinc vapor in the atmospheric gas A continuous hot dip galvanizing method.
JP2012188139A 2012-08-29 2012-08-29 Continuous hot dip galvanization method Pending JP2014043633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188139A JP2014043633A (en) 2012-08-29 2012-08-29 Continuous hot dip galvanization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188139A JP2014043633A (en) 2012-08-29 2012-08-29 Continuous hot dip galvanization method

Publications (1)

Publication Number Publication Date
JP2014043633A true JP2014043633A (en) 2014-03-13

Family

ID=50395107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188139A Pending JP2014043633A (en) 2012-08-29 2012-08-29 Continuous hot dip galvanization method

Country Status (1)

Country Link
JP (1) JP2014043633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170720A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus
JP2016204744A (en) * 2015-04-21 2016-12-08 Jfeスチール株式会社 Continuous molten metal plating method, and continuous molten metal plating facility
CN114250430A (en) * 2020-09-21 2022-03-29 宝山钢铁股份有限公司 Furnace nose inner atmosphere temperature control method and heating device beneficial to zinc ash inhibition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141755A (en) * 1984-07-30 1986-02-28 アームコ、インコーポレーテツド Control of zinc vapor in finishing method for applying molten zinc plating to iron base metal strip
JPS6141754A (en) * 1984-07-30 1986-02-28 アームコ、インコーポレーテツド Control of zinc vapor at cylinder port in applying molten zinc plating to iron base metal strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141755A (en) * 1984-07-30 1986-02-28 アームコ、インコーポレーテツド Control of zinc vapor in finishing method for applying molten zinc plating to iron base metal strip
JPS6141754A (en) * 1984-07-30 1986-02-28 アームコ、インコーポレーテツド Control of zinc vapor at cylinder port in applying molten zinc plating to iron base metal strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170720A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Continuous hot-dip metal plating method and continuous hot-dip metal plating apparatus
JP2016204744A (en) * 2015-04-21 2016-12-08 Jfeスチール株式会社 Continuous molten metal plating method, and continuous molten metal plating facility
CN107532269A (en) * 2015-04-21 2018-01-02 杰富意钢铁株式会社 Continuous molten metal method for plating and continuous molten metal plating apparatus
CN114250430A (en) * 2020-09-21 2022-03-29 宝山钢铁股份有限公司 Furnace nose inner atmosphere temperature control method and heating device beneficial to zinc ash inhibition
CN114250430B (en) * 2020-09-21 2024-01-09 宝山钢铁股份有限公司 Furnace nose internal atmosphere temperature control method and heating device beneficial to inhibiting zinc ash

Similar Documents

Publication Publication Date Title
JP5505430B2 (en) Continuous annealing furnace and continuous annealing method for steel strip
US6315829B1 (en) Apparatus for hot-dip coating a steel strip
JP5510495B2 (en) Continuous annealing furnace for steel strip, continuous annealing method, continuous hot dip galvanizing equipment and manufacturing method of hot dip galvanized steel strip
WO2013175757A1 (en) Steel strip continuous annealing furnace, steel strip continuous annealing method, continuous hot-dip galvanization equipment, and production method for hot-dip galvanized steel strip
EP2862946B1 (en) Method for continuously annealing steel strip, apparatus for continuously annealing steel strip, method for manufacturing hot-dip galvanized steel strip, and apparatus for manufacturing hot-dip galvanized steel strip
KR101953506B1 (en) Continuous hot-dip metal coating method and continuous hot-dip metal coating line
CN103556095B (en) A kind of surface is without the manufacturing method of hot dip galvanizing steel plate of strip zinc gray and fleck defect
JP2014043633A (en) Continuous hot dip galvanization method
JP5834775B2 (en) Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet
KR20150084051A (en) Facility and method for manufacturing continuous hot-dip zinc-coated steel sheet
JP2897668B2 (en) Prevention device for fume adhesion in snout of continuous hot dipping
WO2019131563A1 (en) Hot-dip galvanization method, method for production of alloyed hot-dipped galvanized steel sheet using said hot-dip galvanization method, and method for production of hot-dipped galvanized steel sheet using said hot-dip galvanization method
JPH0459955A (en) Continuous hot dip galvanizing device
JP5167895B2 (en) Method for producing hot-dip steel strip
JPH04120258A (en) Method and device for continuous hot dip galvanizing
JP2002275606A (en) Method for device for preventing sticking of dross on surface of steel strip at the inside of snout in continuous hot dip metal plating
JP2003328102A (en) Continuous galvanizing method
JP7161292B2 (en) Continuous hot dip metal plating apparatus and continuous hot dip metal plating method
JP7364092B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP2002302752A (en) Method and equipment for continuous hot-dip metal coating
JP3267214B2 (en) Continuous plating method and apparatus for zinc-based molten metal
JP3821093B2 (en) Continuous molten metal plating method and apparatus
CN110418854B (en) Method for producing hot-dip coated steel strip
JP2002327256A (en) Method and apparatus for continuous hot-dip metal plating
KR20130053085A (en) Apparatus for preventing sticking of floating matters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126