JP5834775B2 - Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet - Google Patents

Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP5834775B2
JP5834775B2 JP2011238458A JP2011238458A JP5834775B2 JP 5834775 B2 JP5834775 B2 JP 5834775B2 JP 2011238458 A JP2011238458 A JP 2011238458A JP 2011238458 A JP2011238458 A JP 2011238458A JP 5834775 B2 JP5834775 B2 JP 5834775B2
Authority
JP
Japan
Prior art keywords
snout
dew point
furnace
zone
refiner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011238458A
Other languages
Japanese (ja)
Other versions
JP2013095952A (en
Inventor
伸行 佐藤
伸行 佐藤
和樹 中里
和樹 中里
貴将 藤井
貴将 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011238458A priority Critical patent/JP5834775B2/en
Publication of JP2013095952A publication Critical patent/JP2013095952A/en
Application granted granted Critical
Publication of JP5834775B2 publication Critical patent/JP5834775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続溶融亜鉛めっき鋼板の製造設備及び製造方法に関する。   The present invention relates to a production facility and a production method for a continuous hot-dip galvanized steel sheet.

連続溶融亜鉛めっき鋼板の製造設備は、帯状鋼板である鋼帯を連続焼鈍炉で連続焼鈍した後、引続き連続焼鈍炉出側のスナウトから亜鉛めっき浴中に直送して溶融亜鉛めっきを施す設備である。連続焼鈍炉は通常、気密構造の炉内を搬送中の鋼板を高温ガス雰囲気により概ね800〜1000℃に加熱する加熱帯と、次いで低温ガス吹き付けにより概ね300〜600℃まで冷却する冷却帯とを有する。前記加熱後の鋼帯を均熱する均熱帯を前記加熱帯の後段に設置したものもある。前記加熱する前の鋼帯を予熱する予熱帯を前記加熱帯の前段に設置したものもある。   The production equipment for continuous hot-dip galvanized steel sheets is a facility that continuously anneals steel strips, which are strip-shaped steel sheets, in a continuous annealing furnace, and then directly sends them from the snout on the outlet side of the continuous annealing furnace to the galvanizing bath for hot dip galvanization. is there. A continuous annealing furnace usually includes a heating zone for heating a steel plate being conveyed in an airtight furnace to approximately 800 to 1000 ° C. in a high-temperature gas atmosphere, and then a cooling zone for cooling to approximately 300 to 600 ° C. by blowing low-temperature gas. Have. There is also one in which a soaking zone for soaking the steel strip after heating is installed at the subsequent stage of the heating zone. In some cases, a pre-tropical zone that preheats the steel strip before heating is installed in the preceding stage of the heating zone.

特許文献1には、光輝焼鈍炉(スナウトは無い)に関し、とくに新設炉の操業開始時及び補修後の再開時における立上げ所要時間(シーズニング時間)の大幅な短縮を可能とするために、炉壁の内張り耐火物と外壁鉄皮との境界部に配設した通気パイプを通じて炉内のガスを炉外に排出し、炉外には、前記排出したガスを吸引して同ガス中の不純物成分を除去して清浄化後、炉内に再供給する炉内ガスの循環装置を付帯設置することが記載されている。   Patent Document 1 relates to a bright annealing furnace (no snout). In particular, in order to make it possible to significantly shorten the startup time (seasoning time) at the start of operation of the new furnace and at the time of restart after repair, The gas inside the furnace is discharged out of the furnace through a ventilation pipe arranged at the boundary between the lining refractory and the outer wall skin, and the exhausted gas is sucked out of the furnace and the impurity component in the gas It is described that an in-furnace gas circulation device is re-supplied into the furnace after being removed and cleaned.

特許文献2には、金属帯用連続還元性雰囲気焼鈍装置(スナウトは無い)において、リファイナー(水分除去装置であり、特許文献2ではリファイニング装置と呼称)を活用して、加熱帯の前段に設置された予熱帯のガスを冷却帯に吹き込み冷却効率向上を図ったり、逆に冷却帯のガスを予熱帯に吹き込んで予熱の効率を向上させたりする技術が記載されている。   In Patent Document 2, in a continuous reducing atmosphere annealing apparatus for a metal strip (no snout), a refiner (a moisture removal apparatus, referred to as a refining apparatus in Patent Document 2) is used in front of the heating zone. Techniques are described in which installed pre-tropical gas is blown into the cooling zone to improve cooling efficiency, or conversely, cooling zone gas is blown into the pre-tropical zone to improve preheating efficiency.

特開平4−116127号公報JP-A-4-116127 特開平11−236623号公報JP 11-236623 A

連続溶融亜鉛めっき鋼板の製造設備においては、めっき性を向上させるために連続焼鈍炉内の水分を除去し、露点を低下させる必要があり、従来は、炉外に設けたリファイナーを用いて冷却帯から炉内ガスを吸引し水分除去して加熱帯へ返すことで露点を制御している。然し、この方法では、安定して高いめっき性を確保できない。その理由を以下に述べる。   In continuous hot-dip galvanized steel sheet manufacturing equipment, it is necessary to remove the moisture in the continuous annealing furnace and reduce the dew point in order to improve the plateability. Conventionally, a cooling zone using a refiner provided outside the furnace The dew point is controlled by sucking the gas in the furnace, removing the moisture, and returning it to the heating zone. However, this method cannot secure high plating properties stably. The reason is described below.

鋼材の強度向上にはSi,Mn等の添加が効果的であることが知られているが、Si,Mnは亜鉛のめっき性を阻害する成分となるため亜鉛めっき鋼板用鋼への添加には制限がある。図2は、発明者らの実験調査により得られた、めっき性を阻害する成分の表面酸化量と炉内雰囲気ガス露点の関係を示す模式図である。通常操業範囲である一般的な露点範囲では表面酸化量が多く、焼鈍温度が高温になるほど濃化が進む傾向にあるが、図2に示される通り、炉内の露点を低下させることにより、めっき性を阻害する成分の表面濃化が抑制されるため、高温焼鈍下でもめっき性を確保することが可能となる。換言すれば、一般的な露点制御範囲ではめっき性を阻害する成分の表面濃化を抑制できず、めっき性が低下する。例えば、鋼中に1.5質量%Si、または2.0質量%Mnを含む鋼板の各成分の表面濃化量と炉内の露点の関係を調査したところ、露点が−45℃以下でMn表面濃化が大きく抑制され、−50℃以下でSi表面濃化が大きく抑制されることが分った。即ち、Si、Mnの表面濃化を抑制して安定して高いめっき性を確保するためには、炉内の露点を−50℃以下に制御する必要があるが、上述の、炉外に設けたリファイナーを用いて冷却帯から炉内ガスを吸引し水分除去して加熱帯へ返す方法では、露点は−40℃程度までしか下げ得ず、安定して高いめっき性を確保するのは困難であった。   Addition of Si, Mn, etc. is known to be effective for improving the strength of steel materials. However, since Si, Mn is a component that inhibits zinc plating properties, There is a limit. FIG. 2 is a schematic diagram showing the relationship between the amount of surface oxidation of a component that inhibits plating properties and the atmospheric gas dew point obtained by the inventors' experimental investigation. In the general dew point range, which is the normal operating range, there is a large amount of surface oxidation, and as the annealing temperature becomes higher, the concentration tends to proceed, but as shown in FIG. 2, by reducing the dew point in the furnace, plating Since the surface concentration of the component that inhibits the property is suppressed, the plating property can be ensured even under high temperature annealing. In other words, in the general dew point control range, the surface concentration of the component that inhibits the plating property cannot be suppressed, and the plating property is lowered. For example, when the relationship between the surface concentration of each component of a steel sheet containing 1.5% by mass Si or 2.0% by mass Mn in steel and the dew point in the furnace was investigated, the dew point was −45 ° C. or less and Mn It was found that surface concentration was greatly suppressed, and Si surface concentration was greatly suppressed at −50 ° C. or lower. That is, in order to suppress the surface concentration of Si and Mn and to ensure stable high plating properties, it is necessary to control the dew point in the furnace to −50 ° C. or lower. In the method of using the refiner to suck the gas in the furnace from the cooling zone, remove the moisture, and return it to the heating zone, the dew point can only be lowered to about -40 ° C, and it is difficult to ensure high plating properties stably. there were.

一方、溶融亜鉛めっき浴を有する連続溶融亜鉛めっき設備の場合、スナウト内の雰囲気ガスの露点については、炉内の露点低下に随伴してスナウト内で露点低下が大きくなると溶融亜鉛が気化して鋼帯に付着し品質不良の要因となるという問題があった。
上記のように、従来の連続溶融亜鉛めっき鋼板の製造設備には、連続焼鈍炉の露点を−50℃以下に制御できず安定しためっき性の確保が困難であり、然も、炉内の露点を下げるとスナウト内で気化した溶融亜鉛が鋼帯に付着して品質不良を招くことになり、めっき製品品質とめっき性とを共に高位安定に確保することができないという課題があった。
On the other hand, in the case of a continuous hot dip galvanizing facility having a hot dip galvanizing bath, as for the dew point of the atmospheric gas in the snout, the hot dip zinc vaporizes as the dew point decreases in the snout as the dew point decreases in the furnace. There was a problem of sticking to the belt and causing quality defects.
As described above, in the conventional continuous hot dip galvanized steel sheet manufacturing equipment, the dew point of the continuous annealing furnace cannot be controlled to -50 ° C. or less, and it is difficult to ensure stable plating properties. When the temperature is lowered, the molten zinc vaporized in the snout adheres to the steel strip and causes a quality defect, and there is a problem that it is not possible to ensure both high quality and plating product quality.

発明者らは前記課題を解決するための手段について鋭意検討し、以下の要旨構成になる本発明をなした。
(1) 炉内が通材路上流側から順に、通材される帯状鋼板である鋼帯を加熱する加熱帯、均熱する均熱帯、冷却する冷却帯の全3ゾーンに区分された連続焼鈍炉を、該炉からめっき浴中への鋼帯直送用閉空間路であるスナウトにて溶融亜鉛めっき浴と直結してなる連続溶融亜鉛めっき鋼板の製造設備において、前記全3ゾーン中の少なくとも加熱帯と均熱帯に露点計と炉内ガスの吸出口及び吹込口とを設け、これらを炉外に設けた水分除去装置であるリファイナーと接続して該接続したゾーン毎に独立に前記リファイナーとのガス循環路を前記リファイナー内で合流させずに形成し、該形成したガス循環路毎に、接続したゾーンの露点計の計測値が目標露点と一致するように前記リファイナーが動作し、且つ前記スナウトに露点計と同スナウト内を加湿する加湿器とを設け、前記スナウトの露点計の計測値が該スナウトの目標露点と一致するように前記加湿器が動作する構成としたことを特徴とする連続溶融亜鉛めっき鋼板の製造設備。
(2) 前記スナウトにスナウト内ガスの吸出口及び吹込口を設け、これらを前記リファイナーと接続してスナウト内との間のガス循環路を形成すると共に前記スナウトの露点計の計測値が前記スナウトの目標露点と一致するように前記加湿器に加え前記リファイナーも動作する構成としたことを特徴とする(1)に記載の連続溶融亜鉛めっき鋼板の製造設備。
(3) 上記(1)又は(2)に記載の連続溶融亜鉛めっき鋼板の製造設備を用い、前記炉の目標露点を−50℃以下とし、且つ前記スナウトの目標露点を−35〜−10℃としてめっき操業することを特徴とする連続溶融亜鉛めっき鋼板の製造方法。
The inventors diligently studied the means for solving the above-mentioned problems and made the present invention having the following gist configuration.
(1) Continuous annealing in which the furnace is divided into all three zones: a heating zone that heats the steel strip, which is a strip-shaped steel plate to be passed through, a soaking zone that soaks, and a cooling zone that cools. In a production facility for continuous hot dip galvanized steel sheets, in which a furnace is directly connected to a hot dip galvanizing bath with a snout, which is a closed space for direct feeding of steel strips from the furnace into the plating bath, at least a total of three zones are added. In the tropics and soaking zones, a dew point meter and furnace gas inlet and outlet are connected to a refiner, which is a moisture removing device provided outside the furnace, and the refiner is connected to each of the connected zones independently. The gas circuit is formed without joining in the refiner, the refiner operates so that the measured value of the dew point meter of the connected zone matches the target dew point for each formed gas circuit, and the snout Same as dew point meter A continuous hot-dip galvanized steel sheet, wherein the humidifier is configured to operate so that a measured value of the dew point meter of the snout matches a target dew point of the snout. production equipment.
(2) The snout is provided with a gas outlet and a blow-in port for the gas inside the snout, and these are connected to the refiner to form a gas circulation path between the inside of the snout and the measured value of the dew point meter of the snout is The equipment for producing a continuous hot-dip galvanized steel sheet according to (1), wherein the refiner operates in addition to the humidifier so as to coincide with the target dew point.
(3) Using the continuous hot-dip galvanized steel sheet manufacturing equipment described in (1) or (2) above, the target dew point of the furnace is −50 ° C. or lower, and the target dew point of the snout is −35 to −10 ° C. A method for producing a continuous hot-dip galvanized steel sheet, characterized in that the plating operation is performed as

本発明によれば、めっき製品品質とめっき性とを共に高位安定に確保することができるようになる。   According to the present invention, both the quality of the plated product and the plating property can be secured with high stability.

本発明の実施形態の1例を示す模式図である。It is a schematic diagram which shows one example of embodiment of this invention. めっき性を阻害する成分の表面酸化量と炉内雰囲気ガス露点の関係を示す模式図である。It is a schematic diagram which shows the relationship between the surface oxidation amount of the component which inhibits plating property, and the atmospheric gas dew point in a furnace. 本発明の実施形態の1例(前掲図のとは別の例)を示す模式図である。It is a schematic diagram which shows one example (an example different from the previous figure) of embodiment of this invention.

本発明は、例えば図1に示すように、炉内が通材路上流側から順に、通材される帯状鋼板である鋼帯Sを加熱する加熱帯1、均熱する均熱帯2、冷却する冷却帯3の全3ゾーンに区分された連続焼鈍炉を該炉からめっき浴中への鋼帯直送用閉空間路であるスナウト4にて溶融亜鉛めっき浴5と直結してなる設備を前提とする。冷却帯3からスナウト4にかけての要所要所には異なる処理区域間の雰囲気混合を阻止するためのシールロール9が配設され、又、加熱帯1の入口には炉内への外気侵入を阻止するためのシールロール10が配設されている。冷却帯3の下流側部分にヒータを設けて過時効処理に供する場合もある。斯かる前提自体は周知慣用技術の範囲内である。   In the present invention, for example, as shown in FIG. 1, a heating zone 1 for heating a steel strip S, which is a strip-shaped steel plate to be passed through, in order from the upstream side of the feed path, a soaking zone 2 for soaking, and cooling. Assuming that the continuous annealing furnace divided into all three zones of the cooling zone 3 is directly connected to the hot dip galvanizing bath 5 by the snout 4 which is a closed space for direct feeding of the steel strip from the furnace into the plating bath. To do. Sealing rolls 9 for preventing atmospheric mixing between different processing zones are arranged at the required points from the cooling zone 3 to the snout 4 and the entrance of the heating zone 1 is prevented from entering the furnace. A seal roll 10 is provided for this purpose. There is a case where a heater is provided in the downstream portion of the cooling zone 3 to be used for overaging treatment. Such premise itself is within the scope of well-known conventional techniques.

この前提の下、本発明では、前記全3ゾーン中の少なくとも加熱帯1、均熱帯2の計2ゾーンに露点計6と炉内ガスの吸出口7及び吹込口8とを設け、これらを炉外に設けた水分除去装置であるリファイナー11と接続して該接続したゾーン毎に独立に前記リファイナー11とのガス循環路12,13を形成し、該形成したガス循環路毎に接続したゾーンの露点計の計測値が目標露点と一致するように前記リファイナー11が動作し、且つ前記スナウト4に露点計6と同スナウト4内を加湿する加湿器14とを設け、前記スナウト4の露点計6の計測値が該スナウト4の目標露点と一致するように前記加湿器14が動作するする構成とした。 Under this assumption, in the present invention, it provided the least be pressurized tropical 1 in all three zones, the dew 6 and furnace gas to a total of two zones of the soaking zone 2 and a suction outlet 7 and blow port 8, These are connected to a refiner 11 which is a moisture removing device provided outside the furnace, and gas circulation paths 12 and 13 are formed with the refiner 11 independently for each connected zone, and connected to each formed gas circulation path. The refiner 11 operates so that the measured value of the dew point meter in the zone that matches the target dew point, and the dew point meter 6 and the humidifier 14 for humidifying the inside of the snout 4 are provided in the snout 4. The humidifier 14 is configured to operate so that the measured value of the dew point meter 6 matches the target dew point of the snout 4.

なお、図1では、吸出口7と吸込口8を加熱帯1、均熱帯2に各々1対ずつ設けた場合を示したが、複数設置した方が露点は調整しやすいため、吸出口7と吸込口8は、2対以上を設けてもよく、目標とする露点を達成するため適宜調整すればよい。
相異なるゾーンに接続されたガス循環路12,13は互いに独立であり、リファイナー11内での合流もない。リファイナー11は、各ガス循環路毎に、そのガス循環路に接続するゾーンの露点計測値が目標露点と一致するように、そのガス循環路内ガスの水分を除去する動作を行う。一方、加湿器14は、スナウト内の露点計測値が目標露点(炉内ゾーンの目標露点よりは高めである)と一致するように、スナウト内に加湿を施す(水分を供給する)動作を行う。
In addition, although the case where the suction port 7 and the suction port 8 are each provided in a pair in the heating zone 1 and the soaking zone 2 is shown in FIG. 1, the dew point is easier to adjust if a plurality of installations are provided. Two or more pairs of suction ports 8 may be provided, and may be appropriately adjusted to achieve a target dew point.
The gas circulation paths 12 and 13 connected to different zones are independent from each other, and there is no merging in the refiner 11. For each gas circuit, the refiner 11 performs an operation of removing moisture from the gas in the gas circuit so that the dew point measurement value of the zone connected to the gas circuit matches the target dew point. On the other hand, the humidifier 14 performs an operation of humidifying (supplying moisture) in the snout so that the measured dew point value in the snout matches the target dew point (which is higher than the target dew point in the furnace zone). .

このように、炉内の区分されたゾーンからガスを一部吸出して水分除去後同じゾーンに吹込むと共に、スナウト内を加湿器で加湿する構成とした事により、炉内露点は−50℃以下の低露点に安定制御可能となり、且つ、炉内露点とスナウト内露点とは互いに独立に制御可能となり、以て、溶融亜鉛めっき鋼板品質とめっき性とを共に高位安定に確保することができるようになる。   In this way, a part of the gas is sucked out from the divided zone in the furnace and blown into the same zone after removing moisture, and the inside of the snout is humidified with a humidifier, so that the dew point in the furnace is −50 ° C. or less. The dew point in the furnace and the dew point in the snout can be controlled independently of each other so that both hot-dip galvanized steel sheet quality and plateability can be secured at a high level. become.

露点計6、吸出口7、吹込口8を設ける炉内ゾーンは、全3ゾーン中の少なくとも1ゾーンでよいが、好ましくは均熱帯2である。均熱帯2は、他の2ゾーンに比べ炉温が高くてSi,Miの表面濃化が生じ易いゾーンであるため、このゾーンに対して優先的に露点計、吸出口、吹込口を設けて低露点制御を行うのが、めっき性高位安定化のために好適である。尚、無論ながら、最も好ましくは、全3ゾーンの全てに設ける事である。   The in-furnace zone in which the dew point meter 6, the suction port 7, and the inlet 8 are provided may be at least one zone among all three zones, but is preferably the soaking zone 2. Soaking zone 2 is a zone where the furnace temperature is higher than the other two zones and the surface concentration of Si and Mi is likely to occur. Therefore, a dew point meter, a suction port and a blow-in port are preferentially provided for this zone. The low dew point control is suitable for high plating stability. Of course, most preferably, it is provided in all three zones.

又、図3に示す例は、図1の例に加え、スナウト4にスナウト内ガスの吸出口7及び吹込口8を設け、これらを前記リファイナー11と接続してスナウト内との間のガス循環路15を形成すると共に前記スナウトの露点計の計測値が前記スナウトの目標露点となるように前記加湿器14に加え前記リファイナー11も作動する構成とした例である。これによれば、スナウト内露点がより高精度に制御可能となり、スナウト内での亜鉛付着をより効果的に防止でき、めっき製品品質の高位安定性がより一層向上する。   Further, in the example shown in FIG. 3, in addition to the example of FIG. 1, the snout 4 is provided with a gas outlet 7 and an air inlet 8 for the gas in the snout, and these are connected to the refiner 11 to circulate the gas between the inside of the snout. In this example, the path 15 is formed and the refiner 11 is operated in addition to the humidifier 14 so that the measured value of the dew point meter of the snout becomes the target dew point of the snout. According to this, the dew point in the snout can be controlled with higher accuracy, the zinc adhesion in the snout can be more effectively prevented, and the high stability of the plated product quality is further improved.

本発明の設備を用いためっき操業においては、前述のようにSi,Mnの表面濃化を抑制するために、炉内の目標露点を−50℃以下に設定するのがよい。斯かる低露点制御は本発明の設備を用いるが故に達成され、以て、Si,Mnの表面濃化が有効に防止でき、めっき性を高位安定に確保できる。一方、スナウト内の露点は、本発明の設備を用いる事で炉内とは独立に制御できる。スナウト内の目標露点は、気化した亜鉛がスナウト内で鋼帯に付着するのを効果的に防止するために、−35℃以上とするのがよい。但し、高くし過ぎると、浴面に酸化亜鉛膜が生成され、鋼帯に付着する点で不利なため、−10℃以下とするのがよい。   In the plating operation using the equipment of the present invention, the target dew point in the furnace is preferably set to −50 ° C. or lower in order to suppress the surface concentration of Si and Mn as described above. Such low dew point control is achieved by using the equipment of the present invention, so that surface concentration of Si and Mn can be effectively prevented, and the plating property can be secured at a high level. On the other hand, the dew point in the snout can be controlled independently of the inside of the furnace by using the equipment of the present invention. The target dew point in the snout is preferably −35 ° C. or higher in order to effectively prevent vaporized zinc from adhering to the steel strip in the snout. However, if it is too high, a zinc oxide film is formed on the bath surface, which is disadvantageous in that it adheres to the steel strip.

連続溶融亜鉛めっき鋼板の製造ラインに、図3に示した例と同様の実施形態で本発明を適用した実施例について述べる。このラインでは、従来、炉外に設けたリファイナーを用いて冷却帯から炉内ガスを吸引し水分除去して加熱帯へ返す方法で炉内露点を制御していたが、炉内の到達露点は−40℃程度が下限であり、又、スナウト内は露点制御を行っていなかった。そのためか、Si、Mnを添加した高強度鋼板のめっき操業では、不めっき、及び、めっき製品の表面性状不良を十分に抑制できるまでには至っていなかった。これに対し、実施例では、均熱帯の露点を−50℃以下に安定制御でき、且つ、スナウト内露点を−35〜−10℃に安定制御でき、その結果、従来を100とした対従来比で、不めっきの発生頻度が10へ、めっき製品の表面性状不良の発生頻度が20へと、夫々格段に低下し、本発明の効果が顕著に現れた。   An example in which the present invention is applied to the continuous hot-dip galvanized steel sheet production line in the same embodiment as the example shown in FIG. 3 will be described. In this line, conventionally, the dew point in the furnace was controlled by using a refiner provided outside the furnace to suck the gas in the furnace from the cooling zone, remove the moisture, and return it to the heating zone. The lower limit is about −40 ° C., and the dew point is not controlled in the snout. For this reason, in the plating operation of high-strength steel sheets to which Si and Mn are added, it has not yet been possible to sufficiently suppress non-plating and surface property defects of plated products. In contrast, in the examples, the soaking zone dew point can be stably controlled to −50 ° C. or lower, and the dew point in the snout can be stably controlled to −35 ° C. to −10 ° C. Thus, the occurrence frequency of non-plating decreased to 10 and the occurrence frequency of defective surface properties of the plated product decreased to 20, respectively, and the effects of the present invention were remarkably exhibited.

1 加熱帯
2 均熱帯
3 冷却帯
4 スナウト
5 溶融亜鉛めっき浴
6 露点計
7 吸出口
8 吹込口
9,10 シールロール
11 リファイナー
12,13,15 ガス循環路
14 加湿器
S 鋼帯
DESCRIPTION OF SYMBOLS 1 Heating zone 2 Soaking zone 3 Cooling zone 4 Snout 5 Hot dip galvanizing bath 6 Dew point meter 7 Suction port 8 Inlet 9 and 10 Seal roll 11 Refiner 12, 13, 15 Gas circulation path 14 Humidifier S Steel strip

Claims (3)

炉内が通材路上流側から順に、通材される帯状鋼板である鋼帯を加熱する加熱帯、均熱する均熱帯、冷却する冷却帯の全3ゾーンに区分された連続焼鈍炉を、該炉からめっき浴中への鋼帯直送用閉空間路であるスナウトにて溶融亜鉛めっき浴と直結してなる連続溶融亜鉛めっき鋼板の製造設備において、前記全3ゾーン中の少なくとも加熱帯と均熱帯に露点計と炉内ガスの吸出口及び吹込口とを設け、これらを炉外に設けた水分除去装置であるリファイナーと接続して該接続したゾーン毎に独立に前記リファイナーとのガス循環路を前記リファイナー内で合流させずに形成し、該形成したガス循環路毎に、接続したゾーンの露点計の計測値が目標露点と一致するように前記リファイナーが動作し、且つ前記スナウトに露点計と同スナウト内を加湿する加湿器とを設け、前記スナウトの露点計の計測値が該スナウトの目標露点と一致するように前記加湿器が動作する構成としたことを特徴とする連続溶融亜鉛めっき鋼板の製造設備。 A continuous annealing furnace divided into all three zones: a heating zone that heats a steel strip that is a strip-shaped steel plate to be passed through, a soaking zone that soaks, and a cooling zone that cools, in order from the upstream side of the feeding path. In a continuous hot-dip galvanized steel sheet manufacturing facility directly connected to a hot-dip galvanizing bath with a snout, which is a closed space for direct feeding of the steel strip from the furnace to the plating bath, at least the heating zone in all three zones is uniform. In the tropics , a dew point meter and a furnace gas inlet and outlet are connected to a refiner which is a moisture removing device provided outside the furnace, and a gas circulation path to the refiner independently for each connected zone. was formed without merging in the refiner, for each gas circulation path and the formation, the measured value of the dew-point meter zone and connected to the refiner is operated so as to coincide with the target dew point, and dew-point instrument the snout And in the same snout And a humidifier for humidity provided, manufacturing equipment of a continuous hot-dip galvanized steel sheet which measured value of dew-point instrument of the snout is characterized in that a configuration in which the humidifier is operated so as to coincide with the target dew point of the snout. 前記スナウトにスナウト内ガスの吸出口及び吹込口を設け、これらを前記リファイナーと接続してスナウト内との間のガス循環路を形成すると共に前記スナウトの露点計の計測値が前記スナウトの目標露点と一致するように前記加湿器に加え前記リファイナーも動作する構成としたことを特徴とする請求項1に記載の連続溶融亜鉛めっき鋼板の製造設備。   The snout is provided with a gas outlet and a gas inlet for the gas inside the snout, and these are connected to the refiner to form a gas circulation path between the inside of the snout and the measured value of the dew point meter of the snout is the target dew point of the snout. The equipment for producing a continuous hot-dip galvanized steel sheet according to claim 1, wherein the refiner is operated in addition to the humidifier so as to match the above. 請求項1又は2に記載の連続溶融亜鉛めっき鋼板の製造設備を用い、前記炉の目標露点を−50℃以下とし、且つ前記スナウトの目標露点を−35〜−10℃としてめっき操業することを特徴とする連続溶融亜鉛めっき鋼板の製造方法。   Plating operation using the continuous hot-dip galvanized steel sheet manufacturing facility according to claim 1 or 2, wherein the target dew point of the furnace is -50 ° C or lower, and the target dew point of the snout is -35 to -10 ° C. A method for producing a continuous hot-dip galvanized steel sheet.
JP2011238458A 2011-10-31 2011-10-31 Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet Active JP5834775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238458A JP5834775B2 (en) 2011-10-31 2011-10-31 Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238458A JP5834775B2 (en) 2011-10-31 2011-10-31 Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2013095952A JP2013095952A (en) 2013-05-20
JP5834775B2 true JP5834775B2 (en) 2015-12-24

Family

ID=48618231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238458A Active JP5834775B2 (en) 2011-10-31 2011-10-31 Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5834775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270092A1 (en) 2021-06-25 2022-12-29 Jfeスチール株式会社 Steel sheet non-plating defect prediction method, steel sheet defect reduction method, method for manufacturing hot-dip galvanized steel sheet, and method for generating steel sheet non-plating defect prediction model

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6008007B2 (en) * 2015-03-23 2016-10-19 Jfeスチール株式会社 Continuous hot dip galvanizing apparatus and method for producing hot dip galvanized steel sheet
CN109680232A (en) * 2018-08-30 2019-04-26 上海智林机械设备有限公司 A kind of zinc pot furnace nose
CN109735784A (en) * 2019-03-01 2019-05-10 安徽省庐峰镀锌有限公司 A kind of environment-friendly type hot galvanizing cooling device
EP4353861A1 (en) 2021-07-14 2024-04-17 JFE Steel Corporation Method for producing hot-dip galvanized steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841889B2 (en) * 1991-02-21 1998-12-24 住友金属工業株式会社 Manufacturing method of alloyed hot-dip galvanized steel sheet
JPH09324210A (en) * 1996-06-07 1997-12-16 Kawasaki Steel Corp Production of hot dip galvanized steel sheet and equipment therefor
JPH10176225A (en) * 1996-12-13 1998-06-30 Daido Steel Co Ltd Continuous annealing furnace of metallic strip
JP3933047B2 (en) * 2002-03-06 2007-06-20 Jfeスチール株式会社 Continuous molten metal plating method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270092A1 (en) 2021-06-25 2022-12-29 Jfeスチール株式会社 Steel sheet non-plating defect prediction method, steel sheet defect reduction method, method for manufacturing hot-dip galvanized steel sheet, and method for generating steel sheet non-plating defect prediction model
KR20230174250A (en) 2021-06-25 2023-12-27 제이에프이 스틸 가부시키가이샤 A method for predicting sub-plating defects in steel sheets, a method for reducing defects in steel sheets, a method for manufacturing hot-dip galvanized steel sheets, and a method for generating a prediction model for sub-plating defects in steel sheets.

Also Published As

Publication number Publication date
JP2013095952A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5505430B2 (en) Continuous annealing furnace and continuous annealing method for steel strip
JP5834775B2 (en) Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet
WO2012081719A1 (en) Method for continuously annealing steel strip and hot-dip galvanization method
WO2013175757A1 (en) Steel strip continuous annealing furnace, steel strip continuous annealing method, continuous hot-dip galvanization equipment, and production method for hot-dip galvanized steel strip
EP2862946B1 (en) Method for continuously annealing steel strip, apparatus for continuously annealing steel strip, method for manufacturing hot-dip galvanized steel strip, and apparatus for manufacturing hot-dip galvanized steel strip
JP5884748B2 (en) Steel strip continuous annealing equipment and continuous hot dip galvanizing equipment
JP5510495B2 (en) Continuous annealing furnace for steel strip, continuous annealing method, continuous hot dip galvanizing equipment and manufacturing method of hot dip galvanized steel strip
WO2014087452A1 (en) Facility and method for manufacturing continuous hot-dip zinc-coated steel sheet
US11193182B2 (en) Method and furnace installation for heat treating metal strip
KR20170016467A (en) Method of producing galvannealed steel sheet
JPWO2013150710A1 (en) Continuous hot dip galvanizing equipment
US10106867B2 (en) Method for continuously annealing steel strip and method for manufacturing galvanized steel strip
JPWO2019123953A1 (en) Method for producing hot-dip galvanized steel sheet and continuous hot-dip galvanizing apparatus
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
JP2003342645A (en) In-line annealing furnace for continuous hot-dip galvanizing
JP5733121B2 (en) In-furnace atmosphere adjustment method for continuous heat treatment furnace
JP2014043633A (en) Continuous hot dip galvanization method
JP2008157541A (en) Flat panel heat treatment furnace
JP2008240013A (en) Display method of cooling pattern
TWI470085B (en) Method of controlling atmosphere in a continuous annealing furnace
JP2004204279A (en) Method and apparatus for continuous hot dip metal coating

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130716

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250