WO2016169076A1 - 一种带楔形间隙的柱式冷却管束 - Google Patents
一种带楔形间隙的柱式冷却管束 Download PDFInfo
- Publication number
- WO2016169076A1 WO2016169076A1 PCT/CN2015/079210 CN2015079210W WO2016169076A1 WO 2016169076 A1 WO2016169076 A1 WO 2016169076A1 CN 2015079210 W CN2015079210 W CN 2015079210W WO 2016169076 A1 WO2016169076 A1 WO 2016169076A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- tube bundle
- bundle
- wedge
- column
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0426—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B1/00—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
- F28B1/06—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C1/00—Direct-contact trickle coolers, e.g. cooling towers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/003—Multiple wall conduits, e.g. for leak detection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/003—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C1/00—Direct-contact trickle coolers, e.g. cooling towers
- F28C2001/006—Systems comprising cooling towers, e.g. for recooling a cooling medium
Definitions
- the invention belongs to the field of indirect air cooling of fire/nuclear power plants, and particularly relates to a column cooling tube bundle with a wedge gap.
- Natural ventilation indirect air cooling tower with excellent water-saving and energy-saving characteristics of zero evaporation water consumption and zero fan power consumption, has gradually become the main cooling device for circulating water of thermal power units in drought-deficient areas such as Northwest China and North China.
- the natural ventilation indirect air cooling tower hereinafter referred to as the intercooling tower, is composed of a radiator and a tower tube, wherein the radiator is a finned heat pipe bundle.
- the finned heat pipe bundles may be vertically arranged along the intercooling tower in a circumferential direction to form a triangular cooling unit, or may be horizontally arranged under the tower to form an A-frame cooling unit.
- the triangular cooling unit is composed of two cooling columns connected in parallel, each cooling column is composed of three to four cooling tube bundles in series, and the conventional cooling tube bundle has a number of base tubes of 4 Or 6 finned tube bundles.
- the A-frame cooling unit is composed of two cooling columns connected in parallel, and each cooling column includes 2 to 4 cooling tube bundles connected in series.
- the circulating water flows in the finned heat pipe bundle of the intercooling tower to transfer heat to the ambient air between the fins in a convective heat transfer manner.
- the existing research shows that the natural wind of the environment directly affects the aerodynamic field in the bottom air inlet area and the top exit area of the intercooling tower, which reduces the heat transfer performance of the tower side cooling tube bundle and deteriorates the overall cooling performance of the intercooling tower.
- the heat sink 1 composed of a triangular cooling unit is arranged vertically on the outside of the air inlet of the tower 2 for the existing indoor cooling station heat sink with a triangular cooling unit arranged vertically.
- FIG. 2 it is a schematic diagram of the arrangement of the overall cross section of the existing intercooling tower cooling triangular heat sink. It can be seen from Fig. 2 that along the circumferential direction of the half-column of the intercooling tower, the radiator can be divided into five cooling segments, and the whole tower has a total of ten segments.
- the cooling segments are sequentially marked clockwise: the first segment 3, covering the fan angle ⁇ ranging from 0° to 36°; and the second segment 4, covering the fan angle ⁇ ranging from 36° ⁇ 72°; the third segment 5, covering the fan angle ⁇ ranges from 72° to 108°; the fourth segment 6, covering the fan angle ⁇ ranging from 108° to 144°; the fifth segment 7, covering The fan angle ⁇ ranges from 144° to 180°.
- FIG 3 is a schematic cross-sectional structural view of a triangular cooling unit composed of a conventional cooling column, including a first cooling column 8 and a second cooling column 9 having the same structure, and the apexes of one side of the two cooling columns intersect at an angle of 40°. Between ⁇ 60°; the non-intersecting sides of the two cooling columns open to form the main air inlet 10 of the triangular cooling unit, and the louvers are arranged at the air inlet, and the louvers play a role of controlling the wind, which can prevent the cooling column bundle from freezing and freezing in the winter.
- the ambient air 11 can almost naturally flow into the triangular cooling unit along the radial direction of the intercooling tower, and simultaneously flows through the first cooling column 8 and the second cooling column 9 to complete the heat exchange.
- Air flow field junction in a triangular cooling unit The structure is symmetric about the center line of the cooling unit, and the first cooling column 8 and the second cooling column 9 have the same cooling performance.
- the finned tube near the air inlet side of the louver first exchanges heat with the inflowing air, so that the air temperature corresponding to the downstream finned tube rises.
- the fin tube that is far from the side of the air inlet of the blind is insufficiently cooled.
- FIG. 4 shows the cross-sectional aerodynamic field of the triangular cooling unit of the third section of the intercooling tower side of the 4 m/s environment. Taking the influence of the crosswind of 4m/s environment as an example, as can be seen from Fig.
- the ambient crosswind of 4m/s causes the circumferential air velocity of the tower side to be large, so that the air inlet of the tower side triangular cooling unit, that is, the inlet wind direction of the louver, deviates from cooling.
- the unit symmetry plane has a certain angle ⁇ d, and causes a large vortex on the air inlet side of the first cooling column 8 of the cooling unit, which will reduce the ventilation amount of the first cooling column 8, and weaken the cooling performance of the first cooling column 8, ultimately resulting in The outlet water temperature of the first cooling column 8 is significantly increased.
- the adverse effects of the low-speed vortex region in the tower-side triangular cooling unit are reduced, the cooling unit ventilation amount is increased, the low-speed vortex region in the cooling unit is reduced or even eliminated, and the cooling column is cooled corresponding to the cooling tube bundle.
- the performance, and in turn the overall cooling performance of the triangular cooling unit and the intercooling tower, has become an urgent problem to be solved.
- the present invention provides a column cooling tube bundle with a wedge gap for an intercooling tower.
- the air inlet region of the cooling unit of the intercooling tower is optimized by the wedge gap at the end wall of one side of the column cooling tube bundle, and the air at the wedge gap of one end wall of the column cooling tube bundle flows under the environment side wind condition.
- the air flow at the wedge-shaped gap of the side wall of the column cooling tube bundle can enhance the internal ventilation of the cooling tube bundle, increase the average heat transfer temperature difference between the two sides of the cooling tube bundle water, and enhance the heat transfer performance of the cooling tube bundle.
- the present invention adopts the following technical solutions:
- a column cooling tube bundle with a wedge-shaped gap includes a fin-shaped heat pipe bundle in which two ends intersect at a set angle, and the other end is opened, and a wedge-shaped gap is formed between the two fin-shaped heat pipe bundles.
- the two finned heat pipe bundles are symmetrically arranged.
- one side fin type heat pipe bundle is a water side pipe bundle
- the other side fin type heat pipe bundle is a water side pipe bundle
- one side fin type heat dissipating tube bundle is a first single water tube bundle
- the other side fin type heat dissipating tube bundle is a second single water tube bundle
- angle ⁇ of the two finned heat pipe bundles is between 0° and 10°.
- the angle ⁇ of the two finned heat pipe bundles may preferably be 3°, 4°, 5°, respectively. 6°, 7°, 8°, 9°, 10°.
- the intersection point of the intersecting side end walls of the two finned heat pipe bundles is taken as an origin, and a distance l is extended along the finned heat pipe bundle toward the open side end wall, from the origin to the finned heat pipe bundle
- the distance between the open side walls is L, and the two finned heat pipe bundles share the fins in 0-l, satisfying Referring to the position of the ambient wind speed and the cooling unit of the column cooling tube bundle relative to the ambient wind direction, the common fin distance l may preferably be
- tubes in the finned heat pipe bundle are arranged in a staggered arrangement or in a row.
- the tube in the finned heat pipe bundle may be an n-row tube, wherein 4 ⁇ n ⁇ 1, n is an integer.
- louvers are provided at the entrance of the open side end wall wedge gap of the two finned heat pipe bundles.
- the present invention has the following beneficial effects:
- the wind can strengthen the internal ventilation of the cooling tube bundle by increasing the cooling at the wedge-shaped gap of the open side end wall of the column cooling tube bundle.
- the column cooling duct bundle opens the side end wall wedge gap to bring the wind, Directly impacting the inner space of the cooling unit on the tower side, thereby effectively reducing or even eliminating the adverse effects of low-speed air vortex in the cooling unit on the tower side, thereby improving the overall cooling performance of the cooling column and the cooling unit on the cooling unit side;
- the column cooling tube bundle Winding at the wedge-shaped gap of the open side wall can strengthen the internal ventilation of the cooling tube bundle, increase the average heat transfer temperature difference between the two sides of the cooling tube bundle, and achieve the enhancement of the heat transfer performance of the cooling tube bundle;
- the wedge-shaped gap at the side wall of the column cooling duct bundle can avoid the formation of low-speed air vortex in the cooling unit, and can also strengthen the inside of the cooling tube bundle. Ventilation increases the average heat transfer temperature difference between the two sides of the cooling tube bundle to enhance the heat transfer performance of the cooling tube bundle.
- Figure 1 shows the intercooling tower for the existing intercooled power station
- FIG. 2 is a schematic view showing the arrangement of an overall cross section of a conventional intercooling tower cooling triangular heat sink
- FIG. 3 is a schematic view showing the cooling triangle structure of the existing intercooling tower
- FIG. 4 is a schematic structural view of a cooling triangular flow field of a third section of a tower side of an existing intercooling tower at a design wind speed of 4 m/s;
- Figure 5 is a column cooling tube bundle with a wedge gap
- Figure 6 is a fin-type heat pipe bundle tube arranged in a row
- Figure 7 is a staggered arrangement of finned heat pipe bundle tubes
- Figure 8 is a vertically arranged intercooling tower cooling unit
- Figure 9 is a horizontally arranged intercooling tower cooling unit
- radiator 2. tower, 3. first sector, 4. second sector, 5. third sector, 6. fourth sector, 7. fifth sector, 8. a cooling column, 9. a second cooling column, 10. a main air inlet, 11. air, 12. a wedge gap, 13. a first finned heat pipe bundle, 14. a second finned heat pipe bundle, 15. a water supply Side tube bundle, 16. Lower water side tube bundle, 17. First single water tube bundle, 18. Second single water tube bundle, 19. First new cooling column 20. Second new cooling column.
- a column cooling tube bundle with a wedge gap includes two fin-type heat dissipation tube bundles at one end, that is, a first fin type heat dissipation tube bundle 13 and a second fin type heat dissipation tube bundle 14, two The finned heat pipe bundles intersect at a set angle ⁇ , and the angle ⁇ is 0° to 10°.
- the first finned heat pipe bundle 13 and the second finned heat pipe bundle 14 have the same structure, one side end wall intersects, the other side end wall is opened, and a wedge-shaped gap 12 is formed between the two fin type heat pipe bundles.
- the first finned heat pipe bundle 13 and the second finned heat pipe bundle 14 have an intersection of one side as an origin and a certain distance l to the other side, and the first finned heat pipe bundle 13 and the 0-l
- the second finned heat pipe bundle 14 shares the fins, wherein The distance from the origin to the other end of the finned heat pipe bundle is L.
- the first finned heat pipe bundle 13 and the second finned heat pipe bundle 14 may be the in-line bundle shown in FIG. 6, or may be the staggered bundle shown in FIG. 7, and the number of rows of the single finned heat bundle. Is n, 4 ⁇ n ⁇ 1.
- Embodiment 1 Application of a cooling tower triangular cooling unit arranged vertically outside a radiator tower
- Figure 8 is a cross section of a vertically arranged intercooling tower triangular cooling unit.
- the vertically arranged triangular cooling unit is composed of a first novel cooling column 19 and a second novel cooling column 20 which are arranged at two ends and intersect at an angle ⁇ , and the angle ⁇ between the two cooling columns is 46°.
- the first novel cooling column 19 and the second novel cooling column 20 are each composed of four column cooling tube bundles with wedge-shaped gaps.
- the column cooling tube bundle with a wedge gap is composed of two fin-shaped heat pipe bundles intersecting and joining one another. The number of rows of the two finned heat pipe tubes is 2.
- the intercooling tower triangular cooling unit in which the column cooling tube bundle with the wedge gap is located is opposite to the ambient crosswind.
- the position of the wind direction optimizes the wedge angle ⁇ between the two finned heat pipe bundles constituting the column cooling tube bundle and the common fin distance l:
- the two finned heat pipe bundles of the column cooling tube bundle with the wedge gap respectively constitute the first new cooling column 19 of the corresponding triangular cooling unit and the upper water side tube bundle 15 and the lower water side tube bundle 16 of the second new cooling column 20;
- the upper water side tube bundle 15 is outside the cooling unit, and the lower water side tube bundle 16 is inside the cooling unit.
- the non-intersecting side of the first new cooling column 19 and the second new cooling column 20 are flared to form a main air inlet 10 of the triangular cooling unit, and a louver is provided at the air inlet for adjusting the air intake of the cooling unit.
- the blinds remain fully open during the summer and partially open or closed during the cooler seasons.
- the air 11 enters the triangular cooling unit from the main air inlet between the first new cooling column 19 and the second new cooling column 20, and also enters through the wedge gap 12 at the side wall of the column cooling tube that constitutes the cooling column.
- a blind window is installed at the wedge gap 12 for adjusting the amount of air intake. From Fig. 8, it can be seen that the main air inlet of the cooling unit provides the main air flow required for circulating water cooling for the two cooling columns, and the wind is provided at the wedge-shaped gap 12 of the column cooling side of the column cooling tube bundle. It plays a role in improving the air flow field structure in the cooling unit and enhancing the heat transfer of the cooling tube bundle.
- the heat exchange between the water-cooling side tube bundle 16 and the upper-water side tube bundle 16 is not large, so the temperature difference between the heat transfer and the upper-side tube bundle 15 is large.
- Increasing the average heat transfer temperature difference of the cooling tube bundle serves to enhance the heat transfer performance of the cooling tube bundle.
- the open side end wall wedge gap 12 of the column cooling tube bundle constituting the cooling unit side cooling column flows air to directly impact the internal space of the cooling unit, thereby being
- the effective reduction or even elimination of the low-speed air flow region in the cooling unit on the tower side improves the cooling performance of the cooling column and the cooling unit as a whole.
- the column cooling duct bundle opens the side end wall wedge gap 12 to wind, which can strengthen the internal ventilation of the cooling tube bundle.
- the average heat transfer temperature difference between the two sides of the cooling tube bundle water is increased, and the heat transfer performance of the cooling tube bundle is enhanced.
- Embodiment 2 Application of Intercooling Tower A-Frame Cooling Unit Horizontally Arranged at the Bottom of Radiator Tower
- Figure 9 is a horizontally arranged intercooling tower A-frame cooling unit, which is composed of two first ends intersecting at a certain angle ⁇ to form a first new cooling column 19 and a second new cooling column 20, the angle between the two cooling columns ⁇ is 46°.
- Both the first novel cooling column 19 and the second novel cooling column 20 are composed of two cascaded column cooling tube bundles with wedge-shaped gaps.
- the column cooling tube bundle with wedge-shaped gap is composed of two fin-type heat-dissipating tube bundles on the top side, and the number of rows of the two fin-type heat-dissipating tubes is 2.
- Two finned heat pipe bundles in the column cooling tube bundle respectively constitute a first single water pipe bundle 17 and a first single water pipe bundle 18 of the first novel cooling column 19 and the second novel cooling column 20, the first single The water tube bundle 17 is on the outside and the second single-water tube bundle 18 is on the inside.
- the non-intersecting side of the first new cooling column 19 and the second new cooling column 20 are flared to form a main air inlet 10 of the A-frame cooling unit, and a louver is provided at the air inlet for adjusting the air intake of the cooling unit.
- the blinds remain fully open during the summer and partially open or closed during the cooler seasons.
- the air 11 enters the A-frame cooling unit from the main air inlet between the first new cooling column 19 and the second new cooling column 20, and also passes through the wedge at the side wall of the column cooling tube that constitutes the cooling column.
- a blind is installed at the wedge gap 12 for adjusting the air volume.
- the column cooling tube bundle opens the side end wall wedge-shaped gap 12 to wind, can avoid the formation of low-speed air vortex in the cooling unit, and can also strengthen the internal ventilation of the cooling tube bundle, and increase the average heat transfer on both sides of the cooling tube bundle water and gas.
- the temperature difference is used to enhance the heat transfer performance of the cooling tube bundle.
- a column cooling tube bundle with a wedge gap of the present invention through which the wedge cooling tube bundle opens the wedge-shaped portion at the side end wall
- the gap can optimize the air inlet area of the cooling tower cooling unit, and effectively reduce the low-speed air vortex area in the cooling unit under the ambient crosswind condition, thereby avoiding the cooling performance of the cooling column on one side of the cooling unit.
- the ambient air always flows sequentially due to the fact that the outer end wall of the cooling column composed of the finned heat pipe bundle has no wedge-shaped air inlet in the presence or absence of ambient natural wind. Through the finned heat pipe bundle.
- the column cooling tube bundle with wedge gap of the present invention can introduce part of fresh air into the downstream finned heat pipe bundle and optimize the air flow field structure in the cooling unit. Therefore, the column cooling tube bundle with the wedge gap can effectively improve the average heat transfer temperature difference of the cooling tube bundle, improve the air flow field structure of the cooling unit, improve the cooling performance of the cooling unit side cooling column and the cooling unit, and finally realize the between The cooling performance of the cold tower is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种带楔形间隙(12)的柱式冷却管束,包括两个一端相交成设定角度的翅片式散热管束(13,14),另一端张开,两个翅片式散热管束(13,14)之间形成楔形间隙(12);以两散热管束(13,14)的交点为原点,向张开侧延伸一定距离l,则在0-l内两散热管束(13,14)共用翅片,其中l小于管束两侧间距的一半。通过柱式冷却管束楔形间隙(12)处来风,可优化冷却单元空气流场结构:在空气(11)入流垂直冷却单元百叶窗时,可将新风直接引入冷却管束的内部,提高冷却管束平均传热温差,强化冷却管束传热;在空气(11)倾斜入流时,楔形间隙(12)处来风冲击冷却单元内部空间,可减小冷却单元内的低速空气涡流区域,改善提高冷却单元内一侧管束及冷却单元整体的冷却性能,最终实现间冷塔冷却性能的提高。
Description
本发明属于火/核电站间接空冷领域,特别涉及一种带楔形间隙的柱式冷却管束。
自然通风间接空冷塔,具有零蒸发水耗和零风机电耗的优良节水节能特性,已逐渐成为我国西北、华北等干旱缺水地区火电机组循环水的主要冷却装置。自然通风间接空冷塔,以下简称间冷塔,由散热器和塔筒组成,其中散热器为翅片式散热管束。翅片式散热管束可在塔筒下方沿间冷塔竖置布置周向组合成三角形冷却单元,也可在塔筒下方水平布置组合成A形框架冷却单元。
在散热器塔外竖直布置的间冷塔中,三角形冷却单元由两个冷却柱并联组成,每个冷却柱又由3~4个冷却管束串联组成,常规冷却管束为基管排数为4或6的翅片管束。在散热器塔内水平布置的间冷塔中,A型框架冷却单元由两个冷却柱并联组成,每个冷却柱都包括2~4个串联的冷却管束。
循环水在间冷塔的翅片式散热管束内流动,以对流传热的方式,将热量传递给翅片间的环境空气。现有研究表明,环境自然风直接影响间冷塔塔底进风口区域和塔顶出口区域空气动力场,降低了塔侧冷却管束的传热性能,恶化了间冷塔整体冷却性能。
如图1所示,为现有间冷电站用散热器呈三角形冷却单元竖置布置的间冷塔,三角形冷却单元所组成的散热器1在塔筒2的进风口外侧竖直布置。如图2所示,为现有间冷塔冷却三角型散热器的整体横剖面的布置方式示意图。由图2可知,沿间冷塔半塔周向,散热器可分为五个冷却扇段,整塔共十个扇段。沿间冷塔周向,顺时针依次标记各冷却扇段:第一扇段3,涵盖的扇角θ范围为0°~36°;第二扇段4,涵盖的扇角θ范围为36°~72°;第三扇段5,涵盖的扇角θ范围为72°~108°;第四扇段6,涵盖的扇角θ范围为108°~144°;第五扇段7,涵盖的扇角θ范围为144°~180°。
如图3为现有冷却柱所组成的三角形冷却单元的横剖面结构示意图,包含结构相同的第一冷却柱8和第二冷却柱9,两冷却柱一侧端顶点相交,夹角在40°~60°之间;两冷却柱非相交侧张开形成三角形冷却单元的主要进风口10,并在进风口处设置百叶窗,百叶窗起到控风作用,可在冬季防止冷却柱管束冻结冻裂。
无环境自然风影响时,环境空气11几乎全部能够沿间冷塔径向自然流动进入三角形冷却单元,并同时流经第一冷却柱8和第二冷却柱9,完成换热。三角形冷却单元内空气流场结
构关于冷却单元中心线对称,第一冷却柱8和第二冷却柱9冷却性能相同。但对于一个冷却柱中同一冷却管束中的多排翅片管束而言,其靠近百叶窗进风口侧的翅片管先与流入空气进行换热,使其下游翅片管对应的空气温度升高,导致远离百叶窗进风口侧的翅片管散热不足。
而间冷塔实际运行时,环境自然风总是存在的,而且对间冷塔冷却性能产生不利影响。为保证间冷塔冷却性能,通常间冷塔设计环境侧风风速取为4m/s或6m/s。如图4为4m/s环境侧风下间冷塔塔侧第三扇段部分三角形冷却单元的横截面空气动力场。以4m/s环境侧风的影响为例,由图4可知,4m/s的环境侧风造成塔侧空气周向速度较大,使得塔侧三角形冷却单元空气入口即百叶窗处进风风向偏离冷却单元对称面一定角度θd,并在冷却单元的第一冷却柱8进风侧引起较大漩涡,这必将降低第一冷却柱8的通风量,弱化第一冷却柱8的冷却性能,最终造成第一冷却柱8的出塔水温明显升高。
因此,在环境侧风条件下,减小塔侧三角形冷却单元内低速涡流区域的不利影响,增加冷却单元通风量,减小乃至消除冷却单元内的低速涡流区域,强化冷却柱对应冷却管束的冷却性能,并进而提高三角形冷却单元和间冷塔整体冷却性能,已成为亟须解决的问题。
发明内容
本发明为克服上述现有技术的不足,提供一种间冷塔用的带楔形间隙的柱式冷却管束。通过该柱式冷却管束一侧端壁处的楔形间隙,优化间冷塔冷却单元的空气入口区域,在环境侧风条件下,由柱式冷却管束一侧端壁楔形间隙处的空气来流,直接冲击冷却单元内部空间,从而可有效减小乃至消除塔侧冷却单元内的空气低速流动区域,实现冷却单元一侧冷却柱和冷却单元整体冷却性能的提高;在无环境侧风影响时,该柱式冷却管束一侧端壁楔形间隙处的空气来流可强化冷却管束内部通风,增大冷却管束水气两侧的平均传热温差,实现冷却管束传热性能的强化。
为实现上述目的,本发明采用如下技术方案:
一种带楔形间隙的柱式冷却管束,包括两个一端相交成设定角度的翅片式散热管束,另一端张开,两个翅片式散热管束之间形成楔形间隙。
进一步地,两个所述的翅片式散热管束对称设置。
进一步地,两个所述的翅片式散热管束在竖直布置时,一侧翅片式散热管束为上水侧管束,另一侧翅片式散热管束为下水侧管束。
进一步地,两个所述的翅片式散热管束在水平布置时,一侧翅片式散热管束为第一单水程管束,另一侧翅片式散热管束为第二单水程管束。
进一步地,两个所述的翅片式散热管束的夹角β在0°-10°之间。
进一步地,参考环境侧风风速及柱式冷却管束所在冷却单元相对于环境风向的位置,两个所述的翅片式散热管束的夹角β依次可优选为3°、4°、5°、6°、7°、8°、9°、10°。
进一步地,以两个所述的翅片式散热管束的相交侧端壁交点为原点,沿着翅片式散热管束向张开侧端壁延伸一定距离l,从原点到翅片式散热管束张开侧端壁的距离为L,两个翅片式散热管束在0-l内共用翅片,满足参考环境侧风风速及柱式冷却管束所在冷却单元相对于环境风向的位置,共用翅片距离l可依次优选为
进一步地,翅片式散热管束中的排管采用错列布置或者顺列布置。
进一步地,翅片式散热管束中的排管可为n排管,其中4≥n≥1,n为整数。
在具体设置时,在所述的两个翅片式散热管束的张开侧端壁楔形间隙入口处设置百叶窗。
与现有技术相比,本发明具有以下有益效果:
1)对于散热器呈三角形塔外竖置布置的间冷塔,在无环境侧风条件下,该柱式冷却管束张开侧端壁楔形间隙处来风可强化冷却管束内部通风,增大冷却管束水气两侧的平均传热温差,实现冷却管束传热性能的强化;
2)对于散热器呈三角形塔外竖置布置的间冷塔,在环境侧风条件下,对于间冷塔塔侧冷却单元,该柱式冷却管束张开侧端壁楔形间隙处来风,可直接冲击塔侧冷却单元内部空间,从而有效减小乃至消除塔侧冷却单元内低速空气涡流的不利影响,进而实现冷却单元一侧冷却柱和冷却单元整体冷却性能的提高;
3)对于散热器呈三角形塔外竖置布置的间冷塔,在环境侧风条件下,对于间冷塔迎风侧和背风侧的冷却单元,在空气流入冷却单元时,该柱式冷却管束张开侧端壁楔形间隙处来风,可强化冷却管束内部通风,增大冷却管束水气两侧的平均传热温差,实现冷却管束传热性能的强化;
4)对于散热器呈A型框架塔底水平布置的间冷塔,柱式冷却管束张开侧端壁处的楔形间隙,可避免冷却单元内低速空气涡流的形成,同时也可强化冷却管束内部通风,增大冷却管束水气两侧的平均传热温差,实现冷却管束传热性能的强化。
5)组成该带楔形间隙的柱式冷却管束的两个翅片式散热管束,在其张开侧形成小尺寸的楔形间隙,在不同风向环境侧风的作用下,楔形间隙两侧的翅片式散热管束可在一定程度上互起挡风和导风作用,有效抑制了楔形间隙小尺寸空间内漩涡的生成,保证了该带楔形间隙的柱式冷却管束在不同风向环境侧风下的高效性。
图1为现有间冷电站用间冷塔;
图2为现有间冷塔冷却三角型散热器的整体横剖面的布置方式示意图;
图3为现有间冷塔冷却三角结构示意图;
图4为在4m/s设计风速下现有间冷塔的塔侧第三扇段的冷却三角流场结构示意图;
图5为一种带楔形间隙的柱式冷却管束;
图6为翅片式散热管束排管顺列排列方式;
图7为翅片式散热管束排管错列排列方式;
图8为竖直布置的间冷塔冷却单元;
图9为水平布置的间冷塔冷却单元;
其中:1.散热器,2.塔筒,3.第一扇段,4.第二扇段,5.第三扇段,6.第四扇段,7.第五扇段,8.第一冷却柱,9.第二冷却柱,10.主要进风口,11.空气,12.楔形间隙,13.第一翅片式散热管束,14.第二翅片式散热管束,15.上水侧管束,16.下水侧管束,17.第一单水程管束,18.第二单水程管束,19.第一新型冷却柱20.第二新型冷却柱。
下面结合附图与实施例对本发明作进一步说明。
如图5所示,一种带楔形间隙的柱式冷却管束,包括两个一端相交的翅片式散热管束,即第一翅片式散热管束13和第二翅片式散热管束14,两个翅片式散热管束相交成设定的角度β,夹角β为0°~10°。第一翅片式散热管束13和第二翅片式散热管束14的结构相同,一侧端壁相交,另一侧端壁张开,两个翅片式散热管束之间形成楔形间隙12。
第一翅片式散热管束13和第二翅片式散热管束14,以其一侧交点为原点,向另一侧延伸一定距离l,则在0-l内第一翅片式散热管束13和第二翅片式散热管束14共用翅片,其中从原点到翅片式散热管束另一侧端点的距离为L。
第一翅片式散热管束13和第二翅片式散热管束14可为图6所示的顺列管束,也可为图7所示的错列管束,单个翅片式散热管束的管排数为n,4≥n≥1。
实施例1在散热器塔外竖置布置的间冷塔三角形冷却单元中的应用
图8为竖直布置的间冷塔三角形冷却单元的横剖面。竖直布置的三角形冷却单元,由两个一端相交、呈一定夹角α布置得第一新型冷却柱19和第二新型冷却柱20组成,两个冷却柱的夹角α为46°。第一新型冷却柱19和第二新型冷却柱20均由4个该带楔形间隙的柱式冷却管束串联组成。该带楔形间隙的柱式冷却管束由两个翅片式散热管束一侧相交并接组成,
两个翅片式散热管束管排数均为2。在环境侧风风速为4m/s、侧风风向由扇角θ=0°指向θ=180°时,根据该带楔形间隙的柱式冷却管束所在的间冷塔三角形冷却单元相对于环境侧风风向的位置,对组成该柱式冷却管束的两翅片式散热管束间的楔形夹角β及其共用翅片距离l进行优化:
该带楔形间隙的柱式冷却管束中的两个翅片式散热管束,分别组成相应三角形冷却单元第一新型冷却柱19和第二新型冷却柱20的上水侧管束15和下水侧管束16;上水侧管束15在冷却单元外侧,下水侧管束16在冷却单元内侧。第一新型冷却柱19和第二新型冷却柱20非相交侧张开形成三角形冷却单元的主要进风口10,并在进风口处设置百叶窗,用来调节冷却单元进风量。百叶窗在夏季保持全开,在较冷季节部分开启或关闭。
空气11除从第一新型冷却柱19和第二新型冷却柱20之间的主要进风口进入三角冷却单元,也通过组成冷却柱的该柱式冷却管束张开侧端壁处的楔形间隙12进入,楔形间隙12处安装百叶窗,用于调节进风量。从图8中,可以看出该冷却单元的主要进风口,为两个冷却柱提供循环水冷却所需的主要空气流量,而柱式冷却管束张开侧端壁楔形间隙12处来风则可起到改善冷却单元内空气流场结构、强化冷却管束传热的作用。
在无环境自然风时,由于柱式冷却管束楔形间隙12处来流空气,未经冷却柱下水侧管束16的换热,因此其与上水侧管束15之间的传热温差较大,可提高冷却管束的平均传热温差,起到强化冷却管束传热性能的作用。
在环境自然风条件下,对于塔侧冷却单元,构成冷却单元一侧冷却柱的该柱式冷却管束的张开侧端壁楔形间隙12处来流空气,可直接冲击冷却单元内部空间,从而可有效减小乃至消除塔侧冷却单元内的空气低速流动区域,实现冷却单元一侧冷却柱和冷却单元整体冷却性能的提高。
在环境侧风条件下,对于间冷塔迎风侧和背风侧的冷却单元,在空气流入冷却单元时,该柱式冷却管束张开侧端壁楔形间隙12处来风,可强化冷却管束内部通风,增大冷却管束水气两侧的平均传热温差,实现冷却管束传热性能的强化。
实施例2在散热器塔底水平布置的间冷塔A型框架冷却单元中的应用
图9为水平布置的间冷塔A型框架冷却单元,由两个一端相交、呈一定夹角α布置得第一新型冷却柱19和第二新型冷却柱20组成,两个冷却柱的夹角α为46°。第一新型冷却柱19和第二新型冷却柱20均由2个该带楔形间隙的柱式冷却管束串联组成。该带楔形间隙的柱式冷却管束由两个翅片式散热管束顶侧并接组成,两个翅片式散热管束管排数均为2。在环境侧风风速为4m/s时,根据该带楔形间隙的柱式冷却管束所在的间冷塔A型框架冷却单元相对于环境侧风风向的位置,对组成该柱式冷却管束的两翅片式散热管束间的楔形夹角β
及其共用翅片距离l进行优化:
该柱式冷却管束中的两个翅片式散热管束,分别组成第一新型冷却柱19和第二新型冷却柱20的第一单水程管束17和第一单水程管束18,第一单水程管束17在外侧,第二单水程管束18在内侧。第一新型冷却柱19和第二新型冷却柱20非相交侧张开形成A型框架冷却单元的主要进风口10,并在进风口处设置百叶窗,用来调节冷却单元进风量。百叶窗在夏季保持全开,在较冷季节部分开启或关闭。
空气11除从第一新型冷却柱19和第二新型冷却柱20之间的主要进风口进入该A型框架冷却单元,也通过组成冷却柱的该柱式冷却管束张开侧端壁处的楔形间隙12处进入,楔形间隙12处安装百叶窗,用于调节风量。从图9中,可以看出该冷却单元的主要进风口10,为两个柱式冷却管束提供循环水冷却所需的主要空气流量,而柱式冷却管束张开侧端壁处楔形间隙12处的来风则可起到改善冷却单元内空气流场结构、强化冷却管束传热的作用。
该柱式冷却管束张开侧端壁楔形间隙12处来风,可避免冷却单元内低速空气涡流的形成,同时也可强化冷却管束的内部通风,增大冷却管束水气两侧的平均传热温差,实现冷却管束传热性能的强化。
本发明的一种带楔形间隙的柱式冷却管束,通过该柱式冷却管束张开侧端壁处的楔形间
隙,可优化间冷塔冷却单元的空气入口区域,在环境侧风条件下有效减小冷却单元内的低速空气涡流区域,避免冷却单元内一侧冷却柱冷却性能的降低。同时,在传统间冷塔的柱式冷却管束中,不管在有无环境自然风的条件下,由于翅片式散热管束所组成的冷却柱外侧端壁无楔形空气入口,环境空气总是依次流经翅片式散热管束。而本发明的带楔形间隙的柱式冷却管束,则可将部分新鲜空气引入下游翅片式散热管束,并优化冷却单元内空气流场结构。由此,该带楔形间隙的柱式冷却管束可有效提高冷却管束水气平均传热温差,改善冷却单元空气流场结构,提高冷却单元一侧冷却柱及冷却单元整体冷却性能,并最终实现间冷塔冷却性能的提高。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
- 一种带楔形间隙的柱式冷却管束,其特征在于,包括两个一端相交成设定角度的翅片式散热管束,另一端张开,两个翅片式散热管束之间形成楔形间隙。
- 如权利要求1所述的一种带楔形间隙的柱式冷却管束,其特征在于,两个所述的翅片式散热管束对称设置。
- 如权利要求1所述的一种带楔形间隙的柱式冷却管束,其特征在于,两个所述的翅片式散热管束在竖直布置时,一侧翅片式散热管束为上水侧管束,另一侧翅片式散热管束为下水侧管束。
- 如权利要求1所述的一种带楔形间隙的柱式冷却管束,其特征在于,两个所述的翅片式散热管束在水平布置时,一侧翅片式散热管束为第一单水程管束,另一侧翅片式散热管束为第二单水程管束。
- 如权利要求1所述的一种带楔形间隙的柱式冷却管束,其特征在于,两个所述的翅片式散热管束的夹角在0°-10°之间。
- 如权利要求5所述一种带楔形间隙的柱式冷却管束,其特征在于,两个所述的翅片式散热管束的夹角,参考环境侧风风速及柱式冷却管束所在冷却单元相对于环境风向的位置,选取3°、4°、5°、6°、7°、8°、9°或10°中的任意值。
- 如权利要求1所述的一种带楔形间隙的柱式冷却管束,其特征在于,所述翅片式散热管束中的排管采用错列布置或者顺列布置。
- 如权利要求1所述的一种带楔形间隙的柱式冷却管束,其特征在于,所述翅片式散热管束中的排管可为n排管,其中4≥n≥1,n为整数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/568,788 US10408551B2 (en) | 2015-04-23 | 2015-05-18 | Columnar cooling tube bundle with wedge-shaped gap |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520258395.5 | 2015-04-23 | ||
CN201520258395.5U CN204574905U (zh) | 2015-04-23 | 2015-04-23 | 一种带楔形间隙的柱式冷却管束 |
CN201510201859.3A CN104776745B (zh) | 2015-04-23 | 2015-04-23 | 一种带楔形间隙的柱式冷却管束 |
CN201510201859.3 | 2015-04-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016169076A1 true WO2016169076A1 (zh) | 2016-10-27 |
Family
ID=57144585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/079210 WO2016169076A1 (zh) | 2015-04-23 | 2015-05-18 | 一种带楔形间隙的柱式冷却管束 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10408551B2 (zh) |
WO (1) | WO2016169076A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016169076A1 (zh) * | 2015-04-23 | 2016-10-27 | 赵元宾 | 一种带楔形间隙的柱式冷却管束 |
CN113624028B (zh) * | 2021-09-09 | 2023-05-30 | 西安热工研究院有限公司 | 一种提升直接空冷机组夏季运行真空的系统及运行方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2457648A1 (de) * | 1973-12-08 | 1975-06-12 | Gkn Birwelco Ltd | Waermetauscheinheit, waermetauschelement und kuehlturm |
CN202329263U (zh) * | 2011-09-15 | 2012-07-11 | 成都深蓝高新技术发展有限公司 | 空气冷却凝汽装置 |
CN103424007A (zh) * | 2012-05-23 | 2013-12-04 | Spx冷却技术有限公司 | 模块化空气冷却式冷凝器装置及方法 |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2205292A (en) * | 1939-01-05 | 1940-06-18 | Gen Electric | Heat exchanger unit |
US2608388A (en) * | 1948-12-23 | 1952-08-26 | Griscom Russell Co | Box support for fin tubing |
US3212288A (en) * | 1961-03-24 | 1965-10-19 | Heil Quaker Corp | Heat exchanger with condensate collector |
GB1141831A (en) * | 1965-02-23 | 1969-02-05 | Central Electr Generat Board | Improvements in or relating to cooling towers |
US3338052A (en) * | 1965-10-22 | 1967-08-29 | Westinghouse Electric Corp | High recovery condenser |
US3384165A (en) * | 1966-02-03 | 1968-05-21 | Du Pont | Heat exchanger |
DE1601127B2 (de) * | 1967-02-08 | 1974-08-08 | Gkn Birwelco Ltd., Aston, Birmingham, Warwickshire (Grossbritannien) | Kühlanlage mit einem mit natürlichem Zug arbeitenden Kühlturm |
DE1776130A1 (de) * | 1968-09-25 | 1970-10-01 | Borsig Gmbh | Luftgekuehlter Kondensator |
US3915223A (en) * | 1970-09-22 | 1975-10-28 | Siemens Ag | Steam power installation having a cooling tower-air condensation apparatus |
GB1370321A (en) * | 1971-02-11 | 1974-10-16 | Gkn Birwelco Ltd | Steam condensers |
US4202405A (en) * | 1972-09-25 | 1980-05-13 | Hudson Products Corporation | Air cooled condenser |
GB1437824A (en) * | 1973-12-08 | 1976-06-03 | Gkn Birwelco Ltd | Heat exchanger assemblies |
DE2405999C3 (de) * | 1974-02-08 | 1981-06-04 | GEA Luftkühlergesellschaft Happel GmbH & Co KG, 4630 Bochum | Naturzug-Trockenkühlturm |
US3918518A (en) * | 1974-03-15 | 1975-11-11 | Hudson Engineering Corp | Atmospheric heat exchangers |
US3942588A (en) * | 1974-11-04 | 1976-03-09 | The Lummus Company | Cooling tower |
LU71376A1 (zh) * | 1974-11-27 | 1976-09-06 | ||
FR2386652A1 (fr) * | 1977-04-06 | 1978-11-03 | Nord France Entr Gle Const Bet | Procede pour fabriquer et eriger des elements unitaires de construction |
US4168742A (en) * | 1978-03-27 | 1979-09-25 | Hudson Products Corporation | Tube bundle |
US4243095A (en) * | 1979-02-15 | 1981-01-06 | The Lummus Company | Cooling tower |
USD255155S (en) * | 1979-03-07 | 1980-05-27 | Meurer Charles L | Curved tube settler module section |
IT1135516B (it) * | 1981-02-18 | 1986-08-27 | Nuovo Pignone Spa | Condensatore perfezionato di vapore con raffreddamento ad aria |
GB2097524B (en) * | 1981-04-23 | 1984-08-15 | Lummus Co | Dry cooling tower |
DE3325054A1 (de) * | 1983-07-12 | 1985-01-24 | Balcke-Dürr AG, 4030 Ratingen | Zwangsbelueftete kondensationsanlage |
DE3441514A1 (de) * | 1984-11-14 | 1986-05-15 | Balcke-Dürr AG, 4030 Ratingen | Naturzug-kuehlturm |
CH671825A5 (zh) * | 1985-03-15 | 1989-09-29 | Allenspach Norbert | |
US4926931A (en) * | 1988-11-14 | 1990-05-22 | Larinoff Michael W | Freeze protected, air-cooled vacuum steam condensers |
DE4202069A1 (de) * | 1992-01-25 | 1993-07-29 | Balcke Duerr Ag | Naturzug-kuehlturm |
US6588499B1 (en) * | 1998-11-13 | 2003-07-08 | Pacificorp | Air ejector vacuum control valve |
EP2034137A1 (de) * | 2007-01-30 | 2009-03-11 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie dafür ausgelegte Gas- und Dampfturbinenanlage |
US20100263840A1 (en) * | 2009-04-20 | 2010-10-21 | Research Cottrell Dry Cooling, Inc. | Turbine exhaust condenser |
US9395127B2 (en) * | 2009-05-04 | 2016-07-19 | Spx Dry Cooling Usa Llc | Indirect dry cooling tower apparatus and method |
BR112014000879A2 (pt) * | 2011-07-15 | 2017-02-21 | Univ Stellenbosch | deflegmador |
HUP1200021A2 (en) * | 2012-01-12 | 2013-09-30 | Gea Egi Energiagazdalkodasi Zrt | Cooling system |
CA2870750A1 (en) * | 2012-04-16 | 2013-10-24 | Evapco, Inc. | Apparatus and method for connecting air cooled condenser heat exchanger coils to steam distribution manifold |
US20150345166A1 (en) * | 2013-05-28 | 2015-12-03 | Spx Cooling Technologies, Inc. | Modular Air Cooled Condenser Apparatus and Method |
WO2016169076A1 (zh) * | 2015-04-23 | 2016-10-27 | 赵元宾 | 一种带楔形间隙的柱式冷却管束 |
US10161683B2 (en) * | 2015-08-20 | 2018-12-25 | Holtec International | Dry cooling system for powerplants |
WO2017031494A1 (en) * | 2015-08-20 | 2017-02-23 | Holtec International | Dry cooling system for powerplants |
US10024600B2 (en) * | 2016-06-21 | 2018-07-17 | Evapco, Inc. | Mini-tube air cooled industrial steam condenser |
CN107560484B (zh) * | 2016-06-30 | 2020-05-19 | 浙江盾安热工科技有限公司 | 连接件和微通道换热器 |
-
2015
- 2015-05-18 WO PCT/CN2015/079210 patent/WO2016169076A1/zh active Application Filing
- 2015-05-18 US US15/568,788 patent/US10408551B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2457648A1 (de) * | 1973-12-08 | 1975-06-12 | Gkn Birwelco Ltd | Waermetauscheinheit, waermetauschelement und kuehlturm |
CN202329263U (zh) * | 2011-09-15 | 2012-07-11 | 成都深蓝高新技术发展有限公司 | 空气冷却凝汽装置 |
CN103424007A (zh) * | 2012-05-23 | 2013-12-04 | Spx冷却技术有限公司 | 模块化空气冷却式冷凝器装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180128558A1 (en) | 2018-05-10 |
US10408551B2 (en) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2604462C2 (ru) | Система охлаждения | |
CN106438017A (zh) | 多流程叉流式水冷中冷器 | |
WO2016169076A1 (zh) | 一种带楔形间隙的柱式冷却管束 | |
CN103474889A (zh) | 一种户内变电站通风系统装置 | |
CN206001753U (zh) | 翅片管式风冷冷凝器 | |
CN107478074B (zh) | 间冷塔用冷却结构 | |
CN204574905U (zh) | 一种带楔形间隙的柱式冷却管束 | |
CN207317559U (zh) | 一种具有空气诱导作用的翅片管束散热器 | |
CN206459530U (zh) | 一种防冻型高温冷水表冷器 | |
CN104596346A (zh) | 一种间冷塔散热冷却三角的气侧均流装置 | |
CN104654837B (zh) | 呈等边三角形排列的v型垂直布置翅片管束空冷散热器 | |
CN212692674U (zh) | 一种带有减温喷嘴的空冷塔进风优化装置 | |
CN207540065U (zh) | 发电厂间接空冷系统的百叶窗调风装置 | |
CN203445477U (zh) | 一种户内变电站通风系统装置 | |
CN104697356B (zh) | 一种带有斜置冷却三角的间接冷却塔 | |
CN204616267U (zh) | 高压变频器辅助水冷散热系统 | |
CN214095610U (zh) | 一种可实现三角空间气侧自整流的冷却三角单元 | |
CN111397432B (zh) | 一种可变角度旋转的间接空冷防冻导风模块组 | |
CN107388844A (zh) | 一种具有空气诱导作用的翅片管束散热器 | |
CN204718436U (zh) | 垂直布置于空冷塔周围的v型翅片管束空冷散热器结构 | |
CN204418742U (zh) | 一种间冷塔用可气侧自均流的分柱防冻式冷却单元 | |
CN112284157A (zh) | 一种可实现三角空间气侧自整流的冷却三角单元 | |
CN104613807B (zh) | 一种间冷塔竖直三角型散热器的气侧均流系统 | |
CN204787886U (zh) | 利用寒冷气流进行盐水降温的空冷装置 | |
CN220153322U (zh) | 一种节能空冷器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15889565 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15568788 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15889565 Country of ref document: EP Kind code of ref document: A1 |