WO2016167104A1 - 近視進行抑制用コンタクトレンズならびにその設計方法および製造方法 - Google Patents

近視進行抑制用コンタクトレンズならびにその設計方法および製造方法 Download PDF

Info

Publication number
WO2016167104A1
WO2016167104A1 PCT/JP2016/059802 JP2016059802W WO2016167104A1 WO 2016167104 A1 WO2016167104 A1 WO 2016167104A1 JP 2016059802 W JP2016059802 W JP 2016059802W WO 2016167104 A1 WO2016167104 A1 WO 2016167104A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact lens
power
region
myopia progression
adjustment
Prior art date
Application number
PCT/JP2016/059802
Other languages
English (en)
French (fr)
Inventor
不二門 尚
朝樹 洲崎
充彦 中田
幸久 阪井
Original Assignee
国立大学法人大阪大学
株式会社メニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 株式会社メニコン filed Critical 国立大学法人大阪大学
Priority to CN201680021482.6A priority Critical patent/CN107533241A/zh
Priority to KR1020177027470A priority patent/KR102522801B1/ko
Priority to EP16779895.8A priority patent/EP3285109A4/en
Priority to SG11201708386TA priority patent/SG11201708386TA/en
Priority to US15/251,884 priority patent/US20160370602A1/en
Publication of WO2016167104A1 publication Critical patent/WO2016167104A1/ja
Priority to HK18108140.2A priority patent/HK1248828A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/04Lenses comprising decentered structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses

Definitions

  • the present invention relates to a contact lens having a myopia progression inhibitory effect used to suppress the progression of myopia in the human eye, and in particular, the myopia progression inhibitory effect that the present inventor has newly found.
  • the present invention relates to a novel method for designing a contact lens for suppressing myopia progression based on the obtained optical and physiological mechanisms.
  • myopia in the human eye not only causes inconvenience in daily life, but also increases the risk of possessing lesions such as retinal detachment and glaucoma as myopia increases. Particularly in recent years, the prevalence of myopia has increased, so the social demand for myopia progression suppression technology has also increased.
  • the former contact lens for suppressing myopia progression based on the theory of off-axis aberrations causes a hyperopic focus error in incident light tilted with respect to the optical axis direction in myopic eyes with a long ocular length. This is based on the idea that it causes the progression of myopia. Therefore, by setting a predetermined addition power (Add) to the incident light inclined with respect to the optical axis direction, and returning the focal position having the far-sighted focal error outside the optical axis shifted from the retina to the front of the retina. It is intended to suppress myopia progression due to further growth of the axial length.
  • Add addition power
  • a contact lens for suppressing myopia progression based on the latter adjustment lag theory is an incomplete adjustment amount (adjustment stimulus and adjustment stimulus) generated to minimize the adjustment amount to the extent that the human eye is not aware of image blur when focusing.
  • the adjustment lag which is the difference in adjustment response, causes myopia progression due to hyperextension of the axial length as a hyperopic focus error.
  • the focal position having the hyperopic focus error on the optical axis is reduced or eliminated and brought closer to the retina, so that the length of the axial axis is increased. It tries to suppress myopia progression due to further growth.
  • the former myopia progression suppression contact lens based on the off-axis aberration theory takes about + 2.0D (diopter) to correct the hyperopic focus error in the peripheral part of the retina when the lens displacement on the cornea is taken into account.
  • a high addition power is required.
  • QOV quality of appearance
  • the light condensing rate on the retina is lowered and a myopic focus error is likely to occur during far vision.
  • Sankaridurg et al. P. Sankaridurg et al. Decrese inRate of Myopia Progression with a Contact Lens Designed to Reduce Relative Peripheral Hyperopia: One-Year Results.
  • the present inventors have conducted research on the provision of contact lenses for suppressing myopia progression based on the latter adjustment lag theory, and as a result, there is an unexpected conclusion that the myopia progression suppression action itself based on the adjustment lag theory was erroneous. I came to get. Although the specific facts will be described later with experimental results, conventionally, the adjustment lag on the optical axis of the eye that occurs during near vision can be suppressed by setting an additional power on the contact lens, thereby enabling hyperopia. Although it was thought that it was possible to suppress the overextension of the axial length due to sexual focus error, the adjustment lag on the optical axis of the eye that occurs during near vision can be adjusted even if the additional power is set on the contact lens. I learned the new fact that it cannot be suppressed significantly.
  • the present inventor has found a new optical and physiological mechanism for obtaining a myopia progression inhibitory effect, and has also confirmed it through experiments. Based on this, the present invention relating to a novel method for designing a contact lens for suppressing myopia progression, which has not been heretofore, has been completed.
  • the present invention has been made in the background of the above-mentioned circumstances, and the problem to be solved is a contact lens having a myopia progression suppression ability based on the mechanism of the myopia progression suppression effect newly found by the present inventor.
  • the object is to provide a design method and a manufacturing method, and a novel contact lens for suppressing myopia progression.
  • the present invention relating to a novel design method for a contact lens for suppressing the progression of myopia is characterized by the improvement of aberrations off the optical axis and the adjustment on the optical axis with respect to the correction power necessary for realizing proper correction.
  • a method of designing a contact lens for suppressing myopia progression that provides a correction region.
  • the present invention relating to a novel method for manufacturing a contact lens for suppressing myopia progression is characterized in that the correction power of the appropriate correction region set in accordance with the method for designing a contact lens for suppressing myopia according to the present invention described above. And a lens front-rear surface shape that realizes the additional power of the accommodation tension relief region, and a contact lens having such a lens front-rear surface shape is manufactured.
  • the feature of the present invention relating to a novel contact lens for suppressing myopia progression is that it is necessary to realize proper correction without improving aberrations off the optical axis and adjusting lag on the optical axis.
  • An adjustment tension alleviation area set with a maximum value of +0.25 to +0.75 diopters is provided as an additional power that can relieve the adjustment tension with respect to a correct correction power, and such an additional power is set at least on the optical center.
  • There is a contact lens for suppressing myopia progression provided with an appropriate correction area.
  • the appropriate correction region set in the central portion for example, the appropriate correction region set in the central portion, the constant addition power region provided with a predetermined radial width in the outer peripheral portion of the optical portion, A mode in which a gradual addition power region that gradually changes from the appropriate correction region toward the constant addition power region is provided, and the adjustment tension relaxation region is configured by the constant addition power region and the gradual addition power region.
  • the appropriate correction region set in the central portion the constant addition power region provided with a predetermined radial width in the outer peripheral portion of the optical portion
  • the gradually added power region is set to 0 mm ⁇ r where r is a radial dimension from the optical center.
  • a mode in which the addition power is set within the range of ⁇ 3.5 mm and the addition power at the outermost peripheral portion of the gradually changing power addition area is set to +0.25 to +0.75 diopter is preferably employed.
  • the present invention presents a new optical and physiological mechanism for the suppression of myopia progression instead of the myopia progression suppression action based on the conventional adjustment lag theory that was proposed as a desktop theory, and was devised by the present inventor. This is based on what can be confirmed by the experimental method. And, according to the design method according to the present invention, an effective myopia progression suppression contact lens capable of presenting myopia progression suppression ability theoretically and experimentally even in a situation where the myopia progression suppression action based on the adjustment lag theory is denied. Can be designed while ensuring a good quality of appearance (QOV) during wearing.
  • QOV quality of appearance
  • the manufacturing method according to the present invention it is possible to manufacture a contact lens having both an effective myopia suppression ability and a good QOV when worn with the optical characteristics obtained by the design method of the present invention. become.
  • the contact lens having the structure according to the present invention has an optical and physiological mechanism that can be explained theoretically and experimentally in a situation where the myopia progression suppressing action based on the adjustment lag theory is denied. Based on this, an effective myopia suppression effect and a good QOV at the time of wearing can be exhibited.
  • BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing for demonstrating the measuring apparatus and method of an eye accommodation reaction amount using the front open type binocular wavefront sensor which this inventor devised.
  • the graph which shows the measurement result of QOV using the evaluation scale of FIG. Explanatory drawing for demonstrating the theory based on the optical and physiological mechanism of the myopia progress inhibitory effect discovered by this inventor.
  • the front view which illustrates the contact lens of the structure according to the present invention.
  • the incident optical path in the myopic eye 10 is shown.
  • the myopic eye 10 has a naked eye focal point A positioned in front of the cornea 16 with respect to the retina 14 on the optical axis with respect to a substantially parallel incident light assuming far vision. So that a clear image cannot be recognized in a distance view. Therefore, by wearing the contact lens 12 on the cornea 16 having an appropriate correction power that gives an appropriate visual acuity for distance vision, the focus of the substantially parallel incident light beam is changed to the retina 14 as shown by the solid line in FIG. It is the position of the proper correction focus B, which is the upper approximate fovea.
  • the adjustment of the near vision focus C by the adjustment ability of the myopic eye 10 is generally adjusted by an amount that does not reach the appropriate position on the retina 14, and as shown by a two-dot chain line in FIG.
  • the position of the near vision focal point C ′ that gives clear vision without inconvenience without reaching the retina 14 is set.
  • the difference on the optical axis between the near vision focus C ′ and the proper focus position on the retina 14 is referred to as “adjustment lag”.
  • the size of this adjustment lag is recognized as an under-adjustment of 0.50 to 0.75 diopters on average for young people aged 20 to 25 years with respect to the adjustment stimulus set with an index of 40 cm in front of the eyes.
  • the lack of adjustment of the human eye during near vision is considered to be a cause of myopia progression due to the growth of the axial length.
  • myopia progression suppression based on the conventional adjustment lag theory can adjust the adjustment lag according to the additional power set to the contact lens 12 to be worn, and the adjustment lag changes according to the magnitude of the additional power. It is assumed that.
  • the contact lens 12 that gives a far vision focal point that is appropriately corrected on the optical axis, and is worn on the same subject by using four types of test lenses with different addition powers set in the periphery.
  • the change in the adjustment lag was actually measured, no correlation was found between the added power and the adjustment lag, as shown in FIG. Specifically, the contact lens 12 in which the addition powers of + 0.25D, + 0.50D, + 0.75D, and + 1.00D are set in a mode of gradually increasing from the appropriate correction power set at the center of the optical unit toward the periphery.
  • the adjustment lag generated in near vision at 40 cm in front of the eye corresponding to the adjustment stimulus amount of ⁇ 2.5D was measured. As shown in FIG.
  • the adjustment lag tends to decrease when a lens with an added power of + 0.25D is used, compared to a spherical contact lens (control) that gives an appropriate correction focus. It is clear that the adjustment lag cannot be improved by the added power because the adjustment lag may be increased even if the power is increased.
  • the mechanism of myopia progression suppression mechanism based on the adjustment lag theory is to suppress the progression of myopia by wearing a contact lens with a set addition power and appropriately improving the adjustment lag depending on the addition power. I must admit that there was an error.
  • the present inventor made progress of myopia by wearing a contact lens with an additional power set in the peripheral part, as compared with the case of wearing a spherical contact lens that gives an appropriate correction focus by past statistics and experiments. It has been confirmed that the effect itself of suppressing the above is recognized. Therefore, there is an error in the logic of the mechanism of myopia progression suppression based on the adjustment lag theory, and it is considered that there is another correct logic as a mechanism of myopia progression suppression with a contact lens with a set addition power. Went. In particular, the present inventor succeeded in objectively measuring the amount of lens accommodation under contact lens wearing, which could not be achieved conventionally, by devising a new experimental device and experimental method.
  • FIG. 3 shows the basic structure of the experimental apparatus used by the present inventors.
  • This experimental apparatus uses a binocular wavefront sensor of an open front type, and the subject is positioned in front of each of the right eye 20 and the left eye 22 in which the head is positioned with the chin rest and forehead fixed.
  • a wavefront sensor 24 for the right eye and a wavefront sensor 26 for the left eye via half mirrors 28 and 30, respectively.
  • Wavefront sensors are well known in the field of eye optics. For example, the wavefront aberration in reflected light from the macular of the eyeball projected with measurement light is measured using a Shack-Hartmann sensor, and the measurement results are used.
  • the optical characteristics of the eye can also be obtained based on the distortion of the wave front having the same phase.
  • the indicators 32 and 34 can be visually recognized by wearing the contact lens 12 only in one eye (for example, the right eye) 20.
  • an index 32 for near vision with a viewing distance of 40 cm and an index 34 for far vision with a viewing distance of 5 m were used.
  • the other eye (for example, the left eye) 22 was a naked eye without wearing a contact lens, and a shielding plate 36 was installed instead of the index.
  • the naked eye (the left eye shown in the figure) 22 can measure the amount of adjustment of the lens of the eye, which is an adjustment reaction of the naked eye synchronized with the lens wearing eye (the right eye shown in the figure) 20.
  • the contact lens 12 was worn on each dominant eye of the subject, and the difference in the amount of adjustment of the lens of the eye between when the index 32 with a visual distance of 40 cm was observed and when the index 34 with a visual distance of 5 m was observed.
  • the measured value of the adjustment amount obtained in this way is measured for the naked eye, and the change in the amount of adjustment of the eye when changing from far vision to near vision (change in eye refractive power) is contacted. It can be obtained as an adjustment amount in the crystalline lens of the eye excluding the optical characteristics of the lens.
  • the measurement used four types of contact lenses 12 in which the peripheral addition power (Add) was set to + 0.25D, + 0.50D, + 0.75D, and + 1.00D, respectively. .
  • the peripheral addition power (Add) was set to + 0.25D, + 0.50D, + 0.75D, and + 1.00D, respectively.
  • the effect of the change of the addition power on the change of the adjustment amount of the naked eye (non-wearing eye) was measured. .
  • the lens power distribution in each contact lens 12 used is shown in FIG. Further, the lens power on the optical center of the contact lens 12 of each additional power is the same as the lens power of control, and is completely corrected with glasses as necessary so as to be an appropriate correction power.
  • the contact lenses 12 having four types of addition powers were randomly worn by the subject, and the correction values with the glasses were constant.
  • FIG. 5 shows the actual measurement results obtained by measuring five subjects with measured average values.
  • the average age of 5 subjects was 36.4 ⁇ 6.3 years.
  • the average refraction value of the eyes of the five subjects is that the spherical lens power (P) is ⁇ 1.61 ⁇ 2.01D, the cylindrical lens power (C) is ⁇ 0.27 ⁇ 1.10D, and the cylinder axis angle.
  • P spherical lens power
  • C cylindrical lens power
  • A was 87.3 ⁇ 6.0 degrees.
  • the quality of appearance was also measured together with the measurement of the amount of eye adjustment while wearing each contact lens 12.
  • QOV quality of appearance
  • it is widely used as an index when acquiring subjective pain and distress as objective data in the medical field for how to see with contact lens wearing eyes in both far vision and near vision It was measured by obtaining a subjective evaluation of the subject using a visual evaluation scale (VAS: Visual Analog Scale).
  • VAS Visual Analog Scale
  • FIG. 6 the VAS actually used is checked at the corresponding position on the linear evaluation line drawn in the center, and each subject checked. The position is scored by an analog distance where the left end of the line is 0 and the right end of the line is 100, and the measurement result is obtained.
  • FIG. 7 The visual measurement results obtained in this way are shown in FIG. 7 with the average value of the VAS evaluation points. From the measurement result of FIG. 7, it can be seen that there is almost no effect on near vision with respect to the change in the addition power of the contact lens 12 to be worn. On the other hand, in distant vision, it drops from around + 0.50D, and although it received an evaluation of 69 points at + 0.75D, it was evaluated at 37 points at + 1.00D. It can be seen that the evaluation is below the 50 points, which is considered to be a possible lower limit.
  • the size of the adjustment lug generated during near vision is improved by setting the added power, that is, the magnitude of the added power.
  • the added power that is, the magnitude of the added power.
  • the amount of adjustment of the lens to which the eye reacts during near vision can be relaxed by setting the addition power. It can be confirmed that it is possible to reduce the amount of adjustment of the lens according to the magnitude of the frequency. That is, it is possible to reduce the amount of adjustment caused to the crystalline lens during near vision by wearing the contact lens 12 with the added power set, compared to wearing the spherical contact lens 12. It is also possible to control the adjustment amount of the lens by the addition power.
  • the myopic eye 10 as a human eye having a naked eye focus (A) ahead of the retina 14 on the optical axis in the distance vision as shown in FIG.
  • a contact lens with a set power is worn.
  • myopia is overcorrected in near vision, and the back is focused behind the retina 14. Therefore, in the near vision, the near vision focus is adjusted to the retina 14 side by the adjustment ability of the crystalline lens 38 of the myopic eye 10 to make the vision clear.
  • the ciliary muscle 40 composed of ring-shaped fibers and meridian fibers is strained to ciliate.
  • a compressive external force F in the radial direction is applied from the corpuscle to the crystalline lens 38.
  • the tension of the ciliary muscle 40 is also exerted on the inner surface of the eyeball through a saw-toothed edge, etc., and as a result, the force vector of the inner eye muscle including the ciliary muscle 40 becomes stronger. Growth in the equator direction is suppressed, and growth in the axial direction, which is the front-rear direction, is promoted.
  • the amount of adjustment in near vision in the appropriately corrected myopic eye that is, the degree of tension of the ciliary muscle 40 is reduced.
  • the amount of reduction in the degree of tension of the ciliary muscle 40 in the appropriately corrected myopic eye can be adjusted and set according to the added power.
  • the added power is less than + 0.25D, it is difficult to sufficiently relax the adjustment tension and suppress myopia progression based on it.
  • the added power exceeds + 0.75D, it will be visible in distance vision. There should also be concern about the risk that it will be difficult to obtain the quality of the person.
  • a setting range of the additional power for example, when a contact lens set with an addition power of + 0.5D is worn on a child myopia patient, a wide visual range (ear viewing angle and nose side) with respect to the optical axis of the eye.
  • the optical unit 42 provided in the substantially central portion of the contact lens 12 is provided with an appropriate corrected visual acuity in far vision with the myopic eye 10 to be worn on the lens optical axis 18.
  • An appropriate correction area in which the appropriate correction power is set is provided, and a gradual addition power area in which an addition power that gradually increases from the lens optical axis 18 toward the outer periphery is provided as an adjustment tension relaxation area.
  • the setting of the additional power in the accommodation tension alleviation region is preferably made with a power distribution in the radial direction as shown in FIG.
  • the gradual addition power region is set within the range of 0 mm ⁇ r ⁇ 3.5 mm, where r is the radial dimension from the optical center, and the addition is the largest in the outermost peripheral portion of the gradual addition power region. It is preferable that the frequency is +0.25 to +0.75 diopter.
  • FIG. 4 it is possible to provide a constant added power region that spreads in the radial direction with a fixed maximum added power at the outermost peripheral portion of the optical unit 42 in accordance with the present invention.
  • a constant added power region that spreads in the radial direction with a fixed maximum added power at the outermost peripheral portion of the optical unit 42 in accordance with the present invention.
  • it is more suitable for relieving excessive tension of the body muscle 40 and suppressing myopia progression it is not essential to provide such a constant added power region. That is, in FIG. 4, the mode in which the accommodation tension relaxation region is configured by the constant addition power region and the gradual addition power region is illustrated, but the accommodation tension relaxation region is configured only by the gradual addition power region. Also good.
  • an additional power distribution that changes stepwise can be adopted, and the change mode of the additional power is limited. It is not something.
  • the effect of suppressing myopia progression can be exhibited without affecting the daily life by adopting the setting range and setting pattern of the additional power as described above.
  • a soft contact lens for suppressing myopia progression with a power distribution of + 0.5D set according to the present invention with the power distribution shown in FIG. 4 and a power addition as a comparative example are not set.
  • the myopia progression-suppressing soft contact lens of the present invention has a corrected visual acuity and a subjective appearance compared to the spherical soft contact lens of the comparative example.
  • experimental data has been obtained that the amount of axial length elongation after 12 months is significantly suppressed.
  • the correction power and additional power required for realizing proper correction are specifically based on the measurement results of the target human eye adjustment function, for example, the measurement result of the naked eye vision based on the adjustment ability remaining in the lens. Therefore, it is preferable that the setting is made in consideration of the living environment and preferences of the wearer.
  • the correction power necessary for realizing proper correction in the central portion of the optical unit that is, the region where the proper correction power is set to give a focal point that forms an image on the retina in the distance vision is not limited to the optical axis. It is also possible to set with a region extending from the axis in the radial direction by a predetermined distance.
  • the optical center point at which the optical center axis intersects in the optical unit is matched with the optical axis on the eye optics when the contact lens is worn. Therefore, in the stable position of the contact lens on the cornea, if the contact lens geometric center is out of the center of the pupil, which is the center point on the eye optics, the optical axis of the optical unit is set to the geometric center of the contact lens. A bias may be set. In that case, as means for positioning the contact lens in the circumferential direction on the cornea when the lens is worn, for example, the “Truncation Method” disclosed in Japanese Utility Model Laid-Open No. 48-13048 or the Japanese Patent Laid-Open No.
  • a conventionally known cutting method such as a lace cutting method or molding It can be formed in the same manner as in the past by mold forming such as the method, spin casting method, or a combination thereof.
  • the addition power setting optical surface is not specified as any one of the front and rear surfaces of the lens, and the addition power setting optical device is considered in consideration of required optical characteristics, dimensions of each part, manufacturing method employed, and the like.
  • the surface can be selected and set to the front and back surfaces of the lens. For example, by setting the addition power on the front surface of the lens, it is possible to make the rear surface of the lens a base curve having a curved surface shape corresponding to the corneal shape, and by setting the addition power on the rear surface of the lens, It is also possible to make the manufacturing easier by reducing the types of molds for use.
  • the addition power it is possible to set the addition power to be shared between the front surface of the lens and the rear surface of the lens, so that even when the addition power is high, it is possible to suppress a change in shape on the front surface of the lens and the rear surface of the lens.
  • a peripheral portion having a shape corresponding to the surface of the eyeball is provided on the outer periphery of the optical portion of the contact lens so as to stabilize the position of the contact lens on the eyeball, like a general myopic contact lens.
  • the contact lens to which the present invention is applied may be either a soft type or a hard type.
  • the material is not limited.
  • a contact lens having a soft type myopia progression suppressing ability in addition to a water-containing material such as a known PHEMA (polyhydroxyethyl methacrylate) or PVP (polyvinylpyrrolidone), an acrylic rubber, Non-hydrous materials such as silicone can also be used.
  • a material such as a gas permeable lens (RGP lens) such as PMMA (polymethylmethacrylate) or SiMA / MMA polymer to make a hard type contact lens having the ability to suppress myopia progression.
  • the soft type is preferable from the viewpoint of positional stability on the cornea.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

本発明者が、従来の調節ラグ理論に基づく近視進行抑制理論に代えて機械的緊張緩和理論といえる近視進行抑制の機序を新たに見い出したこと、および新規に考案した実験方法に基づいて光学的および生理学的に確認し得た新たな事実に基づいて、新規な理論に基づく近視進行抑制用コンタクトレンズを提供すること。 眼の光軸外での収差の改善および光軸上での調節ラグの改善をすることなく調節緊張を緩和し得る付加度数として適正矯正度数に対して+0.25~+0.75ディオプターの最大値をもって設定した調節緊張緩和領域を設けると共に、光学中心上にはかかる付加度数を設定しない適正矯正領域を設けることを特徴とする近視進行抑制用コンタクトレンズの設計方法。

Description

近視進行抑制用コンタクトレンズならびにその設計方法および製造方法
 本発明は、人眼における近視の進行を抑制するために用いられる近視進行抑制効果を有するコンタクトレンズに関連するものであり、特に、本発明者が新たに知見し得た、近視進行抑制効果が得られる光学的および生理学的な機序に基づいて為された、新規な近視進行抑制用コンタクトレンズの設計方法などに関するものである。
 人眼における近視は、生活に不都合を生ずるだけでなく、近視が高度化するにつれて網膜剥離や緑内障などの病変保有の危険性が増大することも指摘されている。特に近年では、近視の有病率が増大していることから、近視進行抑制技術の社会的要求も大きくなっている。
 そして、かかる近視進行抑制技術の一つとして、従来から、近視進行抑制用のコンタクトレンズが提案されている。
 ところで、コンタクトレンズを用いた近視進行の抑制作用については、従来から「軸外収差理論に基づく近視進行抑制作用」と「調節ラグ理論に基づく近視進行抑制作用」との二つが提唱されており、それぞれの理論に基づいて設計された近視進行抑制用コンタクトレンズが提案されている。具体的には、前者の軸外収差理論に基づいて設計された近視進行抑制用コンタクトレンズとして特表2007-511803号公報(特許文献1)があり、また後者の調節ラグ理論に基づいて設計された近視進行抑制用コンタクトレンズとして国際公開第96/16621号(特許文献2)がある。
 前者の軸外収差理論に基づく近視進行抑制用コンタクトレンズは、眼軸長の長い近視眼において光軸方向に対して傾斜した入射光に遠視性の焦点誤差が発生することが眼軸長の過伸展による近視進行の原因となっているとの考え方に基づくものである。それ故、光軸方向に対して傾斜した入射光に所定の付加度数(Add)を設定し、網膜より奥方へずれた光軸外の遠視性焦点誤差を有する焦点位置を網膜前方へ戻すことにより、眼軸長の更なる成長による近視進行を抑えようとするものである。
 後者の調節ラグ理論に基づく近視進行抑制用コンタクトレンズは、人眼が合焦を行う際において像ボケを自覚しない程度に調節量を最小限に抑えるために発生する不完全調節量(調節刺激と調節反応の差である調節ラグ)が遠視性焦点誤差として眼軸長の過伸展による近視進行の原因となっているとの考え方に基づくものである。そして、光軸方向の入射光に対して所定の付加度数を設定することで、光軸上の遠視性焦点誤差を有する焦点位置を低減又は解消せしめて網膜上へ近づけることにより、眼軸長の更なる成長による近視進行を抑えようとするものである。
 ところが、前者の軸外収差理論に基づく近視進行抑制用コンタクトレンズでは、角膜上でのレンズ変位量を考慮すると網膜周辺部における遠視性の焦点誤差を補正するのに+2.0D(ディオプター)ほどの高い加入度数が必要とされる。そのために、自覚的なQOV(見え方の質)が低下する問題があり、特に遠方視に際して網膜上での集光率が低下したり近視性の焦点誤差が発生しやすいという問題があった。しかも、Sankaridurg らによれば(P.Sankaridurg et al. Decrese inRate of Myopia Progression with a Contact Lens Designed to Reduce Relative Peripheral Hyperopia: One-Year Results. IOVS 2011;52:9362-9367. )、たとえ+2.0Dの加入度数を設定したコンタクトレンズを装用した場合でも、眼光軸に対する広い視覚範囲(耳側視角および鼻側視角10度、20度、30度、40度)の全範囲にわたって光軸外の焦点誤差を補正できているわけではなく、鼻側のみで焦点誤差の補正が確認されており、光軸外の焦点誤差の補正による近視進行抑制が現実には難しいといえる。
 そこで、本発明者は、後者の調節ラグ理論に基づく近視進行抑制用コンタクトレンズの提供について研究を重ねてきた結果、調節ラグ理論に基づく近視進行抑制作用そのものに間違いがあったという、予期しない結論を得るに至った。具体的な事実は実験結果を示して後述するが、従来では、近方視に際して発生する眼光軸上の調節ラグを、コンタクトレンズに付加度数を設定することで抑えることができ、それによって、遠視性焦点誤差に起因する眼軸長の過伸展を抑制することができると考えられていたが、近方視に際して発生する眼光軸上の調節ラグは、たとえコンタクトレンズに付加度数を設定しても有意には抑えることができないという新たな事実を知得したのである。
 それに加えて、本発明者は、新たに近視進行抑制効果が得られる光学的および生理学的な機序を見い出すと共に、実験でも確認し得たのであり、かかる新たな近視進行抑制効果の機序に基づいて、従来にはなかった新規な近視進行抑制用コンタクトレンズの設計方法などに関する本発明を完成するに至ったのである。
特表2007-511803号公報 国際公開第96/16621号
 本発明は上述の事情を背景として為されたものであり、その解決課題とするところは、本発明者が新たに見出した近視進行抑制効果の機序に基づく近視進行抑制能を有するコンタクトレンズの設計方法と製造方法、および新規な近視進行抑制用コンタクトレンズを提供することにある。
 近視進行抑制用コンタクトレンズの新規な設計方法に関する本発明の特徴とするところは、適正な矯正の実現に必要な矯正度数に対して、光軸外での収差の改善および光軸上での調節ラグの改善をすることなく調節緊張を緩和し得る付加度数として+0.25~+0.75ディオプターの最大値をもって設定した調節緊張緩和領域を設けると共に、少なくとも光学中心上においてかかる付加度数を設定しない適正矯正領域を設ける近視進行抑制用コンタクトレンズの設計方法にある。
 また、近視進行抑制用コンタクトレンズの新規な製造方法に関する本発明の特徴とするところは、上述の本発明に係る近視進行抑制用コンタクトレンズの設計方法に従って設定された前記適正矯正領域の前記矯正度数と前記調節緊張緩和領域の前記付加度数とを実現するレンズ前後面形状を決定し、かかるレンズ前後面形状を備えたコンタクトレンズを製造する近視進行抑制用コンタクトレンズの製造方法にある。
 さらに、新規な近視進行抑制用コンタクトレンズに関する本発明の特徴とするところは、光軸外での収差を改善および光軸上での調節ラグの改善をすることなく、適正な矯正の実現に必要な矯正度数に対して調節緊張を緩和し得る付加度数として+0.25~+0.75ディオプターの最大値をもって設定した調節緊張緩和領域が設けられていると共に、少なくとも光学中心上においてかかる付加度数を設定しない適正矯正領域が設けられている近視進行抑制用コンタクトレンズにある。
 なお、上述の本発明に係る近視進行抑制用コンタクトレンズでは、例えば、中央部分に設定された前記適正矯正領域と、光学部の外周部分に所定径方向幅で設けた一定付加度数領域と、該適正矯正領域から該一定付加度数領域に向かって次第に変化する漸変付加度数領域とを設けて、該一定付加度数領域と該漸変付加度数領域とにより前記調節緊張緩和領域を構成した態様が、好適に採用される。
 さらに、かくの如き適正矯正度数領域と漸変付加度数領域と一定付加度数領域とを設けるに際しては、例えば、前記漸変付加度数領域を、前記光学中心からの径方向寸法をrとして0mm<r≦3.5mmの範囲内に設定すると共に、該漸変付加度数領域の最外周部分における付加度数を+0.25~+0.75ディオプターに設定した態様が、好適に採用される。
 本発明は、机上理論として提唱されていた従来の調節ラグ理論に基づく近視進行抑制作用に代えて、新たな近視進行抑制の光学的および生理学的な機序を提示し且つ本発明者が考案した実験方法によって確認し得たことに基づいて為されたものである。そして、本発明に係る設計方法に従えば、調節ラグ理論に基づく近視進行抑制作用が否定された状況下でも、近視進行抑制能を理論的および実験的に提示できる有効な近視進行抑制用コンタクトレンズを、装用時における良好な見え方の質(QOV)を確保しつつ、設計することが可能となる。
 また、本発明に係る製造方法に従えば、本発明の設計方法によって得られた光学特性をもって有効な近視進行抑制能と装用時の良好なQOVとを併せて有するコンタクトレンズを製造することが可能になる。
 更にまた、本発明に係る構造のコンタクトレンズでは、調節ラグ理論に基づく近視進行抑制作用が否定された状況下において、理論的および実験的に説明することができる光学的および生理学的な機序に基づいて有効な近視進行抑制作用と装用時の良好なQOVとが発揮され得ることとなる。
従来の調節ラグ理論に基づく近視進行抑制作用を説明するための眼光学系の縦断面説明図。 コンタクトレンズの付加度数と調節ラグ量との関係を実測した結果を示すグラフ。 本発明者が考案した前方開放型の両眼波面センサーを用いた眼の調節反応量の測定装置および方法を説明するための説明図。 実験に用いた各コンタクトレンズの光学領域における度数分布を示すグラフ。 図3の測定装置を用いて眼の調節反応量を測定した実験結果を示すグラフ。 図3の測定装置を用いた眼の調節反応量の測定と併せてQOVを測定するのに用いた評価スケールを示す説明図。 図6の評価スケールを用いたQOVの測定結果を示すグラフ。 本発明者によって見出された近視進行抑制作用の光学的および生理学的な機序に基づく理論を説明するための説明図。 本発明に従う構造のコンタクトレンズを例示する正面図。
 以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ詳細に説明する。
 先ず、本発明に基づく近視進行抑制用コンタクトレンズの設計方法を理解するために、従来から知られている調節ラグ理論に基づく近視進行抑制作用について説明し、その後、本発明者の実験によりそれが妥当でないとの結論に至った理由を説明する。
 図1に示された眼光学系の説明図には、近視眼10における入射光路が示されている。かかる近視眼10は、図1中に破線で示されるように、遠方視を想定した略平行な入射光線に対して、光軸上で網膜14より角膜16側となる前方に位置する裸眼焦点Aを有しており、遠方視で明瞭な像を認識できない。そこで、遠方視に適正視力を与える適正矯正度数を設定したコンタクトレンズ12を角膜16上に装用することで、図1中に実線に示されるように、略平行な入射光線の焦点が、網膜14上の略中心窩とされる適正矯正焦点Bの位置とされる。
 ところが、かかる適正矯正度数のコンタクトレンズ12の装用状態下において、読書などの近方視を想定した眼前40cmの入射光線に対しては、図1中二点鎖線で示されるように、近視の過矯正となり、レンズ光軸18上において網膜14よりも後方で近方視焦点Cを結ぶ。この近方視焦点Cは、近視眼10の調節能力によって網膜14側に調節されることで、明瞭視の状態とされる。
 その際、近視眼10の調節能力による近方視焦点Cの調節は、一般に網膜14上の適正位置にまでは達しない量で調節され、図1中に二点鎖線で示されるように、レンズ光軸18上において、網膜14上まで至らずに不都合のない明瞭視を与える近方視焦点C′の位置とされる。かかる近方視焦点C′と網膜14上の適正焦点位置との光軸上での差を「調節ラグ」という。この調節ラグの大きさは、眼前40cmに指標を設定した調節刺激に対して、20~25歳の若年者で平均的に0.50~0.75ディオプターの調節不足として認められている。因みに、調節ラグ理論では、このような近方視に際しての人眼の調節不足を、眼軸長の成長による近視進行の一因と考えている。
 そして、従来の調節ラグ理論に基づく近視進行抑制に際しては、近視眼10に装用するコンタクトレンズ12における光学領域の周辺部に、所定の付加度数を設定することで、眼軸長の成長の契機や因子とされる調節ラグを0(ゼロ)に近づける処方が施されることとなる。要するに、従来の調節ラグ理論に基づく近視進行抑制は、装用するコンタクトレンズ12に設定した付加度数により、調節ラグを調節することが可能であり、付加度数の大きさに応じて調節ラグが変化することを前提とするものである。
 ところが、光軸上で適正矯正された遠方視焦点を与えるコンタクトレンズ12であって、周辺部に設定した付加度数を異ならせた4種類の試験レンズを用いて、同じ被検者に装用することで調節ラグの変化を実測したところ、図2に示されているように、付加度数と調節ラグとの間に相関性は認められなかったのである。具体的には、光学部の中心に設定した適正矯正度数から周辺に向かって漸次に増加する態様で+0.25D,+0.50D,+0.75D,+1.00Dの付加度数を設定したコンタクトレンズ12を装用した状態で、-2.5Dの調節刺激量に相当する眼前40cmの近方視で発生する調節ラグを測定した。その結果が図2に示されているように、適正矯正焦点を与える球面コンタクトレンズ(control)に比して、付加度数が+0.25Dのレンズ装用時に調節ラグの減少傾向が認められるものの、付加度数を増加しても調節ラグは逆に大きくなる場合もあることから、付加度数によって調節ラグを改善できるといえないことが明白である。
 このことから、付加度数を設定したコンタクトレンズを装用し、付加度数によって調節ラグを適切に改善することにより、近視の進行を抑制するという、調節ラグ理論に基づく近視進行抑制の機序の論理には誤りがあったものと認めざるを得ない。
 一方、本発明者は、過去の統計や実験などにより、適正矯正焦点を与える球面コンタクトレンズを装用した場合に比して、周辺部に付加度数を設定したコンタクトレンズを装用することにより近視の進行を抑制する効果自体は認められることを確認している。それ故、調節ラグ理論に基づく近視進行抑制の機序の論理自体に誤りがあり、付加度数を設定したコンタクトレンズによる近視進行抑制の機序として正しい論理が別に存在するものと考えて推考と実験を行った。特に本発明者は、新たな実験装置と実験方法を考案することで、従来ではなし得なかったコンタクトレンズ装用下での水晶体調節量を他覚的に測定することに成功した。
 その結果、付加度数を設定したコンタクトレンズによる近視進行抑制について光学的および生理学的な新たな機序を、実験によって確認し得た客観的データに基づいて提示することができた。そして、かかる新たな近視進行抑制の機序にしたがって、有効な近視進行抑制効果が発揮され得るコンタクトレンズの新規な設計方法や製造方法を実現し、新規な近視進行抑制用コンタクトレンズを提供することを可能となし得て、本発明を完成するに至ったのである。
 図3に、本発明者が用いた実験装置の基本構造を示す。この実験装置は、前方開放型の両眼波面センサーを用いたものであり、被検者が顎台と額当で頭部を固定して位置決めされる右眼20と左眼22の各眼前には、右眼用波面センサー24と左眼用波面センサー26がそれぞれハーフミラー28,30を介して装備されている。波面センサーは眼光学系の分野で良く知られているものであり、例えば測定光を投射した眼球の黄斑からの反射光における波面収差をシャックハルトマンセンサーを用いて測定し、測定結果を利用して同一位相の波面の歪などに基づいて眼の光学特性を求めることもできる。
 かかる両眼波面センサーを用いた実験装置において、一方の眼(例えば右眼)20にだけコンタクトレンズ12を装用して指標32,34を視認することができるようにした。指標としては、視距離40cmの近方視用の指標32と、視距離5mの遠方視用の指標34を用いた。他方の眼(例えば左眼)22はコンタクトレンズを装用しない裸眼とし、指標に代えて遮蔽板36を設置した。これにより、裸眼(図示の左眼)22において、レンズ装用眼(図示の右眼)20と同調した裸眼の調節反応である眼の水晶体の調節量を測定できるようにした。
 実験では、被検者について各々の優位眼にコンタクトレンズ12を装用し、視距離40cmの指標32を注視した時と視距離5mの指標34を注視した時との眼の水晶体の調節量の差を、「遠方視時の眼屈折値-近方視時の眼屈折値」として求めた。このようにして求めた調節量の測定値は、裸眼を対象に測定されること、遠方視から近方視に至った際の眼の調節量の変化(眼屈折力の変化量)を、コンタクトレンズの光学特性を除いた眼の水晶体における調節量として求めることができる。
 測定は、球面コンタクトレンズであるcontrolの他に、周辺部の付加度数(Add)を+0.25D,+0.50D,+0.75D,+1.00Dにそれぞれ設定した4種類のコンタクトレンズ12を採用した。このように付加度数が異なる複数種類のコンタクトレンズ12の装用下で、裸眼の調節量を測定することにより、付加度数の変化が裸眼(非装用眼)の調節量の変化に与える影響を実測した。使用した各コンタクトレンズ12におけるレンズ度数分布を、図4に示す。また、各付加度数のコンタクトレンズ12の光学中心上のレンズ度数は、controlのレンズ度数と同じとし、適正矯正度数となるように必要に応じて眼鏡で完全矯正した。4種類の付加度数のコンタクトレンズ12は、ランダムに被検者へ装用させ、眼鏡による矯正値は一定にした。
 被検者5名を対象に測定した実測結果を、測定した平均値をもって図5に示す。なお、被検者5名の平均年齢は36.4±6.3歳であった。また、被検者5名の眼の平均屈折値は、球面レンズ度数(P)が-1.61±2.01D、円柱レンズ度数(C)が-0.27±1.10D、円柱軸角度(A)が87.3±6.0度であった。
 図5に示されるように、装用したコンタクトレンズ12の付加度数が増加するほど、裸眼の調節量が減少しており、両者に明らかな相関関係が認められる。
 また、各コンタクトレンズ12の装用下で眼の調節量の測定とあわせて、見え方の質(QOV)も測定した。具体的には、遠方視時と近方視時とのそれぞれにおいて、コンタクトレンズ装用眼による見え方を、医療分野における主観的な痛みや苦痛などを客観的データとして取得する際の指標として広く用いられている視覚的評価スケール(VAS:Visual Analog Scale)を利用して被検者の自覚評価を取得することによって測定した。実際に用いたVASは、図6に示されているように、中央に引かれた直線的な評価ライン上の該当位置にチェックを付すようになっており、各被検者がチェックを付した位置を、ライン左端を0,ライン右端を100とするアナログ距離で点数化して測定結果とするものである。
 このようにして得られた見え方の測定結果を、VASの評価点の平均値をもって図7に示す。図7の測定結果から、装用するコンタクトレンズ12の付加度数の変化に関して、近方視への影響は殆どないことがわかる。一方、遠方視では、+0.50Dを超えたあたりから低下し、+0.75Dでは69点の評価が得られているものの、+1.00Dでは37点の評価となっており、日常的に連続使用が可能な下限と考えられる50点の評価を下まわっていることがわかる。
 上述の実験による測定結果から、付加度数を設定したコンタクトレンズ12の装用に際しては、付加度数を設定することによって近方視に際して発生する調節ラグの大きさを改善すること、すなわち付加度数の大きさに応じて調節ラグの大きさを目的とする値に設定することは困難であるが、付加度数を設定することによって近方視に際して眼が反応する水晶体の調節量の大きさを緩和し、付加度数の大きさに応じて水晶体の調節量の大きさを軽減設定することが可能であることを確認し得る。すなわち、球面コンタクトレンズ12を装用する場合に比して、付加度数を設定したコンタクトレンズ12を装用することで、近方視に際して水晶体に惹起される調節量を低減することが可能であり、且つ、水晶体の調節量を付加度数によってコントロールすることもできるのである。
 また、この事実について、前述のように調節ラグ理論に基づく近視進行抑制作用の機序は否定されるものの付加度数を設定したコンタクトレンズの装用による近視の進行抑制効果自体は統計的にも確認し得たことと、併せて考えると、眼における機械的調節緊張緩和理論ともいうべき新たな近視進行抑制の光学的および生理学的な機序を提示することができる。
 具体的には、図8に示されているように遠方視に際して光軸上で網膜14より前方に裸眼焦点(A)を有する人眼としての近視眼10では、遠方視に適正視力を与える適正矯正度数を設定したコンタクトレンズが装用される。しかし、かかるコンタクトレンズの装用下において、近方視では近視の過矯正となって網膜14よりも後方に焦点を結ぶこととなる。それ故、近方視に際しては、近視眼10の水晶体38の調節能力によって近方視焦点が網膜14側に調節されて明瞭視とされる。
 ところで、眼の調節能力で水晶体38の光学度数を大きくして過矯正の焦点位置を網膜14側へ調節するには、輪状繊維や経線状繊維からなる毛様体筋40を緊張させて毛様体小帯から水晶体38へ径方向の圧縮外力Fを及ぼすこととなる。この毛様体筋40の緊張は、鋸状縁を経ることなどにより眼球の内面にも及ぼされることから、毛様体筋40を含む内眼筋の力ベクトルが強くなるなどの結果、眼球の赤道方向の成長が抑制されると共に、前後方向となる眼軸方向の成長が促進される。そして、持続的な近業作業などで水晶体38の調節に必要な毛様体筋40の緊張が持続すると、眼球が径方向で抑制されつつ軸方向に成長を続けるとの理論は生理学的にも妥当性があり、また、眼軸長の成長に伴って近視が進行することは眼光学的にも妥当である。
 而して、光学部の周辺部に対して付加度数を設定したコンタクトレンズを装用することで、適正矯正された近視眼において近方視に際しての調節量、すなわち毛様体筋40の緊張度合を軽減できることが、上述の実験によって明らかとなった。しかも、適正矯正された近視眼における毛様体筋40の緊張度合いの軽減量は、付加度数によって調節設定することが可能であることも確認し得た。
 したがって、付加度数を設定したコンタクトレンズを装用することで、近視眼10における近方視に際しての毛様体筋40の過度の緊張、ひいては眼球に及ぼされる赤道方向の成長抑制力が緩和されることとなり、それに応じて、眼軸方向の成長の促進が抑えられて近視進行抑制効果を得ることが可能となるのである。
 ここにおいて、上述の如き眼の機械的調節緊張緩和理論による近視進行抑制効果を適切に得るに際しては、上述の実験を含む本発明者による検討と確認の結果、光学領域の外周部分に対して+0.25~+0.75ディオプターの付加度数の最大値を設定した調節緊張緩和領域を設けることが有効であり、より好適には、最大値を+0.25~+0.50ディオプターの付加度数範囲に設定することにより一層良好なQOVを安定して得ることができる。
 なお、付加度数が+0.25Dに満たないと、調節の緊張緩和とそれに基づく近視進行抑制が十分に発揮され難いからであり、一方、付加度数が+0.75Dを越えると、遠方視に際しての見え方の質が十分に得難くなるリスクも懸念されるべきである。また、このような付加度数の設定範囲であれば、例えば+0.5Dの加入度数を設定したコンタクトレンズを小児近視患者へ装用した場合には、眼光軸に対する広い視覚範囲(耳側視角および鼻側視角10度、20度、30度)にわたって、測定眼の過半数で未だ遠視性の焦点誤差が存在することが本発明者の実験によっても確認されており、光軸外の焦点を網膜より前方へ移動させることにより軸外収差を改善する程に大きな付加度数でないことから、たとえコンタクトレンズの角膜上での移動を考慮しても、良好な見え方の質を確保することができる。
 すなわち、図9に示されているように、コンタクトレンズ12の略中央部分に設けられた光学部42には、レンズ光軸18上で、装用される近視眼10において遠方視で適正矯正視力を与える適正矯正度数が設定された適正矯正領域が設けられると共に、レンズ光軸18から外周に向かって次第に大きくなる付加度数が設定された漸変付加度数領域が調節緊張緩和領域として設けられる。この調節緊張緩和領域における付加度数の設定は、前述の図4に示されている如き径方向の度数分布をもってなされることが望ましい。要するに、漸変付加度数領域が、光学中心からの径方向寸法をrとして0mm<r≦3.5mmの範囲内に設定されていると共に、漸変付加度数領域の最外周部分において最大となる付加度数が+0.25~+0.75ディオプターとされていることが好適である。
 なお、図4に示されるように、光学部42の最外周部分に一定の最大付加度数で径方向に広がる一定付加度数領域を設けることは、本発明に従って近方視に際しての水晶体38および毛様体筋40の過度の緊張を緩和して近視進行を抑制するのに一層好適であるが、そのような一定付加度数領域を設けることは必須でない。すなわち、図4では、一定付加度数領域と漸変付加度数領域とにより調節緊張緩和領域が構成されている態様を例示したが、かかる調節緊張緩和領域は漸変付加度数領域のみによって構成されていてもよい。また、図4に示されるように径方向で連続して変化する付加度数分布の他、例えば段階的に変化する付加度数分布なども採用することが可能であり、付加度数の変化態様は限定されるものでない。
 因みに、上述の如き付加度数の設定範囲と設定パターンを採用することにより、日常生活に支障を及ぼすことなく、近視進行抑制効果が発揮され得ることは、本発明者によって確認されている。具体的には、小児近視患者を対象にして、本発明に従って+0.5Dの加入度数を図4に示す度数分布をもって設定した近視進行抑制用のソフトコンタクトレンズと比較例としての加入度数を設定しない球面ソフトコンタクトレンズとをそれぞれ長期間比較装用させる臨床研究の結果として、本発明の近視進行抑制用ソフトコンタクトレンズは比較例の球面ソフトコンタクトレンズに比して、矯正視力と自覚的な見え方の訴えにおいて有意な差が認められない上に、12ヶ月後の眼軸長伸長量が有意に抑制されているとの実験データを得ている。
 以上、本発明の実施形態について詳述してきたが、本発明は上述の具体的な記載によって限定的に解釈されるものでない。
 例えば、適正な矯正の実現に必要な矯正度数や付加度数は、具体的には対象とする人眼の調節機能の測定結果、例えば水晶体に残存する調節能力に基づく裸眼視力の測定結果などに基づいて、装用者の生活環境や好みなども考慮しつつ設定されることが好適である。その際、光学部の中央部分に適正な矯正の実現に必要な矯正度数、すなわち遠方視に際して網膜上で結像する焦点を与える適正矯正度数の設定された領域を、光軸上だけでなく光軸から径方向に所定距離で広がる領域をもって設定することも可能である。
 また、本発明に係るコンタクトレンズにおいて、光学部において光学上の中心軸が交差する光学中心点は、コンタクトレンズの装用時に眼光学上の光軸に対して合致されることが望ましい。それ故、角膜上でのコンタクトレンズの安定位置において、コンタクトレンズの幾何中心が眼光学上の中心点となる瞳孔中心から外れる場合には、コンタクトレンズの幾何中心に対して光学部の光軸を偏倚設定するようにしてもよい。その場合には、レンズ装用時に角膜上でコンタクトレンズを周方向で位置決めする手段として、例えば実開昭48-13048号公報等に開示の「トランケーション法」や、特開平11-258553号公報等に開示の「プリズムバラスト法」、特開平8-304745号公報等に開示の「スラブオフ法(ダブルシン法)」、米国特許第5100225号明細書等に開示された「ペリバラスト法」などの公知の周方向位置決め手段が採用されると共に、装用に際して左右等の周方向位置を目視確認できる指標をコンタクトレンズに付しておくことが好ましい。
 さらに、本発明に従う付加度数が設定された光学特性を光学部へ付与してレンズ前後面形状を決定し、コンタクトレンズを製造するに際しては、従来から公知のレースカッティング法などの切削成形や、モールディング法などの型成形、スピンキャスト法、或いはそれらの組み合わせによって、従来と同様に成形され得る。
 その際、加入度数の設定光学面は、レンズ前後面の何れかに特定されるものでなく、要求される光学特性や各部寸法、採用される製造方法等を考慮して、加入度数の設定光学面をレンズ前後面に選択設定することができる。例えば、レンズ前面に加入度数を設定することにより、レンズ後面を角膜形状に相当する湾曲面形状を有するベースカーブとすることが可能であるし、レンズ後面に加入度数を設定することにより、レンズ前面用の成形型の種類を少なくして製造を容易にすることも可能になる。また、レンズ前面とレンズ後面とに加入度数を分担設定することも可能であり、それによって加入度数が高い場合にもレンズ前面やレンズ後面における形状変化を小さく抑えることが可能になる。
 また、装用者に乱視がある場合には、光学部のレンズ前面とレンズ後面との少なくとも一方に乱視矯正用の円柱レンズ度数を設定することも可能である。
 なお、コンタクトレンズの光学部の外周には、一般的な近視用コンタクトレンズなどと同様に、眼球上でコンタクトレンズの位置を安定化させるように眼球表面に対応した形状の周辺部が設けられる。
 また、本発明が適用されるコンタクトレンズは、ソフトタイプおよびハードタイプの何れのレンズタイプであっても良い。その材質も限定されるものでなく、例えばソフトタイプの近視進行抑制能を有するコンタクトレンズでは、公知のPHEMA(ポリヒドロキシエチルメタクリレート)やPVP(ポリビニルピロリドン)等の含水性材料の他、アクリルゴムやシリコーン等の非含水性材料等も採用可能である。また、PMMA(ポリメチルメタアクリレート)やSiMA/MMAポリマー等のガス透過性レンズ(RGPレンズ)などの材質を採用して、ハードタイプの近視進行抑制能を有するコンタクトレンズとすることも可能である。なお、角膜上の位置安定性などの観点からはソフトタイプが好適である。
 その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
10:近視眼(人眼)、12:コンタクトレンズ、18:レンズ光軸、38:水晶体、42:光学部

Claims (5)

  1.  適正な矯正の実現に必要な矯正度数に対して、光軸外での収差の改善および光軸上での調節ラグの改善をすることなく調節緊張を緩和し得る付加度数として+0.25~+0.75ディオプターの最大値をもって設定した調節緊張緩和領域を設けると共に、少なくとも光学中心上においてかかる付加度数を設定しない適正矯正領域を設けることを特徴とする近視進行抑制用コンタクトレンズの設計方法。
  2.  請求項1に記載の設計方法に従って設定された前記適正矯正領域の前記矯正度数と前記調節緊張緩和領域の前記付加度数とを実現するレンズ前後面形状を決定し、かかるレンズ前後面形状を備えたコンタクトレンズを製造することを特徴とする近視進行抑制用コンタクトレンズの製造方法。
  3.  光軸外での収差の改善および光軸上での調節ラグの改善をすることなく、適正な矯正の実現に必要な矯正度数に対して調節緊張を緩和し得る付加度数として+0.25~+0.75ディオプターの最大値をもって設定した調節緊張緩和領域が設けられていると共に、少なくとも光学中心上においてかかる付加度数を設定しない適正矯正領域が設けられていることを特徴とする近視進行抑制用コンタクトレンズ。
  4.  中央部分に設定された前記適正矯正領域と、
     光学部の外周部分に所定径方向幅で設けた一定付加度数領域と、
     該適正矯正領域から該一定付加度数領域に向かって次第に変化する漸変付加度数領域とを設けて、
     該一定付加度数領域と該漸変付加度数領域とにより前記調節緊張緩和領域を構成した請求項3に記載の近視進行抑制用コンタクトレンズ。
  5.  前記漸変付加度数領域が、前記光学中心からの径方向寸法をrとして0mm<r≦3.5mmの範囲内に設定されていると共に、
     該漸変付加度数領域の最外周部分における付加度数が+0.25~+0.75ディオプターとされている請求項4に記載の近視進行抑制用コンタクトレンズ。
PCT/JP2016/059802 2015-04-13 2016-03-28 近視進行抑制用コンタクトレンズならびにその設計方法および製造方法 WO2016167104A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680021482.6A CN107533241A (zh) 2015-04-13 2016-03-28 用于近视发展抑制的接触透镜及其设计方法和制造方法
KR1020177027470A KR102522801B1 (ko) 2015-04-13 2016-03-28 근시 진행 억제용 콘택트 렌즈 및 그 설계 방법 및 제조 방법
EP16779895.8A EP3285109A4 (en) 2015-04-13 2016-03-28 Contact lens for suppressing progression of myopia, method for designing same, and method for manufacturing same
SG11201708386TA SG11201708386TA (en) 2015-04-13 2016-03-28 Contact lens for myopia progression suppression, and designing method and manufacturing method thereof
US15/251,884 US20160370602A1 (en) 2015-04-13 2016-08-30 Contact lens for myopia progression suppression, and designing method and manufacturing method thereof
HK18108140.2A HK1248828A1 (zh) 2015-04-13 2018-06-25 用於近視發展抑制的接觸透鏡及其設計方法和製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-082068 2015-04-13
JP2015082068A JP5923640B1 (ja) 2015-04-13 2015-04-13 近視進行抑制用コンタクトレンズの設計方法および製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/251,884 Continuation US20160370602A1 (en) 2015-04-13 2016-08-30 Contact lens for myopia progression suppression, and designing method and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016167104A1 true WO2016167104A1 (ja) 2016-10-20

Family

ID=56015231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059802 WO2016167104A1 (ja) 2015-04-13 2016-03-28 近視進行抑制用コンタクトレンズならびにその設計方法および製造方法

Country Status (8)

Country Link
US (1) US20160370602A1 (ja)
EP (1) EP3285109A4 (ja)
JP (1) JP5923640B1 (ja)
KR (1) KR102522801B1 (ja)
CN (1) CN107533241A (ja)
HK (1) HK1248828A1 (ja)
SG (1) SG11201708386TA (ja)
WO (1) WO2016167104A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530174A1 (en) * 2018-02-23 2019-08-28 Essilor International (Compagnie Generale D'optique) Method for altering the visual performance of a subject, method for measuring the spherical refraction correction need of a subject and optical system for implementing these methods
CN114391121B (zh) * 2019-09-12 2024-03-26 香港理工大学 用于延缓近视进展的镜片和方法
WO2023279282A1 (en) * 2021-07-07 2023-01-12 Shenyang Kangende Medical Science And Technology Co., Ltd Systems, apparatus, and methods for regulating refractive error development through the modulation of peripheral distortion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528339A (ja) * 2007-05-21 2010-08-19 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 近視進行防止用眼科レンズ
JP2012526303A (ja) * 2009-05-04 2012-10-25 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ 眼用レンズ供与する際の眼調整誤差測定の用途
JP2014032404A (ja) * 2012-07-31 2014-02-20 Johnson & Johnson Vision Care Inc 近視制御光学素子及びムスカリン様作用薬を組み込むレンズ
WO2014050879A1 (ja) * 2012-09-25 2014-04-03 国立大学法人大阪大学 近視進行抑制能を有するコンタクトレンズおよび近視進行抑制能を有するコンタクトレンズセット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM970294A0 (en) * 1994-11-28 1994-12-22 Queensland University Of Technology An optical control method
JP2810638B2 (ja) 1995-07-17 1998-10-15 株式会社日立製作所 図面管理方法及びその装置
JP4023902B2 (ja) * 1998-04-10 2007-12-19 株式会社メニコン トーリック・マルチフォーカルレンズ
JP5172148B2 (ja) * 2003-11-19 2013-03-27 ヴィジョン・シーアールシー・リミテッド 相対像面湾曲および周辺軸外焦点の位置を変える方法および装置
JP5525114B1 (ja) 2013-02-19 2014-06-18 株式会社メニコン 老視用コンタクトレンズセット
US9952449B2 (en) 2013-08-01 2018-04-24 Menicon Co., Ltd. Presbyopia contact lens set

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528339A (ja) * 2007-05-21 2010-08-19 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 近視進行防止用眼科レンズ
JP2012526303A (ja) * 2009-05-04 2012-10-25 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ 眼用レンズ供与する際の眼調整誤差測定の用途
JP2014032404A (ja) * 2012-07-31 2014-02-20 Johnson & Johnson Vision Care Inc 近視制御光学素子及びムスカリン様作用薬を組み込むレンズ
WO2014050879A1 (ja) * 2012-09-25 2014-04-03 国立大学法人大阪大学 近視進行抑制能を有するコンタクトレンズおよび近視進行抑制能を有するコンタクトレンズセット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI FUJIKADO ET AL.: "Effect of low-addition soft contact lenses with decentered optical design on myopia progression in c", CLINICAL OPHTHALMOLOGY, vol. 8, 23 September 2014 (2014-09-23), pages 1947 - 1956, XP055321805, [retrieved on 20140000] *

Also Published As

Publication number Publication date
US20160370602A1 (en) 2016-12-22
SG11201708386TA (en) 2017-11-29
JP5923640B1 (ja) 2016-05-24
CN107533241A (zh) 2018-01-02
JP2016200762A (ja) 2016-12-01
KR20170136520A (ko) 2017-12-11
EP3285109A4 (en) 2018-10-31
KR102522801B1 (ko) 2023-04-19
EP3285109A1 (en) 2018-02-21
HK1248828A1 (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
JP5172148B2 (ja) 相対像面湾曲および周辺軸外焦点の位置を変える方法および装置
KR102573936B1 (ko) 근시 진행을 예방하고/하거나 늦추기 위한 비-동축 렌즐릿을 포함하는 콘택트 렌즈
US9594258B2 (en) Contact lens having myopia progression suppression capability, and contact lens set having myopia progression suppression capability
KR101583096B1 (ko) 주변 시각을 향상시키는 방법 및 기구
TWI587035B (zh) 用於預防及/或減緩近視加深之非對稱鏡片的設計及方法
US7503655B2 (en) Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
JP6726929B2 (ja) 多焦点光学レンズ
JP2019211772A (ja) 近視の進行を予防及び/又は鈍化するための小型レンズを含む眼用レンズ
KR20160026725A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 자유 형태 렌즈 설계 및 방법
KR20160026773A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 마스크 렌즈 설계 및 방법
US20040237971A1 (en) Methods and apparatuses for controlling optical aberrations to alter modulation transfer functions
KR20160026781A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 다초점 렌즈 설계 및 방법
KR20160022774A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 동공 크기-무관형 렌즈 설계 및 방법
KR20160022783A (ko) 근시 진행자들이 경험하는 시력 변동을 최소화하기 위한 렌즈 설계 및 방법
WO2016167104A1 (ja) 近視進行抑制用コンタクトレンズならびにその設計方法および製造方法
JP2019045859A (ja) 乱視の矯正のためのコンタクトレンズにおける2次非点収差を最小化する非トーリック面
JP2023144718A (ja) 眼鏡レンズの設計方法、眼鏡レンズの製造方法、および視覚に関する数値の測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177027470

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016779895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11201708386T

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE