WO2016166447A1 - Micro-soufflante pour appareil d'assistance respiratoire à refroidissement amélioré - Google Patents

Micro-soufflante pour appareil d'assistance respiratoire à refroidissement amélioré Download PDF

Info

Publication number
WO2016166447A1
WO2016166447A1 PCT/FR2016/050796 FR2016050796W WO2016166447A1 WO 2016166447 A1 WO2016166447 A1 WO 2016166447A1 FR 2016050796 W FR2016050796 W FR 2016050796W WO 2016166447 A1 WO2016166447 A1 WO 2016166447A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
electronic components
housing
gas
gas passage
Prior art date
Application number
PCT/FR2016/050796
Other languages
English (en)
Inventor
Romain Davoine
Original Assignee
Air Liquide Medical Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Medical Systems filed Critical Air Liquide Medical Systems
Publication of WO2016166447A1 publication Critical patent/WO2016166447A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps

Definitions

  • the invention relates to a micro-blower for a medical device whose thermal performance has been improved thanks to a particular arrangement leading to a better cooling of its electronic components, in particular of the electronic card which controls this micro-blower, as well as on a Respiratory assistance device equipped with such a micro-blower that can be used to treat respiratory diseases of any type.
  • respiratory assistance devices delivering non-zero flow breathing gas and / or a pressure greater than atmospheric pressure (> 1 atm) are used.
  • the air sent to the patient may be supplemented with additional oxygen, especially when the patient must receive, as part of its treatment, a proportion of oxygen greater than 21% by volume.
  • micro-blower also called “blower” or “turbine”
  • blower used to suck the ambient air and deliver it to a given pressure to patients.
  • the aspiration of the air by the micro-blower is done through one or more finned wheels arranged on a rotating shaft driven in rotation by an electric motor.
  • the finned wheel is rotatable in a scroll that forms an inner compartment for the wheel, said scroll including a gas inlet and a gas outlet.
  • the volute is commonly surmounted by a pavilion.
  • EP-A-2165078, EP-A-2102504 and WO-A-2012/139681 describe micro-blowers of this type and respiratory assistance devices equipped with such micro-blowers.
  • this radiator can be coupled with the addition of a forced convection system, such as a fan.
  • a forced convection system such as a fan.
  • a forced convection system such as a fan
  • the problem is to propose an improved micro-breathable and a medical ventilation device equipped with such a micro-soft which is used to assist patients in their respiratory function.
  • the aim is to propose a simple and easy solution to implement in order to improve the cooling of a micro-souffiante, in particular of its electronic components, so as to guarantee a thermal performance of the micro-soft and system, during its normal use within a medical device of assisted ventilation.
  • micro-foam comprising:
  • the electronic components are arranged in contact with at least one of the walls, being mechanically separated from the gas passage by said wall so as to allow cooling of said electronic components with air present in the passage of gas by thermal convection through said wall.
  • micro-blower of the invention may comprise one or more of the following technical characteristics:
  • the electronic components include an electronic card.
  • the electronic components are arranged in a compartment or housing separated from the gas passage by said wall in contact with the electronic components.
  • the casing comprises a bottom surface and a lateral surface, said electronic components being arranged facing the bottom surface of the casing while being separated from said bottom surface by said wall in contact with the electronic components and a portion of the passage of the casing; gas.
  • the wall in contact with the electronic components is made of a plastic, elastomeric or metallic material.
  • the electric motor comprises a rotating motor shaft carrying a finned wheel.
  • the impeller is inserted into a compartment arranged in a volute comprising a gas inlet passage and a gas outlet passage.
  • the invention also relates to a respiratory assistance device, that is to say a medical ventilator, equipped with a micro-soft according to the invention.
  • the respiratory assistance apparatus of the invention may comprise one or more of the following technical characteristics:
  • - It comprises an inlet opening putting the air inlet of the micro-soft in fluid communication with the ambient atmosphere.
  • It comprises a gas supply conduit for conveying the gas supplied by the micro-blower, in particular the gas from the gas outlet passage of the volute.
  • the micro-blower comprises a flexible tube in fluid communication, at its upstream end, with the gas supply duct so as to collect the gas supplied by the micro-blower.
  • - It comprises a flexible tube in fluid communication, at its downstream end, with a respiratory interface for delivering the gas to the patient, namely a mask or respiratory cannulas, or the like.
  • Such an apparatus equipped with a turbine according to the invention can be used as part of a method of therapeutic treatment of a respiratory pathology affecting a person, that is to say a patient or a patient, especially in the part of a treatment at the patient's home.
  • the micro-blower 1 comprises an electric motor 2 surrounded by a housing 3 forms a shell or protective cover around the elements of the electric motor, namely the stator, the rotor ...
  • This housing 3 may be plastic or metallic.
  • the engine 2 conventionally comprises a shaft or rotary shaft carrying and rotating a finned wheel which can suck air.
  • the air enters, via a volute inlet 10, into the inner compartment of the volute January 1 which contains the impeller.
  • the air is then expelled via a volute outlet duct 12 which is in fluid communication with the internal compartment of the volute 11, and can then be conveyed to a patient, via a gas conduit.
  • flexible and respiratory interface such as a respirator or the like.
  • the air enters the apparatus 20 via one (or more) air inlet 6 in fluid communication with the ambient atmosphere, and is conveyed to the volute inlet 10 via a gas path 4 , 13.
  • Part 4 of the gas path 4, 13 is formed by several walls 5a, 5b, 5c arranged around the casing 3 and spaced therefrom so as to arrange between them a spacing serving as a gas passage 4 for conveying the air between said walls 5a, 5b, 5c and the casing 3.
  • the air flows in the gas path 4, 13 in the direction from the air inlet port 6 to the volute inlet 10, as illustrated by the arrows F in the Figure.
  • the air By circulating in contact with the surface of the walls 3a, 3b of the casing 3, the air cools said casing 3 thanks to the gaseous sweep which is then created, which allows an evacuation of the calories generated by the motor during its operation.
  • micro-foam 1 also comprises electronic components 7, in particular an electronic card 8, electrically connected to the electric motor 2 so as to electrically power and drive said electric motor 2, that is to say to control its operation .
  • the electronic components 7 are arranged, in a compartment or housing dedicated 9 medical equipment, while being in contact with at least one wall 5a defining a portion of the gas passage 4 so as to allow cooling of said electronic components 7 with air circulating in the gas passage 4.
  • the cooling is done by thermal convection through said wall 5a in a cooling zone 15 (shown schematically by dashed lines in the figure).
  • the cooling can also be effected with other arrangements, for example around the wall 5b licked by the gas flowing in the gas path 4 or vis-à-vis the volute inlet zone 10 or the gas way 13.
  • the electronic components 7 are arranged next to the gas passage
  • the solution of the invention thus allows an effective evacuation of a part of the thermal energy dissipated by the electronic components 7 serving to supply and control the motor, in the flow of air flowing in the gas path 4 , 13.
  • the electronic components 7 include: an electronic support of the rigid or flexible printed circuit type, for example made of aluminum, in particular of IMS technology, comprising tracks electrically connecting the different elements, dissipation / radiator surfaces in / on the layers of said circuit, and connected by means vias, that is to say, metal holes acting as thermal bridges, between the layers of said circuit for example copper, to improve their cooling; and
  • Electronic control elements such as components distributing the energy during the acceleration of the engine 2, and recovering the energy dissipated during braking, having radiators and protective housings.
  • All or part of the electronic components 7 are in mechanical contact with the wall 5a which may be of plastic material, elastomer or metal thickness of a few millimeters, typically about 2 millimeters.
  • This wall 5a may include geometric arrangements promoting heat exchange, such as heat exchangers, pores or other.
  • An intermediate element made of a material that improves heat exchange, that is to say having a high thermal conductivity, can be arranged between the electronic components 7 and the heat exchange wall 5a, for example a radiator element made of a thermally-heated material.
  • conductive for example aluminum, or a member-type tab, gel, thermal pad, ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention porte sur une micro-soufflante pour appareil d'assistance respiratoire comprenant un moteur électrique (2) entouré d'un carter (3), plusieurs parois (5a, 5b, 5c) agencées autour du carter (3), en étant espacées dudit carter, de manière à former un passage de gaz (4) entre lesdites parois (5a, 5b, 5c) et le carter (3), une entrée d'air (6) mettant en communication fluidique ledit passage de gaz (4) avec l'atmosphère ambiante, et des composants électroniques (7) reliés électriquement au moteur électrique (2) de manière à alimenter électriquement et piloter ledit moteur électrique (2). Selon l'invention, les composants électroniques (7) sont agencés au contact d'au moins une (5a) des parois (5a, 5b, 5c), en étant séparés mécaniquement du passage de gaz (4) par ladite paroi (5a) de manière à permettre un refroidissement desdits composants électroniques (7) avec de l'air présent dans le passage de gaz (4) par convection thermique au travers de ladite paroi (5a). Appareil d'assistance respiratoire (20) équipée d'une telle micro-soufflante (1).

Description

Micro-soufflante pour appareil d'assistance respiratoire
à refroidissement amélioré
L'invention porte sur une micro-soufflante pour appareil médical dont les performances thermiques ont été améliorées grâce à un agencement particulier conduisant à un meilleur refroidissement de ses composants électroniques, notamment de la carte électronique qui pilote cette micro-soufflante, ainsi que sur un appareil d'assistance respiratoire équipé d'une telle micro-soufflante pouvant être utilisé pour traiter des pathologies respiratoires de tout type.
Afin d'assister certains patients dans leur fonction respiratoire, on utilise des appareils d'assistance respiratoire délivrant un gaz respiratoire à débit non nul et/ou à une pression supérieure à la pression atmosphérique (> 1 atm). L'air envoyé au patient peut être additionné d'oxygène supplémentaire, notamment lorsque le patient doit recevoir, dans le cadre de son traitement, une proportion d'oxygène supérieure à 21% en volume.
Pour ce faire, certains appareils d'assistance respiratoire mettent en œuvre une micro- soufflante, aussi appelée « soufflante » ou « turbine », servant à aspirer l'air ambiant et à le délivrer à une pression donnée aux patients. L'aspiration de l'air par la micro-soufflante se fait grâce à une ou plusieurs roues à ailettes agencées sur un arbre rotatif entraîné en rotation par un moteur électrique. La roue à ailettes est mobile en rotation dans une volute qui forme un compartiment interne pour la roue, ladite volute comprenant une entrée de gaz et une sortie de gaz. La volute est couramment surmontée d'un pavillon.
A titre d'exemples, les documents EP-A-2165078, EP-A-2102504 et WO-A- 2012/139681 décrivent des micro -soufflantes de ce type et des appareils d'assistance respiratoire équipés de telles micro-soufflantes.
Lors de son fonctionnement, le moteur électrique, la carte électronique qui l'alimente et le pilote, et d'autres composants du système micro-soufflante ont tendance à s'échauffer, ce qui nuit à ses performances. Afin de tenter d'y remédier, il a été proposé, notamment par les documents EP-A-2165078 et WO-A-2012/139681 , d'aménager un chemin d'air autour de la turbine de sorte que l'air ambiant aspiré par la roue à ailettes, durant ses rotations, vienne balayer et donc refroidir la carcasse du moteur, c'est-à-dire le carter externe du moteur, avant de pénétrer dans la volute.
Toutefois, si cela permet de refroidir efficacement le carter du moteur, donc le moteur lui-même, cette solution ne résout pas le problème de surchauffe d'autres composants de la micro-souffiante, en particulier celle des composants électroniques d'alimentation électrique et de pilotage animant la micro-souffiante, telle la carte électronique.
Par ailleurs, il a aussi été proposé d'opérer un refroidissement de ces composants électroniques assemblés sur carte électronique par :
- ajout d'un système de refroidissement par convexion naturelle, par un radiateur. Or, un tel système atteint rapidement ses limites en termes de performances de dissipation si l'enveloppe qui le protège, autrement dit le capotage de l'appareil médical, est étanche ou limite les agressions extérieures, tel les poussières, les liquides ...
- ce radiateur peut être couplé à l'ajout d'un système de convexion forcée, tel un ventilateur. Or, un tel système présente les inconvénients de générer du bruit et de devoir être protégé contre l'environnement (poussières, ...), qui sont inacceptables, en particulier lorsque l'appareil médical doit être utilisé au domicile du patient.
- bridage électronique des fonctions lorsque le produit est soumis à certains paramètres d'utilisation (réglages de ventilation, conditions environnementales, température élevée...). Or, cette solution diminue les performances de la micro-souffiante, laquelle ne peut répondre alors à toutes les demandes du patient, en fonctionnement normal
Au vu de cela, le problème qui se pose est de proposer une micro-souffiante améliorée et un appareil de ventilation médical équipé d'une telle micro-souffiante qui soit utilisable pour assister des patients dans leur fonction respiratoire. En d'autres termes, le but visé est de proposer une solution simple et aisée à mettre en œuvre de manière à améliorer le refroidissement d'une micro-souffiante, en particulier de ses composants électroniques, de manière à garantir une performance thermique de la micro-souffiante et du système, lors de son utilisation normale au sein d'un appareil médical de ventilation assistée.
La solution de l'invention est alors une micro-souffiante comprenant :
- un moteur électrique entouré d'un carter, - plusieurs parois agencées autour du carter, en étant espacées dudit carter, de manière à former un passage de gaz entre lesdites parois et le carter,
- une entrée d'air mettant en communication fluidique ledit passage de gaz avec l'atmosphère ambiante, et
- des composants électroniques reliés électriquement au moteur électrique de manière à alimenter électriquement et piloter ledit moteur électrique,
- caractérisée en ce que les composants électroniques sont agencés au contact d'au moins une des parois, en étant séparés mécaniquement du passage de gaz par ladite paroi de manière à permettre un refroidissement desdits composants électroniques avec de l'air présent dans le passage de gaz par convection thermique au travers de ladite paroi.
Selon le cas, la micro -soufflante de l'invention peut comprendre l'une ou plusieurs des caractéristiques techniques suivantes :
- les parois entourent tout le carter.
- les composants électroniques comprennent une carte électronique.
- les composants électroniques sont agencés dans un compartiment ou logement séparé du passage de gaz par ladite paroi en contact avec les composants électroniques.
- le carter comprend une surface de fond et une surface latérale, lesdits composants électroniques étant agencés en regard de la surface de fond du carter en étant séparés de ladite surface de fond par ladite paroi en contact avec les composants électroniques et une partie du passage de gaz.
- la paroi en contact avec les composants électroniques est en un matériau plastique, élastomère ou métallique.
- le moteur électrique comprend un arbre -moteur rotatif portant une roue à ailettes.
- la roue à ailettes est insérée dans un compartiment agencé dans une volute comprenant un passage d'entrée de gaz et un passage de sortie de gaz.
L'invention concerne également un appareil d'assistance respiratoire, c'est-à-dire un ventilateur médical, équipé d'une micro-souffiante selon l'invention.
Selon le cas, l'appareil d'assistance respiratoire de l'invention peut comprendre l'une ou plusieurs des caractéristiques techniques suivantes :
- il comprend une ouverture d'entrée mettant l'entrée d'air de la micro-souffiante en communication fluidique avec l'atmosphère ambiante. - il comprend un conduit de fourniture de gaz permettant de convoyer le gaz fourni par la micro-soufflante, notamment le gaz provenant du passage de sortie de gaz de la volute.
- il comprend un tube flexible en communication fluidique, à son extrémité amont, avec le conduit de fourniture de gaz de manière à recueillir le gaz fourni par la micro-soufflante.
- il comprend un tube flexible en communication fluidique, à son extrémité aval, avec une interface respiratoire permettant de délivrer le gaz au patient, à savoir un masque ou des canules respiratoires, ou analogue.
- il permet de fournir un gaz respiratoire de type air ou air enrichi en oxygène (i.e. >22 vol.% en 02).
Un tel appareil équipé d'une turbine selon l'invention peut être utilisé dans le cadre d'une méthode de traitement thérapeutique d'une pathologie respiratoire affectant une personne, c'est-à-dire un malade ou un patient, notamment dans le cadre d'un traitement au domicile du patient.
L'invention va maintenant être mieux comprise grâce à la description détaillée suivante, faite à titre illustratif mais non limitatif, en référence à la figure annexée qui schématise un appareil d'assistance respiratoire 20 équipé d'une turbine 1 selon la présente invention.
Plus précisément la micro-soufflante 1 comprend un moteur électrique 2 entouré d'un carter 3 forme une coque ou capotage de protection autour des éléments du moteur électrique, à savoir le stator, le rotor... Ce carter 3 peut être en matière plastique ou métallique.
Le moteur 2 comprend classiquement un axe ou arbre rotatif portant et entraînant en rotation une roue à ailettes qui permet d'aspirer de l'air. L'air pénètre, via une entrée de volute 10, dans le compartiment interne de la volute 1 1 qui renferme la roue à ailettes. L'air en est ensuite expulsé via un conduit 12 de sortie de volute qui est en communication fluidique avec le compartiment interne de la volute 11 , et peut alors être acheminé jusqu'à un patient, par l'intermédiaire d'un conduit de gaz flexible et d'une interface respiratoire, tel un masque respiratoire ou analogue.
En fait, l'air pénètre dans l'appareil 20 via une (ou plusieurs) entrée d'air 6 en communication fluidique avec l'atmosphère ambiante, et est convoyé jusqu'à l'entrée de volute 10 via un chemin de gaz 4, 13. Une partie 4 du chemin de gaz 4, 13 est formé par plusieurs parois 5a, 5b, 5c agencées autour du carter 3 en étant espacées de celui-ci de manière à aménager entre eux un espacement faisant office de passage de gaz 4 permettant de véhiculer l'air entre lesdites parois 5a, 5b, 5c et le carter 3.
L'air circule dans le chemin de gaz 4, 13 dans le sens allant de l'orifice d'entrée d'air 6 vers l'entrée de volute 10, comme illustré par les flèches F sur la Figure.
En circulant au contact de la surface des parois 3a, 3b du carter 3, l'air refroidit ledit carter 3 grâce au balayage gazeux qui se crée alors, lequel permet une évacuation des calories générées par le moteur pendant son fonctionnement.
Par ailleurs, la micro-souffiante 1 comprend aussi des composants électroniques 7, notamment une carte électronique 8, reliés électriquement au moteur électrique 2 de manière à alimenter électriquement et piloter ledit moteur électrique 2, c'est-à-dire à commander son fonctionnement.
Selon la présente invention, les composants électroniques 7 sont agencés, dans un compartiment ou logement dédié 9 du matériel médical, tout en étant au contact d'au moins une paroi 5a définissant une partie du passage de gaz 4 de manière à permettre un refroidissement desdits composants électroniques 7 avec de l'air circulant dans le passage de gaz 4. Le refroidissement se fait par convection thermique au travers de ladite paroi 5a dans une zone de refroidissement 15 (schématisée par des pointillés sur la Figure).
Le refroidissement peut aussi s'opérer avec d'autres agencements, par exemple autour de la paroi 5b léchée par le gaz circulant dans le chemin de gaz 4 ou encore en vis-à-vis de la zone d'entrée de volute 10 ou du chemin de gaz 13.
De préférence, les composants électroniques 7 sont agencés en regard du passage de gaz
4, plus précisément en face, de la surface de fond 3b du carter 3 tout en étant séparés de celle-ci par ladite paroi 5a en contact avec les composants électroniques 7, d'un côté, et le passage de gaz 4, de l'autre côté.
La solution de l'invention permet donc une évacuation efficace d'une partie de l'énergie thermique dissipée par les composants électroniques 7 servant à l'alimentation et au pilotage du moteur, dans le flux d'air circulant dans le chemin de gaz 4, 13.
Les composants électroniques 7 comprennent : - un support électronique de type circuit imprimé rigide ou souple, par exemple en aluminium, en particulier de technologie IMS, comportant des pistes reliant électriquement les différents éléments, des surfaces de dissipation/radiateur dans/sur les couches dudit circuit, et reliés par des vias, c'est-à-dire des trous métalliques faisant office de ponts thermiques, entre les couches dudit circuit par exemple en cuivre, pour améliorer leur refroidissement; et
- des éléments électroniques de pilotage, tels des composants distribuant l'énergie lors de l'accélération du moteur 2, et récupérant l'énergie dissipée lors de son freinage, possédant des radiateurs et des boîtiers de protection.
Tout ou partie des composants électroniques 7 sont en contact mécanique avec la paroi 5a qui peut être en matériau plastique, élastomère ou métallique d'épaisseur pouvant aller de quelques millimètres, typiquement environ 2 millimètres. Cette paroi 5a peut comporter des aménagements géométriques favorisant les échanges thermiques, tel les des échangeurs thermiques, des pores ou autres.
Un élément intermédiaire en un matériau améliorant les échanges thermiques, c'est-à- dire ayant une conductivité thermique élevée, peut être agencé entre les composants électroniques 7 et la paroi d'échange thermique 5a, par exemple un élément radiateur en une matière thermiquement conductrice, par exemple en aluminium, ou encore un élément de type patte, gel, patin thermique, ...
Des essais de simulation thermique ont montré qu'une turbine 1 selon l'invention permet d'obtenir une réduction de la température des composants électroniques 7 d'au moins 25 à 30 % par rapport à une turbine classique dans laquelle les composants électroniques ne sont pas au contact d'une paroi formant le chemin de gaz au sein de la turbine 1.

Claims

Revendications
1. Micro-soufflante (1) comprenant :
- un moteur électrique (2) entouré d'un carter (3),
- plusieurs parois (5a, 5b, 5c) agencées autour du carter (3), en étant espacées dudit carter, de manière à former un passage de gaz (4) entre lesdites parois (5a, 5b, 5c) et le carter (3),
- une entrée d'air (6) mettant en communication fluidique ledit passage de gaz (4) avec l'atmosphère ambiante, et
- des composants électroniques (7) reliés électriquement au moteur électrique (2) de manière à alimenter électriquement et piloter ledit moteur électrique (2),
- caractérisée en ce que les composants électroniques (7) sont agencés au contact d'au moins une (5a) des parois (5a, 5b, 5c), en étant séparés mécaniquement du passage de gaz (4) par ladite paroi (5a) de manière à permettre un refroidissement desdits composants électroniques (7) avec de l'air présent dans le passage de gaz (4) par convection thermique au travers de ladite paroi (5 a).
2. Micro-souffiante (1) selon la revendication précédente, caractérisée en ce que les parois (5a, 5b, 5c) entourent tout le carter (3).
3. Micro-souffiante (1) selon l'une des revendications précédentes, caractérisée en ce que les composants électroniques (7) comprennent une carte électronique (8).
4. Micro-souffiante (1) selon l'une des revendications précédentes, caractérisée en ce que les composants électroniques (7) sont agencés dans un compartiment ou logement (9) séparé du passage de gaz (4) par ladite paroi (5a) en contact avec les composants électroniques (7)·
5. Micro-souffiante (1) selon l'une des revendications précédentes, caractérisée en ce que le carter (3) comprend une surface de fond (3b) et une surface latérale (3a), lesdits composants électroniques (7) étant agencés en regard de la surface de fond (3b) du carter (3) en étant séparés de ladite surface de fond (3b) par ladite paroi (5a) en contact avec les composants électroniques (7) et une partie du passage de gaz (4).
6. Micro-souffiante (1) selon l'une des revendications précédentes, caractérisée en ce que la paroi (5a) en contact avec les composants électroniques (7) est en un matériau plastique, élastomère ou métallique.
7. Micro-souffiante (1) selon l'une des revendications précédentes, caractérisée en ce que le moteur électrique (2) comprend un arbre-moteur rotatif portant une roue à ailettes.
8. Micro-souffiante (1) selon l'une des revendications précédentes, caractérisée en ce que la roue à ailettes est insérée dans un compartiment agencé dans une volute comprenant un passage d'entrée de gaz et un passage de sortie de gaz.
9. Appareil d'assistance respiratoire (20) équipée d'une micro-souffiante (1) selon l'une des revendications précédentes.
10. Appareil d'assistance respiratoire selon la revendication 9, caractérisé en ce qu'il comprend en outre :
- une ouverture d'entrée mettant l'entrée d'air (6) de la micro-souffiante en communication fluidique avec l'atmosphère ambiante, et
- un conduit de fourniture de gaz permettant de convoyer le gaz fourni par la micro- souffiante (1).
PCT/FR2016/050796 2015-04-13 2016-04-07 Micro-soufflante pour appareil d'assistance respiratoire à refroidissement amélioré WO2016166447A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553186A FR3034819B1 (fr) 2015-04-13 2015-04-13 Micro-soufflante pour appareil d’assistance respiratoire a refroidissement ameliore
FR1553186 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016166447A1 true WO2016166447A1 (fr) 2016-10-20

Family

ID=53758344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050796 WO2016166447A1 (fr) 2015-04-13 2016-04-07 Micro-soufflante pour appareil d'assistance respiratoire à refroidissement amélioré

Country Status (2)

Country Link
FR (1) FR3034819B1 (fr)
WO (1) WO2016166447A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600345A (zh) * 2019-10-31 2022-06-07 艾尔芬公司 电动呼吸辅助设备以及对装备该设备的马达的双重冷却

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904471A (en) * 1996-12-20 1999-05-18 Turbodyne Systems, Inc. Cooling means for a motor-driven centrifugal air compressor
EP2102504A1 (fr) 2006-11-13 2009-09-23 Airfan Appareil pour distribuer une alimentation régulée en gaz, en particulier appareil d'aide respiratoire
EP2165078A1 (fr) 2007-06-25 2010-03-24 Airfan Appareils permettant une alimentation régulée de gaz, appareils respirateurs en particulier
WO2012139681A1 (fr) 2011-04-11 2012-10-18 Airfan Appareil de distribution régulée d'un gaz, notamment appareil d'assistance respiratoire
WO2013009193A1 (fr) * 2011-07-13 2013-01-17 Fisher & Paykel Healthcare Limited Ensemble rotor et moteur
US20130084197A1 (en) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Fan unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904471A (en) * 1996-12-20 1999-05-18 Turbodyne Systems, Inc. Cooling means for a motor-driven centrifugal air compressor
EP2102504A1 (fr) 2006-11-13 2009-09-23 Airfan Appareil pour distribuer une alimentation régulée en gaz, en particulier appareil d'aide respiratoire
EP2165078A1 (fr) 2007-06-25 2010-03-24 Airfan Appareils permettant une alimentation régulée de gaz, appareils respirateurs en particulier
WO2012139681A1 (fr) 2011-04-11 2012-10-18 Airfan Appareil de distribution régulée d'un gaz, notamment appareil d'assistance respiratoire
WO2013009193A1 (fr) * 2011-07-13 2013-01-17 Fisher & Paykel Healthcare Limited Ensemble rotor et moteur
US20130084197A1 (en) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Fan unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600345A (zh) * 2019-10-31 2022-06-07 艾尔芬公司 电动呼吸辅助设备以及对装备该设备的马达的双重冷却

Also Published As

Publication number Publication date
FR3034819A1 (fr) 2016-10-14
FR3034819B1 (fr) 2017-04-28

Similar Documents

Publication Publication Date Title
ES2711277T3 (es) Sistema de control climático energéticamente eficiente para una turbina eólica marina
US20080138194A1 (en) Frame Structure Of A Cooling Fan, The Cooling Fan And Heat Generating Device Having The Fan
TWI651497B (zh) 除濕機
EP3482788A1 (fr) Appareil d'assistance respiratoire à micro-soufflante motorisée
FR2966391A1 (fr) Dispositif de conditionnement d'air notamment pour vehicule sanitaire.
JP6852457B2 (ja) 電源一体型真空ポンプ
WO2016166447A1 (fr) Micro-soufflante pour appareil d'assistance respiratoire à refroidissement amélioré
CN104564821B (zh) 冲压空气风机外壳
TW202006256A (zh) 具有發泡金屬結構的風扇殼體及具有該風扇殼體的風扇
US6568193B1 (en) Method and apparatus for cooling an electric motor
JP2009114906A (ja) 軸流フアンモータの自己冷却構造
EP2936954B1 (fr) Dispositif de ventilation pour installation de ventilation, chauffage et/ou climatisation
FR3091731A3 (fr) Compresseur de gaz pour ventilateur médical avec fonction de dissipation thermique cinétique
JP5703199B2 (ja) 温度調節器を備えたシャーシ
EP3760262B1 (fr) Ventilateur médical a caisson interne incluant une micro-soufflante motorisée et des circuits de gaz
FR3098121A1 (fr) Ventilateur médical avec micro-soufflante motorisée à refroidissement amélioré
WO2017037556A1 (fr) Unité intérieure pour climatiseur
TWI651498B (zh) 除濕機
FR3081713A1 (fr) Ensemble forme d'un ventilateur medical et d'un humidificateur de gaz avec protection contre les remontees d'eau
EP3791911B1 (fr) Ventilateur médical protégé par une structure-exosquelette
JP6304388B2 (ja) 除湿機
JP4929939B2 (ja) 一体型ターボ分子ポンプ
JPS5995357A (ja) 配電盤用除湿装置
FR3016795A1 (fr) Appareil d'assistance respiratoire avec micro-soufflante a roue double
GB2479591A (en) Electrical fan heater comprising two air outlets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16723795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16723795

Country of ref document: EP

Kind code of ref document: A1