WO2016165433A1 - 上行系统帧号差值的获取方法、基站、终端、存储介质 - Google Patents

上行系统帧号差值的获取方法、基站、终端、存储介质 Download PDF

Info

Publication number
WO2016165433A1
WO2016165433A1 PCT/CN2016/071200 CN2016071200W WO2016165433A1 WO 2016165433 A1 WO2016165433 A1 WO 2016165433A1 CN 2016071200 W CN2016071200 W CN 2016071200W WO 2016165433 A1 WO2016165433 A1 WO 2016165433A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
cell
uplink
target cell
sfn difference
Prior art date
Application number
PCT/CN2016/071200
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016165433A1 publication Critical patent/WO2016165433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a wireless communication technology, and in particular, to a method for acquiring an SF (System Frame Number) difference in an LTE (Long Term Evolution) system, a base station, a UE (User Equipment), Storage medium.
  • SF System Frame Number
  • LTE Long Term Evolution
  • UE User Equipment
  • a dual connectivity is a technology in which a UE simultaneously uses a primary evolved Node B (MeNB) and a secondary evolved Node B (SeNB).
  • MeNB primary evolved Node B
  • SeNB secondary evolved Node B
  • a non-ideal data/signaling interface Xn interface is used for communication between the MeNB and the SeNB, and the UE can work under the MeNB and the SeNB at the same time.
  • the MeNB may transfer part or all of the data/signaling of the UE to the SeNB to obtain the service provided by the SeNB according to signal strength or load balancing. Thereby, the UE can simultaneously use the resources of the MeNB and the SeNB, and the inter-base station aggregation.
  • the configuration of the measurement interval is subject to the following measurement requirements:
  • the measurement interval is configured according to different measurement patterns. Referring to Table 1, each measurement interval of Figure 0 is 6 milliseconds, and the repetition period of the measurement interval is 40 milliseconds.
  • the measurement interval configuration of the UE on the primary cell is the same as in Table 1.
  • the synchronization status of the current UE on the primary cell group (MCG, Master Cell Group) and the secondary cell group (SCG, Secondary Cell Group) is defined as follows:
  • Downlink synchronization status the pointer of the signal received from the PCell and the primary and secondary cells (PSCell) The time difference does not exceed 33us.
  • Downlink asynchronous state The pointer timing difference of signals received from PCell and PSCell does not exceed 500us.
  • the UE uses a measurement configuration based on the PCell, with different interrupts in both synchronous and non-synchronous situations.
  • the UE's SCG interruption time is 6 ms; when the UE is in the asynchronous state, the UE's SCG interruption time is 7 ms.
  • the UE When the UE transmits a signal in the MCG and the SCG cell to meet the synchronization requirement of the uplink timing difference, the UE adopts the power control mode 1 for the uplink synchronization state.
  • the UE adopts the power control mode 2 in the uplink asynchronous state.
  • the UE can measure the difference between the SFN of the downlink signal of the source cell and the target cell by measuring the signals of the source cell and the target cell and reading the respective SFN numbers in the system information of the source cell and the target cell.
  • the UE reports the measurement result to the network side.
  • the network side obtains the downlink SFN difference by using the MeNB and the SeNB to negotiate, and the specific implementation method depends on the eNB implementation.
  • the network side determines the downlink synchronization and the non-synchronization state according to the downlink SFN difference result, so as to perform the corresponding measurement interval configuration, so that the MeNB and the SeNB can determine the UE interruption time according to the downlink synchronization state, thereby avoiding scheduling data transmission at the interruption time. .
  • the accurate power control mode cannot be configured without knowing the uplink synchronization state.
  • the uplink SFN difference needs to be obtained, so that the network side can obtain the uplink between different cells.
  • the step state it can be seen that the problem of how to obtain the difference of the uplink SFN needs to be solved.
  • an embodiment of the present invention provides a method for acquiring an uplink SFN difference, a base station, a UE, and a storage medium.
  • a first aspect of the embodiments of the present invention provides a method for acquiring an uplink SFN difference, which is applied to a source base station, where the method includes:
  • TA Time Advanced
  • the calculating, according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference, the uplink SFN difference between the source cell and the target cell include:
  • the downlink SFN difference is added to the TA value of the source cell, and the TA value of the target cell is subtracted, to obtain the source cell and the The uplink SFN difference of the target cell;
  • the TA value of the target cell is greater than or equal to the sum of the TA value of the source cell and the downlink SFN difference
  • the TA value of the target cell is subtracted from the TA value of the source cell, and then the downlink SFN difference is subtracted to obtain the source cell and the source cell.
  • the uplink SFN difference of the target cell is subtracted from the TA value of the source cell.
  • the method further includes:
  • the corresponding power control mode is configured according to the uplink synchronization state.
  • a second aspect of the embodiments of the present invention provides a method for acquiring an uplink SFN difference, which should For a source base station, the method includes:
  • the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference; a downlink SFN difference corresponding to the source cell and the target cell pair; and a TA value of the source cell;
  • the target eNB calculates the uplink SFN difference between the source cell and the target cell according to the request information, the uplink SFN difference corresponding to the source cell and the target cell pair sent by the target base station is received. value.
  • the method further includes:
  • the corresponding power control mode is configured according to the uplink synchronization state.
  • a third aspect of the embodiments of the present invention provides a method for acquiring an uplink SFN difference, which is applied to a source base station, where the method includes:
  • the request information includes: a cell list requesting a TA value
  • the method further includes:
  • the acquiring the TA value of the UE in the source cell includes:
  • the UE When the UE has no TA value available in the source cell, the UE is triggered to initiate a random access procedure in the source cell and acquire the TA value in the source cell.
  • the method further includes:
  • the corresponding power control mode is configured according to the uplink synchronization state.
  • a fourth aspect of the embodiments of the present invention provides a method for acquiring an uplink SFN difference value, which is applied to a UE, where the method includes:
  • the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference, and a downlink SFN difference corresponding to the source cell and the target cell pair;
  • the acquiring the TA value of the UE in the target cell includes:
  • the acquiring the TA value of the UE in the source cell includes:
  • the UE When the UE does not have the available TA value in the source cell, after receiving the trigger of the source base station, the UE initiates a random access procedure in the source cell and acquires the TA value in the source cell.
  • a sending unit configured to send TA value request information to the target base station
  • a receiving unit configured to receive a TA value of a target cell under the target base station that is sent by the target base station;
  • the calculating unit is configured to calculate an uplink SFN difference between the source cell and the target cell according to a TA value of a source cell, a TA value of the target cell, and a downlink SFN difference value, value.
  • the calculating unit includes:
  • the first calculating subunit is configured to: when the TA value of the target cell is less than or equal to the sum of the TA value of the source cell and the downlink SFN difference, the downlink SFN difference is added to the TA value of the source cell, and the TA value of the target cell is subtracted. Obtaining an uplink SFN difference between the source cell and the target cell;
  • a second calculating subunit configured to: when the TA value of the target cell is greater than or equal to the sum of the TA value of the source cell and the downlink SFN difference, subtract the TA value of the source cell from the TA value of the source cell, and then subtract the downlink SFN difference. And obtaining an uplink SFN difference between the source cell and the target cell.
  • the base station further includes:
  • a determining unit configured to determine an uplink synchronization state of the source cell and the target cell according to an uplink SFN difference between the source cell and the target cell;
  • the configuration unit is configured to configure a corresponding power control mode according to the uplink synchronization state when the dual connectivity is configured for the terminal UE.
  • a sending unit configured to send uplink SFN difference request information to the target base station, where the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference; a downlink SFN difference corresponding to the source cell and the target cell pair; The TA value of the cell;
  • a receiving unit configured to: after the target base station calculates an uplink SFN difference between the source cell and the target cell according to the request information, receive the source cell and the target cell pair sent by the target base station Corresponding uplink SFN difference.
  • the base station further includes:
  • a determining unit configured to determine an uplink synchronization state of the source cell and the target cell according to an uplink SFN difference between the source cell and the target cell;
  • the configuration unit is configured to configure a corresponding power control mode according to the uplink synchronization state when the dual connectivity is configured for the terminal UE.
  • a sending unit configured to send request information to the UE, where the request information includes: a cell list requesting a TA value;
  • An acquiring unit configured to acquire a TA value of the UE in a source cell, and receive a TA value of the target cell sent by the UE;
  • the calculating unit is configured to calculate an uplink SFN difference between the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference.
  • the base station further includes:
  • the first configuration unit is configured to configure a measurement interval of the UE in the target cell, so that the UE initiates a random access procedure at the measurement interval and acquires a TA value in the target cell.
  • the base station further includes:
  • a triggering unit configured to: when the UE has no TA value available in the source cell, trigger the UE to initiate a random access procedure in the source cell and acquire a TA value in the source cell.
  • the base station further includes:
  • a determining unit configured to determine an uplink synchronization state of the source cell and the target cell according to an uplink SFN difference between the source cell and the target cell;
  • the second configuration unit is configured to configure a corresponding power control mode according to the uplink synchronization state when the dual connectivity is configured to the terminal UE.
  • the receiving unit is configured to receive the request information sent by the source base station, where the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference, and a downlink SFN difference corresponding to the source cell and the target cell pair;
  • An acquiring unit configured to acquire a TA value of the UE in the source cell and a TA value of the target cell;
  • a calculating unit configured to calculate, according to a TA value of the source cell, a TA value of the target cell, and a downlink SFN difference, an uplink SFN difference between the source cell and the target cell;
  • the sending unit is configured to send the uplink SFN difference between the source cell and the target cell to the network side.
  • the UE further includes:
  • a first random access unit configured to receive a measurement interval of the target cell configured by the source base station, initiate a random access procedure at the measurement interval, and acquire a TA value in the target cell.
  • the UE further includes:
  • the second random access unit is configured to: when the UE has no TA value available in the source cell, after receiving the trigger of the source base station, initiate a random access procedure in the source cell and obtain a TA value in the source cell.
  • the storage medium provided by the embodiment of the present invention stores a computer program for performing the method for acquiring the uplink SFN difference.
  • the calculation of the uplink SFN difference is obtained according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference, and the source base station, or the target base station, or the UE can acquire the TA of the source cell. After the value, the TA value of the target cell, and the downlink SFN difference, the uplink SFN difference is calculated. Therefore, the network side (base station) can be used to obtain the uplink SFN difference between the two cells, and the network side determines the uplink synchronization status of the two cells configured for the UE, and then can perform accurate power control mode configuration on the UE.
  • FIG. 1 is a schematic diagram of a network scenario of dual connectivity
  • FIG. 3 is a schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 1 of the present invention
  • FIG. 4 is another schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 2 of the present invention.
  • FIG. 6 is another schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 3 of the present invention.
  • FIG. 8 is another schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 4 of the present invention.
  • FIG. 10 is another schematic diagram of a method for acquiring an uplink SFN difference according to Embodiment 4 of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic structural diagram of a structure of a UE according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of scenario 1 for calculating an uplink SFN difference according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of scenario 2 for calculating an uplink SFN difference according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method for acquiring an uplink SFN difference according to a first embodiment of the present invention.
  • the method for obtaining an uplink SFN difference is applied to a source base station, as shown in FIG. Includes the following steps:
  • Step 301 Send TA value request information to the target base station.
  • the TA value request information is transmitted from the source base station to the target base station.
  • Step 302 Receive a TA value of a target cell under the target base station that is sent by the target base station.
  • the source base station receives the TA value of the target cell under the target base station that is sent by the target base station.
  • Step 303 Calculate an uplink SFN difference between the source cell and the target cell according to a TA value of the source cell, a TA value of the target cell, and a downlink SFN difference.
  • the source eNB calculates the uplink SFN of the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference value of the source cell. Difference.
  • the calculating according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference, the uplink SFN difference between the source cell and the target cell, including:
  • the downlink SFN difference is added to the TA value of the source cell, and the TA value of the target cell is subtracted, to obtain the source cell and the The uplink SFN difference of the target cell;
  • the TA value of the target cell is greater than or equal to the sum of the TA value of the source cell and the downlink SFN difference
  • the TA value of the target cell is subtracted from the TA value of the source cell, and then the downlink SFN difference is subtracted to obtain the source cell and the source cell.
  • the uplink SFN difference of the target cell is subtracted from the TA value of the source cell.
  • the method further includes: determining an uplink synchronization state of the source cell and the target cell according to an uplink SFN difference between the source cell and the target cell;
  • the corresponding power control mode is configured according to the uplink synchronization state.
  • the method for obtaining the uplink SFN difference value includes the following steps:
  • Step 401 The source base station sends a TA value request message (TA Request) to the target base station.
  • TA Request TA value request message
  • the source base station may be an MeNB or an SeNB
  • the target base station may be an SeNB or an MeNB.
  • the TA value request information includes: a cell list requesting a TA value.
  • Step 402 The target base station feeds back a TA value (TA Response) to the source base station according to the received request information.
  • TA Response TA value
  • the TA value may be the maximum TA value configurable by the requesting cell.
  • Step 403 After receiving the TA value, the source base station calculates an uplink SFN difference between the source cell and the target cell according to the TA value of the cell under the source base station and the downlink SFN difference.
  • the cell under the source base station is a source cell
  • the target base station is smaller than the target cell
  • the calculation method is as follows:
  • Target Cell TA> (Source Cell TA+DL offset)
  • Target Cell TA the TA value of the target cell
  • Source Cell TA the TA value of the source cell
  • UL offset the SFN difference between the uplink cell and the target cell
  • DL offset SFN difference between the downlink cell and the target cell.
  • the source base station After obtaining the uplink SFN difference between the source cell and the target cell, the source base station determines the uplink synchronization state of the source cell and the target cell, and configures a corresponding power control mode according to the synchronization state when configuring the DC for the UE.
  • FIG. 5 is a schematic flowchart of a method for acquiring an uplink SFN difference according to Embodiment 2 of the present invention.
  • the method for acquiring an uplink SFN difference value in this example is applied to a source base station, and as shown in FIG. 5, the uplink SFN difference value is obtained.
  • the method includes the following steps:
  • Step 501 Send uplink SFN difference request information to the target base station, where the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference; a downlink SFN difference corresponding to the source cell and the target cell pair; and a source cell TA value.
  • the source eNB sends uplink SFN difference request information to the target base station.
  • Step 502 After the target eNB calculates the uplink SFN difference between the source cell and the target cell according to the request information, and receives the source cell and the target cell pair that are sent by the target base station. Upstream SFN difference.
  • the method further includes:
  • the corresponding power control mode is configured according to the uplink synchronization state.
  • the method for obtaining the uplink SFN difference value includes the following steps:
  • Step 601 The source base station sends uplink SFN difference request information (Offset Request) to the target base station.
  • Offset Request uplink SFN difference request information
  • the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference; a downlink SFN difference corresponding to the source cell and the target cell pair; and a TA value of the source cell.
  • the TA value of the source cell may be the maximum TA value configurable by the source cell.
  • Step 602 The target base station calculates an uplink SFN difference between the source cell and the target cell according to the received request information.
  • Step 603 The target base station feeds back uplink SFN difference information (UL SFN Offset Response) to the source base station.
  • uplink SFN difference information UL SFN Offset Response
  • the feedback information includes: a corresponding uplink SFN difference between the source cell and the target cell pair.
  • the source base station After obtaining the uplink SFN difference between the source cell and the target cell, the source base station determines the uplink synchronization state of the source cell and the target cell, and configures a corresponding power control mode according to the synchronization state when configuring the DC for the UE.
  • FIG. 7 is a schematic flowchart of a method for acquiring an uplink SFN difference according to Embodiment 3 of the present invention.
  • the method for acquiring an uplink SFN difference in this example is applied to a source base station, and as shown in FIG. 7, the uplink SFN difference is obtained.
  • the method includes the following steps:
  • Step 701 Send request information to the UE, where the request information includes: a cell list requesting a TA value.
  • the source base station transmits the request information to the UE.
  • Step 702 Acquire a TA value of the UE in a source cell, and receive a target sent by the UE. The TA value of the cell.
  • the source base station acquires the TA value of the UE in the source cell, and receives the TA value of the target cell sent by the UE.
  • the method further includes:
  • the acquiring the TA value of the UE in the source cell includes:
  • the UE When the UE has no TA value available in the source cell, the UE is triggered to initiate a random access procedure in the source cell and acquire the TA value in the source cell.
  • Step 703 Calculate an uplink SFN difference between the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference.
  • the source base station calculates an uplink SFN difference between the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference.
  • the method further includes:
  • the corresponding power control mode is configured according to the uplink synchronization state.
  • the method for obtaining the uplink SFN difference value includes the following steps:
  • Step 801 The source base station sends a request message (TA Request) to the UE when the uplink SFN difference needs to be calculated.
  • TA Request a request message
  • the request information includes: a cell list requesting a TA value.
  • the source base station configures the measurement interval of the UE in the target cell.
  • the UE initiates a random access procedure at the measurement interval and obtains The TA value in the target cell.
  • Step 802 If the UE has no TA value available in the source cell, the source base station may trigger the UE to initiate a random access procedure in the source cell to obtain the TA value of the UE in the source cell.
  • Step 803 The UE initiates a random access procedure in the target cell according to the received request information and the measurement interval, and acquires a TA value.
  • the random access procedure may be contention based or non-competitive.
  • Step 804 The UE reports the acquired TA value of the target cell to the network side.
  • Step 805 After obtaining the TA value of the target cell, the network side calculates an uplink SFN difference between the source cell and the target cell.
  • the network side After obtaining the uplink SFN difference between the source cell and the target cell, the network side determines the uplink synchronization state of the source cell and the target cell, and configures a corresponding power control mode according to the synchronization state when configuring the DC for the UE.
  • FIG. 9 is a schematic flowchart of a method for acquiring an uplink SFN difference according to Embodiment 4 of the present invention.
  • the method for obtaining an uplink SFN difference value is applied to a UE, as shown in FIG. Includes the following steps:
  • Step 901 Receive request information sent by the source base station, where the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference, and a downlink SFN difference corresponding to the source cell and the target cell pair.
  • the UE receives the request information sent by the source base station.
  • Step 902 Obtain a TA value of the UE in the source cell and a TA value of the target cell.
  • the TA value of the UE in the source cell and the TA value of the target cell are acquired by the UE.
  • the acquiring the TA value of the UE in the target cell includes:
  • the acquiring the TA value of the UE in the source cell includes:
  • the UE When the UE does not have the available TA value in the source cell, after receiving the trigger of the source base station, the UE initiates a random access procedure in the source cell and acquires the TA value in the source cell.
  • Step 903 Calculate an uplink SFN difference between the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference.
  • the UE calculates an uplink SFN difference between the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference.
  • Step 904 Send the uplink SFN difference between the source cell and the target cell to the network side.
  • the uplink SFN difference between the source cell and the target cell is sent by the UE to the network side.
  • the method for obtaining the uplink SFN difference value in the fourth embodiment of the present invention is further described below with reference to FIG. 10. As shown in FIG. 10, the method for obtaining the uplink SFN difference value includes the following steps:
  • Step 111 The source base station sends the request information to the UE when the uplink SFN difference value needs to be calculated.
  • the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference; and a downlink SFN difference value corresponding to the source cell and the target cell pair.
  • the source eNB configures the measurement interval of the UE in the target cell.
  • the UE initiates a random access procedure at the measurement interval and acquires the TA value at the target cell.
  • Step 112 If the UE has no TA value available in the source cell, the source base station may trigger the UE to initiate a random access procedure in the source cell to obtain the TA value of the UE in the source cell.
  • Step 113 The UE initiates a random access procedure in the target cell according to the received request information and the measurement interval, and acquires a TA value.
  • the random access procedure may be contention based or non-competitive.
  • Step 114 The UE calculates an uplink SFN difference between the source cell and the target cell.
  • Step 115 The UE reports the obtained SFN difference between the source cell and the target cell to the network side.
  • the network side After obtaining the uplink SFN difference between the source cell and the target cell, the network side determines the uplink synchronization state of the source cell and the target cell, and configures the corresponding power control mode according to the synchronization state when configuring the DC for the UE.
  • FIG. 11 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention. As shown in FIG. 11, the base station includes:
  • the sending unit 11 is configured to send the TA value request information to the target base station;
  • the receiving unit 12 is configured to receive a TA value of the target cell under the target base station that is sent by the target base station;
  • the calculating unit 13 is configured to calculate an uplink SFN difference between the source cell and the target cell according to a TA value of a source cell, a TA value of the target cell, and a downlink SFN difference value.
  • the calculating unit 13 includes:
  • the first calculating sub-unit 131 is configured to: when the TA value of the target cell is less than or equal to the sum of the TA value of the source cell and the downlink SFN difference, add the downlink SFN difference to the TA value of the source cell, and subtract the TA of the target cell. And obtaining an uplink SFN difference between the source cell and the target cell;
  • the second calculating sub-unit 132 is configured to: when the TA value of the target cell is greater than or equal to the sum of the TA value of the source cell and the downlink SFN difference, subtract the TA value of the target cell from the TA value of the source cell, and then subtract the downlink SFN. The difference is obtained, and the uplink SFN difference between the source cell and the target cell is obtained.
  • the base station further includes:
  • the determining unit 14 is configured to determine an uplink synchronization state of the source cell and the target cell according to an uplink SFN difference between the source cell and the target cell;
  • the configuration unit 15 is configured to configure a corresponding power control mode according to the uplink synchronization state when the dual connectivity is configured for the terminal UE.
  • each unit in the base station shown in FIG. 11 may be It is understood with reference to the related description of the foregoing acquisition method of the uplink SFN difference.
  • each unit in the base station may be processed by a central processing unit (CPU), a microprocessor (Micro Processor Unit, MPU), or a digital signal located in a base station. (Digital Signal Processor, DSP), or Field Programmable Gate Array (FPGA) implementation.
  • CPU central processing unit
  • MPU Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • FIG. 12 is a schematic structural diagram of a base station according to Embodiment 2 of the present invention. As shown in FIG. 12, the base station includes:
  • the sending unit 21 is configured to send uplink SFN difference request information to the target base station, where the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference; and a downlink SFN difference corresponding to the source cell and the target cell pair; The TA value of the source cell;
  • the receiving unit 22 is configured to: after the target base station calculates an uplink SFN difference between the source cell and the target cell according to the request information, receive the source cell and the target cell sent by the target base station The corresponding upstream SFN difference.
  • the base station further includes:
  • the determining unit 23 is configured to determine an uplink synchronization state of the source cell and the target cell according to an uplink SFN difference between the source cell and the target cell.
  • the configuration unit 24 is configured to configure a corresponding power control mode according to the uplink synchronization state when the dual connectivity is configured for the terminal UE.
  • each unit in the base station may be implemented by a CPU, an MPU, or a DSP, or an FPGA located in the base station.
  • FIG. 13 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention. As shown in FIG. 13, the base station includes:
  • the sending unit 31 is configured to send request information to the UE, where the request information includes: a list of cells with TA values;
  • the obtaining unit 32 is configured to acquire a TA value of the UE in the source cell, and receive a TA value of the target cell sent by the UE;
  • the calculating unit 33 is configured to calculate an uplink SFN difference between the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference.
  • the base station further includes:
  • the first configuration unit 34 is configured to configure a measurement interval of the UE in the target cell, so that the UE initiates a random access procedure at the measurement interval and acquires a TA value in the target cell.
  • the base station further includes:
  • the triggering unit 35 is configured to trigger the UE to initiate a random access procedure in the source cell and obtain the TA value in the source cell when the UE has no TA value available in the source cell.
  • the base station further includes:
  • the determining unit 36 is configured to determine an uplink synchronization state of the source cell and the target cell according to an uplink SFN difference between the source cell and the target cell.
  • the second configuration unit 37 is configured to configure a corresponding power control mode according to the uplink synchronization state when the dual connectivity is configured for the terminal UE.
  • each unit in the base station may be implemented by a CPU, an MPU, or a DSP, or an FPGA located in the base station.
  • FIG. 14 is a schematic structural diagram of a structure of a UE according to an embodiment of the present invention. As shown in FIG. 14, the UE includes:
  • the receiving unit 41 is configured to receive the request information sent by the source base station, where the request information includes: a source cell and a target cell pair list requesting an uplink SFN difference, and a downlink SFN difference corresponding to the source cell and the target cell pair;
  • the obtaining unit 42 is configured to acquire a TA value of the UE in the source cell and a TA value of the target cell.
  • the calculating unit 43 is configured to calculate an uplink SFN difference between the source cell and the target cell according to the TA value of the source cell, the TA value of the target cell, and the downlink SFN difference value;
  • the sending unit 44 is configured to send an uplink SFN difference between the source cell and the target cell to the network side.
  • the UE further includes:
  • the first random access unit 45 is configured to receive a measurement interval of the target cell configured by the source base station, initiate a random access procedure at the measurement interval, and acquire a TA value at the target cell.
  • the UE further includes:
  • the second random access unit 46 is configured to: when the UE has no TA value available in the source cell, after receiving the trigger of the source base station, initiate a random access procedure in the source cell and obtain a TA value in the source cell.
  • each unit in the UE may be implemented by a CPU, an MPU, or a DSP, or an FPGA located in the UE.
  • the apparatus for tracking the service signaling may also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a separate product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, wherein a computer program is stored, and the computer program is used to execute the method for acquiring an uplink SFN difference value according to an embodiment of the present invention.
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the calculation of the uplink SFN difference is based on the TA value of the source cell, The value of the TA of the target cell and the difference of the downlink SFN are obtained.
  • the uplink SFN difference is calculated. Therefore, the network side (base station) can be used to obtain the uplink SFN difference between the two cells, and the network side determines the uplink synchronization status of the two cells configured for the UE, and then can perform accurate power control mode configuration on the UE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行SFN差值的获取方法、基站、UE、存储介质,包括:向目标基站发送最大时间提前量TA值请求信息;接收所述目标基站发送的所述目标基站下的目标小区的TA值;根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。

Description

上行系统帧号差值的获取方法、基站、终端、存储介质 技术领域
本发明涉及无线通信技术,尤其涉及一种长期演进(LTE,Long Term Evolution)系统中的上行系统帧号(SFN,System Frame Number)差值的获取方法、基站、终端(UE,User Equipment)、存储介质。
背景技术
双连接(DC,Dual Connectivity)是UE同时使用主基站(MeNB,Master evolved Node B)和辅基站(SeNB,Secondary evolved Node B)的一种技术。参照图1,在多层网络覆盖环境中,MeNB与SeNB之间采用非理想的数据/信令接口Xn接口进行通信,UE可以同时工作在MeNB和SeNB下。当连接到MeNB的UE进入SeNB所对应的小区的覆盖范围时,MeNB可以根据信号强度或负载均衡等考虑,转移UE的部分或全部的数据/信令到SeNB以获得SeNB提供的服务。从而实现UE可以同时使用MeNB和SeNB的资源,以及基站间聚合。
基于DC的UE在做异频测量时,有可能会无法正常的在当前服务频点上收发数据,因此需要网络侧给UE配置测量间隔来帮助UE进行异频测量,同时又不会导致UE数据包的丢失。测量间隔的配置要服从以下测量需求:根据不同的测量图谱配置测量间隔,参照表1,如图谱0的每个测量间隔是6毫秒,测量间隔的重复周期是40毫秒。
对于UE来说,UE在主小区(PCell)上的测量间隔配置和表1相同。当前UE在主小区组(MCG,Master Cell Group)和辅小区组(SCG,Secondary Cell Group)上的同步状态定义如下:
下行同步状态:从PCell和主辅小区(PSCell)接收到的信号的指针定 时差值不超过33us。
下行异步状态:从PCell和PSCell接收到的信号的指针定时差值不超过500us。
Figure PCTCN2016071200-appb-000001
表1
对于PSCell上,UE采用基于PCell上的测量配置,在同步和非同步情况采用不同中断。参照图2,当UE处于同步状态的时候,UE的SCG中断时间为6ms;当UE处于异步状态的时候,UE的SCG中断时间为7ms。
当UE在MCG和SCG小区发送信号的子帧满足上行定时差的同步要求的时候,为上行同步状态,UE采用功率控制模式1。
当UE在MCG和SCG小区发送信号的子帧超过上行定时差的同步要求的时候,为上行异步状态,UE采用功率控制模式2。
UE通过测量源小区和目标小区的信号,并读取源小区和目标小区的的系统信息中各自的SFN号,从而可以测量得到源小区和目标小区的下行信号的SFN的差值。UE将测量结果上报网络侧。网络侧通过MeNB和SeNB协商获取下行SFN差值,具体实现方法取决于eNB实现。网络侧根据下行SFN差值结果判断下行同步和非同步的状态,从而进行对应的测量间隔配置,从而MeNB和SeNB可以根据该下行同步状态判断出UE的中断时间,从而避免在中断时刻调度数据传输。
目前,在不知道上行同步状态的情况下无法配置准确的功率控制模式,为此,需要获得上行SFN差值,从而辅助网络侧获取不同小区间的上行同 步状态,可见,如何获取上行SFN差值的问题亟需解决。
发明内容
为解决上述技术问题,本发明实施例提供了一种上行SFN差值的获取方法、基站、UE、存储介质。
本发明实施例的第一方面,提供了一种上行SFN差值的获取方法,应用于源基站,所述方法包括:
向目标基站发送最大时间提前量(TA,Time Advanced)值请求信息;
接收所述目标基站发送的所述目标基站下的目标小区的TA值;
根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
本发明实施例中,所述根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值,包括:
当目标小区的TA值小于等于源小区的TA值与下行SFN差值之和时,将下行SFN差值加上源小区的TA值后减去目标小区的TA值,得到所述源小区与所述目标小区的上行SFN差值;
当目标小区的TA值大于等于源小区的TA值与下行SFN差值之和时,将目标小区的TA值减去源小区的TA值后再减去下行SFN差值,得到所述源小区与所述目标小区的上行SFN差值。
本发明实施例中,所述方法还包括:
根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本发明实施例的第二方面,提供了一种上行SFN差值的获取方法,应 用于源基站,所述方法包括:
向目标基站发送上行SFN差值请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行SFN差值;源小区的TA值;
当所述目标基站根据所述请求信息计算得到所述源小区和所述目标小区的上行SFN差值后,接收所述目标基站发送的所述源小区和所述目标小区对对应的上行SFN差值。
本发明实施例中,所述方法还包括:
根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本发明实施例的第三方面,提供了一种上行SFN差值的获取方法,应用于源基站,所述方法包括:
向UE发送请求信息,所述请求信息包括:请求TA值的小区列表;
获取所述UE在源小区的TA值,接收所述UE发送的目标小区的TA值;
根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
本发明实施例中,所述方法还包括:
配置所述UE在目标小区的测量间隔,以使所述UE在测量间隔发起随机接入过程并获取在目标小区的TA值。
本发明实施例中,所述获取所述UE在源小区的TA值,包括:
当所述UE在源小区没有可用的TA值时,触发所述UE在源小区发起随机接入过程并获取在源小区的TA值。
本发明实施例中,所述方法还包括:
根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本发明实施例的第四方面,提供了一种上行SFN差值的获取方法,应用于UE,所述方法包括:
接收源基站发送的请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表、源小区和目标小区对对应的下行SFN差值;
获取UE在源小区的TA值、目标小区的TA值;
根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值;
将所述源小区与所述目标小区的上行SFN差值发送给网络侧。
本发明实施例中,所述获取UE在目标小区的TA值包括:
接收源基站配置的在目标小区的测量间隔,在所述测量间隔发起随机接入过程并获取在目标小区的TA值。
本发明实施例中,所述获取UE在源小区的TA值,包括:
当UE在源小区没有可用的TA值时,收到所述源基站的触发后在源小区发起随机接入过程并获取在源小区的TA值。
本发明实施例提供的基站包括:
发送单元,配置为向目标基站发送TA值请求信息;
接收单元,配置为接收所述目标基站发送的所述目标基站下的目标小区的TA值;
计算单元,配置为根据源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差 值。
本发明实施例中,所述计算单元包括:
第一计算子单元,配置为当目标小区的TA值小于等于源小区的TA值与下行SFN差值之和时,将下行SFN差值加上源小区的TA值后减去目标小区的TA值,得到所述源小区与所述目标小区的上行SFN差值;
第二计算子单元,配置为当目标小区的TA值大于等于源小区的TA值与下行SFN差值之和时,将目标小区的TA值减去源小区的TA值后再减去下行SFN差值,得到所述源小区与所述目标小区的上行SFN差值。
本发明实施例中,所述基站还包括:
确定单元,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
配置单元,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本发明另一实施例提供的基站包括:
发送单元,配置为向目标基站发送上行SFN差值请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行SFN差值;源小区的TA值;
接收单元,配置为当所述目标基站根据所述请求信息计算得到所述源小区和所述目标小区的上行SFN差值后,接收所述目标基站发送的所述源小区和所述目标小区对对应的上行SFN差值。
本发明实施例中,所述基站还包括:
确定单元,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
配置单元,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本发明另一实施例提供的基站包括:
发送单元,配置为向UE发送请求信息,所述请求信息包括:请求TA值的小区列表;
获取单元,配置为获取所述UE在源小区的TA值,接收所述UE发送的目标小区的TA值;
计算单元,配置为根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
本发明实施例中,所述基站还包括:
第一配置单元,配置为配置所述UE在目标小区的测量间隔,以使所述UE在测量间隔发起随机接入过程并获取在目标小区的TA值。
本发明实施例中,所述基站还包括:
触发单元,配置为当所述UE在源小区没有可用的TA值时,触发所述UE在源小区发起随机接入过程并获取在源小区的TA值。
本发明实施例中,所述基站还包括:
确定单元,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
第二配置单元,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本发明实施例提供的UE包括:
接收单元,配置为接收源基站发送的请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表、源小区和目标小区对对应的下行SFN差值;
获取单元,配置为获取UE在源小区的TA值、目标小区的TA值;
计算单元,配置为根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值;
发送单元,配置为将所述源小区与所述目标小区的上行SFN差值发送给网络侧。
本发明实施例中,所述UE还包括:
第一随机接入单元,配置为接收源基站配置的在目标小区的测量间隔,在所述测量间隔发起随机接入过程并获取在目标小区的TA值。
本发明实施例中,所述UE还包括:
第二随机接入单元,配置为当UE在源小区没有可用的TA值时,收到所述源基站的触发后在源小区发起随机接入过程并获取在源小区的TA值。
本发明实施例提供的存储介质,存储有计算机程序,该计算机程序用于执行上述上行SFN差值的获取方法。
本发明实施例的技术方案中,上行SFN差值的计算根据源小区的TA值、目标小区的TA值以及下行SFN差值得到,源基站、或者目标基站、或者UE都可获取源小区的TA值、目标小区的TA值以及下行SFN差值后,计算得到上行SFN差值。从而可以辅助网络侧(基站)获得两个小区间的上行SFN差值,网络侧确定出给UE配置的两个小区的上行同步状态,进而可以对UE进行准确的功率控制模式配置。
附图说明
图1为双连接的网络场景示意图;
图2为MCG和SCG的中断时间的示意图;
图3为本发明实施例一的上行SFN差值的获取方法的示意图;
图4为本发明实施例一的上行SFN差值的获取方法的另一示意图;
图5为本发明实施例二的上行SFN差值的获取方法的示意图;
图6为本发明实施例二的上行SFN差值的获取方法的另一示意图;
图7为本发明实施例三的上行SFN差值的获取方法的示意图;
图8为本发明实施例三的上行SFN差值的获取方法的另一示意图;
图9为本发明实施例四的上行SFN差值的获取方法的示意图;
图10为本发明实施例四的上行SFN差值的获取方法的另一示意图;
图11为本发明实施例一的基站的结构组成示意图;
图12为本发明实施例二的基站的结构组成示意图;
图13为本发明实施例三的基站的结构组成示意图;
图14为本发明实施例的UE的结构组成示意图;
图15为本发明实施例的场景1计算上行SFN差值的示意图;
图16为本发明实施例的场景2计算上行SFN差值的示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图3为本发明实施例一的上行SFN差值的获取方法的示意图,本示例中的上行SFN差值的获取方法应用于源基站,如图3所示,所述上行SFN差值的获取方法包括以下步骤:
步骤301:向目标基站发送TA值请求信息。
具体地,由源基站向目标基站发送TA值请求信息。
步骤302:接收所述目标基站发送的所述目标基站下的目标小区的TA值。
具体地,由源基站接收所述目标基站发送的所述目标基站下的目标小区的TA值。
步骤303:根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
具体地,由源基站根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN 差值。
具体地,所述根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值,包括:
当目标小区的TA值小于等于源小区的TA值与下行SFN差值之和时,将下行SFN差值加上源小区的TA值后减去目标小区的TA值,得到所述源小区与所述目标小区的上行SFN差值;
当目标小区的TA值大于等于源小区的TA值与下行SFN差值之和时,将目标小区的TA值减去源小区的TA值后再减去下行SFN差值,得到所述源小区与所述目标小区的上行SFN差值。
本发明实施例中,所述方法还包括:根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
下面参照图4对本发明实施例一的上行SFN差值的获取方法做进一步描述,如图4所示,所述上行SFN差值的获取方法包括以下步骤:
步骤401:源基站向目标基站发送TA值请求信息(TA Request)。
这里,源基站可以是MeNB或SeNB,相应地,目标基站可以是SeNB或MeNB。TA值请求信息包括:请求TA值的小区列表。
步骤402:目标基站根据收到的请求信息,向源基站反馈TA值(TA Response)。
这里,TA值可以是请求小区可配置的最大TA值。
步骤403:源基站接收到TA值后,根据源基站下的小区的TA值和下行SFN差值计算源小区与目标小区的上行SFN差值。
这里,源基站下的小区为源小区,目标基站下的小于为目标小区。
计算方法如下:
场景1(参照图15):Target Cell TA<=(Source Cell TA+DL offset)
UL offset=DL offset+Source Cell TA–Target Cell TA
场景2(参照图16):Target Cell TA>=(Source Cell TA+DL offset)
UL offset=Target Cell TA–Source Cell TA-DL offset
上述公式中各个参数的含义见如下叙述:
Target Cell TA:目标小区的TA值;
Source Cell TA:源小区的TA值;
UL offset:上行源小区和目标小区的SFN差值;
DL offset:下行源小区和目标小区的SFN差值。
源基站在获取到源小区和目标小区的上行SFN差值后,确定源小区和目标小区的上行同步状态,并在给UE配置DC的时候根据该同步状态配置对应的功率控制模式。
图5为本发明实施例二的上行SFN差值的获取方法的流程示意图,本示例中的上行SFN差值的获取方法应用于源基站,如图5所示,所述上行SFN差值的获取方法包括以下步骤:
步骤501:向目标基站发送上行SFN差值请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行SFN差值;源小区的TA值。
具体地,由源基站向目标基站发送上行SFN差值请求信息。
步骤502:当所述目标基站根据所述请求信息计算得到所述源小区和所述目标小区的上行SFN差值后,接收所述目标基站发送的所述源小区和所述目标小区对对应的上行SFN差值。
本发明实施例中,所述方法还包括:
根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
下面参照图6对本发明实施例二的上行SFN差值的获取方法做进一步描述,如图6所示,所述上行SFN差值的获取方法包括以下步骤:
步骤601:源基站向目标基站发送上行SFN差值请求信息(Offset Request)。
这里,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行SFN差值;源小区的TA值。这里,源小区的TA值可以是源小区可配置的最大TA值。
步骤602:目标基站根据收到的请求信息,计算源小区和目标小区间的上行SFN差值。
计算方法可参照实施例一,此处不再赘述。
步骤603:目标基站向源基站反馈上行SFN差值信息(UL SFN Offset Response)。
这里,反馈信息包括:源小区和目标小区对对应的上行SFN差值。
源基站在获取到源小区和目标小区的上行SFN差值后,确定源小区和目标小区的上行同步状态,并在给UE配置DC的时候根据该同步状态配置对应的功率控制模式。
图7为本发明实施例三的上行SFN差值的获取方法的流程示意图,本示例中的上行SFN差值的获取方法应用于源基站,如图7所示,所述上行SFN差值的获取方法包括以下步骤:
步骤701:向UE发送请求信息,所述请求信息包括:请求TA值的小区列表。
具体地,由源基站向UE发送请求信息。
步骤702:获取所述UE在源小区的TA值,接收所述UE发送的目标 小区的TA值。
具体地,由源基站获取所述UE在源小区的TA值,接收所述UE发送的目标小区的TA值。
本发明实施例中,所述方法还包括:
配置所述UE在目标小区的测量间隔,以使所述UE在测量间隔发起随机接入过程并获取在目标小区的TA值。
所述获取所述UE在源小区的TA值,包括:
当所述UE在源小区没有可用的TA值时,触发所述UE在源小区发起随机接入过程并获取在源小区的TA值。
步骤703:根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
具体地,由源基站根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
所述方法还包括:
根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
下面参照图8对本发明实施例三的上行SFN差值的获取方法做进一步描述,如图8所示,所述上行SFN差值的获取方法包括以下步骤:
步骤801:源基站在需要计算上行SFN差值的时候,给UE下发请求信息(TA Request)。
所述请求信息包括:请求TA值的小区列表。
这里,如果UE需要测量间隔才能在目标小区获取TA值,则源基站配置UE在目标小区的测量间隔。UE在测量间隔发起随机接入过程,并获取 在目标小区的TA值。
步骤802:如果UE在源小区没有可用的TA值,源基站可触发UE在源小区发起随机接入过程,获取UE在源小区的TA值。
步骤803:UE根据收到的请求信息和测量间隔,在目标小区发起随机接入过程,获取TA值。
这里,随机接入过程可以是基于竞争的,也可以是非竞争的。
步骤804:UE将获取的目标小区的TA值上报给网络侧。
步骤805:网络侧获取到目标小区的TA值后,计算源小区和目标小区的上行SFN差值。
这里,计算方法可参照实施例一,此处不再赘述。网络侧在获取到源小区和目标小区的上行SFN差值后,判断源小区和目标小区的上行同步状态,并在给UE配置DC的时候根据该同步状态配置对应的功率控制模式。
图9为本发明实施例四的上行SFN差值的获取方法的流程示意图,本示例中的上行SFN差值的获取方法应用于UE,如图9所示,所述上行SFN差值的获取方法包括以下步骤:
步骤901:接收源基站发送的请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表、源小区和目标小区对对应的下行SFN差值。
具体地,由UE接收源基站发送的请求信息。
步骤902:获取UE在源小区的TA值、目标小区的TA值。
具体地,由UE获取UE在源小区的TA值、目标小区的TA值。
本发明实施例中,所述获取UE在目标小区的TA值包括:
接收源基站配置的在目标小区的测量间隔,在所述测量间隔发起随机接入过程并获取在目标小区的TA值。
本发明实施例中,所述获取UE在源小区的TA值,包括:
当UE在源小区没有可用的TA值时,收到所述源基站的触发后在源小区发起随机接入过程并获取在源小区的TA值。
步骤903:根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
具体地,由UE根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
步骤904:将所述源小区与所述目标小区的上行SFN差值发送给网络侧。
具体地,由UE将所述源小区与所述目标小区的上行SFN差值发送给网络侧。
下面参照图10对本发明实施例四的上行SFN差值的获取方法做进一步描述,如图10所示,所述上行SFN差值的获取方法包括以下步骤:
步骤111:源基站在需要计算上行SFN差值的时,给UE下发请求信息。
这里,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行SFN差值。
本发明实施例中,如果UE需要测量间隔才能在目标小区获取TA值,则源eNB配置UE在目标小区的测量间隔。UE在测量间隔发起随机接入过程,并获取在目标小区的TA值。
步骤112:如果UE在源小区没有可用的TA值,源基站可以触发UE在源小区发起随机接入过程,获取UE在源小区的TA值。
步骤113:UE根据收到的请求信息和测量间隔,在目标小区发起随机接入过程,获取TA值。
这里,随机接入过程可以是基于竞争的,也可以是非竞争的。
步骤114:UE计算源小区和目标小区的上行SFN差值。
这里,计算方法可参照实施例一,此处不再赘述。
步骤115:UE将获取的源小区和目标小区的SFN差值上报给网络侧。
网络侧在获取到源小区和目标小区的上行SFN差值后,确定源小区和目标小区的上行同步状态,并在给UE配置DC的时候根据该同步状态配置对应的功率控制模式。
图11为本发明实施例一的基站的结构组成示意图,如图11所示,所述基站包括:
发送单元11,配置为向目标基站发送TA值请求信息;
接收单元12,配置为接收所述目标基站发送的所述目标基站下的目标小区的TA值;
计算单元13,配置为根据源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
所述计算单元13包括:
第一计算子单元131,配置为当目标小区的TA值小于等于源小区的TA值与下行SFN差值之和时,将下行SFN差值加上源小区的TA值后减去目标小区的TA值,得到所述源小区与所述目标小区的上行SFN差值;
第二计算子单元132,配置为当目标小区的TA值大于等于源小区的TA值与下行SFN差值之和时,将目标小区的TA值减去源小区的TA值后再减去下行SFN差值,得到所述源小区与所述目标小区的上行SFN差值。
所述基站还包括:
确定单元14,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
配置单元15,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本领域技术人员应当理解,图11所示的基站中的各单元的实现功能可 参照前述上行SFN差值的获取方法的相关描述而理解。
在实际应用中,所述基站中的各个单元所实现的功能,均可由位于基站中的中央处理器(Central Processing Unit,CPU)、或微处理器(Micro Processor Unit,MPU)、或数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
图12为本发明实施例二的基站的结构组成示意图,如图12所示,所述基站包括:
发送单元21,配置为向目标基站发送上行SFN差值请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行SFN差值;源小区的TA值;
接收单元22,配置为当所述目标基站根据所述请求信息计算得到所述源小区和所述目标小区的上行SFN差值后,接收所述目标基站发送的所述源小区和所述目标小区对对应的上行SFN差值。
所述基站还包括:
确定单元23,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
配置单元24,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本领域技术人员应当理解,图12所示的基站中的各单元的实现功能可参照前述上行SFN差值的获取方法的相关描述而理解。
在实际应用中,所述基站中的各个单元所实现的功能,均可由位于基站中的CPU、或MPU、或DSP、或FPGA等实现。
图13为本发明实施例三的基站的结构组成示意图,如图13所示,所述基站包括:
发送单元31,配置为向UE发送请求信息,所述请求信息包括:请求 TA值的小区列表;
获取单元32,配置为获取所述UE在源小区的TA值,接收所述UE发送的目标小区的TA值;
计算单元33,配置为根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
所述基站还包括:
第一配置单元34,配置为配置所述UE在目标小区的测量间隔,以使所述UE在测量间隔发起随机接入过程并获取在目标小区的TA值。
所述基站还包括:
触发单元35,配置为当所述UE在源小区没有可用的TA值时,触发所述UE在源小区发起随机接入过程并获取在源小区的TA值。
所述基站还包括:
确定单元36,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
第二配置单元37,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
本领域技术人员应当理解,图13所示的基站中的各单元的实现功能可参照前述上行SFN差值的获取方法的相关描述而理解。
在实际应用中,所述基站中的各个单元所实现的功能,均可由位于基站中的CPU、或MPU、或DSP、或FPGA等实现。
图14为本发明实施例的UE的结构组成示意图,如图14所示,所述UE包括:
接收单元41,配置为接收源基站发送的请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表、源小区和目标小区对对应的下行SFN差值;
获取单元42,配置为获取UE在源小区的TA值、目标小区的TA值;
计算单元43,配置为根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值;
发送单元44,配置为将所述源小区与所述目标小区的上行SFN差值发送给网络侧。
所述UE还包括:
第一随机接入单元45,配置为接收源基站配置的在目标小区的测量间隔,在所述测量间隔发起随机接入过程并获取在目标小区的TA值。
所述UE还包括:
第二随机接入单元46,配置为当UE在源小区没有可用的TA值时,收到所述源基站的触发后在源小区发起随机接入过程并获取在源小区的TA值。
本领域技术人员应当理解,图14所示的UE中的各单元的实现功能可参照前述上行SFN差值的获取方法的相关描述而理解。
在实际应用中,所述UE中的各个单元所实现的功能,均可由位于UE中的CPU、或MPU、或DSP、或FPGA等实现。
本发明实施例上述业务信令跟踪的装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序用于执行本发明实施例的上行SFN差值的获取方法法。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
工业实用性
本发明实施例的技术方案,上行SFN差值的计算根据源小区的TA值、 目标小区的TA值以及下行SFN差值得到,源基站、或者目标基站、或者UE都可获取源小区的TA值、目标小区的TA值以及下行SFN差值后,计算得到上行SFN差值。从而可以辅助网络侧(基站)获得两个小区间的上行SFN差值,网络侧确定出给UE配置的两个小区的上行同步状态,进而可以对UE进行准确的功率控制模式配置。

Claims (25)

  1. 一种上行系统帧号SFN差值的获取方法,应用于源基站,所述方法包括:
    向目标基站发送最大时间提前量TA值请求信息;
    接收所述目标基站发送的所述目标基站下的目标小区的TA值;
    根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
  2. 根据权利要求1所述的SFN差值的获取方法,其中,所述根据所述源基站下的源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值,包括:
    当目标小区的TA值小于等于源小区的TA值与下行SFN差值之和时,将下行SFN差值加上源小区的TA值后减去目标小区的TA值,得到所述源小区与所述目标小区的上行SFN差值;
    当目标小区的TA值大于等于源小区的TA值与下行SFN差值之和时,将目标小区的TA值减去源小区的TA值后再减去下行SFN差值,得到所述源小区与所述目标小区的上行SFN差值。
  3. 根据权利要求1或2所述的SFN差值的获取方法,其中,所述方法还包括:
    根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
    当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
  4. 一种上行SFN差值的获取方法,应用于源基站,所述方法包括:
    向目标基站发送上行SFN差值请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行 SFN差值;源小区的TA值;
    当所述目标基站根据所述请求信息计算得到所述源小区和所述目标小区的上行SFN差值后,接收所述目标基站发送的所述源小区和所述目标小区对对应的上行SFN差值。
  5. 根据权利要求4所述的SFN差值的获取方法,其中,所述方法还包括:
    根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
    当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
  6. 一种上行SFN差值的获取方法,应用于源基站,所述方法包括:
    向UE发送请求信息,所述请求信息包括:请求TA值的小区列表;
    获取所述UE在源小区的TA值,接收所述UE发送的目标小区的TA值;
    根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
  7. 根据权利要求6所述的上行SFN差值的获取方法,其中,所述方法还包括:
    配置所述UE在目标小区的测量间隔,以使所述UE在测量间隔发起随机接入过程并获取在目标小区的TA值。
  8. 根据权利要求6所述的上行SFN差值的获取方法,其中,所述获取所述UE在源小区的TA值,包括:
    当所述UE在源小区没有可用的TA值时,触发所述UE在源小区发起随机接入过程并获取在源小区的TA值。
  9. 根据权利要求6至8任一项所述的上行SFN差值的获取方法,其中, 所述方法还包括:
    根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
    当给UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
  10. 一种上行SFN差值的获取方法,应用于UE,所述方法包括:
    接收源基站发送的请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表、源小区和目标小区对对应的下行SFN差值;
    获取UE在源小区的TA值、目标小区的TA值;
    根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值;
    将所述源小区与所述目标小区的上行SFN差值发送给网络侧。
  11. 根据权利要求10所述的上行SFN差值的获取方法,其中,所述获取UE在目标小区的TA值包括:
    接收源基站配置的在目标小区的测量间隔,在所述测量间隔发起随机接入过程并获取在目标小区的TA值。
  12. 根据权利要求10所述的上行SFN差值的获取方法,其中,所述获取UE在源小区的TA值,包括:
    当UE在源小区没有可用的TA值时,收到所述源基站的触发后在源小区发起随机接入过程并获取在源小区的TA值。
  13. 一种基站,所述基站包括:
    发送单元,配置为向目标基站发送TA值请求信息;
    接收单元,配置为接收所述目标基站发送的所述目标基站下的目标小区的TA值;
    计算单元,配置为根据源基站下的源小区的TA值、所述目标小区的 TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
  14. 根据权利要求13所述的基站,其中,所述计算单元包括:
    第一计算子单元,配置为当目标小区的TA值小于等于源小区的TA值与下行SFN差值之和时,将下行SFN差值加上源小区的TA值后减去目标小区的TA值,得到所述源小区与所述目标小区的上行SFN差值;
    第二计算子单元,配置为当目标小区的TA值大于等于源小区的TA值与下行SFN差值之和时,将目标小区的TA值减去源小区的TA值后再减去下行SFN差值,得到所述源小区与所述目标小区的上行SFN差值。
  15. 根据权利要求13或14所述的基站,其中,所述基站还包括:
    确定单元,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
    配置单元,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
  16. 一种基站,所述基站包括:
    发送单元,配置为向目标基站发送上行SFN差值请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表;源小区和目标小区对对应的下行SFN差值;源小区的TA值;
    接收单元,配置为当所述目标基站根据所述请求信息计算得到所述源小区和所述目标小区的上行SFN差值后,接收所述目标基站发送的所述源小区和所述目标小区对对应的上行SFN差值。
  17. 根据权利要求16所述的基站,其中,所述基站还包括:
    确定单元,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
    配置单元,配置为当给终端UE配置双连接的时,根据所述上行同步状 态配置对应的功率控制模式。
  18. 一种基站,所述基站包括:
    发送单元,配置为向UE发送请求信息,所述请求信息包括:请求TA值的小区列表;
    获取单元,配置为获取所述UE在源小区的TA值,接收所述UE发送的目标小区的TA值;
    计算单元,配置为根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值。
  19. 根据权利要求18所述的基站,其中,所述基站还包括:
    第一配置单元,配置为配置所述UE在目标小区的测量间隔,以使所述UE在测量间隔发起随机接入过程并获取在目标小区的TA值。
  20. 根据权利要求18所述的基站,其中,所述基站还包括:
    触发单元,配置为当所述UE在源小区没有可用的TA值时,触发所述UE在源小区发起随机接入过程并获取在源小区的TA值。
  21. 根据权利要求18至20任一项所述的基站,其中,所述基站还包括:
    确定单元,配置为根据所述源小区与所述目标小区的上行SFN差值,确定所述源小区和所述目标小区的上行同步状态;
    第二配置单元,配置为当给终端UE配置双连接的时,根据所述上行同步状态配置对应的功率控制模式。
  22. 一种UE,所述UE包括:
    接收单元,配置为接收源基站发送的请求信息,所述请求信息包括:请求上行SFN差值的源小区和目标小区对列表、源小区和目标小区对对应的下行SFN差值;
    获取单元,配置为获取UE在源小区的TA值、目标小区的TA值;
    计算单元,配置为根据所述源小区的TA值、所述目标小区的TA值以及下行SFN差值,计算所述源小区与所述目标小区的上行SFN差值;
    发送单元,配置为将所述源小区与所述目标小区的上行SFN差值发送给网络侧。
  23. 根据权利要求22所述的UE,其中,所述UE还包括:
    第一随机接入单元,配置为接收源基站配置的在目标小区的测量间隔,在所述测量间隔发起随机接入过程并获取在目标小区的TA值。
  24. 根据权利要求22所述的UE,其中,所述UE还包括:
    第二随机接入单元,配置为当UE在源小区没有可用的TA值时,收到所述源基站的触发后在源小区发起随机接入过程并获取在源小区的TA值。
  25. 一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-12任一项所述的上行SFN差值的获取方法。
PCT/CN2016/071200 2015-09-21 2016-01-18 上行系统帧号差值的获取方法、基站、终端、存储介质 WO2016165433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510604564.0 2015-09-21
CN201510604564.0A CN106550389A (zh) 2015-09-21 2015-09-21 一种上行系统帧号差值的获取方法、基站、终端

Publications (1)

Publication Number Publication Date
WO2016165433A1 true WO2016165433A1 (zh) 2016-10-20

Family

ID=57125585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071200 WO2016165433A1 (zh) 2015-09-21 2016-01-18 上行系统帧号差值的获取方法、基站、终端、存储介质

Country Status (2)

Country Link
CN (1) CN106550389A (zh)
WO (1) WO2016165433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757457A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 用于上行定时同步的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056135A (zh) * 2006-06-15 2007-10-17 华为技术有限公司 无线区域网络系统及调整小区同步的方法
CN101877908A (zh) * 2009-04-28 2010-11-03 中兴通讯股份有限公司 基站之间同步进行资源调度的方法及相应的基站
WO2014014396A1 (en) * 2012-07-20 2014-01-23 Telefonaktiebolaget L M Ericsson (Publ) Adjusting receive-transmit timing to compensate for switching errors in a communication system
CN104782178A (zh) * 2013-10-11 2015-07-15 黑莓有限公司 异构蜂窝网络中的切换方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056135A (zh) * 2006-06-15 2007-10-17 华为技术有限公司 无线区域网络系统及调整小区同步的方法
CN101877908A (zh) * 2009-04-28 2010-11-03 中兴通讯股份有限公司 基站之间同步进行资源调度的方法及相应的基站
WO2014014396A1 (en) * 2012-07-20 2014-01-23 Telefonaktiebolaget L M Ericsson (Publ) Adjusting receive-transmit timing to compensate for switching errors in a communication system
CN104782178A (zh) * 2013-10-11 2015-07-15 黑莓有限公司 异构蜂窝网络中的切换方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757457A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 用于上行定时同步的方法和装置
CN111757457B (zh) * 2019-03-29 2022-03-29 华为技术有限公司 用于上行定时同步的方法和装置
US11711778B2 (en) 2019-03-29 2023-07-25 Huawei Technologies Co., Ltd. Method and apparatus for uplink timing synchronization

Also Published As

Publication number Publication date
CN106550389A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6397016B2 (ja) ユーザ装置
US10917866B2 (en) Base station, user equipment, and measurement method for inter-base station carrier aggregation
BR112020006112B1 (pt) Dispositivo sem fio para acesso aleatório baseado em feixe, nó de rede de destino para iniciar o acesso aleatório baseado em feixe e métodos relacionados
CN110574450B (zh) 确定协作位置的系统和方法
TWI465144B (zh) A method of initializing a sub-cell in a cellular communication system, a user equipment, and a base station
KR101926664B1 (ko) 측정 간격 gap의 길이를 결정하는 방법 및 네트워크 장치
JP2018504804A5 (zh)
KR20160039615A (ko) 네트워크에서 브로드캐스팅함으로써 왕복 시간을 이용하여 레인징하기 위한 장치 및 방법
CN106686669B (zh) 同步方法及装置
EP3474593B1 (en) Efficient random access
WO2018028637A1 (zh) 定时提前量的获取、计算、处理方法、装置及系统
WO2015106654A1 (zh) 一种同步信息的发送、检测方法及用户设备
CN109644503A (zh) 用于随机接入的方法、网络设备和终端设备
EP4017071A1 (en) Data transmission method and related device
WO2021246926A1 (en) Methods, apparatuses and computer programs to fetch random access channel reports in dual connectivity
US20210112521A1 (en) A method, apparatus and system for determining a position of a wireless device
TW201838466A (zh) 處理量測間距的裝置及方法
WO2016165433A1 (zh) 上行系统帧号差值的获取方法、基站、终端、存储介质
CN110100186A (zh) 向网络提供移动台同步的估计准确性
WO2016119241A1 (zh) 一种d2d通信的数据传输方法和终端
WO2016165434A1 (zh) 一种系统帧号差值的获取方法、基站、计算机存储介质
WO2018177216A1 (zh) 传输信号的方法和装置
WO2022021996A1 (zh) 一种随机接入资源选择的方法以及相关装置
JP6396727B2 (ja) ユーザ装置、及びタイマ値決定方法
JP7340106B2 (ja) 新無線(nr)におけるセル検出及び測定のための探索器番号交換の機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779408

Country of ref document: EP

Kind code of ref document: A1