WO2016119241A1 - 一种d2d通信的数据传输方法和终端 - Google Patents

一种d2d通信的数据传输方法和终端 Download PDF

Info

Publication number
WO2016119241A1
WO2016119241A1 PCT/CN2015/072015 CN2015072015W WO2016119241A1 WO 2016119241 A1 WO2016119241 A1 WO 2016119241A1 CN 2015072015 W CN2015072015 W CN 2015072015W WO 2016119241 A1 WO2016119241 A1 WO 2016119241A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
tai
parameter
bits occupied
data
Prior art date
Application number
PCT/CN2015/072015
Other languages
English (en)
French (fr)
Inventor
吴海
王键
刘德平
赵越
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580002195.6A priority Critical patent/CN106105294B/zh
Priority to PCT/CN2015/072015 priority patent/WO2016119241A1/zh
Publication of WO2016119241A1 publication Critical patent/WO2016119241A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a data transmission method and terminal for D2D communication.
  • LTE Long Term Evolution
  • UE User Equipment
  • eNB evolved Node B
  • the data exchange between UEs does not need to be forwarded through the eNB, and can be directly interacted between UEs or in the direct communication communication (ie, Device to Device, D2D for short). Direct interaction with the help of the network.
  • network coverage full name: in-network-coverage
  • no network coverage full name: out-of-network-coverage
  • partial network coverage full name: in-partial-network- Coverag
  • the D2D communication refers to a terminal sending a scheduling allocation (full name: Scheduling Assignment, abbreviated as SA) information and data, and other terminals obtain the information occupied by the data indicated by the SA, the transmission format, and the like by reading the SA information, thereby correctly receiving the subsequent information.
  • SA Scheduling Assignment
  • the eNB or the relay node scheduling terminal is used to transmit the data of the direct communication communication and the control information, and is applied to the scenario of network coverage or partial network coverage.
  • the base station indicates, by using the downlink signaling, information such as resources and formats for transmitting the scheduling data by the D2D transmitting UE (hereinafter referred to as the transmitting UE).
  • the transmitting UE first sends a Sidelink Control Information (SCI) to the D2D receiving UE (hereinafter referred to as the simple receiving UE) through the Physical Sidelink Control Channel (PSCCH), and then transmits the UE according to the SCI.
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • Within The D2D data is transmitted on the Physical Sidelink Share Channel (PSSCH).
  • PSSCH Physical Sidelink Share Channel
  • the uplink transmission of the LTE system for different UEs served by the same base station, since the UEs are in different geographical locations, the distances from the base stations are different, so that the signals transmitted by the UEs at these different locations can reach the base station at the same time.
  • N TA timing advance this value can be used to determine an uplink signal transmission time advance: N TA ⁇ Ts, referred to uplink timing, wherein the value of N TA 0 ⁇ N TA ⁇ 20512, Ts is the basic time Basic time unit,
  • the UE When performing uplink transmission, the UE performs early transmission by using downlink timing and uplink timing, wherein the downlink timing is obtained by the UE by detecting a synchronization channel and a pilot signal of the base station.
  • the transmitting UE will use the uplink timing when transmitting the PSSCH, and the transmitting UE needs to notify the receiving UE of the uplink timing adopted by the UE in advance.
  • the transmitting UE notifies the receiving UE of the uplink used by the receiving UE through the PSCCH.
  • the uplink timing is represented as N TA ⁇ Ts, and Ts is a fixed value, the transmitting UE only needs to notify the receiving UE of the time advance parameter N TA , and the existing protocol stipulates that at most only 6 can be reserved in the PSCCH.
  • the number of bits can be used for bearer, and 0 ⁇ N TA ⁇ 20512, that is, N TA needs to use 15 bits to accurately notify, so the number of bearers in the PSCCH in the existing protocol cannot meet the requirement of the time advance parameter N TA .
  • the value of N TA is segmented and a time advance indication parameter I TAI corresponding to each N TA of the segment is given according to each segment value range of the N TA , for example, at 0 ⁇ N TA ⁇ 20,512 in the case of the N TA is divided into 42 sections, each corresponding to a TAI of I, respectively, each memory segment corresponding to I N TA TAI of the UE transmitting and receiving UE, the UE only needs to transmit a parameter indicating the timing advance I
  • the TAI is sent to the receiving UE through the PSCCH.
  • the receiving UE Since the value interval of the I TAI is [0, 41], the range of the number of bearable bits of the PSCCH is not exceeded, and after receiving the I TAI , the receiving UE acquires the transmission according to the received I TAI .
  • N TA segmentation limit adopted by the UE the UE receives through N TA range of the acquired segment received PSSCH transmitting UE, in which case, the UE can not accurately know the reception transmitting UE uses the value N TA sizes, but only to obtain For an N TA segment range, the receiving UE can only receive according to the maximum possible N TA value.
  • the range of uplink timing that may be used is [256,767] ⁇ Ts, which means that the actual signal arriving at the receiving window may be delayed by 512 ⁇ Ts. In the case of such a large signal delay, the reception timing error of the UE is large, which affects the reception performance of the PSSCH.
  • the embodiment of the invention provides a data transmission method and a terminal for D2D communication, which can reduce the receiving error of the receiving UE transmitting D2D data to the transmitting UE.
  • an embodiment of the present invention provides a data transmission method for D2D communication, including:
  • the first D2D terminal acquires the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA ;
  • the first D2D terminal acquires the I TAI and D2D data according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA Send the advance parameter TA', including:
  • the first D2D terminal acquires the number of bits occupied by the I TAI and the N TA said I TAI, and the maximum number of bits of the I TAI and the N TA occupied by acquiring the TA ', or The minimum value of the segment range in which the N TA is located is taken as the acquired TA'.
  • the first D2D terminal indicates the number of bits and time occupied by the parameter I TAI according to the time advance
  • the advance parameter N TA acquires the I TAI and D2D data transmission advance parameter TA', including:
  • the terminal according to the first D2D N TA query I TAI corresponding to said number of bits occupied by different tables, to give the corresponding N TA said I TAI and the TA '.
  • the first D2D terminal acquires the number according to the number of bits occupied by the I TAI and the N TA I TAI , including:
  • the first D2D terminal calculates the I TAI by :
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI ;
  • the first D2D terminal calculates the TA' by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI .
  • the first D2D terminal acquires the number according to the number of bits occupied by the I TAI and the N TA I TAI , including:
  • the first D2D terminal calculates the I TAI by :
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter
  • the first D2D terminal calculates the TA' by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the Y ranges from 0 to 511.
  • the number of bits occupied by the I TAI is 6 bits.
  • the seventh aspect in the first aspect In a possible implementation manner, there is a one-to-one correspondence between the I TAI and the TA′.
  • the method further comprising: said first terminal acquires the base station allocates D2D the D2D N TA to the first terminal from the base station.
  • the first D2D terminal sends the D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, including:
  • the first D2D terminal calculates a D2D data transmission time advance amount according to the TA' and the Ts as TA' ⁇ Ts;
  • the first D2D terminal transmits D2D data to the second D2D terminal through the physical side row shared channel PSSCH according to the TA′ ⁇ Ts.
  • the embodiment of the present invention further provides a data transmission method for D2D communication, including:
  • the second D2D terminal receives the time advance indication parameter I TAI sent by the first D2D terminal through the physical side control channel PSCCH;
  • the second D2D terminal acquires a D2D data transmission advance parameter TA' according to the received I TAI ;
  • the second D2D terminal receives the D2D data sent by the first D2D terminal according to the acquired TA' and the basic time unit Ts.
  • the second D2D terminal acquires the D2D data sending advance parameter TA′ according to the received I TAI , including:
  • the second D2D terminal calculates the TA' by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI .
  • the second D2D terminal acquires the D2D data transmission advance parameter TA′ according to the received I TAI , including:
  • the second D2D terminal calculates the TA' by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the Y ranges from 0 to 511.
  • the x is 6 bits.
  • the second D2D terminal acquires the D2D data transmission advance parameter TA′ according to the received I TAI , including:
  • the second D2D terminal queries the corresponding table when the I TAI occupies a different number of bits according to the I TAI , and obtains the TA′ corresponding to the I TAI ; or
  • D2D to the second terminal acquires the I TAI segment corresponding to the range N TA, and using a minimum value of the range of the segment is located as N TA to the acquired TA '.
  • the second D2D terminal In combination with the second aspect or the first possible or second possible or third possible or the fourth possible or the fifth possible possible implementation of the second aspect, in a sixth possible implementation of the second aspect
  • the receiving, by the second D2D terminal, the D2D data sent by the first D2D terminal according to the acquired TA' and the basic time unit Ts including:
  • the second D2D terminal calculates a D2D data transmission time advance amount according to the TA' and the basic time unit Ts as TA' ⁇ Ts;
  • the second D2D terminal receives the D2D data sent by the first D2D terminal by using the physical side row shared channel PSSCH according to the TA′ ⁇ Ts.
  • an embodiment of the present invention further provides a data transmission method for D2D communication, including:
  • D2D terminal obtains a first timing advance parameter is less than the value of N TA timing advance parameter indicates the number of bits occupied by I TAI according to the timing advance parameter is less than the value of the acquired N TA I TAI;
  • D2D the first terminal to the second transmission I TAI D2D side terminal through a physical downlink control channels PSCCH, the D2D I TAI for the second terminal I TAI acquiring range where the N TA;
  • Ts D2D terminal transmits the first data to the second D2D D2D N TA and the terminal according to the basic time unit, so that the second range D2D terminal according to the acquired location and the N TA The Ts receives the D2D data sent by the first D2D terminal.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , including:
  • the first D2D terminal calculates the I TAI by :
  • the x is the number of bits occupied by the I TAI
  • the Z is a preset time adjustment parameter.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , including:
  • the first D2D terminal calculates the operation intermediate amount N TA ' as follows:
  • N TA ' mod(N TA , 2 Z ),
  • the Z is a preset time adjustment parameter
  • the first D2D terminal calculates the I TAI by :
  • the x is the number of bits occupied by the I TAI
  • the Z is a preset time adjustment parameter.
  • the value of Z ranges from 1 to 14.
  • the number of bits occupied by the I TAI is 6 bits.
  • the embodiment of the present invention further provides a data transmission method for D2D communication, including:
  • the second D2D terminal receives the time advance indication parameter I TAI sent by the first D2D terminal through the physical side control channel PSCCH;
  • the second D2D terminal receives the D2D data sent by the first D2D terminal according to the obtained value range and the basic time unit Ts where the NTA is located.
  • the second D2D terminal acquires a time advance parameter N according to the received I TAI
  • the range of values for the TA including:
  • the second D2D terminal calculates a value range in which the operation intermediate amount N TA ' is
  • the second D2D terminal calculates that the value range of the N TA is
  • the M is obtained by using a demodulation reference signal DMRS of the PSSCH.
  • the embodiment of the present invention further provides a D2D terminal, where the D2D terminal is specifically a first D2D terminal, and includes:
  • An acquiring module configured to acquire the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA ;
  • a notification module configured to send the I TAI to the second D2D terminal by using a physical side control channel PSCCH, so that the second D2D terminal acquires the TA′ according to the received I TAI ;
  • a data sending module configured to send D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, so that the second D2D terminal receives the according to the acquired TA′ and the Ts D2D data sent by the first D2D terminal.
  • the obtaining module is configured to obtain the I TAI the number of bits occupied by the I TAI and the N TA, and uses the The maximum number of bits occupied by the I TAI and the N TA acquires the TA′, or uses the minimum value of the segment range in which the N TA is located as the acquired TA′.
  • the acquiring module is specifically configured to query the I TAI occupation according to the N TA
  • the table corresponding to the number of bits obtains the I TAI and the TA' corresponding to the N TA .
  • the acquiring module is specifically configured to calculate the I TAI by :
  • the acquiring module is specifically configured to calculate the I TAI by :
  • the TA' is calculated by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the Y ranges from 0 to 511.
  • the number of bits occupied by the I TAI is 6 bits.
  • the seventh in the fifth aspect In combination with the fifth or fifth aspect, the first possible or the second possible or the third possible or the fourth possible or the fifth possible or the sixth possible possible implementation, the seventh in the fifth aspect In a possible implementation manner, there is a one-to-one correspondence between the I TAI and the TA′.
  • the acquiring module is further configured to acquire the base station allocates the first D2D N TA to the terminal from the base station.
  • the data sending module includes:
  • a calculation submodule configured for the first D2D terminal to calculate a D2D data transmission time advance according to the TA′ and the Ts as TA′ ⁇ Ts;
  • a sending submodule configured to send D2D data to the second D2D terminal by using the physical side row shared channel PSSCH according to the TA′ ⁇ Ts.
  • the embodiment of the present invention further provides a D2D terminal, where the D2D terminal is specifically a second D2D terminal, and includes:
  • An information receiving module configured to receive, by using a physical side-line control channel PSCCH, a time advance indication parameter I TAI sent by the first D2D terminal;
  • An obtaining module configured to acquire a D2D data sending advance parameter TA′ according to the received I TAI ;
  • the data receiving module is configured to receive the D2D data sent by the first D2D terminal according to the acquired TA′ and the basic time unit Ts.
  • the acquiring module is specifically configured to calculate the TA′ by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI .
  • the acquiring module is specifically configured to calculate the TA′ by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the Y ranges from 0 to 511.
  • the x is 6 bits.
  • the acquiring module is specifically configured to: according to the I TAI, query a table corresponding to when the I TAI occupies a different number of bits, to obtain the I corresponding to the TAI TA '; or, acquired range of the segment corresponding to the I N TA TAI, and using a minimum value of the range of the segment N as the TA where TA acquired'.
  • the data receiving module includes:
  • a calculation submodule configured to calculate, according to the TA′ and the basic time unit Ts, a D2D data transmission time advance amount is TA′ ⁇ Ts;
  • the receiving submodule is configured to receive the D2D data sent by the first D2D terminal by using the physical side row shared channel PSSCH according to the TA′ ⁇ Ts.
  • the embodiment of the present invention provides a D2D terminal, where the D2D terminal is specifically a first D2D terminal, and includes:
  • the timing advance parameter I TAI indicating the number of bits occupied by the timing advance parameter is less than the value N TA I TAI according to the acquired;
  • a notification module configured to send the I TAI to the second D2D terminal by using a physical side control channel PSCCH, where the I TAI is used by the second D2D terminal to obtain a value range in which the N TA is located;
  • Data transmitting means for transmitting Ts D2D D2D data to the second terminal according to the N TA and the basic time unit, so that the second range D2D terminal according to the acquired location and the N TA The Ts receives the D2D data sent by the first D2D terminal.
  • the acquiring module is specifically configured to calculate the I TAI by :
  • the x is the number of bits occupied by the I TAI
  • the Z is a preset time adjustment parameter.
  • the value of Z ranges from 1 to 14.
  • the number of bits occupied by the I TAI is 6 bits.
  • the embodiment of the present invention provides a D2D terminal, where the D2D terminal is specifically a second D2D terminal, and includes:
  • An information receiving module configured to receive, by using a physical side-line control channel PSCCH, a time advance indication parameter I TAI sent by the first D2D terminal;
  • An obtaining module configured to acquire, according to the received I TAI, a value range in which the time advance parameter N TA is located;
  • the data receiving module is configured to receive the D2D data sent by the first D2D terminal according to the obtained value range and the basic time unit Ts where the NTA is located.
  • the acquiring module is configured to receive, by using the physical side row shared channel PSSCH, the value of the N TA by multiplying the Ts by the Ts The D2D data sent by the first D2D terminal.
  • the acquiring module is specifically configured to calculate an operation intermediate quantity N TA '
  • the range of values is N TA ' ⁇ [I TAI ⁇ 2 Zx ,(I TAI +1) ⁇ 2 Zx -1]:
  • the acquiring module is further configured to obtain, by using the demodulation reference signal DMRS of the PSSCH, the M .
  • the first D2D terminal acquires the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal sends the I TAI to the I TAI through the PSCCH.
  • the second D2D terminal acquires TA′ according to the received I TAI , the first D2D terminal sends D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, and the second D2D terminal according to the acquired TA′ And the Ts receives the D2D data sent by the first D2D terminal, because the second D2D terminal can receive the I TAI sent by the first D2D terminal and acquires TA′ according to the I TAI , and the first D2D terminal sends the D2D data by using TA′ and Ts.
  • the second D2D terminal can also accurately know the D2D data transmission time advance of the first D2D terminal according to TA' and Ts, and the receiving window of the second D2D terminal can be completely consistent with the D2D data actually sent by the first D2D terminal, thereby The second D2D terminal can accurately receive the D2D data.
  • FIG. 1 is a schematic block diagram of a data transmission method for D2D communication according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a networking architecture of a D2D communication mode 1 according to an embodiment of the present invention
  • FIG. 3 is a timing diagram of transmitting D2D data by a first D2D terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic block diagram showing another method for transmitting data of D2D communication according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of another data transmission method for D2D communication according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of another data transmission method for D2D communication according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of interaction between a first D2D terminal, a second D2D terminal, and a base station according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a D2D terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another D2D terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another D2D terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another D2D terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another D2D terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another D2D terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides a data transmission method and a terminal for D2D communication, which realizes accurate reception of the D2D data sent by the receiving UE to the transmitting UE.
  • An embodiment of the data transmission method of the D2D communication of the present invention is applicable to the first D2D terminal.
  • the data transmission method of the D2D communication provided by the embodiment of the present invention may specifically include the following steps:
  • the first D2D terminal acquires the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA .
  • the first D2D terminal is taken as a transmitting UE as an example.
  • the first D2D terminal first obtains a time advance parameter, and the parameter is represented by N TA , in some embodiments of the present invention.
  • step 101 performs data transmission according to the present invention
  • D2D communication method may further comprise the steps of: obtaining a first base station allocates D2D terminal from a first base station to the terminal D2D N TA.
  • the eNB or the relay node scheduling terminal is used to transmit the data of the direct communication communication and the control information, and is applied to the network coverage or part of the network coverage scenario, and the base station gives each D2D.
  • the terminal configuration time advance parameter N TA , N TA takes a value of 0 ⁇ N TA ⁇ 20512.
  • the first D2D terminal is limited by the limitation of the number of bits that can be carried by the PSCCH, and the first D2D terminal needs to transmit by using another parameter that is less than the number of bits occupied by the N TA , for example, using the time advance indication.
  • the parameter is represented by I TAI .
  • the number of bits occupied by the I TAI is less than the number of bits occupied by the N TA .
  • N TA parameter acquired in advance for example, N TA values given segment to segment according to each range segment of each of N TA N TA corresponding to a I TAI, for example 0 ⁇ N TA ⁇ 20512 the case, the N TA is divided into 42 sections, each corresponding to a I TAI, are stored in the respective segments corresponding to N TA I TAI UE transmit and receive at the UE.
  • the first D2D terminal acquires the I TAI to indicate to the second D2D terminal, the D2D data transmission time advance information used by the first D2D terminal, and the D2D data transmission time adopted by the transmitting UE in the embodiment of the present invention.
  • the advance amount is modified, and the N TA is no longer used, but the D2D data is used to transmit the advance parameter, which is represented by TA', and TA' can be obtained by the number of bits occupied by the I TAI and the time advance parameter N TA .
  • the first D2D terminal has multiple manners according to the number of bits occupied by the I TAI and the N TA to acquire the I TAI and the TA′.
  • an implementable manner is that the first D2D terminal is According to the N TA query I TAI takes the corresponding table when the number of bits is different, and obtains the I TAI and TA ' corresponding to the N TA .
  • Further implementations are possible that, after obtaining the first terminal D2D N TA, in the manner provided for D2D communication in the size of the segment N TA value by the acquired N TA can be determined that the N TA where For the segmentation range, TA' can take the minimum value of the segment range in which the N TA is located.
  • N TA ranges given segment respectively corresponding to each of N TA I TAI and a TA '
  • N TA can be divided into 42 segments,
  • Each segment corresponds to one I TAI and TA′
  • the I TAI and TA′ corresponding to each N TA of the segment are respectively stored in the transmitting UE and the receiving UE, where the value of TA′ is the segment range in which the I TAI corresponds to the N TA .
  • the minimum value is taken as an example of the table in which the I TAI occupies different 6 bits, and the following table 1 is obtained.
  • the segment where the N TA is located The range is 256 ⁇ N TA ⁇ 767, and the minimum value of the segment range is 256, so the TA' obtained by the first D2D terminal is 256.
  • Table 1 A side-receive timing adjustment indication mapping table
  • the step 101, the first D2D terminal acquires the I TAI and TA′ according to the number of bits occupied by the I TAI and the N TA may include the following steps: the number of bits occupied by the first D2D terminal according to the I TAI and the N
  • the TA acquires I TAI and obtains TA' using the maximum number of bits occupied by I TAI and N TA .
  • the number of bits occupied by I TAI I TAI is the number of bits occupied by the terminal is transmitted to the second D2D
  • the maximum number of bits occupied by N TA N TA is the number of bits required for the value of the maximum occupancy.
  • I TAI occupied bits than the maximum number of bits occupied by the N TA, using N TA may be determined only one I TAI, determined after I TAI, I TAI and the maximum number of bits occupied by the N TA can be determined using the determined TA', the TA' is used by the first D2D terminal for the transmission of D2D data.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the I TAI and the N TA , including:
  • the first D2D terminal calculates the I TAI by :
  • N is the maximum number of bits occupied by the N TA
  • x is the number of bits occupied by the I TAI .
  • N can be 15 or other values, which is determined by the implementation scenario.
  • x can be 6 or other values, which is determined by the implementation scenario.
  • TA' the maximum number of bits occupied by I TAI and N TA is used to obtain TA', including:
  • the first D2D terminal calculates TA' by:
  • N is the maximum number of bits occupied by the N TA
  • x is the number of bits occupied by the I TAI .
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the I TAI and the N TA , including:
  • the first D2D terminal calculates the I TAI by :
  • N is the maximum number of bits occupied by the N TA
  • x is the number of bits occupied by the I TAI
  • Y is a preset time advance adjustment parameter.
  • the value of N may be 15 or other values, which is determined by the implementation scenario, and the value of x may be 6 or other values, which is determined by the implementation scenario.
  • Y is used as a time adjustment parameter to adjust the value of N TA .
  • the value of Y ranges from 0 to 511.
  • the value of Y can also be selected according to the specific application scenario. Not limited.
  • TA' the maximum number of bits occupied by I TAI and N TA is used to obtain TA', including:
  • the first D2D terminal calculates TA' by:
  • N is the maximum number of bits occupied by the N TA
  • x is the number of bits occupied by the I TAI
  • Y is a preset time advance adjustment parameter.
  • the acquired I TAI and TA 'after, for I TAI and TA' exists between one relationship, the calculation of TA 'I TAI can be directly obtained.
  • the calculation of TA′ may be performed by using other known fixed values in addition to the use of I TAI or Other variable functions existing in D2D communication are obtained, which are not limited herein.
  • the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH, so that the second D2D terminal acquires the TA′ according to the received I TAI .
  • the first D2D terminal after the first D2D terminal acquires the I TAI , the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the number of bits occupied by the I TAI does not exceed the bit that can be carried by the PSCCH.
  • the number range the first D2D terminal can complete the notification of the I TAI through the PSCCH, so after the second D2D terminal receives the I TAI as the receiving UE, the TA D′ can be obtained in the same manner as the first D2D terminal, and the second D2D terminal can Obtaining the TA' used by the first D2D terminal to transmit the D2D data.
  • the TA' is an accurate and unique value, and is not an interval range, so the second D2D terminal can accurately know the first
  • the D2D terminal transmits the time information of the D2D data, so that accurate reception can be performed.
  • the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH, which may include: the first D2D terminal adopts downlink timing when transmitting the I TAI through the PSCCH, for example, the first D2D terminal is transmitting.
  • the downlink timing is adopted in the PSCCH because the mode 1 in the D2D communication (that is, the foregoing eNB or the relay node scheduling terminal is used to transmit the data of the direct connection communication data and control information, and is applied to the network coverage or part of the network coverage scenario) when only the first terminal D2D (as an emitter UE) N TA will receive the base station, a second terminal D2D (as the received UE) does not know the N TA.
  • both the transmitting UE and the receiving UE can obtain the downlink timing through the synchronization signal or pilot of the base station. Therefore, in order to ensure that the receiving UE can receive the PSCCH of the transmitting UE, the transmitting UE will transmit the PSCCH with the downlink timing.
  • the first D2D terminal sends the D2D data to the second D2D terminal according to the TA′ and the Ts, so that the second D2D terminal receives the D2D data sent by the first D2D terminal according to the acquired TA′ and Ts.
  • the first D2D terminal may perform D2D data transmission. Specifically, the first D2D terminal sends the second D2D terminal to the second D2D terminal according to TA′ and Ts. D2D data, wherein, for the first D2D terminal and the second D2D terminal, TA' is an accurate and unique value, and the second D2D terminal can perform accurate reception, and Ts is a basic time unit.
  • the second D2D terminal can receive the D2D data sent by the first D2D terminal according to the accurately acquired TA' and Ts, because the second D2D terminal has acquired the TA' adopted by the first D2D terminal.
  • the first D2D terminal sends the D2D data to the second D2D terminal according to the TA' and the Ts, which may include the following steps:
  • the first D2D terminal calculates the D2D data transmission time advance amount according to TA' and Ts as TA' ⁇ Ts;
  • the first D2D terminal sends the D2D data to the second D2D terminal through the PSSCH according to TA' ⁇ Ts.
  • the first D2D terminal calculates the D2D data transmission time advancement amount as TA' ⁇ Ts through TA' and Ts, and the amount of time that the first D2D terminal needs to advance the D2D data in advance is: TA' ⁇ Ts,
  • the first D2D terminal transmits the D2D data by using the PSSCH, and then transmits the D2D data by TA' ⁇ Ts on the PSSCH. For example, the first D2D terminal performs D2D data transmission in advance of TA' ⁇ Ts on the basis of downlink timing.
  • the downlink timing refers to an absolute time point, indicating the arrival time point of the downlink signal
  • the D2D data transmission time advance amount actually refers to the relative time advance amount
  • +TA' ⁇ Ts obtains the transmission time point of D2D data.
  • FIG. 3 a timing relationship diagram of a first D2D terminal transmitting D2D data according to an embodiment of the present invention is provided, wherein a (Physical Downlink Share Channel, PDSCH) subframe representation is a downlink signal sent by a base station to a first D2D terminal.
  • PDSCH Physical Downlink Share Channel
  • the physical uplink shared channel (PUSCH) subframe indicates an uplink signal sent by the first D2D terminal to the base station, and the PUSCH is sent by using an uplink timing (N TA ⁇ Ts), and the first D2D terminal is transmitting.
  • N TA ⁇ Ts uplink timing
  • the first terminal transmits D2D data D2D
  • TA' ⁇ Ts is used, and the D2D subframe should be next to the PUSCH subframe.
  • the use of TA' ⁇ Ts by the first D2D terminal does not affect the transmitting end.
  • the actual D2D data transmission is later than the uplink timing, which may cause the D2D data to interfere with the PUSCH that is normally transmitted later.
  • the design of the D2D subframe a part of the D2D subframe will be vacated and not sent (the length of the blank non-transmission area is greater than 2048 ⁇ Ts), and the maximum value of NTA- TA ' is 512 ⁇ Ts, so TA' is adopted. ⁇ Ts transmission does not affect the sender.
  • the first D2D terminal acquires the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal passes the PSCCH.
  • the I TAI is sent to the second D2D terminal, and the second D2D terminal acquires the TA′ according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, and the second D2D terminal obtains the data according to the acquisition.
  • the received TA2 and Ts receive the D2D data sent by the first D2D terminal, because the second D2D terminal can receive the I TAI sent by the first D2D terminal and acquire the TA′ according to the I TAI , and the first D2D terminal adopts the TA′ and The Ts sends the D2D data, so the second D2D terminal can accurately know the D2D data transmission time advance of the first D2D terminal according to TA' and Ts, and the receiving window of the second D2D terminal can be kept with the D2D data actually sent by the first D2D terminal. It is completely consistent, so that the second D2D terminal can accurately receive the D2D data.
  • the above embodiment introduces the data transmission method of the D2D communication from the first D2D terminal, and then introduces the data transmission method of the D2D communication provided by the embodiment of the present invention from the second D2D terminal.
  • FIG. 4 another implementation of the present invention is shown.
  • the data transmission method of the D2D communication provided by the example may specifically include the following steps:
  • the second D2D terminal receives the time advance indication parameter I TAI sent by the first D2D terminal by using the physical side control channel PSCCH.
  • the first D2D terminal after the first D2D terminal acquires the I TAI , the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the number of bits occupied by the I TAI does not exceed the bit that can be carried by the PSCCH.
  • the first D2D terminal may complete the notification of the I TAI through the PSCCH, and the second D2D terminal receives the I TAI sent by the first D2D terminal through the PSCCH.
  • the first D2D terminal adopts downlink timing when transmitting the PSCCH, and the second D2D terminal can perform reception of the I TAI according to the downlink timing.
  • the second D2D terminal acquires the D2D data transmission advance parameter TA′ according to the received I TAI .
  • the second D2D terminal may acquire the TA′ in the same manner as the first D2D terminal, and the second D2D terminal may obtain the first D2D terminal to send the D2D data.
  • TA' for the second D2D terminal, the TA' is an accurate and unique value, and is not an interval range, so the second D2D terminal can accurately know the time information of the first D2D terminal transmitting the D2D data, thereby Accurate reception is possible.
  • step 402 the second D2D terminal acquires the D2D data transmission advance parameter TA' according to the received I TAI , including:
  • the second D2D terminal calculates TA' by:
  • N is the maximum number of bits occupied by the time advance parameter N TA
  • x is the number of bits occupied by the I TAI .
  • the second D2D terminal acquires the D2D data transmission advance parameter TA' according to the received I TAI , including:
  • the second D2D terminal calculates TA' by:
  • N is the maximum number of bits occupied by the time advance parameter N TA
  • x is the number of bits occupied by I TAI
  • Y is a preset time advance adjustment parameter.
  • the value of N may be 15 or other values, which is determined by the implementation scenario, and the value of x may be 6 or other values, which is determined by the implementation scenario.
  • Y is used as a time adjustment parameter to adjust the value of N TA .
  • the value of Y ranges from 0 to 511.
  • the value of Y can also be selected according to the specific application scenario. Not limited.
  • the second D2D terminal acquires the D2D data transmission advance parameter TA' according to the received I TAI , including:
  • the second D2D terminal queries the corresponding table when the I TAI occupies a different number of bits according to the I TAI , and obtains the TA′ corresponding to the I TAI . Or, obtain the segment range in which the N TA corresponding to the I TAI is located, and use the minimum value of the segment range in which the N TA is located as the acquired TA′.
  • the first D2D terminal and the second D2D terminal both store the foregoing Table 1.
  • the second D2D terminal receives the I TAI sent by the first D2D terminal, and according to the I TAI query table 1, obtains TA'.
  • a second terminal acquired D2D I TAI is 1, the range segment corresponding N TA I TAI is located 256 ⁇ N TA ⁇ 767, the minimum range of the segment 256, the second terminal D2D
  • the obtained TA' is 256.
  • the second D2D terminal receives the D2D data sent by the first D2D terminal according to the acquired TA′ and the basic time unit Ts.
  • the second D2D terminal receives the D2D data sent by the first D2D terminal.
  • the first D2D terminal follows the TA′ and Ts to the second D2D.
  • the terminal transmits D2D data, wherein for both the first D2D terminal and the second D2D terminal, TA' is an accurate and unique value, and the second D2D terminal can use TA' and Ts for accurate reception.
  • the second D2D terminal can receive the D2D data sent by the first D2D terminal according to the accurately acquired TA' and Ts, because the second D2D terminal has acquired the TA' adopted by the first D2D terminal.
  • the second D2D terminal receives the D2D data sent by the first D2D terminal according to the acquired TA' and the basic time unit Ts, and specifically includes the following steps:
  • the second D2D terminal calculates the D2D data transmission time advance amount according to TA' and the basic time unit Ts as TA' ⁇ Ts;
  • the second D2D terminal receives the D2D data sent by the first D2D terminal by using the physical side row shared channel PSSCH according to the TA′ ⁇ Ts.
  • the second D2D terminal calculates the D2D data transmission time advance amount as TA' ⁇ Ts by using TA' and Ts, and the second D2D terminal can accurately know that the first D2D terminal needs to advance the D2D data in advance.
  • TA' ⁇ Ts in step 4032, the second D2D terminal can accurately know that the first D2D terminal transmits the D2D data by using the PSSCH, and can receive the D2D data by using TA' ⁇ Ts in advance on the PSSCH.
  • the first D2D terminal performs D2D data transmission in advance of TA' ⁇ Ts on the basis of downlink timing
  • the second D2D terminal performs reception of D2D data in advance by TA′ ⁇ Ts on the basis of downlink timing.
  • the first D2D terminal acquires the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal passes the PSCCH.
  • the I TAI is sent to the second D2D terminal, and the second D2D terminal acquires the TA′ according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, and the second D2D terminal obtains the data according to the acquisition.
  • the received TA2 and Ts receive the D2D data sent by the first D2D terminal, because the second D2D terminal can receive the I TAI sent by the first D2D terminal and acquire the TA′ according to the I TAI , and the first D2D terminal adopts the TA′ and The Ts sends the D2D data, so the second D2D terminal can accurately know the D2D data transmission time advance of the first D2D terminal according to TA' and Ts, and the receiving window of the second D2D terminal can be kept with the D2D data actually sent by the first D2D terminal. It is completely consistent, so that the second D2D terminal can accurately receive the D2D data.
  • the above embodiment describes a data transmission method for D2D communication according to the present invention.
  • another data transmission method for D2D communication provided by the embodiment of the present invention is introduced.
  • FIG. 5 another embodiment of the present invention provides The data transmission method of the D2D communication may specifically include the following steps:
  • the above embodiment introduces the data transmission method of the D2D communication from the first D2D terminal, and then introduces the data transmission method of the D2D communication provided by the embodiment of the present invention from the second D2D terminal.
  • FIG. 5 another implementation of the present invention is shown.
  • the data transmission method of the D2D communication provided by the example may specifically include the following steps:
  • a first terminal obtains a D2D less than N TA timing advance parameter values, according to the timing advance parameter indicating the number of bits occupied by I TAI and less than N TA timing advance parameter of the acquired I TAI.
  • the first D2D terminal is taken as a transmitting UE as an example.
  • the first D2D terminal first obtains a time advance parameter, and the parameter is represented by N TA , in some embodiments of the present invention.
  • step 501 performs data transmission according to the present invention
  • D2D communication method may further comprise the steps of: obtaining a first base station allocates D2D terminal from a first base station to the terminal D2D N TA.
  • the eNB or the relay node scheduling terminal is used to transmit the data of the direct communication communication and the control information, and is applied to the network coverage or part of the network coverage scenario, and the base station gives each D2D.
  • the terminal configuration time advance parameter N TA , N TA takes a value of 0 ⁇ N TA ⁇ 20512.
  • the first D2D terminal obtains a value smaller than the time advance parameter N TA , for example, the value of the N TA can be reduced, and the N TA value obtained by the value reduction is the value of the obtained time advance parameter N TA , optionally, may reduce the value of a multiple of N TA, i.e.
  • the order of values for N TA narrow on the order of N TA value is then reduced and reduced by the number of bits occupied by the value I TAI N TA acquires I TAI,
  • the I TAI is notified to the second D2D terminal, and the second D2D terminal can determine the N TA with a smaller value range through the I TAI , which can be largely compared to the prior art directly to the N TA segmentation range.
  • the error is reduced, and the receiving precision of the second D2D terminal is improved.
  • the first D2D terminal acquires a value smaller than the time advance parameter N TA , including:
  • the first D2D terminal spares the time advance parameter N TA to obtain the value less than the time advance parameter N TA .
  • the first D2D terminal obtains the I TAI according to the number of bits occupied by the I TAI and the N TA .
  • an implementation manner is that the first D2D terminal passes the following manner. Calculate I TAI :
  • x is the number of bits occupied by I TAI and Z is a preset time adjustment parameter.
  • the value of Z can be from 1 to 14, depending on the implementation scenario.
  • the value of x can be 6 or other values, which is determined by the implementation scenario.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , including:
  • the first D2D terminal calculates the operation intermediate amount N TA ' as follows:
  • N TA ' mod(N TA , 2 Z ),
  • Z is a preset time adjustment parameter
  • the first D2D terminal calculates the I TAI by :
  • x is the number of bits occupied by I TAI and Z is a preset time adjustment parameter.
  • I TAI is calculated according to 'the number of bits occupied by I TAI N TA.
  • the calculation using the parameter I TAI by using 2 Z is N TA to be taken to achieve the remainder, a first terminal and a second D2D D2D terminal have the same preset algorithm modulo, N After the TA is taken, the magnitude of the value is reduced, and then the N TA is segmented based on the magnitude reduction, and the numerical interval error after each segment is reduced. Compared with the prior art, the N TA segmentation is directly compared. The error can be greatly reduced, and the receiving precision of the second D2D terminal is improved.
  • the first D2D terminal sends the I TAI to the second D2D terminal by using the physical side control channel PSCCH, where the I TAI is used by the second D2D terminal to obtain the value range in which the N TA is located.
  • the first D2D terminal after the first D2D terminal acquires the I TAI , the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the number of bits occupied by the I TAI does not exceed the bit that can be carried by the PSCCH.
  • the number range the first D2D terminal can complete the notification of the I TAI through the PSCCH, so the second D2D terminal estimates the N TA adopted by the first D2D terminal after receiving the I TAI as the receiving UE, and for the second D2D terminal, The value range of the N TA is obtained, and the second D2D terminal needs to receive the D2D data according to the value range in which the N TA is located.
  • the first D2D terminal may perform the transmission of the D2D data. Specifically, the first D2D terminal sends the second D2D terminal to the second D2D terminal according to the N TA and the Ts. D2D data, wherein, for the first D2D terminal, the directly adopted N TA is an accurate value, and there is no need to enter other parameters, and the existing protocol standard is smallly changed and compatible for the implementation level. .
  • the second D2D terminal obtains the value range in which the NTA is located according to the received I TAI , and the second D2D terminal can receive the first D2D terminal according to the value range and the Ts where the NTA is located. D2D data.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the second D2D terminal acquires the value range in which the NTA is located according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the NTA and the basic time unit Ts, where the second D2D terminal is located according to the NTA
  • the value range and the Ts receive the D2D data sent by the first D2D terminal.
  • the directly used N TA is an accurate value, and no need to go to other parameters to obtain, for the implementation level, the present Some protocol standards have small changes and strong compatibility.
  • the above embodiment introduces the data transmission method of the D2D communication from the first D2D terminal, and then introduces the data transmission method of the D2D communication provided by the embodiment of the present invention from the second D2D terminal.
  • FIG. 6 another implementation of the present invention is shown.
  • the data transmission method of the D2D communication provided by the example may specifically include the following steps:
  • the second D2D terminal receives the time advance indication parameter I TAI sent by the first D2D terminal by using the physical side control channel PSCCH.
  • the first D2D terminal after the first D2D terminal acquires the I TAI , the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the number of bits occupied by the I TAI does not exceed the bit that can be carried by the PSCCH.
  • the first D2D terminal may complete the notification of the I TAI through the PSCCH, and the second D2D terminal receives the I TAI sent by the first D2D terminal through the PSCCH.
  • the first D2D terminal adopts downlink timing when transmitting the PSCCH, and the second D2D terminal can perform reception of the I TAI according to the downlink timing.
  • the second D2D terminal acquires a value range in which the time advance parameter N TA is located according to the received I TAI .
  • the second D2D terminal may backtrack to the value range of the N TA in the same manner as when the first D2D terminal acquires the I TAI , which is an achievable manner. If the second D2D terminal obtains the value range of the time advance parameter N TA according to the received I TAI , the method includes:
  • the second D2D terminal calculates the operation intermediate amount N TA ' where the value range is
  • the second D2D terminal calculates that the value range of the N TA is
  • M is estimated by a Demodulation Reference Signal (DMRS) of the PSSCH.
  • DMRS Demodulation Reference Signal
  • the value range of the M value can be obtained as follows: Where M is an integer greater than or equal to zero.
  • the second D2D terminal calculates the value range in which the NTA is located according to the estimated M value. Specifically, the second D2D terminal may use the endpoint value or the intermediate value or a value in the range of the value range in which the NTA is located. As the estimated N TA , the received D2D data sent by the first D2D terminal is received according to the estimated N TA and Ts.
  • the second D2D terminal receives the D2D data sent by the first D2D terminal according to the value range and the basic time unit Ts where the acquired NTA is located.
  • the second D2D terminal after the second D2D terminal acquires the value range in which the NTA is located according to the I TAI , the second D2D terminal receives the D2D data sent by the first D2D terminal. Specifically, the second D2D terminal may use the NTA. The value range and Ts are received.
  • step 603 the second terminal Ts D2D D2D D2D data terminal receives a first transmission range and according to a basic time unit of the acquired N TA is located, comprising:
  • the calculation using the parameter I TAI by using 2 Z is N TA to be taken to achieve the remainder, a first terminal and a second D2D D2D terminal have the same preset algorithm modulo, N
  • the value of the N TA ' value obtained after the TA is taken is smaller than that of N TA , and then segmented based on the N TA ' of the magnitude reduction, and the numerical interval error after each segment is reduced, which is directly compared with the prior art.
  • the segmentation of the N TA can greatly reduce the error and improve the reception accuracy of the second D2D terminal.
  • the receiving UE after the receiving UE acquires an I TAI , it may be determined that the value of the transmission timing N TA will be 512 ⁇ Ts.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the second D2D terminal acquires the value range in which the NTA is located according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the NTA and the basic time unit Ts, where the second D2D terminal is located according to the NTA and a first reception range Ts D2D D2D data sent by the terminal, there is a small error in the range N TA used by a second terminal located D2D, reception performance also improved significantly.
  • FIG. 7 is a schematic diagram of an interaction process between a first D2D terminal, a second D2D terminal, and a base station according to an embodiment of the present invention.
  • the following communication mode exists in the D2D communication as an example: an eNB or a relay node.
  • the scheduling terminal is configured to transmit the data of the direct connection communication data and the control information, and is applied to a scenario covered by the network coverage or part of the network coverage.
  • the base station sends a system information block (SIB) to the first D2D terminal and the second D2D terminal, and the base station sends the scheduling allocation, the data resource and the format to the first D2D through a downlink control channel (Physical Downlink Control Channel, PDCCH).
  • SIB system information block
  • PDCCH Physical Downlink Control Channel
  • the manner in which the first D2D terminal determines the I TAI and the TA′ may be as follows:
  • the table 2 is obtained by the formula under the scenario 1, and the first D2D terminal will use 6 bits to indicate the I TAI , wherein the I TAI value is from the following Table 2, and the N is in Table 2 15.
  • the first D2D terminal will indicate that the timing advance of the D2D transmission is TA' ⁇ Ts, and TA' ⁇ Ts will be used for the advance amount of transmission.
  • Table 2 A side reception timing adjustment indication mapping table
  • the manner in which the first D2D terminal determines the I TAI and the TA′ may be as follows:
  • the table 3 is obtained by the formula under the scenario 3, and the first D2D terminal will use 6 bits to indicate the I TAI , wherein the value of the I TAI is from the following Table 3, wherein For example, where N is 15 and x is 6, the first D2D terminal will indicate that the timing advance of the D2D transmission is TA' ⁇ Ts, and TA' ⁇ Ts will be used for the advance amount of transmission.
  • Table 3 A side-receive timing adjustment indication mapping table
  • the manner in which the first D2D terminal determines the I TAI may be as follows:
  • N TA ' mod(N TA ,2048),
  • the table 4 is obtained by the formula under the scenario 5, and the first D2D terminal will use 6 bits to indicate the I TAI , wherein the value of the I TAI is from the following Table 4, wherein For example, where x is 6, the first D2D terminal will indicate that the timing advance of the D2D transmission is N TA ⁇ Ts and will be used.
  • N TA ⁇ Ts is the amount of advance to send.
  • Table 4 A side-receive timing adjustment indication mapping table
  • the manner in which the first D2D terminal determines the I TAI may be as follows:
  • N TA ' mod(N TA ,1024)
  • the table 5 is obtained by the formula under the scenario 7, and the first D2D terminal will use 6 bits to indicate the I TAI , wherein the value of the I TAI is from the following Table 5, wherein For example, where x is 6, the first D2D terminal will indicate that the timing advance of the D2D transmission is N TA ⁇ Ts and will be used.
  • N TA ⁇ Ts is the amount of advance to send.
  • Table 5 A side-receive timing adjustment indication mapping table
  • the manner in which the first D2D terminal determines the I TAI may be as follows:
  • N TA ' mod(N TA ,16384)
  • the second D2D terminal determines the value range in which the N TA is located as follows:
  • N TA M ⁇ 2048 + N TA '
  • N TA M ⁇ 1024 + N TA '
  • the second D2D terminal needs to perform M estimation according to the DMRS of the PSSCH to obtain the interval in which the actual M value is located. Therefore, when the estimate of M is obtained, the second D2D terminal will obtain a more accurate range of values of the actual N TA .
  • the receiving UE after the receiving UE acquires an I TAI , it may be determined that the value of the transmission timing N TA will be 512 ⁇ Ts.
  • the receiving UE obtains an I TAI , and after estimating the value of M, it can be determined that the value of the transmission timing N TA will have 32 ⁇ Ts.
  • the receiving UE obtains an I TAI , and after estimating the value of M, it can be determined that the value of the transmission timing N TA will have 16 ⁇ Ts.
  • a D2D terminal 800 is provided in the embodiment of the present invention.
  • the D2D terminal is specifically a first D2D terminal, and may include: an obtaining module 801, a notification module 802, and a data sending module 803.
  • the obtaining module 801 is configured to acquire the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA ;
  • the notification module 802 is configured to send the I TAI to the second D2D terminal by using the physical side control channel PSCCH, so that the second D2D terminal acquires the TA′ according to the received I TAI ;
  • a data sending module 803 configured to send D2D data to the second D2D terminal according to the TA' and the basic time unit Ts, so that the second D2D terminal receives the station according to the acquired TA' and the Ts
  • the D2D data sent by the first D2D terminal is described.
  • the obtaining module 801 configured to obtain the I TAI the number of bits occupied by the I TAI and the N TA, and using the I TAI and the occupancy N TA The maximum number of bits acquires the TA', or uses the minimum value of the segment range in which the NTA is located as the acquired TA'.
  • the obtaining module 801 is specifically configured to: according to the NTA, query the corresponding table when the I TAI occupies a different number of bits, and obtain the I TAI and the location corresponding to the N TA Said TA'.
  • the obtaining module 801 is specifically configured to calculate the I TAI by :
  • the obtaining module 801 is specifically configured to calculate the I TAI by :
  • the TA' is calculated by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the value of Y ranges from 0 to 511.
  • the number of bits occupied by the I TAI is 6 bits.
  • the obtaining module 801 is further configured to acquire the base station allocates the first D2D N TA to the terminal from the base station.
  • the data sending module 801 includes:
  • a calculation submodule configured for the first D2D terminal to calculate a D2D data transmission time advance according to the TA′ and the Ts as TA′ ⁇ Ts;
  • a sending submodule configured to send D2D data to the second D2D terminal by using the physical side row shared channel PSSCH according to the TA′ ⁇ Ts.
  • the first D2D terminal acquires the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal passes the PSCCH.
  • the I TAI is sent to the second D2D terminal, and the second D2D terminal acquires the TA′ according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, and the second D2D terminal obtains the data according to the acquisition.
  • the received TA2 and Ts receive the D2D data sent by the first D2D terminal, because the second D2D terminal can receive the I TAI sent by the first D2D terminal and acquire the TA′ according to the I TAI , and the first D2D terminal adopts the TA′ and The Ts sends the D2D data, so the second D2D terminal can accurately know the D2D data transmission time advance of the first D2D terminal according to TA' and Ts, and the receiving window of the second D2D terminal can be kept with the D2D data actually sent by the first D2D terminal. It is completely consistent, so that the second D2D terminal can accurately receive the D2D data.
  • a D2D terminal 900 is provided in the embodiment of the present invention.
  • the D2D terminal is specifically a second D2D terminal, and may include: an information receiving module 901, an obtaining module 902, and a data receiving module 903.
  • the information receiving module 901 is configured to receive, by using the physical side control channel PSCCH, a time advance indication parameter I TAI sent by the first D2D terminal;
  • the obtaining module 902 is configured to acquire a D2D data sending advance parameter TA′ according to the received I TAI ;
  • the data receiving module 903 is configured to receive the D2D data sent by the first D2D terminal according to the acquired TA′ and the basic time unit Ts.
  • the obtaining module 902 is specifically configured to calculate the TA′ by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI .
  • the obtaining module 902 is specifically configured to calculate the TA′ by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the value of Y ranges from 0 to 511.
  • the x is 6 bits.
  • the obtaining module 902 configured to occupy different time corresponding to the number of bits according to the table I TAI I TAI query to obtain the TA corresponding to the I TAI '. Or, to obtain the range of the segment corresponding to N TA I TAI, and using a minimum value of the range of the segment is located as N TA to the acquired TA '.
  • the data receiving module 903 includes:
  • a calculation submodule configured to calculate, according to the TA′ and the basic time unit Ts, a D2D data transmission time advance amount is TA′ ⁇ Ts;
  • the receiving submodule is configured to receive the D2D data sent by the first D2D terminal by using the physical side row shared channel PSSCH according to the TA′ ⁇ Ts.
  • the first D2D terminal acquires the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal passes the PSCCH.
  • the I TAI is sent to the second D2D terminal, and the second D2D terminal acquires the TA′ according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, and the second D2D terminal obtains the data according to the acquisition.
  • the received TA2 and Ts receive the D2D data sent by the first D2D terminal, because the second D2D terminal can receive the I TAI sent by the first D2D terminal and acquire the TA′ according to the I TAI , and the first D2D terminal adopts the TA′ and The Ts sends the D2D data, so the second D2D terminal can accurately know the D2D data transmission time advance of the first D2D terminal according to TA' and Ts, and the receiving window of the second D2D terminal can be kept with the D2D data actually sent by the first D2D terminal. It is completely consistent, so that the second D2D terminal can accurately receive the D2D data.
  • a D2D terminal 1000 is provided in the embodiment of the present invention.
  • the D2D terminal is specifically a first D2D terminal, and may include: an obtaining module 1001, a notification module 1002, and a data sending module 1003.
  • Obtaining module 1001 configured to obtain a parameter value is less than N TA timing advance, the timing advance parameter I TAI indicating the number of bits occupied by the timing advance parameter is less than the value N TA I TAI according to the acquired;
  • the notification module 1002 is configured to send, by using the physical side control channel PSCCH, the I TAI to the second D2D terminal, where the I TAI is used by the second D2D terminal to obtain a value range in which the N TA is located;
  • Data transmitting module 1003 configured to transmit Ts D2D D2D data to the second terminal according to the N TA and the basic time unit, so that the second range D2D terminal according to the acquired location and N TA The Ts receives D2D data sent by the first D2D terminal.
  • a specific value of the timing advance parameter to obtain said modulo N TA timing advance parameter is less than the N TA.
  • the obtaining module 1001 is specifically configured to calculate the I TAI by :
  • the x is the number of bits occupied by the I TAI
  • the Z is a preset time adjustment parameter.
  • the Z ranges from 1 to 14.
  • the number of bits occupied by the I TAI is 6 bits.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the second D2D terminal acquires the value range in which the NTA is located according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the NTA and the basic time unit Ts, where the second D2D terminal is located according to the NTA
  • the value range and the Ts receive the D2D data sent by the first D2D terminal.
  • the directly used N TA is an accurate value, and no need to go to other parameters to obtain, for the implementation level, the present Some protocol standards have small changes and strong compatibility.
  • a D2D terminal 1100 is provided in the embodiment of the present invention.
  • the D2D terminal is specifically a second D2D terminal, and may include: an information receiving module 1101, an obtaining module 1102, and a data receiving module 1103.
  • the information receiving module 1101 is configured to receive, by using the physical side control channel PSCCH, a time advance indication parameter I TAI sent by the first D2D terminal;
  • the obtaining module 1102 is configured to obtain a value range in which the time advance parameter N TA is located according to the received I TAI ;
  • the data receiving module 1103 is configured to receive the D2D data sent by the first D2D terminal according to the obtained value range and the basic time unit Ts where the NTA is located.
  • the obtaining module 1102 configured in accordance with the range where the N TA multiplied by the Ts D2D D2D terminal receives the first transmission line side through a physical shared channel PSSCH data.
  • the obtaining module 1102 is specifically configured to calculate a value range of the operation intermediate quantity N TA ' as N TA ' ⁇ [I TAI ⁇ 2 Zx , (I TAI +1) ⁇ 2 Zx -1]:
  • the acquiring module 1102 is further configured to obtain the M by using a demodulation reference signal DMRS of the PSSCH.
  • the first D2D terminal acquires the I TAI according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , and the first D2D terminal sends the I TAI to the second D2D terminal through the PSCCH.
  • the second D2D terminal acquires the value range in which the NTA is located according to the received I TAI , and the first D2D terminal sends the D2D data to the second D2D terminal according to the NTA and the basic time unit Ts, where the second D2D terminal is located according to the NTA and a first reception range Ts D2D D2D data sent by the terminal, there is a small error in the range N TA used by a second terminal located D2D, reception performance also improved significantly.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • the D2D terminal 1200 is specifically a first D2D terminal, and includes:
  • the input device 1201, the output device 1202, the processor 1203, and the memory 1204 (wherein the number of the processors 1203 in the first D2D terminal 1200 may be one or more, and one processor in FIG. 12 is taken as an example).
  • the input device 1201, the output device 1202, the processor 1203, and the memory 1204 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1203 is configured to perform the following steps:
  • the processor 1203 is configured to perform the acquiring the I TAI and D2D data transmission advance parameter TA' according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , including:
  • the processor 1203 is configured to perform the acquiring the I TAI and D2D data transmission advance parameter TA′ according to the number of bits occupied by the time advance indication parameter I TAI and the time advance parameter N TA , including:
  • the processor 1203 is specifically configured to perform acquiring the I TAI according to the number of bits occupied by the I TAI and the N TA , including:
  • the I TAI is calculated by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI ;
  • the processor 1203 is configured to perform, by using the maximum number of bits occupied by the I TAI and the N TA , to obtain the TA′, including:
  • the TA' is calculated by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI .
  • the processor 1203 is specifically configured to perform acquiring the I TAI according to the number of bits occupied by the I TAI and the N TA , including:
  • the I TAI is calculated by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter
  • the processor 1203 is configured to perform, by using the maximum number of bits occupied by the I TAI and the N TA , to obtain the TA′, including:
  • the TA' is calculated by:
  • the N is the maximum number of bits occupied by the N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the value of the Y stored by the memory 1204 ranges from 0 to 511.
  • the number of bits occupied by the I TAI stored by the memory 1204 is 6 bits.
  • the processor 1203 is further configured to perform steps comprising: obtaining the base station allocates the first D2D N TA to the terminal from the base station.
  • the processor 1203 is specifically configured to perform sending the D2D data to the second D2D terminal according to the TA′ and the basic time unit Ts, including:
  • the processor 1203 is configured to perform the following steps:
  • the timing advance parameter indicates the number of bits occupied by I TAI according to the parameter value N is smaller than the timing advance TA acquire the I TAI;
  • the processor 1203, particularly for the timing advance parameter to obtain said modulo N TA timing advance parameter is less than the value of N TA.
  • the processor 1203, particularly for performing obtaining a parameter N TA is smaller than the timing advance value, according to the timing advance parameter indicating the number of bits occupied by I TAI and the parameter value is smaller than the timing advance of N TA
  • Obtaining the I TAI includes:
  • the I TAI is calculated by:
  • the x is the number of bits occupied by the I TAI
  • the Z is a preset time adjustment parameter.
  • the processor 1203, particularly for performing obtaining a parameter N TA is smaller than the timing advance value, according to the timing advance parameter indicating the number of bits occupied by I TAI and the parameter value is smaller than the timing advance of N TA
  • Obtaining the I TAI includes:
  • the calculation intermediate amount N TA ' is calculated as follows:
  • N TA ' mod(N TA , 2 Z ),
  • the Z is a preset time adjustment parameter
  • the processor 1203 is specifically configured to perform calculating the I TAI by :
  • the x is the number of bits occupied by the I TAI
  • the Z is a preset time adjustment parameter.
  • the Z stored by the memory 1204 ranges from 1 to 14.
  • the number of bits occupied by the I TAI stored by the memory 1204 is 6 bits.
  • the D2D terminal 1300 is specifically a second D2D terminal, and includes:
  • the input device 1301, the output device 1302, the processor 1303, and the memory 1304 (wherein the number of the processors 1303 in the second D2D terminal 1300 may be one or more, and one processor in FIG. 13 is taken as an example).
  • the input device 1301, the output device 1302, the processor 1303, and the memory 1304 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1303 is configured to perform the following steps:
  • the processor 1303 is configured to perform, according to the received I TAI, the D2D data sending advance parameter TA′, including:
  • the TA' is calculated by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI .
  • the processor 1303 is configured to perform, according to the received I TAI, the D2D data sending advance parameter TA′, including:
  • the TA' is calculated by:
  • the N is the maximum number of bits occupied by the time advance parameter N TA
  • the x is the number of bits occupied by the I TAI
  • the Y is a preset time advance adjustment parameter.
  • the value of Y stored by the memory 1304 ranges from 0 to 511.
  • the x stored by the memory 1304 is 6 bits.
  • the processor 1303 is configured to perform, according to the received I TAI, the D2D data sending advance parameter TA′, including:
  • I TAI query according to the time corresponding to the number of bits occupied by different table I TAI to obtain the corresponding one of the I TAI TA '; or,
  • the processor 1303 is configured to perform, according to the acquired the TA' and the basic time unit Ts, the D2D data sent by the first D2D terminal, including:
  • the D2D data sent by the first D2D terminal is received by the physical side row shared channel PSSCH according to the TA' ⁇ Ts.
  • the processor 1303 is configured to perform the following steps:
  • the processor 1303 is configured to perform, according to the obtained value range and the basic time unit Ts where the NTA is located, the D2D data sent by the first D2D terminal, including:
  • the processor 1303 is configured to perform a value range in which the time advance parameter N TA is obtained according to the received I TAI , including:
  • the M stored by the memory 1304 is estimated by the demodulation reference signal DMRS of the PSSCH.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connections between the modules The relationship indicates that there is a communication connection between them, and specifically can be implemented as one or more communication buses or signal lines. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, dedicated hardware, dedicated CPU, dedicated memory, dedicated memory, Special components and so on.
  • functions performed by computer programs can be easily implemented with the corresponding hardware, and the specific hardware structure used to implement the same function can be various, such as analog circuits, digital circuits, or dedicated circuits. Circuits, etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • a computer device may be A personal computer, server, or network device, etc.

Abstract

一种D2D通信的数据传输方法和终端。其中一种方法可包括:第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA';所述第一D2D终端通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,以使所述第二D2D终端根据接收到的所述ITAI获取所述TA';所述第一D2D终端根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述TA'和所述Ts接收所述第一D2D终端发送的D2D数据。

Description

一种D2D通信的数据传输方法和终端 技术领域
本发明实施例涉及通信领域,尤其涉及一种D2D通信的数据传输方法和终端。
背景技术
在传统的长期演进(全称:Long Term Evolution,简称:LTE)通信技术中,用户终端(全称:User Equipment,简称:UE)之间进行信令和数据的交互都需要经过各自所属的演进型基站(全称:evolved Node B,简称:eNB)。
用户直联通信(即设备到设备,全称:Device to Device,简称:D2D)作为一种直接通信技术,UE之间的数据交互不需要通过eNB进行转发,可以在UE之间直接进行交互或者在网络的辅助作用下直接进行交互。
用户直联通信有三种工作场景,分别是网络覆盖(全称:in-network-coverage)、无网络覆盖(全称:out-of-network-coverage)和部分网络覆盖(全称:in-partial-network-coverag),在网络覆盖的工作场景中,参与用户直联通信的终端都在网络的覆盖范围内;在无网络覆盖的场景中,参与用户直联通信的终端都在网络的覆盖范围外;在部分网络覆盖的场景中,参与用户直联通信的一部分终端在网络的覆盖范围内,另一部分终端在网络的覆盖范围外。
用户直联通信分为两种主要的应用模式:D2D发现和D2D通信。其中,D2D通信是指一个终端发送调度分配(全称:Scheduling Assignment,简称SA)信息和数据,而其他终端通过读取SA信息得到SA指示的数据占用的资源、发射格式等信息,从而正确接收后续的数据。
D2D通信中存在一种如下的通信模式:eNB或中继节点调度终端用于传输直联通信的数据和控制信息的资源,应用于网络覆盖或部分网络覆盖的场景。基站通过下行信令指示D2D发射UE(以下简称发射UE)发射调度数据的资源和格式等信息。发射UE会首先通过物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)发送一个侧行控制信令(Sidelink Control Information,SCI)给D2D接收UE(以下称简接收UE),然后发射UE按照SCI里面的内 容,在物理侧行共享信道(Physical Sidelink Share Channel,PSSCH)上发送D2D数据。
在LTE系统的上行传输中,对于同一个基站服务的不同UE,由于这些UE处于不同的地理位置导致它们距基站的距离不相同,为了保证这些不同位置的UE发送的信号能够同时到达基站,目前基站给每个UE配置时间提前参数NTA,该值可用于确定上行信号发送时间提前量:NTA×Ts,简称上行定时,其中NTA取值为0≤NTA≤20512,Ts为基本时间单位(Basic time unit),
Figure PCTCN2015072015-appb-000001
UE在进行上行发送时,采用下行定时和上行定时进行提前发送,其中,下行定时由UE通过检测基站的同步信道和或导频信号获得。
在当前D2D通信的前述模式下,发射UE在发送PSSCH时将采用上行定时,发射UE需要提前将自己采用的上行定时通知给接收UE,现有技术中发射UE通过PSCCH向接收UE通知采用的上行定时,由于上行定时表示为NTA×Ts,而Ts是一个固定值,所以发射UE只需要向接收UE通知时间提前参数NTA,现有的协议规定了在PSCCH中最多只能预留有6个比特可用于承载,而0≤NTA≤20512,即NTA需要使用15比特才能准确通知,所以现有的协议中PSCCH中承载比特数无法满足时间提前参数NTA的需要。
鉴于此,对NTA的取值进行分段并按照NTA的各个分段取值范围给出分段的各个NTA分别对应的一个时间提前指示参数ITAI,例如,在0≤NTA≤20512的情况下,将NTA分为42段,每段对应一个ITAI,在发射UE和接收UE中分别存储分段的各个NTA对应的ITAI,发射UE只需要将时间提前指示参数ITAI通过PSCCH发送给接收UE,由于ITAI的取值区间为[0,41],不会超出PSCCH的可承载比特数范围,接收UE接收到ITAI之后,根据接收到的ITAI获取到发射UE采用的NTA分段范围,接收UE通过获取到的发射UE的NTA分段范围进行PSSCH的接收,此时,接收UE无法准确获知发射UE采用的NTA取值大小,而只是获取到一个NTA分段范围,接收UE只能按照可能的最大NTA的值进行接收。例如,当NTA的分段范围为[256,767],对应的ITAI=1时,接收UE将假 设发射UE采用的NTA为767,而实际上,当ITAI=1时,发射UE可能采用的上行定时的取值范围为[256,767]×Ts,这意味着实际信号到达接收窗口可能延迟512×Ts。在这种比较大的信号时延情况下,将导致UE的接收定时误差较大,影响对PSSCH的接收性能。
发明内容
本发明实施例提供了一种D2D通信的数据传输方法和终端,实现减少接收UE对发射UE发送D2D数据的接收误差。
第一方面,本发明实施例提供一种D2D通信的数据传输方法,包括:
第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA';
所述第一D2D终端通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,以使所述第二D2D终端根据接收到的所述ITAI获取所述TA';
所述第一D2D终端根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述TA'和所述Ts接收所述第一D2D终端发送的D2D数据。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA',包括:
所述第一D2D终端根据所述ITAI占用的比特数和所述NTA获取所述ITAI,并使用所述ITAI和所述NTA占用的最大比特数获取所述TA',或使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA',包括:
所述第一D2D终端根据所述NTA查询所述ITAI占用不同比特数时对应的表格,得到所述NTA对应的所述ITAI和所述TA'。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一D2D终端根据所述ITAI占用的比特数和所述NTA获取所述ITAI,包括:
所述第一D2D终端通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000002
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数;
所述使用所述ITAI和所述NTA占用的最大比特数获取所述TA',包括:
所述第一D2D终端通过如下方式计算所述TA':
TA'=2N-x×ITAI
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一D2D终端根据所述ITAI占用的比特数和所述NTA获取所述ITAI,包括:
所述第一D2D终端通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000003
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数;
所述使用所述ITAI和所述NTA占用的最大比特数获取所述TA',包括:
所述第一D2D终端通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000004
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述Y的取值范围为从0到511。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述ITAI占用的比特数为6比特。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第 四种可能或第五种可能或第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述ITAI和所述TA'之间存在一一对应关系。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述方法,还包括:所述第一D2D终端从基站获取所述基站分配给所述第一D2D终端的所述NTA
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能或第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述第一D2D终端根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,包括:
所述第一D2D终端根据所述TA'和所述Ts计算出D2D数据发送时间提前量为TA'×Ts;
所述第一D2D终端按照所述TA'×Ts通过物理侧行共享信道PSSCH向所述第二D2D终端发送D2D数据。
第二方面,本发明实施例还提供一种D2D通信的数据传输方法,包括:
第二D2D终端通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA';
所述第二D2D终端根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
所述第二D2D终端通过如下方式计算所述TA':
TA'=2N-x×ITAI
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
结合第二方面,在第二方面的第二种可能的实现方式中,所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
所述第二D2D终端通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000005
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述Y的取值范围为从0到511。
结合第二方面的第二种可能或第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述x为6比特。
结合第二方面,在第二方面的第五种可能的实现方式中,所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
所述第二D2D终端根据所述ITAI查询所述ITAI占用不同比特数时对应的表格,得到所述ITAI对应的所述TA';或,
所述第二D2D终端获取到所述ITAI对应的NTA所在的分段范围,使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
结合第二方面或第二方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述第二D2D终端根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据,包括:
所述第二D2D终端根据所述TA'和基本时间单位Ts计算出D2D数据发送时间提前量为TA'×Ts;
所述第二D2D终端按照所述TA'×Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
第三方面,本发明实施例还提供一种D2D通信的数据传输方法,包括:
第一D2D终端获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI
所述第一D2D终端通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,所述ITAI用于所述第二D2D终端ITAI获取所述NTA所在的取值范围;
所述第一D2D终端根据所述NTA和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述NTA所在的取值范 围和所述Ts接收所述第一D2D终端发送的D2D数据。
结合第三方面,在第三方面的第一种可能的实现方式中,所述第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI,包括:
所述第一D2D终端通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000006
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
结合第三方面,在第三方面的第二种可能的实现方式中,所述第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI,包括:
所述第一D2D终端通过如下方式计算运算中间量NTA':
NTA'=mod(NTA,2Z),
其中,所述Z为预置的时间调节参数;
所述第一D2D终端通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000007
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
结合第三方面的第一种可能或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述Z的取值范围为从1到14。
结合第三方面或第三方面的第一种可能或第二种可能或第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述ITAI占用的比特数为6比特。
第四方面,本发明实施例还提供一种D2D通信的数据传输方法,包括:
第二D2D终端通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
所述第二D2D终端根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围;
所述第二D2D终端根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
结合第四方面,在第四方面的第一种可能的实现方式中,所述第二D2D终 端根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据,包括:
所述第二D2D终端按照所述NTA所在的取值范围乘以所述Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述第二D2D终端根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围,包括:
所述第二D2D终端计算出运算中间量NTA'所在的取值范围为
NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1],
所述第二D2D终端计算出NTA所在的取值范围为
NTA∈[M×2Z+ITAI×2Z-x,M×2Z+(ITAI+1)×2Z-x-1],
其中,所述M为待估计的变量。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述M通过所述PSSCH的解调参考信号DMRS估计得到。
第五方面,本发明实施例还提供一种D2D终端,所述D2D终端具体为第一D2D终端,包括:
获取模块,用于根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA';
通知模块,用于通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,以使所述第二D2D终端根据接收到的所述ITAI获取所述TA';
数据发送模块,用于根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述TA'和所述Ts接收所述第一D2D终端发送的D2D数据。
结合第五方面,在第五方面的第一种可能的实现方式中,所述获取模块,具体用于根据所述ITAI占用的比特数和所述NTA获取所述ITAI,并使用所述ITAI和所述NTA占用的最大比特数获取所述TA',或使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种 可能的实现方式中,所述获取模块,具体用于根据所述NTA查询所述ITAI占用不同比特数时对应的表格,得到所述NTA对应的所述ITAI和所述TA'。
结合第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,所述获取模块,具体用于通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000008
通过如下方式计算所述TA':TA'=2N-x×ITAI,其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
结合第五方面的第一种可能的实现方式,在第五方面的第四种可能的实现方式中,所述获取模块,具体用于通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000009
通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000010
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实现方式中,所述Y的取值范围为从0到511。
结合第五方面或第五方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能的实现方式,在第五方面的第六种可能的实现方式中,所述ITAI占用的比特数为6比特。
结合第五方面或第五方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能的实现方式,在第五方面的第七种可能的实现方式中,所述ITAI和所述TA'之间存在一一对应关系。
结合第五方面或第五方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能的实现方式,在第五方面的第八种可能的实现方式中,所述获取模块,还用于从基站获取所述基站分配给所述第一D2D终端的所述NTA
结合第五方面或第五方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能或第八种可能的实现方式,在第五方面的第九种可能的实现方式中,所述数据发送模块,包括:
计算子模块,用于所述第一D2D终端根据所述TA'和所述Ts计算出D2D数据发送时间提前量为TA'×Ts;
发送子模块,用于按照所述TA'×Ts通过物理侧行共享信道PSSCH向所述第二D2D终端发送D2D数据。
第六方面,本发明实施例还提供一种D2D终端,所述D2D终端具体为第二D2D终端,包括:
信息接收模块,用于通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
获取模块,用于根据接收到的所述ITAI获取D2D数据发送提前参数TA';
数据接收模块,用于根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
结合第六方面,在第六方面的第一种可能的实现方式中,所述获取模块,具体用于通过如下方式计算所述TA':
TA'=2N-x×ITAI
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
结合第六方面,在第六方面的第二种可能的实现方式中,所述获取模块,具体用于通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000011
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
结合第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,所述Y的取值范围为从0到511。
结合第六方面的第二种可能或第三种可能的实现方式,在第六方面的第四种可能的实现方式中,所述x为6比特。
结合第六方面,在第六方面的第五种可能的实现方式中,所述获取模块,具体用于根据所述ITAI查询所述ITAI占用不同比特数时对应的表格,得到所述ITAI对应的所述TA';或,获取到所述ITAI对应的NTA所在的分段范围,使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
结合第六方面或第六方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能的实现方式,在第六方面的第六种可能的实现方式中, 所述数据接收模块,包括:
计算子模块,用于根据所述TA'和基本时间单位Ts计算出D2D数据发送时间提前量为TA'×Ts;
接收子模块,用于按照所述TA'×Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
第七方面,本发明实施例提供一种D2D终端,所述D2D终端具体为第一D2D终端,包括:
获取模块,用于获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI
通知模块,用于通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,所述ITAI用于所述第二D2D终端获取所述NTA所在的取值范围;
数据发送模块,用于根据所述NTA和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述NTA所在的取值范围和所述Ts接收所述第一D2D终端发送的D2D数据。
结合第七方面,在第七方面的第一种可能的实现方式中,所述获取模块,具体用于通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000012
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
结合第七方面,在第七方面的第二种可能的实现方式中,所述获取模块,具体用于通过如下方式计算运算中间量NTA':NTA'=mod(NTA,2Z),其中,所述Z为预置的时间调节参数;通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000013
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
结合第七方面的第一种可能或第二种可能的实现方式,在第七方面的第三种可能的实现方式中,所述Z的取值范围为从1到14。
结合第七方面或第七方面的第一种可能或第二种可能或第三种可能的实现方式,在第七方面的第四种可能的实现方式中,所述ITAI占用的比特数为6比特。
第八方面,本发明实施例提供一种D2D终端,所述D2D终端具体为第二D2D终端,包括:
信息接收模块,用于通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
获取模块,用于根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围;
数据接收模块,用于根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
结合第八方面,在第八方面的第一种可能的实现方式中,所述获取模块,具体用于按照所述NTA所在的取值范围乘以所述Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
结合第八方面或第八方面的第一种可能的实现方式,在第八方面的第二种可能的实现方式中,所述获取模块,具体用于计算出运算中间量NTA'所在的取值范围为NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1]:
计算出NTA所在的取值范围为
NTA∈[M×2Z+ITAI×2Z-x,M×2Z+(ITAI+1)×2Z-x-1],
其中,所述M为待估计的变量。
结合第八方面的第二种可能的实现方式,在第八方面的第三种可能的实现方式中,所述获取模块,还用于通过所述PSSCH的解调参考信号DMRS估计得到所述M。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI和D2D数据发送提前参数TA',第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取TA',第一D2D终端根据TA'和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据获取到的TA'和Ts接收第一D2D终端发送的D2D数据,由于第二D2D终端可以接收到第一D2D终端发送的ITAI并根据ITAI获取到TA',而第一D2D终端采用TA'和Ts发送D2D数据,所以第二D2D终端也可以根据TA'和Ts准确获知第一D2D终端的D2D数据发送时间提前量,第二D2D终端的接收窗口可以与第一D2D终端实际发送的D2D数据保持完全一 致,从而第二D2D终端可以准确的进行D2D数据的接收。
附图说明
图1为本发明实施例提供的一种D2D通信的数据传输方法的流程方框示意图;
图2为本发明实施例提供的D2D通信模式一的组网架构示意图;
图3所示,为本发明实施例提供的第一D2D终端发送D2D数据的时序关系图;
图4为本发明实施例提供的另一种D2D通信的数据传输方法的流程方框示意图;
图5为本发明实施例提供的另一种D2D通信的数据传输方法的流程方框示意图;
图6为本发明实施例提供的另一种D2D通信的数据传输方法的流程方框示意图;
图7为本发明实施例中第一D2D终端、第二D2D终端和基站之间的交互流程示意图;
图8为本发明实施例提供的一种D2D终端的组成结构示意图;
图9为本发明实施例提供的另一种D2D终端的组成结构示意图;
图10为本发明实施例提供的另一种D2D终端的组成结构示意图;
图11为本发明实施例提供的另一种D2D终端的组成结构示意图;
图12为本发明实施例提供的另一种D2D终端的组成结构示意图;
图13为本发明实施例提供的另一种D2D终端的组成结构示意图。
具体实施方式
本发明实施例提供了一种D2D通信的数据传输方法和终端,实现接收UE对发射UE发送D2D数据的准确接收。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域的技术人员所获得的所有其他实施例,都属于 本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
以下分别进行详细说明。
本发明D2D通信的数据传输方法的一个实施例,可应用于第一D2D终端中,请参阅图1所示,本发明一个实施例提供的D2D通信的数据传输方法,具体可以包括如下步骤:
101、第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI和D2D数据发送提前参数TA'。
在本发明实施例描述的D2D通信中,以第一D2D终端作为发射UE为例进行说明,第一D2D终端首先获取到时间提前参数,该参数用NTA来表示,在本发明的一些实施例中,步骤101执行之前,本发明D2D通信的数据传输方法还可以包括如下步骤:第一D2D终端从基站获取基站分配给第一D2D终端的NTA。例如,D2D通信中存在一种如下的通信模式:eNB或中继节点调度终端用于传输直联通信的数据和控制信息的资源,应用于网络覆盖或部分网络覆盖的场景,基站给每个D2D终端配置时间提前参数NTA,NTA取值为0≤NTA≤20512。
在本发明实施例中,第一D2D终端受限于PSCCH可承载比特数范围的限制,第一D2D终端需要使用少于NTA占用的比特数的另一种参数来传输,例如使用时间提前指示参数,该参数用ITAI表示,该ITAI占用的比特数少于NTA占用的比特数,在PSCCH能够承载的比特数范围内,具体的,ITAI可通过ITAI占用的比特数和时间提前参数NTA获取到,例如,对NTA的取值进行分段并按照NTA的各个分段取值范围给出分段的各个NTA分别对应的一个ITAI,例如在0≤NTA≤20512的情况下,将NTA分为42段,每段对应一个ITAI,在发射UE和接收UE中分别存储分段的各个NTA对应的ITAI
在本发明实施例中,第一D2D终端获取到ITAI是为了向第二D2D终端指示第一D2D终端采用的D2D数据发送时间提前信息,本发明实施例中对发射UE采用的D2D数据发送时间提前量进行修改,不再使用NTA,而采用D2D数据发送提前参数,该参数用TA'来表示,TA'可通过ITAI占用的比特数和时间提前参数NTA获取到。
在本发明的一些实施例中,第一D2D终端根据ITAI占用的比特数和NTA获取ITAI和TA'的方式有多种,具体的,一种可实现的方式是,第一D2D终端根据NTA查询ITAI占用不同比特数时对应的表格,得到NTA对应的ITAI和TA'。另外可行的是实现方式是,第一D2D终端获取到NTA后,按照D2D通信中规定的方式对NTA的取值大小进行分段,通过获取到的NTA可以确定出该NTA所在的分段范围,TA'具体可以取NTA所在的分段范围的最小值。例如,按照NTA的各个分段取值范围给出分段的各个NTA分别对应的一个ITAI和TA',在0≤NTA≤20512的情况下,可以将NTA分为42段,每段对应一个ITAI和TA',在发射UE和接收UE中分别存储分段的各个NTA对应的ITAI和TA',其中TA'的取值为ITAI对应NTA所在的分段范围的最小值,以ITAI占用不同6个比特时对应的表格为例,得到下示意出的表1,举例说明,若第一D2D终端获取到的NTA为760,该NTA所在的分段范围为256≤NTA≤767,该分段范围的最小值为256,所以第一D2D终端获取到的TA'为256。
表1:一种侧向接收时序调整指示映射表
  ITAI TA'
0≤NTA≤255 0 0
256≤NTA≤767 1 256
768≤NTA≤1279 2 768
1280≤NTA≤1791 3 1280
1792≤NTA≤2303 4 1792
2304≤NTA≤2815 5 2304
2816≤NTA≤3327 6 2816
3328≤NTA≤3839 7 3328
3840≤NTA≤4351 8 3840
4352≤NTA≤4863 9 4352
4864≤NTA≤5375 10 4864
5376≤NTA≤5887 11 5376
5888≤NTA≤6399 12 5888
6400≤NTA≤6911 13 6400
6912≤NTA≤7423 14 6912
7424≤NTA≤7935 15 7424
7936≤NTA≤8447 16 7936
8448≤NTA≤8959 17 8448
8960≤NTA≤9471 18 8960
9472≤NTA≤9983 19 9472
9984≤NTA≤10495 20 9984
10496≤NTA≤11007 21 10496
11008≤NTA≤11519 22 11008
11520≤NTA≤12031 23 11520
12032≤NTA≤12543 24 12032
12544≤NTA≤13055 25 12544
13056≤NTA≤13567 26 13056
13568≤NTA≤14079 27 13568
14080≤NTA≤14591 28 14080
14592≤NTA≤15103 29 14592
15104≤NTA≤15615 30 15104
15616≤NTA≤16127 31 15616
16128≤NTA≤16639 32 16128
16640≤NTA≤17151 33 16640
17152≤NTA≤17663 34 17152
17664≤NTA≤18175 35 17664
18176≤NTA≤18687 36 18176
18688≤NTA≤19199 37 18688
19200≤NTA≤19711 38 19200
19712≤NTA≤20223 39 19712
20224≤NTA≤20495 40 20224
20496≤NTA≤20512 41 20496
保留 42-63 保留
在本发明的一些实施例中,步骤101第一D2D终端根据ITAI占用的比特数和NTA获取ITAI和TA',可以包括如下步骤:第一D2D终端根据ITAI占用的比特数和NTA获取ITAI,并使用ITAI和NTA占用的最大比特数获取TA'。其中,ITAI占用的比特数为ITAI发送给第二D2D终端时占用的比特个数,NTA占用的最大比特数为NTA的取值为最大时需要占用的比特个数。ITAI占用的比特数少于NTA占用的最大比特数,使用NTA可确定出唯一的一个ITAI,确定出ITAI之后,使用确定出的ITAI和NTA占用的最大比特数可确定出TA',该TA'被第一D2D终端用于D2D数据的发送。
进一步的,在本发明的一些实施例中,第一D2D终端根据ITAI占用的比特数和NTA获取ITAI,包括:
第一D2D终端通过如下方式计算ITAI
Figure PCTCN2015072015-appb-000014
其中,N为NTA占用的最大比特数,x为ITAI占用的比特数。
需要说明的是,在上述举例的公式中,
Figure PCTCN2015072015-appb-000015
表示对
Figure PCTCN2015072015-appb-000016
的向下取整,可选的,N的取值可以为15或者其它值,具体由实现场景决定,x的取值可以为6或者其它值,具体由实现场景决定。
进一步的,使用ITAI和NTA占用的最大比特数获取TA',包括:
第一D2D终端通过如下方式计算TA':
TA'=2N-x×ITAI
其中,N为NTA占用的最大比特数,x为ITAI占用的比特数。
在本发明的另一些实施例中,第一D2D终端根据ITAI占用的比特数和NTA获取ITAI,包括:
第一D2D终端通过如下方式计算ITAI
Figure PCTCN2015072015-appb-000017
其中,N为NTA占用的最大比特数,x为ITAI占用的比特数,Y为预置的时间提前调节参数。
需要说明的是,在上述举例的公式中,可选的,N的取值可以为15或者其它值,具体由实现场景决定,x的取值可以为6或者其它值,具体由实现场景决定。另外,Y作为时间提前调节参数,对NTA的取值进行调整,可选的,Y的取值范围为从0到511,当然Y的取值还可以根据具体的应用场景进行选取,此处不做限定。
进一步的,使用ITAI和NTA占用的最大比特数获取TA',包括:
第一D2D终端通过如下方式计算TA':
Figure PCTCN2015072015-appb-000018
其中,N为NTA占用的最大比特数,x为ITAI占用的比特数,Y为预置的时间提前调节参数。
需要说明的是,在本发明的一些实施例中,获取到ITAI和TA'之后,对于ITAI和TA'之间存在一一对应关系,对于TA'的计算可以直接通过ITAI得到。在本发明的另一些实施例中,若ITAI和TA'之间存在不是一一对应关系时,对于TA'的计算除了需要使用ITAI之外,还可以借助于其它已知的固定值或者D2D通信中存在的其它变量函数来得到,此处不做限定。
102、第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,以使第二D2D终端根据接收到的ITAI获取TA'。
在本发明实施例中,第一D2D终端获取到ITAI之后,第一D2D终端向第二D2D终端通过PSCCH发送ITAI,通过前述描述可知,ITAI占用的比特数没有超过PSCCH可承载的比特数范围,第一D2D终端可以通过PSCCH完成ITAI的通知,所以第二D2D终端作为接收UE接收到ITAI之后,可以采用与第一D2D终端相同的方式获取到TA',第二D2D终端可以获取到第一D2D终端发送D2D数据采用的TA',对于第二D2D终端而言,该TA'是一个准确唯一的数值,而并不是一个区间范围,所以第二D2D终端可以准确的获知第一D2D终端发送 D2D数据的时间信息,从而可以进行准确的接收。
在本发明的一些实施例中,第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,具体可以包括:第一D2D终端通过PSCCH发送ITAI时采用下行定时,例如第一D2D终端在发送PSCCH时采用下行定时,因为在D2D通信中的模式一(即前述的eNB或中继节点调度终端用于传输直联通信的数据和控制信息的资源,应用于网络覆盖或部分网络覆盖的场景)时,只有第一D2D终端(作为发射UE)才会接收到基站发送的NTA,第二D2D终端(作为接收UE)不知道该NTA。但发射UE和接收UE都可以通过基站的同步信号或导频来获得下行定时。所以,为了保证接收UE能够接收到发射UE的PSCCH,发射UE将采用下行定时发送PSCCH。如图2所示,为本发明实施例提供的D2D通信模式一的组网架构示意图,其中,UE1和UE2距离eNB分别为L1和L2,UE1的下行定时为T1,其中有T1=L1/c,UE2的下行定时为T2,其中有T2=L2/c,c为无线信号的传输速度,即光速。
103、第一D2D终端根据TA'和Ts向第二D2D终端发送D2D数据,以使第二D2D终端根据获取到的TA'和Ts接收第一D2D终端发送的D2D数据。
在本发明实施例中,第一D2D终端向第二D2D终端通知ITAI之后,第一D2D终端可以进行D2D数据的传输,具体的,第一D2D终端按照TA'和Ts向第二D2D终端发送D2D数据,其中,对于第一D2D终端和第二D2D终端而言,TA'都是一个准确唯一的数值,第二D2D终端可以进行准确的接收,Ts为基本时间单位。第二D2D终端由于已经获取到第一D2D终端采用的TA',故第二D2D终端可以根据准确获取到的TA'和Ts接收第一D2D终端发送的D2D数据。
在本发明的一些实施例中,步骤103第一D2D终端根据TA'和Ts向第二D2D终端发送D2D数据,具体可以包括如下步骤:
1031、第一D2D终端根据TA'和Ts计算出D2D数据发送时间提前量为TA'×Ts;
1032、第一D2D终端按照TA'×Ts通过PSSCH向第二D2D终端发送D2D数据。
其中,在步骤1031中,第一D2D终端通过TA'和Ts计算出D2D数据发送时间提前量为TA'×Ts,第一D2D终端发送D2D数据需要提前的时间量为:TA'×Ts, 在步骤1032中,第一D2D终端采用PSSCH发送D2D数据,则在PSSCH上提前TA'×Ts进行D2D数据的发送。举例说明,第一D2D终端在下行定时的基础上提前TA'×Ts进行D2D数据的发送。
需要说明的是,在本发明的前述实施例中,下行定时是指一个绝对的时间点,表示下行信号的到达时间点,D2D数据发送时间提前量实际是指相对的时间提前量,通过下行定时+TA'×Ts获得了D2D数据的发送时间点。请参阅如图3所示,为本发明实施例提供的第一D2D终端发送D2D数据的时序关系图,其中,(Physical Downlink Share Channel,PDSCH)子帧表示是基站给第一D2D终端的下行信号,物理上行共享信道(Physical Uplink Share Channel,PUSCH)子帧表示的是第一D2D终端发送给基站的上行信号,该PUSCH是采用上行定时(NTA×Ts)发送的,第一D2D终端在发送PUSCH时也可能发送D2D数据,即因为PUSCH采用上行定时发送,在现有技术中PSSCH是采用上行定时的,为了解决第二D2D终端无法准确获取到NTA的问题,第一D2D终端发送D2D数据不采用NTA×Ts,而是采用TA'×Ts,D2D子帧本应该是紧挨着PUSCH子帧的。第一D2D终端采用TA'×Ts不会对发送端产生影响。对于发送端而言,因为TA'<=NTA,所以实际的D2D数据发送晚于上行定时,这样就有可能造成D2D数据干扰了后面正常发送的PUSCH。但是在D2D子帧的设计中,D2D子帧后面会空出一部分不发送(该空白不发送区域时间长度大于2048×Ts),而NTA﹣TA'值最大是512×Ts,所以采用TA'×Ts发送不会对发送端产生影响。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI和D2D数据发送提前参数TA',第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取TA',第一D2D终端根据TA'和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据获取到的TA'和Ts接收第一D2D终端发送的D2D数据,由于第二D2D终端可以接收到第一D2D终端发送的ITAI并根据ITAI获取到TA',而第一D2D终端采用TA'和Ts发送D2D数据,所以第二D2D终端也可以根据TA'和Ts准确获知第一D2D终端的D2D数据发送时间提前量,第二D2D终端的接收窗口可以与第一D2D终端实际发送的D2D数据保持完全一致,从而第二D2D终端可以准确的进行D2D数据的接收。
以上实施例从第一D2D终端介绍了D2D通信的数据传输方法,接下来从第二D2D终端介绍本发明实施例提供的D2D通信的数据传输方法,请参阅图4所示,本发明另一个实施例提供的D2D通信的数据传输方法,具体可以包括如下步骤:
401、第二D2D终端通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
在本发明实施例中,第一D2D终端获取到ITAI之后,第一D2D终端向第二D2D终端通过PSCCH发送ITAI,通过前述描述可知,ITAI占用的比特数没有超过PSCCH可承载的比特数范围,第一D2D终端可以通过PSCCH完成ITAI的通知,第二D2D终端通过PSCCH接收到第一D2D终端发送的ITAI。例如,第一D2D终端在发送PSCCH时采用下行定时,第二D2D终端可按照下行定时进行ITAI的接收。
402、第二D2D终端根据接收到的ITAI获取D2D数据发送提前参数TA'。
在本发明实施例中,第二D2D终端作为接收UE接收到ITAI之后,可以采用与第一D2D终端相同的方式获取到TA',第二D2D终端可以获取到第一D2D终端发送D2D数据采用的TA',对于第二D2D终端而言,该TA'是一个准确唯一的数值,而并不是一个区间范围,所以第二D2D终端可以准确的获知第一D2D终端发送D2D数据的时间信息,从而可以进行准确的接收。
在本发明的一些实施例中,步骤402第二D2D终端根据接收到的ITAI获取D2D数据发送提前参数TA',包括:
第二D2D终端通过如下方式计算TA':
TA'=2N-x×ITAI
其中,N为时间提前参数NTA占用的最大比特数,x为ITAI占用的比特数。
在本发明的另一些实施例中,第二D2D终端根据接收到的ITAI获取D2D数据发送提前参数TA',包括:
第二D2D终端通过如下方式计算TA':
Figure PCTCN2015072015-appb-000019
其中,N为时间提前参数NTA占用的最大比特数,x为ITAI占用的比特数,Y为预置的时间提前调节参数。
需要说明的是,在上述举例的公式中,可选的,N的取值可以为15或者其它值,具体由实现场景决定,x的取值可以为6或者其它值,具体由实现场景决定。另外,Y作为时间提前调节参数,对NTA的取值进行调整,可选的,Y的取值范围为从0到511,当然Y的取值还可以根据具体的应用场景进行选取,此处不做限定。
在本发明的一些实施例中,第二D2D终端根据接收到的ITAI获取D2D数据发送提前参数TA',包括:
第二D2D终端根据ITAI查询ITAI占用不同比特数时对应的表格,得到ITAI对应的TA'。或,获取到ITAI对应的NTA所在的分段范围,使用NTA所在的分段范围的最小值作为获取到的TA'。
例如,第一D2D终端和第二D2D终端中都存储有前述的表1,第二D2D终端接收到第一D2D终端发送的ITAI,根据该ITAI查询表1,得到TA'。又如,第二D2D终端获取到的ITAI为1,该ITAI对应的NTA所在的分段范围为256≤NTA≤767,该分段范围的最小值为256,所以第二D2D终端获取到的TA'为256。
403、第二D2D终端根据获取到的TA'和基本时间单位Ts接收第一D2D终端发送的D2D数据。
在本发明实施例中,第二D2D终端根据ITAI获取到TA'之后,第二D2D终端接收第一D2D终端发送的D2D数据,具体的,第一D2D终端按照TA'和Ts向第二D2D终端发送D2D数据,其中,对于第一D2D终端和第二D2D终端而言,TA'都是一个准确唯一的数值,第二D2D终端可以使用TA'和Ts进行准确的接收。第二D2D终端由于已经获取到第一D2D终端采用的TA',故第二D2D终端可以根据准确获取到的TA'和Ts接收第一D2D终端发送的D2D数据。
在本发明的一些实施例中,步骤403第二D2D终端根据获取到的TA'和基本时间单位Ts接收第一D2D终端发送的D2D数据,具体包括如下步骤:
4031、第二D2D终端根据TA'和基本时间单位Ts计算出D2D数据发送时间提前量为TA'×Ts;
4032、第二D2D终端按照TA'×Ts通过物理侧行共享信道PSSCH接收第一D2D终端发送的D2D数据。
其中,在步骤4031中,第二D2D终端通过TA'和Ts计算出D2D数据发送时间提前量为TA'×Ts,第二D2D终端可以准确获知第一D2D终端发送D2D数据需要提前的时间量为:TA'×Ts,在步骤4032中,第二D2D终端可以准确获知第一D2D终端采用PSSCH发送D2D数据,则可以在PSSCH上提前TA'×Ts进行D2D数据的接收。举例说明,第一D2D终端在下行定时的基础上提前TA'×Ts进行D2D数据的发送,第二D2D终端在下行定时的基础上提前TA'×Ts进行D2D数据的接收。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI和D2D数据发送提前参数TA',第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取TA',第一D2D终端根据TA'和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据获取到的TA'和Ts接收第一D2D终端发送的D2D数据,由于第二D2D终端可以接收到第一D2D终端发送的ITAI并根据ITAI获取到TA',而第一D2D终端采用TA'和Ts发送D2D数据,所以第二D2D终端也可以根据TA'和Ts准确获知第一D2D终端的D2D数据发送时间提前量,第二D2D终端的接收窗口可以与第一D2D终端实际发送的D2D数据保持完全一致,从而第二D2D终端可以准确的进行D2D数据的接收。
以上实施例介绍了本发明的一种D2D通信的数据传输方法,接下来介绍本发明实施例提供的另一种D2D通信的数据传输方法,请参阅图5所示,本发明另一个实施例提供的D2D通信的数据传输方法,具体可以包括如下步骤:
以上实施例从第一D2D终端介绍了D2D通信的数据传输方法,接下来从第二D2D终端介绍本发明实施例提供的D2D通信的数据传输方法,请参阅图5所示,本发明另一个实施例提供的D2D通信的数据传输方法,具体可以包括如下步骤:
501、第一D2D终端获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和小于时间提前参数NTA的值获取所述ITAI
在本发明实施例描述的D2D通信中,以第一D2D终端作为发射UE为例进行说明,第一D2D终端首先获取到时间提前参数,该参数用NTA来表示,在本发明的一些实施例中,步骤501执行之前,本发明D2D通信的数据传输方 法还可以包括如下步骤:第一D2D终端从基站获取基站分配给第一D2D终端的NTA。例如,D2D通信中存在一种如下的通信模式:eNB或中继节点调度终端用于传输直联通信的数据和控制信息的资源,应用于网络覆盖或部分网络覆盖的场景,基站给每个D2D终端配置时间提前参数NTA,NTA取值为0≤NTA≤20512。第一D2D终端获取一个小于时间提前参数NTA的值,例如可以对NTA的数值进行缩小,得到数值缩小后的NTA即为获取到的一个时间提前参数NTA的值,可选的,可以对NTA的数值成倍数的缩小,即按照NTA数值的量级进行缩小,NTA数值的量级被减小后再通过ITAI占用的比特数和数值缩小的NTA获取ITAI,该ITAI被通知给第二D2D终端,第二D2D终端通过ITAI可以确定出取值范围更小的NTA,相比于现有技术直接对NTA的分段范围,可以很大程度上减少误差,提高第二D2D终端的接收精度。
在本发明的一些实施例中,所述第一D2D终端获取一个小于时间提前参数NTA的值,包括:
所述第一D2D终端对所述时间提前参数NTA取余得到所述小于时间提前参数NTA的值。
需要说明的是,对NTA取余的方式有多种,接下来进行举例说明,但不作为对本发明的限定。
在本发明的一些实施例中,第一D2D终端根据ITAI占用的比特数和NTA获取ITAI的方式有多种,具体的,一种可实现的方式是,第一D2D终端通过如下方式计算ITAI
Figure PCTCN2015072015-appb-000020
其中,x为ITAI占用的比特数,Z为预置的时间调节参数。
需要说明的是,在上述举例的公式中,
Figure PCTCN2015072015-appb-000021
表示对
Figure PCTCN2015072015-appb-000022
的向下取整,可选的,Z的取值可以为从1到14,具体由实现场景决定,x的取值可以为6或者其它值,具体由实现场景决定。
在本发明的另一些实施例中,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI,包括:
第一D2D终端通过如下方式计算运算中间量NTA':
NTA'=mod(NTA,2Z),
其中,Z为预置的时间调节参数;
第一D2D终端通过如下方式计算ITAI
Figure PCTCN2015072015-appb-000023
其中,x为ITAI占用的比特数,Z为预置的时间调节参数。
也就是说,可以根据NTA定义NTA',先计算出NTA',然后再根据NTA'和ITAI占用的比特数来计算ITAI
需要说明的是,前述实施例中,对ITAI参数的计算使用是通过使用2Z对NTA进行取余数实现,第一D2D终端和第二D2D终端中预置有同样的取余算法,NTA被取余数后数值的量级被减小,再基于量级缩小后的NTA进行分段,各个分段后的数值区间误差减少,相比于现有技术直接对NTA的分段,可以很大程度上减少误差,提高第二D2D终端的接收精度。
502、第一D2D终端通过物理侧行控制信道PSCCH将ITAI发送给第二D2D终端,ITAI用于第二D2D终端获取NTA所在的取值范围。
在本发明实施例中,第一D2D终端获取到ITAI之后,第一D2D终端向第二D2D终端通过PSCCH发送ITAI,通过前述描述可知,ITAI占用的比特数没有超过PSCCH可承载的比特数范围,第一D2D终端可以通过PSCCH完成ITAI的通知,所以第二D2D终端作为接收UE接收到ITAI之后,对第一D2D终端采用的NTA进行估计,对于第二D2D终端而言,得到的是NTA所在的取值范围,第二D2D终端需要根据NTA所在的取值范围进行D2D数据的接收。
503、第一D2D终端根据NTA和基本时间单位Ts向第二D2D终端发送D2D数据,以使第二D2D终端根据获取到的NTA所在的取值范围和Ts接收第一D2D终端发送的D2D数据。
在本发明实施例中,第一D2D终端向第二D2D终端通知ITAI之后,第一D2D终端可以进行D2D数据的传输,具体的,第一D2D终端按照NTA和Ts向第二D2D终端发送D2D数据,其中,对于第一D2D终端而言,直接采用的NTA是一个准确的数值,而无需再进去其它参数的获取,对于实现层面而言对现有的协议标准改动小,兼容性强。但是对于第二D2D终端而言,第二D2D终端根据接收到的ITAI获取NTA所在的取值范围,第二D2D终端可以根据NTA所在的取值范围和Ts接收第一D2D终端发送的D2D数据。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI,第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取NTA所在的取值范围,第一D2D终端根据NTA和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据NTA所在的取值范围和Ts接收第一D2D终端发送的D2D数据,对于第一D2D终端而言,直接采用的NTA是一个准确的数值,而无需再进去其它参数的获取,对于实现层面而言对现有的协议标准改动小,兼容性强。
以上实施例从第一D2D终端介绍了D2D通信的数据传输方法,接下来从第二D2D终端介绍本发明实施例提供的D2D通信的数据传输方法,请参阅图6所示,本发明另一个实施例提供的D2D通信的数据传输方法,具体可以包括如下步骤:
601、第二D2D终端通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
在本发明实施例中,第一D2D终端获取到ITAI之后,第一D2D终端向第二D2D终端通过PSCCH发送ITAI,通过前述描述可知,ITAI占用的比特数没有超过PSCCH可承载的比特数范围,第一D2D终端可以通过PSCCH完成ITAI的通知,第二D2D终端通过PSCCH接收到第一D2D终端发送的ITAI。例如,第一D2D终端在发送PSCCH时采用下行定时,第二D2D终端可按照下行定时进行ITAI的接收。
602、第二D2D终端根据接收到的ITAI获取时间提前参数NTA所在的取值范围。
在本发明实施例中,第二D2D终端作为接收UE接收到ITAI之后,可以采用与第一D2D终端获取ITAI时的同样方式回溯到NTA所在的取值范围,一种可实现的方式是,步骤602第二D2D终端根据接收到的ITAI获取时间提前参数NTA所在的取值范围,包括:
第二D2D终端计算出运算中间量NTA'所在的取值范围为
NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1],
第二D2D终端计算出NTA所在的取值范围为
NTA∈[M×2Z+ITAI×2Z-x,M×2Z+(ITAI+1)×2Z-x-1],
其中,M为待估计的变量。
也就是说,首先根据NTA'=mod(NTA,2Z)可以反推出NTA'所在的取值范围为NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1],故对于第二D2D终端,可以将NTA表示为如下公式:NTA=M×2Z+NTA',其中,M作为待估计的变量,根据NTA'所在的取值范围可以得到NTA所在的取值范围。
进一步的,M通过PSSCH的解调参考信号(De Modulation Reference Signal,DMRS)估计得到。
举例说明如下,第二D2D终端收到ITAI后,基于NTA的最大值20512,预设值Z,可以获得M值的取值范围如下:
Figure PCTCN2015072015-appb-000024
其中M为大于等于0的整数。
即,若x=6、Z=11,则有0≤M≤10,即M有11个备选值;
若x=6、Z=10,则有0≤M≤20;即M有21个备选值。
接下来对于得到的M不同取值,并根据ITAI获得NTA的取范围,并基于该NTA进行D2D数据的接收,并基于接收D2D数据的DMRS进行信道估计,其中基于接收信号的DMRS进行信道估计可参阅现有技术,获得对第一D2D终端到第二D2D终端的信道H的估计量H'并进一步得到信道估计量H'的功率,根据最大功率准则获得对M的估计。
例如,若x=6、Z=11,则有0≤M≤10,即M有11个备选值,此时获得11个不同的信道估计量H',计算该11个信道估计量H'的功率P=(abs(H'))2,并进行功率大小比较,最大功率P=(abs(H'))2对应的M值即为估计出来的M值。第二D2D终端根据估计出来的M值计算出NTA所在的取值范围,具体的,第二D2D 终端可以采用NTA所在的取值范围中的端点值或者中间值或者范围内的某一个值作为估计出来的NTA,进而按照估计出来的NTA和Ts接收第一D2D终端发送的D2D数据。
603、第二D2D终端根据获取到的NTA所在的取值范围和基本时间单位Ts接收第一D2D终端发送的D2D数据。
在本发明实施例中,第二D2D终端根据ITAI获取到NTA所在的取值范围之后,第二D2D终端接收第一D2D终端发送的D2D数据,具体的,第二D2D终端可以使用NTA所在的取值范围和Ts进行接收。
在本发明的一些实施例中,步骤603第二D2D终端根据获取到的NTA所在的取值范围和基本时间单位Ts接收第一D2D终端发送的D2D数据,包括:
第二D2D终端按照NTA所在的取值范围乘以Ts通过物理侧行共享信道PSSCH接收第一D2D终端发送的D2D数据。
需要说明的是,前述实施例中,对ITAI参数的计算使用是通过使用2Z对NTA进行取余数实现,第一D2D终端和第二D2D终端中预置有同样的取余算法,NTA被取余数后得到的NTA'数值的量级比NTA小,再基于量级缩小的NTA'进行分段,各个分段后的数值区间误差减少,相比于现有技术直接对NTA的分段,可以很大程度上减少误差,提高第二D2D终端的接收精度。例如,现有技术下当接收UE获取一个ITAI后,可以确定发送定时NTA的取值范围将有512×Ts。在本发明实施例中,若当x=6、Z=11时,则接收UE获一个ITAI后,通过估计出M的值以后,可以确定发送定时NTA的取值范围将有32×Ts;若当x=6、Z=11时,则接收UE获一个ITAI后,通过估计出M的值以后,可以确定发送定时NTA的取值范围将有16×Ts。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI,第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取NTA所在的取值范围,第一D2D终端根据NTA和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据NTA所在的取值范围和Ts接收第一D2D终端发送的D2D数据,第二D2D终端使用的NTA所在的取值范围存在较小的误差,接收性能也得到明显提高。
为便于更好的理解和实施本发明实施例的上述方案,下面举例相应的应用场景来进行具体说明。
请参阅如图7所示,为本发明实施例中第一D2D终端、第二D2D终端和基站之间的交互流程示意图,D2D通信中存在一种如下的通信模式为例:eNB或中继节点调度终端用于传输直联通信的数据和控制信息的资源,应用于网络覆盖或部分网络覆盖的场景。
基站向第一D2D终端和第二D2D终端发送系统信息块(System Information Block,SIB),基站通过下行控制信道(Physical Downlink Control Channel,PDCCH)将调度分配、数据的资源和格式发送给第一D2D终端,第一D2D终端完成发射调度分配、数据的资源和格式配置,然后通过PSCCH信道发送ITAI,在PSSCH上发送D2D数据。接下来以不同应用场景分别进行说明。
在实现场景1下,具体的,第一D2D终端确定ITAI和TA'的方式可以如下:
以N为15、x为6为例,
Figure PCTCN2015072015-appb-000025
TA'=512×ITAI
在实现场景2下,具体的,以场景1下的公式得到表格2,第一D2D终端将采用6比特来指示ITAI,其中ITAI取值来自于以下表2中,表2中以N为15、x为6为例,第一D2D终端将指示该D2D传输的定时提前量为TA'×Ts,并且将使用TA'×Ts做发送的提前量。
表2:一种侧向接收时序调整指示映射表
  ITAI TA'
0≤NTA≤511 0 0
512≤NTA≤1023 1 512
1024≤NTA≤1535 2 1024
1536≤NTA≤2047 3 1536
2048≤NTA≤2589 4 2048
2560≤NTA≤3071 5 2560
3072≤NTA≤3583 6 3072
3584≤NTA≤4095 7 3584
4096≤NTA≤4607 8 4096
4608≤NTA≤5119 9 4608
5120≤NTA≤5631 10 5120
5632≤NTA≤6143 11 5632
6144≤NTA≤6655 12 6144
6656≤NTA≤7167 13 6656
7168≤NTA≤7679 14 7168
7680≤NTA≤8191 15 7680
8192≤NTA≤8703 16 8192
8704≤NTA≤9215 17 8704
9216≤NTA≤9727 18 9216
9728≤NTA≤10239 19 9728
10240≤NTA≤10751 20 10240
10752≤NTA≤11263 21 10752
11264≤NTA≤11775 22 11264
11776≤NTA≤12287 23 11776
12288≤NTA≤12799 24 12288
12800≤NTA≤13311 25 12800
13312≤NTA≤13823 26 13312
13824≤NTA≤14335 27 13824
14336≤NTA≤14847 28 14336
14848≤NTA≤15359 29 14848
15360≤NTA≤15871 30 15360
15872≤NTA≤16383 31 15872
16384≤NTA≤16895 32 16384
16896≤NTA≤17407 33 16896
17408≤NTA≤17919 34 17408
17920≤NTA≤18431 35 17920
18432≤NTA≤18943 36 18432
18944≤NTA≤19455 37 18944
19456≤NTA≤19967 38 19456
19968≤NTA≤20479 39 19968
20480≤NTA≤20512 40 20480
保留 41-63 保留
在实现场景3下,具体的,第一D2D终端确定ITAI和TA'的方式可以如下:
以N为15、x为6、Y等于256为例,
Figure PCTCN2015072015-appb-000026
Figure PCTCN2015072015-appb-000027
在实现场景4下,具体的,以场景3下的公式得到表格3,第一D2D终端将采用6比特来指示ITAI,其中ITAI取值来自于以下表3中,其中,表3中以N为15、x为6为例,第一D2D终端将指示该D2D传输的定时提前量为TA'×Ts,并且将使用TA'×Ts做发送的提前量。
表3:一种侧向接收时序调整指示映射表
  ITAI TA'
0≤NTA≤255 0 0
256≤NTA≤767 1 256
768≤NTA≤1279 2 768
1280≤NTA≤1791 3 1280
1792≤NTA≤2303 4 1792
2304≤NTA≤2815 5 2304
2816≤NTA≤3327 6 2816
3328≤NTA≤3839 7 3328
3840≤NTA≤4351 8 3840
4352≤NTA≤4863 9 4352
4864≤NTA≤5375 10 4864
5376≤NTA≤5887 11 5376
5888≤NTA≤6399 12 5888
6400≤NTA≤6911 13 6400
6912≤NTA≤7423 14 6912
7424≤NTA≤7935 15 7424
7936≤NTA≤8447 16 7936
8448≤NTA≤8959 17 8448
8960≤NTA≤9471 18 8960
9472≤NTA≤9983 19 9472
9984≤NTA≤10495 20 9984
10496≤NTA≤11007 21 10496
11008≤NTA≤11519 22 11008
11520≤NTA≤12031 23 11520
12032≤NTA≤12543 24 12032
12544≤NTA≤13055 25 12544
13056≤NTA≤13567 26 13056
13568≤NTA≤14079 27 13568
14080≤NTA≤14591 28 14080
14592≤NTA≤15103 29 14592
15104≤NTA≤15615 30 15104
15616≤NTA≤16127 31 15616
16128≤NTA≤16639 32 16128
16640≤NTA≤17151 33 16640
17152≤NTA≤17663 34 17152
17664≤NTA≤18175 35 17664
18176≤NTA≤18687 36 18176
18688≤NTA≤19199 37 18688
19200≤NTA≤19711 38 19200
19712≤NTA≤20223 39 19712
20224≤NTA≤20512 40 20224
保留 41-63 保留
前述场景1至4中示意说明了第一D2D终端获取ITAI和采用TA'的方式,接下来对第一D2D终端获取ITAI和采用NTA的方式进行说明,请参阅如下举例:
在实现场景5下,具体的,第一D2D终端确定ITAI的方式可以如下:
以x为6、Z等于11为例,
NTA'=mod(NTA,2048),
Figure PCTCN2015072015-appb-000028
或,
Figure PCTCN2015072015-appb-000029
在实现场景6下,具体的,以场景5下的公式得到表格4,第一D2D终端将采用6比特来指示ITAI,其中ITAI取值来自于以下表4中,其中,表4中以x为6为例,第一D2D终端将指示该D2D传输的定时提前量为NTA×Ts,并且将使用
NTA×Ts做发送的提前量。
表4:一种侧向接收时序调整指示映射表
  ITAI
0≤NTA’≤31 0
32≤NTA’≤63 1
64≤NTA’≤95 2
96≤NTA’≤127 3
1952≤NTA’≤1983 61
1984≤NTA’≤2015 62
2016≤NTA’≤2047 63
在实现场景7下,具体的,第一D2D终端确定ITAI的方式可以如下:
以x为6、Z等于10为例,
NTA'=mod(NTA,1024),
Figure PCTCN2015072015-appb-000030
或,
Figure PCTCN2015072015-appb-000031
在实现场景8下,具体的,以场景7下的公式得到表格5,第一D2D终端将采用6比特来指示ITAI,其中ITAI取值来自于以下表5中,其中,表5中以x为6为例,第一D2D终端将指示该D2D传输的定时提前量为NTA×Ts,并且将使用
NTA×Ts做发送的提前量。
表5:一种侧向接收时序调整指示映射表
  ITAI
0≤NTA’≤15 0
16≤NTA’≤31 1
32≤NTA’≤47 2
48≤NTA’≤63 3
976≤NTA’≤991 61
992≤NTA’≤1007 62
1008≤NTA’≤1023 63
在实现场景9下,具体的,第一D2D终端确定ITAI的方式可以如下:
以x为6、Z等于14为例,
NTA'=mod(NTA,16384),
Figure PCTCN2015072015-appb-000032
或,
Figure PCTCN2015072015-appb-000033
前述场景5至9中示意说明了第一D2D终端获取ITAI和采用NTA的方式进行说明,接下来对第二D2D终端获取ITAI和采用NTA的方式进行说明,请参阅如下举例:
在实现场景10下,具体的,第二D2D终端确定NTA所在的取值范围方式可以如下:
以x为6、Z等于11为例,
NTA=M×2048+NTA',
以x为6、Z等于10为例,
NTA=M×1024+NTA',
此时第二D2D终端需要根据PSSCH的DMRS进行M的估计,以得到实际M值所处的区间。所以当得到对M的估计后,第二D2D终端将得到一个较为精准的实际NTA所在的取值范围。
例如,现有技术下当接收UE获取一个ITAI后,可以确定发送定时NTA的取值范围将有512×Ts。在本发明实施例中,若当x=6、Z=11时,则接收UE获 一个ITAI后,通过估计出M的值以后,可以确定发送定时NTA的取值范围将有32×Ts;若当x=6、Z=11时,则接收UE获一个ITAI后,通过估计出M的值以后,可以确定发送定时NTA的取值范围将有16×Ts。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图8所示,本发明实施例提供的一种D2D终端800,所述D2D终端具体为第一D2D终端,可以包括:获取模块801、通知模块802、数据发送模块803,其中,
获取模块801,用于根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA';
通知模块802,用于通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,以使所述第二D2D终端根据接收到的所述ITAI获取所述TA';
数据发送模块803,用于根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述TA'和所述Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,所述获取模块801,具体用于根据所述ITAI占用的比特数和所述NTA获取所述ITAI,并使用所述ITAI和所述NTA占用的最大比特数获取所述TA',或使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
在本发明的一些实施例中,所述获取模块801,具体用于根据所述NTA查询所述ITAI占用不同比特数时对应的表格,得到所述NTA对应的所述ITAI和所述TA'。
在本发明的一些实施例中,所述获取模块801,具体用于通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000034
通过如下方式计算所述TA':TA'=2N-x×ITAI,其 中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
在本发明的一些实施例中,所述获取模块801,具体用于通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000035
通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000036
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
在本发明的一些实施例中,所述Y的取值范围为从0到511。
在本发明的一些实施例中,所述ITAI占用的比特数为6比特。
在本发明的一些实施例中,所述ITAI和所述TA'之间存在一一对应关系。
在本发明的一些实施例中,所述获取模块801,还用于从基站获取所述基站分配给所述第一D2D终端的所述NTA
在本发明的一些实施例中,所述数据发送模块801,包括:
计算子模块,用于所述第一D2D终端根据所述TA'和所述Ts计算出D2D数据发送时间提前量为TA'×Ts;
发送子模块,用于按照所述TA'×Ts通过物理侧行共享信道PSSCH向所述第二D2D终端发送D2D数据。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI和D2D数据发送提前参数TA',第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取TA',第一D2D终端根据TA'和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据获取到的TA'和Ts接收第一D2D终端发送的D2D数据,由于第二D2D终端可以接收到第一D2D终端发送的ITAI并根据ITAI获取到TA',而第一D2D终端采用TA'和Ts发送D2D数据,所以第二D2D终端也可以根据TA'和Ts准确获知第一D2D终端的D2D数据发送时间提前量,第二D2D终端的接收窗口可以与第一D2D终端实际发送的D2D数据保持完全一致,从而第二D2D终端可以准确的进行D2D数据的接收。
请参阅图9所示,本发明实施例提供的一种D2D终端900,所述D2D终端具体为第二D2D终端,可以包括:信息接收模块901、获取模块902、数据接收模块903,其中,
信息接收模块901,用于通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
获取模块902,用于根据接收到的所述ITAI获取D2D数据发送提前参数TA';
数据接收模块903,用于根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,所述获取模块902,具体用于通过如下方式计算所述TA':
TA'=2N-x×ITAI
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
在本发明的一些实施例中,所述获取模块902,具体用于通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000037
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
在本发明的一些实施例中,所述Y的取值范围为从0到511。
在本发明的一些实施例中,所述x为6比特。
在本发明的一些实施例中,所述获取模块902,具体用于根据所述ITAI查询所述ITAI占用不同比特数时对应的表格,得到所述ITAI对应的所述TA'。或,获取到所述ITAI对应的NTA所在的分段范围,使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
在本发明的一些实施例中,所述数据接收模块903,包括:
计算子模块,用于根据所述TA'和基本时间单位Ts计算出D2D数据发送时间提前量为TA'×Ts;
接收子模块,用于按照所述TA'×Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI和D2D数据发送提前参数 TA',第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取TA',第一D2D终端根据TA'和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据获取到的TA'和Ts接收第一D2D终端发送的D2D数据,由于第二D2D终端可以接收到第一D2D终端发送的ITAI并根据ITAI获取到TA',而第一D2D终端采用TA'和Ts发送D2D数据,所以第二D2D终端也可以根据TA'和Ts准确获知第一D2D终端的D2D数据发送时间提前量,第二D2D终端的接收窗口可以与第一D2D终端实际发送的D2D数据保持完全一致,从而第二D2D终端可以准确的进行D2D数据的接收。
请参阅图10所示,本发明实施例提供的一种D2D终端1000,所述D2D终端具体为第一D2D终端,可以包括:获取模块1001、通知模块1002、数据发送模块1003,其中,
获取模块1001,用于获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI
通知模块1002,用于通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,所述ITAI用于所述第二D2D终端获取所述NTA所在的取值范围;
数据发送模块1003,用于根据所述NTA和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述NTA所在的取值范围和所述Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,所述获取模块1001,具体用于对所述时间提前参数NTA取余得到所述小于时间提前参数NTA的值。
在本发明的一些实施例中,所述获取模块1001,具体用于通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000038
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
在本发明的一些实施例中,所述获取模块1001,具体用于通过如下方式计算运算中间量NTA':NTA'=mod(NTA,2Z),其中,所述Z为预置的时间调节参数;通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000039
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
在本发明的一些实施例中,所述Z的取值范围为从1到14。
在本发明的一些实施例中,所述ITAI占用的比特数为6比特。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI,第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取NTA所在的取值范围,第一D2D终端根据NTA和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据NTA所在的取值范围和Ts接收第一D2D终端发送的D2D数据,对于第一D2D终端而言,直接采用的NTA是一个准确的数值,而无需再进去其它参数的获取,对于实现层面而言对现有的协议标准改动小,兼容性强。
请参阅图11所示,本发明实施例提供的一种D2D终端1100,所述D2D终端具体为第二D2D终端,可以包括:信息接收模块1101、获取模块1102、数据接收模块1103,其中,
信息接收模块1101,用于通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
获取模块1102,用于根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围;
数据接收模块1103,用于根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,所述获取模块1102,具体用于按照所述NTA所在的取值范围乘以所述Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,所述获取模块1102,具体用于计算出运算中间量NTA'所在的取值范围为NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1]:
计算出NTA所在的取值范围为
NTA∈[M×2Z+ITAI×2Z-x,M×2Z+(ITAI+1)×2Z-x-1],
其中,所述M为待估计的变量。
在本发明的一些实施例中,所述获取模块1102,还用于通过所述PSSCH的解调参考信号DMRS估计得到所述M。
通过以上实施例对本发明的描述可知,第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取ITAI,第一D2D终端通过PSCCH将ITAI发送给第二D2D终端,第二D2D终端根据接收到的ITAI获取NTA所在的取值范围,第一D2D终端根据NTA和基本时间单位Ts向第二D2D终端发送D2D数据,第二D2D终端根据NTA所在的取值范围和Ts接收第一D2D终端发送的D2D数据,第二D2D终端使用的NTA所在的取值范围存在较小的误差,接收性能也得到明显提高。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施例相同,具体内容可参见本发明前述所示的方法实施例中的叙述,此处不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本发明实施例提供的另一种D2D终端,请参阅图12所示,D2D终端1200具体为第一D2D终端,包括:
输入装置1201、输出装置1202、处理器1203和存储器1204(其中第一D2D终端1200中的处理器1203的数量可以一个或多个,图12中以一个处理器为例)。在本发明的一些实施例中,输入装置1201、输出装置1202、处理器1203和存储器1204可通过总线或其它方式连接,其中,图12中以通过总线连接为例。
其中,处理器1203,用于执行如下步骤:
根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA';
通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,以使所述第二D2D终端根据接收到的所述ITAI获取所述TA';
根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述TA'和所述Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,处理器1203,具体用于执行根据时间提前指 示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA',包括:
根据所述ITAI占用的比特数和所述NTA获取所述ITAI,并使用所述ITAI和所述NTA占用的最大比特数获取所述TA',或使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
在本发明的一些实施例中,处理器1203,具体用于执行根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA',包括:
根据所述NTA查询所述ITAI占用不同比特数时对应的表格,得到所述NTA对应的所述ITAI和所述TA'。
在本发明的一些实施例中,处理器1203,具体用于执行根据所述ITAI占用的比特数和所述NTA获取所述ITAI,包括:
通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000040
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数;
在本发明的一些实施例中,处理器1203,具体用于执行使用所述ITAI和所述NTA占用的最大比特数获取所述TA',包括:
通过如下方式计算所述TA':
TA'=2N-x×ITAI
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
在本发明的一些实施例中,处理器1203,具体用于执行根据所述ITAI占用的比特数和所述NTA获取所述ITAI,包括:
通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000041
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数;
在本发明的一些实施例中,处理器1203,具体用于执行使用所述ITAI和所述NTA占用的最大比特数获取所述TA',包括:
通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000042
其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
在本发明的一些实施例中,存储器1204存储的所述Y的取值范围为从0到511。
在本发明的一些实施例中,存储器1204存储的所述ITAI占用的比特数为6比特。
在本发明的一些实施例中,存储器1204存储的所述ITAI和所述TA'之间存在一一对应关系。
在本发明的一些实施例中,处理器1203,还用于执行如下步骤:从基站获取所述基站分配给所述第一D2D终端的所述NTA
在本发明的一些实施例中,处理器1203,具体用于执行根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,包括:
根据所述TA'和所述Ts计算出D2D数据发送时间提前量为TA'×Ts;
按照所述TA'×Ts通过物理侧行共享信道PSSCH向所述第二D2D终端发送D2D数据。
图12中描述的第一D2D终端1200中,在另一些实施例中,处理器1203,用于执行如下步骤:
获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI
通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,所述ITAI用于所述第二D2D终端获取所述NTA所在的取值范围;
根据所述NTA和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述NTA所在的取值范围和所述Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,处理器1203,具体用于对所述时间提前参数 NTA取余得到所述小于时间提前参数NTA的值。
在本发明的一些实施例中,处理器1203,具体用于执行获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI,包括:
通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000043
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
在本发明的一些实施例中,处理器1203,具体用于执行获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI,包括:
通过如下方式计算运算中间量NTA':
NTA'=mod(NTA,2Z),
其中,所述Z为预置的时间调节参数;
在本发明的一些实施例中,处理器1203,具体用于执行通过如下方式计算所述ITAI
Figure PCTCN2015072015-appb-000044
其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
在本发明的一些实施例中,存储器1204存储的所述Z的取值范围为从1到14。
在本发明的一些实施例中,存储器1204存储的所述ITAI占用的比特数为6比特。
接下来介绍本发明实施例提供的另一种D2D终端,请参阅图13所示,D2D终端1300具体为第二D2D终端,包括:
输入装置1301、输出装置1302、处理器1303和存储器1304(其中第二D2D终端1300中的处理器1303的数量可以一个或多个,图13中以一个处理器为例)。在本发明的一些实施例中,输入装置1301、输出装置1302、处理器1303和存储器1304可通过总线或其它方式连接,其中,图13中以通过总线连接为例。
其中,处理器1303,用于执行如下步骤:
通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
根据接收到的所述ITAI获取D2D数据发送提前参数TA';
根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,处理器1303,具体用于执行根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
通过如下方式计算所述TA':
TA'=2N-x×ITAI
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
在本发明的一些实施例中,处理器1303,具体用于执行根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
通过如下方式计算所述TA':
Figure PCTCN2015072015-appb-000045
其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
在本发明的一些实施例中,存储器1304存储的Y的取值范围为从0到511。
在本发明的一些实施例中,存储器1304存储的所述x为6比特。
在本发明的一些实施例中,处理器1303,具体用于执行根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
根据所述ITAI查询所述ITAI占用不同比特数时对应的表格,得到所述ITAI对应的所述TA';或,
获取到所述ITAI对应的NTA所在的分段范围,使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
在本发明的一些实施例中,处理器1303,具体用于执行根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据,包括:
根据所述TA'和基本时间单位Ts计算出D2D数据发送时间提前量为TA'×Ts;
按照所述TA'×Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
图13中描述的第一D2D终端1300中,在另一些实施例中,处理器1303,用于执行如下步骤:
通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围;
根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,处理器1303,具体用于执行根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据,包括:
按照所述NTA所在的取值范围乘以所述Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
在本发明的一些实施例中,处理器1303,具体用于执行根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围,包括:
计算出运算中间量NTA'所在的取值范围为
NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1],
计算出NTA所在的取值范围为
NTA∈[M×2Z+ITAI×2Z-x,M×2Z+(ITAI+1)×2Z-x-1],
其中,所述M为待估计的变量。
在本发明的一些实施例中,存储器1304存储的述M通过所述PSSCH的解调参考信号DMRS估计得到。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连 接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本发明而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
综上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (54)

  1. 一种设备到设备D2D通信的数据传输方法,其特征在于,包括:
    第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA';
    所述第一D2D终端通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,以使所述第二D2D终端根据接收到的所述ITAI获取所述TA';
    所述第一D2D终端根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述TA'和所述Ts接收所述第一D2D终端发送的D2D数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA',包括:
    所述第一D2D终端根据所述ITAI占用的比特数和所述NTA获取所述ITAI,并使用所述ITAI和所述NTA占用的最大比特数获取所述TA',或使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一D2D终端根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA',包括:
    所述第一D2D终端根据所述NTA查询所述ITAI占用不同比特数时对应的表格,得到所述NTA对应的所述ITAI和所述TA'。
  4. 根据权利要求2所述的方法,其特征在于,所述第一D2D终端根据所述ITAI占用的比特数和所述NTA获取所述ITAI,包括:
    所述第一D2D终端通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100001
    其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数;
    所述使用所述ITAI和所述NTA占用的最大比特数获取所述TA',包括:
    所述第一D2D终端通过如下方式计算所述TA':
    TA'=2N-x×ITAI
    其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
  5. 根据权利要求2所述的方法,其特征在于,所述第一D2D终端根据所述ITAI占用的比特数和所述NTA获取所述ITAI,包括:
    所述第一D2D终端通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100002
    其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数;
    所述使用所述ITAI和所述NTA占用的最大比特数获取所述TA',包括:
    所述第一D2D终端通过如下方式计算所述TA':
    Figure PCTCN2015072015-appb-100003
    其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
  6. 根据权利要求5所述的方法,其特征在于,所述Y的取值范围为从0到511。
  7. 根据权利要求1至6所述的方法,其特征在于,所述ITAI占用的比特数为6比特。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述ITAI和所述TA'之间存在一一对应关系。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法,还包括:所述第一D2D终端从基站获取所述基站分配给所述第一D2D终端的所述NTA
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一D2D终端根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,包括:
    所述第一D2D终端根据所述TA'和所述Ts计算出D2D数据发送时间提前量为TA'×Ts;
    所述第一D2D终端按照所述TA'×Ts通过物理侧行共享信道PSSCH向所述 第二D2D终端发送D2D数据。
  11. 一种设备到设备D2D通信的数据传输方法,其特征在于,包括:
    第二D2D终端通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
    所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA';
    所述第二D2D终端根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
  12. 根据权利要求11所述的方法,其特征在于,所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
    所述第二D2D终端通过如下方式计算所述TA':
    TA'=2N-x×ITAI
    其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
  13. 根据权利要求11所述的方法,其特征在于,所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
    所述第二D2D终端通过如下方式计算所述TA':
    Figure PCTCN2015072015-appb-100004
    其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
  14. 根据权利要求13所述的方法,其特征在于,所述Y的取值范围为从0到511。
  15. 根据权利要求13或14所述的方法,其特征在于,所述x为6比特。
  16. 根据权利要求11所述的方法,其特征在于,所述第二D2D终端根据接收到的所述ITAI获取D2D数据发送提前参数TA',包括:
    所述第二D2D终端根据所述ITAI查询所述ITAI占用不同比特数时对应的表格,得到所述ITAI对应的所述TA';或,
    所述第二D2D终端获取到所述ITAI对应的NTA所在的分段范围,使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述第二D2D终端根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据,包括:
    所述第二D2D终端根据所述TA'和基本时间单位Ts计算出D2D数据发送时间提前量为TA'×Ts;
    所述第二D2D终端按照所述TA'×Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
  18. 一种设备到设备D2D通信的数据传输方法,其特征在于,包括:
    第一D2D终端获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI
    所述第一D2D终端通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,所述ITAI用于所述第二D2D终端获取所述NTA所在的取值范围;
    所述第一D2D终端根据所述NTA和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述NTA所在的取值范围和所述Ts接收所述第一D2D终端发送的D2D数据。
  19. 根据权利要求18所述的方法,其特征在于,所述第一D2D终端获取一个小于时间提前参数NTA的值,包括:
    所述第一D2D终端对所述时间提前参数NTA取余得到所述小于时间提前参数NTA的值。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一D2D终端获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI,包括:
    所述第一D2D终端通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100005
    其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
  21. 根据权利要求18或19所述的方法,其特征在于,所述第一D2D终端获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI,包括:
    所述第一D2D终端通过如下方式计算运算中间量NTA':
    NTA'=mod(NTA,2Z),
    其中,所述Z为预置的时间调节参数;
    所述第一D2D终端通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100006
    其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
  22. 根据权利要求20或21所述的方法,其特征在于,所述Z的取值范围为从1到14。
  23. 根据权利要求18至23中任一项所述的方法,其特征在于,所述ITAI占用的比特数为6比特。
  24. 一种设备到设备D2D通信的数据传输方法,其特征在于,包括:
    第二D2D终端通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
    所述第二D2D终端根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围;
    所述第二D2D终端根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
  25. 根据权利要求24所述的方法,其特征在于,所述第二D2D终端根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据,包括:
    所述第二D2D终端按照所述NTA所在的取值范围乘以所述Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第二D2D终端根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围,包括:
    所述第二D2D终端计算出运算中间量NTA'所在的取值范围为
    NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1],
    所述第二D2D终端计算出NTA所在的取值范围为
    NTA∈[M×2Z+ITAI×2Z-x,M×2Z+(ITAI+1)×2Z-x-1],
    其中,所述M为待估计的变量。
  27. 根据权利要求26所述的方法,其特征在于,所述M通过所述PSSCH的解调参考信号DMRS估计得到。
  28. 一种设备到设备D2D终端,其特征在于,所述D2D终端具体为第一D2D终端,包括:
    获取模块,用于根据时间提前指示参数ITAI占用的比特数和时间提前参数NTA获取所述ITAI和D2D数据发送提前参数TA';
    通知模块,用于通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,以使所述第二D2D终端根据接收到的所述ITAI获取所述TA';
    数据发送模块,用于根据所述TA'和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述TA'和所述Ts接收所述第一D2D终端发送的D2D数据。
  29. 根据权利要求28所述的D2D终端,其特征在于,所述获取模块,具体用于根据所述ITAI占用的比特数和所述NTA获取所述ITAI,并使用所述ITAI和所述NTA占用的最大比特数获取所述TA',或使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
  30. 根据权利要求28或29所述的D2D终端,其特征在于,所述获取模块,具体用于根据所述NTA查询所述ITAI占用不同比特数时对应的表格,得到所述NTA对应的所述ITAI和所述TA'。
  31. 根据权利要求29所述的D2D终端,其特征在于,所述获取模块,具体用于通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100007
    通过如下方式计算所述TA':TA'=2N-x×ITAI,其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
  32. 根据权利要求29所述的D2D终端,其特征在于,所述获取模块,具体用于通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100008
    通过如下方式计算所述TA':
    Figure PCTCN2015072015-appb-100009
    其中,所述N为所述NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
  33. 根据权利要求32所述的D2D终端,其特征在于,所述Y的取值范 围为从0到511。
  34. 根据权利要求28至33所述的D2D终端,其特征在于,所述ITAI占用的比特数为6比特。
  35. 根据权利要求28至34中任一项所述的D2D终端,其特征在于,所述ITAI和所述TA'之间存在一一对应关系。
  36. 根据权利要求28至35中任一项所述的D2D终端,其特征在于,所述获取模块,还用于从基站获取所述基站分配给所述第一D2D终端的所述NTA
  37. 根据权利要求28至36中任一项所述的D2D终端,其特征在于,所述数据发送模块,包括:
    计算子模块,用于所述第一D2D终端根据所述TA'和所述Ts计算出D2D数据发送时间提前量为TA'×Ts;
    发送子模块,用于按照所述TA'×Ts通过物理侧行共享信道PSSCH向所述第二D2D终端发送D2D数据。
  38. 一种设备到设备D2D终端,其特征在于,所述D2D终端具体为第二D2D终端,包括:
    信息接收模块,用于通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
    获取模块,用于根据接收到的所述ITAI获取D2D数据发送提前参数TA';
    数据接收模块,用于根据获取到的所述TA'和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
  39. 根据权利要求38所述的D2D终端,其特征在于,所述获取模块,具体用于通过如下方式计算所述TA':
    TA'=2N-x×ITAI
    其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数。
  40. 根据权利要求38所述的D2D终端,其特征在于,所述获取模块,具体用于通过如下方式计算所述TA':
    Figure PCTCN2015072015-appb-100010
    其中,所述N为时间提前参数NTA占用的最大比特数,所述x为所述ITAI占用的比特数,所述Y为预置的时间提前调节参数。
  41. 根据权利要求40所述的D2D终端,其特征在于,所述Y的取值范围为从0到511。
  42. 根据权利要求40或41所述的D2D终端,其特征在于,所述x为6比特。
  43. 根据权利要求38所述的D2D终端,其特征在于,所述获取模块,具体用于根据所述ITAI查询所述ITAI占用不同比特数时对应的表格,得到所述ITAI对应的所述TA';或,获取到所述ITAI对应的NTA所在的分段范围,使用所述NTA所在的分段范围的最小值作为获取到的所述TA'。
  44. 根据权利要求38至43中任一项所述的D2D终端,其特征在于,所述数据接收模块,包括:
    计算子模块,用于根据所述TA'和基本时间单位Ts计算出D2D数据发送时间提前量为TA'×Ts;
    接收子模块,用于按照所述TA'×Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
  45. 一种设备到设备D2D终端,其特征在于,所述D2D终端具体为第一D2D终端,包括:
    获取模块,用于获取一个小于时间提前参数NTA的值,根据时间提前指示参数ITAI占用的比特数和所述小于时间提前参数NTA的值获取所述ITAI
    通知模块,用于通过物理侧行控制信道PSCCH将所述ITAI发送给第二D2D终端,所述ITAI用于所述第二D2D终端获取所述NTA所在的取值范围;
    数据发送模块,用于根据所述NTA和基本时间单位Ts向所述第二D2D终端发送D2D数据,以使所述第二D2D终端根据获取到的所述NTA所在的取值范围和所述Ts接收所述第一D2D终端发送的D2D数据。
  46. 根据权利要求45所述的D2D终端,其特征在于,所述获取模块,具体用于对所述时间提前参数NTA取余得到所述小于时间提前参数NTA的值。
  47. 根据权利要求45或46所述的D2D终端,其特征在于,所述获取模块,具体用于通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100011
    其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
  48. 根据权利要求45或46所述的D2D终端,其特征在于,所述获取模块,具体用于通过如下方式计算运算中间量NTA':NTA'=mod(NTA,2Z),其中,所述Z为预置的时间调节参数;通过如下方式计算所述ITAI
    Figure PCTCN2015072015-appb-100012
    其中,所述x为所述ITAI占用的比特数,所述Z为预置的时间调节参数。
  49. 根据权利要求47或48所述的D2D终端,其特征在于,所述Z的取值范围为从1到14。
  50. 根据权利要求45至49中任一项所述的D2D终端,其特征在于,所述ITAI占用的比特数为6比特。
  51. 一种设备到设备D2D终端,其特征在于,所述D2D终端具体为第二D2D终端,包括:
    信息接收模块,用于通过物理侧行控制信道PSCCH接收第一D2D终端发送的时间提前指示参数ITAI
    获取模块,用于根据接收到的所述ITAI获取时间提前参数NTA所在的取值范围;
    数据接收模块,用于根据获取到的所述NTA所在的取值范围和基本时间单位Ts接收所述第一D2D终端发送的D2D数据。
  52. 根据权利要求51所述的D2D终端,其特征在于,所述获取模块,具体用于按照所述NTA所在的取值范围乘以所述Ts通过物理侧行共享信道PSSCH接收所述第一D2D终端发送的D2D数据。
  53. 根据权利要求51或52所述的D2D终端,其特征在于,
    所述获取模块,具体用于计算出运算中间量NTA'所在的取值范围为
    NTA'∈[ITAI×2Z-x,(ITAI+1)×2Z-x-1]:
    计算出NTA所在的取值范围为
    NTA∈[M×2Z+ITAI×2Z-x,M×2Z+(ITAI+1)×2Z-x-1],
    其中,所述M为待估计的变量。
  54. 根据权利要求53所述的D2D终端,其特征在于,所述获取模块,还用于通过所述PSSCH的解调参考信号DMRS估计得到所述M。
PCT/CN2015/072015 2015-01-30 2015-01-30 一种d2d通信的数据传输方法和终端 WO2016119241A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580002195.6A CN106105294B (zh) 2015-01-30 2015-01-30 一种d2d通信的数据传输方法和终端
PCT/CN2015/072015 WO2016119241A1 (zh) 2015-01-30 2015-01-30 一种d2d通信的数据传输方法和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072015 WO2016119241A1 (zh) 2015-01-30 2015-01-30 一种d2d通信的数据传输方法和终端

Publications (1)

Publication Number Publication Date
WO2016119241A1 true WO2016119241A1 (zh) 2016-08-04

Family

ID=56542235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072015 WO2016119241A1 (zh) 2015-01-30 2015-01-30 一种d2d通信的数据传输方法和终端

Country Status (2)

Country Link
CN (1) CN106105294B (zh)
WO (1) WO2016119241A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088688A1 (zh) * 2018-11-02 2020-05-07 华为技术有限公司 资源配置方法及装置
WO2020259238A1 (zh) * 2019-06-25 2020-12-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113826370A (zh) * 2019-09-30 2021-12-21 华为技术有限公司 一种通信方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备
US20140302784A1 (en) * 2013-04-04 2014-10-09 Research In Motion Limited Method and apparatus for proximity discovery for device-to-device communication
US20140355574A1 (en) * 2013-05-30 2014-12-04 Broadcom Corporation Method, Apparatus and Computer Program for Scheduling Device-to-Device Signals
US20150016428A1 (en) * 2013-07-10 2015-01-15 Motorola Mobility Llc Methods and device for performing device-to-device communication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379617B (zh) * 2012-04-26 2016-08-10 华为技术有限公司 一种用户设备到用户设备的通信方法及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备
US20140302784A1 (en) * 2013-04-04 2014-10-09 Research In Motion Limited Method and apparatus for proximity discovery for device-to-device communication
US20140355574A1 (en) * 2013-05-30 2014-12-04 Broadcom Corporation Method, Apparatus and Computer Program for Scheduling Device-to-Device Signals
US20150016428A1 (en) * 2013-07-10 2015-01-15 Motorola Mobility Llc Methods and device for performing device-to-device communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "D2D for LTE Proximity Services: Overview", 3GPP TSG-RAN WG 1 #73, 24 May 2013 (2013-05-24), pages 1 - 6 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088688A1 (zh) * 2018-11-02 2020-05-07 华为技术有限公司 资源配置方法及装置
CN111148240A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 资源配置方法及装置
CN111148240B (zh) * 2018-11-02 2022-04-12 华为技术有限公司 资源配置方法及装置
WO2020259238A1 (zh) * 2019-06-25 2020-12-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113826370A (zh) * 2019-09-30 2021-12-21 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
CN106105294A (zh) 2016-11-09
CN106105294B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
US11096180B2 (en) Selection of time-domain resource allocation tables
US11026250B2 (en) Scheduling method, device, and system
US20210219254A1 (en) Time synchronization method and apparatus
WO2020015499A1 (zh) 一种定位参考信号传输方法及装置
US10841865B2 (en) Method and apparatus for transmitting D2D discovery signal and communication system
US11510249B2 (en) Flexible demodulation reference signal configuration for MSG3
US20170244501A1 (en) User apparatus and distance estimation method
US10390267B2 (en) Method and system for handling device to device (D2D) communication
JP6195666B2 (ja) エアインターフェースベースの同期方法、基地局、制御装置、及び無線通信システム
JP6197244B2 (ja) 同一チャネルセル干渉を処理するための方法、装置、及びシステム
JP2019533924A (ja) Numerologyに基づく同期および非同期動作の間の適合化
WO2022143863A1 (zh) 副链路sl上的定位方法、终端及网络侧设备
JP2018525912A (ja) ワイヤレスネットワークにおけるデバイスツーデバイス測位のための同期
WO2017128883A1 (zh) 一种导频信号发送、信道估计方法及设备
US20180310127A1 (en) System and Method for Collaborative Position Determination
WO2021227754A1 (zh) 碰撞处理、指示方法及设备、装置、介质
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
KR20230002537A (ko) 포지셔닝 신호 처리 방법 및 장치
WO2018145302A1 (zh) 无线通信方法、终端设备和网络设备
TW201838466A (zh) 處理量測間距的裝置及方法
WO2016119241A1 (zh) 一种d2d通信的数据传输方法和终端
WO2016115695A1 (zh) 一种同步方法、装置及系统
WO2016044978A1 (zh) 一种设备到设备传输资源的分配方法和装置
WO2021134523A1 (zh) 一种参考信号的传输方法、装置及系统
WO2023134586A1 (zh) 资源选择方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879449

Country of ref document: EP

Kind code of ref document: A1