WO2016165411A1 - 一种从温差中获取动力实现自动化作业的机械装置 - Google Patents

一种从温差中获取动力实现自动化作业的机械装置 Download PDF

Info

Publication number
WO2016165411A1
WO2016165411A1 PCT/CN2016/000171 CN2016000171W WO2016165411A1 WO 2016165411 A1 WO2016165411 A1 WO 2016165411A1 CN 2016000171 W CN2016000171 W CN 2016000171W WO 2016165411 A1 WO2016165411 A1 WO 2016165411A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature difference
liquid
liquid storage
temperature
hydraulic cylinder
Prior art date
Application number
PCT/CN2016/000171
Other languages
English (en)
French (fr)
Inventor
贾二芳
Original Assignee
贾二芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贾二芳 filed Critical 贾二芳
Publication of WO2016165411A1 publication Critical patent/WO2016165411A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like

Definitions

  • the invention discloses a mechanical energy obtained from the temperature difference caused by natural space-time variation and position change, can automatically adjust to adapt to the extreme temperature difference change in the natural world, can operate independently for a long time under various natural conditions, and realize the autonomous control power by using the natural variation law.
  • Time, automatic operation according to the set requirements, replacement of computers and motors, engines in specific fields, and autonomous automation and precise operation.
  • the invention does not consume any energy, truly achieves zero discharge, and has stable safety and environmental protection performance.
  • Time and space are always changing, and the position can change forever.
  • the temperature difference can be constantly changed.
  • the invention utilizes the temperature difference that is always changing in the natural world to obtain the power that is never exhausted, has high mechanical automation degree, is safe and controllable, and has high precision. It belongs to the field of development and utilization of new energy and mechanical automation technology.
  • Wind, solar and hydropower are subject to geographical or weather restrictions, and no technology can directly achieve mechanical autonomous automation control. Replace specific areas of computer control automation with specific areas.
  • the temperature difference energy acquisition and automated operation technology provided by the invention can adapt to any extreme natural environment autonomously, and obtain mechanical energy from the temperature difference generated by the time and space changes and the temperature difference obtained by the moving position. Using the changes of natural laws to realize the automation of the machine itself, covering the insulation in the greenhouse, replacing the computer and motor, engine and manpower in the field of insulation, achieving independent automation, no need to consume any energy, no environmental impact Pollution, low cost, easy to use and maintain.
  • the first content of the present invention is: solving the problem of energy shortage and serious environmental pollution, providing a device that can automatically generate mechanical energy without changing any natural energy without any emission; the mechanical energy acquisition technology of the present invention
  • the principle of utilizing thermal expansion and contraction is to select a liquid with stable thermal expansion and contraction performance (referred to as power liquid) sealed in a hydraulic cylinder connected to the piston telescopic rod (referred to as: hydraulic cylinder), sensitive to temperature difference changes,
  • power liquid liquid with stable thermal expansion and contraction performance
  • hydraulic cylinder the piston telescopic rod
  • temperature difference sensing liquid storage tank In the high pressure resistant liquid storage tank (referred to as: temperature difference sensing liquid storage tank), when the ambient temperature of the temperature difference sensing liquid storage tank rises, the pressure generated by the thermal expansion of the power liquid pushes out the piston telescopic rod of the hydraulic oil cylinder when the temperature difference is induced.
  • the power liquid takes a negative pressure space when it is cold contracted, and the booster pulls the piston of the hydraulic cylinder to expand and contract.
  • the rod is retracted.
  • the mechanical energy generated by the expansion of the cylinder telescopic rod changes the position of the temperature difference sensing reservoir, and the change of the temperature difference is obtained from the change of the position.
  • the change of the temperature difference provides the telescopic energy to the piston telescopic rod, so that the environment is different in two different temperatures. By changing the position, you can get mechanical energy that never runs out.
  • a liquid is difficult to combine both good thermal expansion and contraction and good lubrication. If the liquid with good thermal expansion and contraction performance (kerosene, alcohol) is bound to cause great wear and tear on the piston telescopic rod hydraulic cylinder. And corrosion, will greatly shorten the life of the hydraulic cylinder.
  • the use of liquids with good lubricating properties improves the service life of the hydraulic cylinders. However, due to the poor thermal expansion and contraction performance, it is necessary to increase the amount of liquid and the differential temperature sensing storage under the premise of having the same power.
  • the capacity of the tank so the cost is also greatly improved.
  • the liquid of the temperature difference sensing liquid storage tank (referred to as the power liquid) and the liquid that enters the hydraulic cylinder (referred to as the transmission liquid) are separated by a corrosion-resistant and elastically good concave-convex shape film (abbreviation: isolation film).
  • isolation film a corrosion-resistant and elastically good concave-convex shape film
  • the second content of the present invention is: providing a type of liquid storage tank that can be used for winter heating type greenhouses, and can automatically cover the greenhouse when the temperature drops in the afternoon, and automatically collect the morning sun after rising.
  • the automatic power of the insulation is automatically adjusted, and the hydraulic cylinder can be automatically adjusted to meet the extreme temperature difference of any extreme temperature difference in the natural world.
  • Ordinary hydraulic cylinders are only suitable for working under normal and constant temperature difference conditions, and cannot adapt to extreme temperature differences in complex and variable natural environments.
  • the hydraulic cylinder equipped with the extreme temperature difference automatic adaptation adjustment device and the temperature difference induction liquid storage tank can be used normally under any extreme temperature difference conditions in nature, and work according to the set requirements.
  • a hydraulic cylinder equipped with an extreme temperature difference automatic adaptation adjustment device is called: an extreme temperature difference automatic adjustment hydraulic cylinder.
  • the front end of the hydraulic cylinder is provided with two return holes.
  • the excess hydraulic oil flows through the return hole to the outer liquid storage bottle due to the continued thermal expansion.
  • the inside of the liquid storage tank is cooled by the liquid to form a negative pressure.
  • the piston telescopic rod of the hydraulic cylinder is immediately retracted under the assistance of the energy storage tension spring.
  • the storage The negative pressure inside the liquid tank opens the backflow valve provided between the hydraulic oil pipe connecting the liquid storage bottle and the liquid storage tank, and sucks the hydraulic oil in the liquid storage bottle.
  • the return valve is stopped because there is no suction force of the negative pressure.
  • the third content of the present invention is to provide a liquid storage tank, an extreme temperature difference automatic adjustment and adaptation hydraulic cylinder, and a right angle joint load gate.
  • the utility model can be set to close the right angle joint under the condition that the morning temperature rises by any Celsius.
  • the load gate opens the working condition setting control device of the right-angled one-piece door under the condition that the temperature of the afternoon drops by any Celsius.
  • the ordinary hydraulic cylinder is mounted on the slide rail to be mounted on the slide rail, so that the hydraulic cylinder can be moved in the rail, the oil hole at the tail of the hydraulic cylinder is connected with a high-pressure oil pipe, a shut-off valve is installed in the middle of the oil pipe, and the shut-off valve and the hydraulic cylinder are fixed together.
  • the other end is connected to a liquid storage bottle, and two beetle dampers are installed in the valve stroke of the shut-off valve.
  • the two worm dampers can be moved arbitrarily in the orbital stroke of the hydraulic cylinder before and after running, that is, the stroke of the hydraulic cylinder Open or close the valve at any position inside. Since the damper is of the type of stag beetle, a scorpion damper can only block the valve from one direction. When the valve passes in the opposite direction, the worm damper will show the state of the hoe without affecting the passing valve.
  • the positions of opening and closing the valve can be respectively set, and the piston telescopic rod of the hydraulic cylinder can be in the set position (any one of the hydraulic cylinder running trajectories) Quick retraction on the point), you can also set to start at any point and synchronize with the cylinder.
  • the hydraulic cylinder block forwards to the shut-off valve and passes through the worm damper, the valve is closed, and the hydraulic oil inside the hydraulic cylinder cannot be discharged, so that the piston telescopic rod of the hydraulic cylinder and the cylinder advance synchronously.
  • the shut-off valve is opened by another worm damper, and the shut-off valve is opened.
  • the piston telescopic rod Under the action of the tension spring, the piston telescopic rod is quickly retracted, and the hydraulic oil in the hydraulic cylinder is opened through the open stop valve. Discharge into the liquid storage bottle until the piston telescopic rod retracts to be stopped by the catheter and stops retracting. The cylinder continues to retreat to the end of the stroke and the telescopic rod is pulled out of the cylinder.
  • the fourth content of the present invention is: providing a temperature-sensitive induction liquid storage tank capable of sealing and docking with a greenhouse, so that the temperature difference sensing liquid storage tank can be back and forth between two relatively isolated environments in the greenhouse and the outside of the greenhouse. Change position, two connected doors of the same size at right angles. When any one door is completely closed, the other is fully open. There is a carrier between the two doors for placing the temperature difference sensing liquid storage tank. Changing the switching state of the two doors can change the temperature difference sensing storage. The location of the tank in two relatively isolated environments.
  • the fifth content of the present invention is to provide a terminal power output device which is composed of a large-scale extreme temperature difference automatic adjustment hydraulic cylinder and a mounting frame, and which is operated by a tension spring to store mechanical energy under a preset condition.
  • the temperature difference induction liquid storage tank and the hydraulic oil cylinder are integrally connected, and the inside is filled with the power liquid to exhaust the air, and the thermal expansion and contraction effect of the power liquid sealed in the liquid storage tank
  • the piston telescopic rod of the hydraulic cylinder is embodied, and the temperature rises the hydraulic fluid in the liquid storage tank to push out the piston telescopic rod due to the pressure generated by the thermal expansion.
  • the power liquid in the liquid storage tank generates a negative pressure due to the shrinkage.
  • the energy storage tension spring pulls the piston telescopic rod back and retracts.
  • the temperature difference sensing liquid storage tank is divided into two liquid storage chambers of the power liquid chamber and the transmission liquid chamber, the two different performance liquids are separated by the concave and convex isolating membrane in the middle, so the temperature difference sensing liquid storage tank has good thermal expansion and contraction.
  • the performance also takes into account the good lubrication performance of the liquid entering the hydraulic cylinder, so that the service life of the hydraulic cylinder is guaranteed to the maximum extent.
  • the combination of the temperature difference sensing liquid storage tank and the hydraulic oil cylinder obtains the mechanical energy of the telescopic expansion and contraction of the piston telescopic rod in the change of the temperature difference of the temperature difference induction liquid storage tank, and obtains a new energy source. This combination can only be adapted to work in a constant temperature difference environment, and can not adapt to the temperature difference of the natural environment.
  • the temperature difference sensing liquid storage tank cooperates with the "extreme temperature difference adapting to adjust the hydraulic cylinder".
  • the piston telescopic rod protrudes, and the hydraulic oil in front of the piston telescopic rod is discharged from the two return holes into the liquid storage bottle, in the piston
  • the hydraulic oil in front of the piston is discharged from the return hole from the return hole.
  • the excess hydraulic oil passes through the return hole due to continued thermal expansion (220 in Fig. 6a).
  • the piston telescopic rod of the hydraulic cylinder is immediately retracted under the assistance of the energy storage tension spring.
  • the storage The negative pressure inside the liquid tank opens the backflow valve provided between the hydraulic oil pipe connecting the liquid storage bottle and the liquid storage tank, and sucks the hydraulic oil in the liquid storage bottle.
  • the return valve is stopped because there is no suction force of the negative pressure. Closed, therefore, the temperature difference sensing liquid storage tank and the extreme temperature difference are automatically adjusted to suit the hydraulic cylinder, and can work normally under any extreme temperature difference in nature, whether it is extreme weather with excessive temperature difference or normal weather change. It can ensure that the stroke of the hydraulic cylinder piston telescopic rod is not affected.
  • the automatic adjustment and adaptation device When the temperature is too high, the automatic adjustment and adaptation device will prevent the excessive hydraulic pressure from being too high and burst due to excessive temperature rise.
  • the temperature is too low.
  • the hydraulic oil sucked into the liquid storage bottle replenishes the space of the liquid storage tank, the temperature is lowered and the vacuum is not lowered in the liquid storage tank.
  • the device can ensure that there is no vacuum in the cylinder under any extreme temperature difference.
  • the piston telescopic rod of the hydraulic cylinder When the temperature rises in the morning, the piston telescopic rod of the hydraulic cylinder will start to extend as the temperature rises, and the temperature in the afternoon just begins to drop, the hydraulic pressure The piston telescopic rod of the cylinder will retract synchronously with the shrinkage of the power fluid.
  • Temperature difference induction liquid storage tank, extreme temperature difference adjustment hydraulic cylinder, setting control device, right angle joint load door and terminal power output device cooperate (Fig. 1): temperature difference induction liquid storage tank when morning temperature starts to rise The internal power fluid generates a thermal expansion reaction, and the piston telescopic rod of the hydraulic cylinder (29 in Fig. 1) is extended to push the multifunctional slider of the setting control device (31 in Fig. 1) and the hydraulic cylinder (Fig. 319 in 1) goes ahead. The telescopic rod (37 in Fig. 1) is shrunk into the cylinder under the action of the energy storage tension spring (311 in Fig. 1), and the hydraulic oil in the cylinder is discharged into the liquid storage bottle (24 in Fig. 1). ).
  • the shut-off valve of the setting control device (316a in Fig. 2) passes through the beetle (317a in Fig. 2), and the shutoff valve switch (316a in Fig. 2) is closed.
  • the hydraulic oil in the cylinder stops discharging, and the piston telescopic rod and the cylinder body extend synchronously, pushing the right angle connected body door to be It is closed (47a in Figure 2), the large temperature difference sensing reservoir (1b in Figure 1) enters the greenhouse with the carrier ( Figure 2), and the large temperature difference sensing reservoir is located
  • the rapid rise of the ambient temperature produces a rapid thermal expansion reaction of the power fluid, and the piston telescopic rod (512 in Figure 2) that pushes the large-scale extreme temperature difference to automatically adjust the hydraulic cylinder quickly extends until the piston reaches the end point and starts to adjust the extreme temperature difference automatically.
  • the device discharges excess hydraulic oil into the reservoir (518 in Figure 2).
  • the hydraulic cylinder piston telescoping rod continues to advance synchronously against the position switch that has been closed (38 in Figure 3). Therefore, by adjusting the in-orbit position of the stag beetle damper (317a), the position change gate (47a) can be closed when the temperature rises by a certain degree Celsius, so that the large temperature difference sensing liquid storage tank (1b in Fig. 1) is outdoor.
  • the low temperature environment enters the high temperature environment in the room, and the thermal expansion reaction causes the telescopic rod of the terminal power output device (512 in Fig. 2) to quickly extend.
  • the tension spring (411 in Figure 4) is opened under tension, and the large temperature difference induction liquid storage tank (Fig. 4 is transferred from the indoor high temperature environment to the outdoor low temperature environment (1b in Fig. 4), large temperature difference induction
  • the ambient temperature at which the reservoir is located is rapidly reduced.
  • the tension spring (58 in Figure 4) pulls the piston telescopic rod (512 in Figure 4) back down to fill the vacuum created by the shrinkage reaction of the reservoir.
  • the piston (530 in Figure 2) retracts to the contraction
  • the stop point (531 in Figure 2) the temperature continues to drop.
  • the vacuum suction reaction generated by the cooling of the power liquid starts the extreme temperature difference automatic adjustment device, and the hydraulic oil in the liquid storage bottle (518 in Fig. 4) is recirculated through the open valve.
  • the valve flows into the space created by the temperature difference induction reservoir due to the cooling of the power fluid. Therefore, the position of the moving beetle damper (318 in Figure 4) can be set to open when the temperature drops by a few degrees Celsius in the afternoon.
  • the right angle joint load gate (47a) causes the large temperature difference induction liquid storage tank to be transferred from the indoor to the outdoor, and the piston telescopic rod of the terminal power output device (518 in Fig. 4) is retracted.
  • the cylinder (319) multi-function slider (317) slider (322) telescopic rod (29) continues to retract synchronously until the piston (Fig.
  • the telescopic movement of the telescopic rod (518) is that the device does not consume any energy, has no pollution, can be pre-set, automatically adjusted, automatically adapted, and long-term independent and stable operation.
  • the greenhouse is closed.
  • the insulation of the greenhouse is covered by the greenhouse in the afternoon when the conditions are met.
  • the invention can reduce pollution, save energy and liberate labor.
  • FIG. 1 Dynamic A
  • Figure 2 Dynamic B
  • Figure 2a exploded view of the overall device
  • Figure 3 Dynamic C
  • Figure 4 Dynamic D
  • Figure 5 Decomposition diagram of the temperature difference sensing reservoir
  • Figure 6 Automatic temperature adjustment hydraulic cylinder for extreme temperature difference
  • Figure 6a Explosion diagram of automatic adjustment of hydraulic cylinder for extreme temperature difference
  • Figure 7 sectional view of hydraulic cylinder
  • Figure 8 flat view of automatic control setting device
  • Figure 9 Automatic control Set device top view
  • Figure 10 Automatic control setting device exploded view
  • Figure 11 Automatic control setting device main frame
  • Figure 12 Hydraulic cylinder slide rail assembly
  • Figure 13 Multi-function slider
  • attached Figure 14 Multi-function push plate
  • Figure 15 Globe valve
  • Figure 16 Beetle damper, Figure 16a; Side view of the worm damper, 16b
  • Figure 18 right angle joint load gate, Figure 18a; right angle joint load gate 47a47b dynamic, Figure 18b; right
  • Temperature difference sensing liquid storage tank The upper cover of the temperature difference sensing liquid storage tank (S10 in Fig. 5) is also a transmission liquid storage chamber (referred to as a transmission liquid chamber), the front side is a triangle, and the top is an oil injection hole (S11 in Fig. 5) The obliquely extending under the oil hole is a connection between the oil inlet and outlet of the hydraulic cylinder (Fig. 5-S12).
  • the layout easily drains the air inside the transmission liquid during oil filling.
  • the interface between the transmission liquid chamber and the power liquid chamber is a rectangular interface with a flat edge.
  • the power liquid chamber has a rectangular parallelepiped shape (S17 in Fig. 5), and the upper portion is a joint with the transmission fluid chamber.
  • the shape and size are exactly the same as those at the transmission liquid chamber interface, and the requirements must be smooth except for the screw holes of the four corners.
  • the screw holes and the interface holes of the transmission liquid chamber are completely matched.
  • the butt hole of the press ring (S16 in Fig. 5) and the butt hole of the power liquid chamber are completely matched, and the butt hole of the separator (113 in Fig. 5) (114 in Fig. 5) is completely matched, and the ring is pressed.
  • the four corner holes are tapered holes (121 in Figure 5), and the tapered head bolts (S14 in Figure 5) must be fully screwed in to ensure that the surface of the press ring is flat.
  • the bottom of the power liquid chamber is a screw interface (118 in Fig.
  • the formula for calculating the filling power liquid is: [The working environment of the temperature difference sensing liquid storage tank is at least 10 degrees Celsius and the highest is 30 degrees Celsius. The temperature difference of the working environment temperature is 40 degrees Celsius, the intermediate temperature is 10 degrees Celsius, and the distance between the concave and convex isolating film is 20 cm, that is, the radius is 10 cm. Then, the formula should be 40 divided by 20 equal to the liquid filled every 2 degrees Celsius.
  • the corresponding floating 1 cm answer must be used, ie the liquid and the separator (113 in Figure 5) and the power chamber interface (115 in Figure 5) filled with the ambient temperature at 10 °C when the power fluid is filled. It is level.
  • the ambient temperature at the time of filling the power fluid is higher than the middle of the working environment (10 degrees Celsius) of the temperature difference sensing reservoir (Fig. 5), and the power fluid to be filled is 1 cm higher than the power liquid chamber interface.
  • Add a proper amount of power fluid liquid with stable thermal expansion and contraction performance
  • drain the air inside tighten the sealing bolt (116 in Figure 5), and then power the fluid chamber (Figure 5 S17) docking with the transmission fluid chamber (10 in Fig.
  • a threaded return hole (219 in Fig. 6a, 220 in Fig. 6a) is provided before and after the piston front end stop (216 in Fig. 6a) of the hydraulic cylinder, in the hydraulic cylinder
  • the return hole (219 in Fig. 6a) is fitted with a joint (28 in Fig. 6a)
  • the return hole (220 in Fig. 6a) is fitted with a tee joint (27 in Fig. 6a)
  • the oil pipe ( Both ends of 214a) in Fig. 6a are connected to a joint (28 in Fig. 6a) and a tee joint (27 on Fig. 6a), respectively.
  • One end of the oil pipe (214 in Figure 6a) is mounted on the reservoir port (26 in Figure 6a) and the other end is mounted on the tee fitting (27 in Figure 6a).
  • One end of the oil pipe (213 in Figure 6a) is mounted on the reservoir port (25 in Figure 6a) and the other end is mounted on the lower port of the backflow valve (23 in Figure 6a).
  • One end of the oil pipe (212 in Fig. 6a) is mounted on the upper port of the backflow stop valve (23 in Fig. 6a), and the other end is mounted on the tee joint (22 in Fig. 6a), and the oil pipe (attached)
  • One end of 221a) in Fig. 6a is mounted on a tee joint (22 in Fig.
  • the calculation of the required power liquid capacity and the number of liquid storage pipes required for the temperature difference sensing liquid storage tank (Fig. 5) is: setting, the temperature difference sensing liquid storage tank (Fig. 5), the capacity of the power liquid is A liter, The temperature difference of the environment is 1 degree Celsius per liter of power liquid.
  • the volume of the hydraulic cylinder is B, the capacity of the hydraulic cylinder is C, the set working temperature difference can be stably obtained, the capacity of the power liquid chamber is E, and the liquid storage tank The capacity is F.
  • Control setting device (Fig. 8): Ordinary hydraulic cylinder (348 in Fig. 12), requiring: the stroke and total length of the common hydraulic cylinder are the same as the automatic adjustment of the hydraulic cylinder (Fig. 6).
  • Multi-function The slider (Fig. 13) is a rectangular parallelepiped steel block, and 1f in Fig. 13 is a chute that abuts the slide rail, and the slider directly above (31c in Fig. 13) is used to interface with the tail end of the hydraulic cylinder.
  • the sleeve, the sleeve can be welded to the slider.
  • (31f in Fig. 13) is a threaded hole for bolting the hydraulic cylinder after the tail of the hydraulic cylinder is inserted into the sleeve.
  • (31b in Fig. 13) is a threaded hole for arranging a shutoff valve.
  • (31a in Fig. 13) is a bearing plate for withstanding the thrust of the telescopic rod of the hydraulic cylinder from the extreme temperature difference, and can be welded and combined with the slider.
  • (31d in Fig. 13) is a hole for hanging the spring, and it is drilled with a drill bit obliquely downward.
  • the slider (322 in Figure 12) is a normal slider.
  • the slide rail (315 in Figure 12) requires that the stroke after the hydraulic cylinder is placed cannot be less than the stroke of the automatic adjustment of the hydraulic cylinder (Fig. 6).
  • the oil pipe (330, 331, 332 in Figure 8) is a high-strength metal oil pipe that does not expand under high pressure conditions, ensuring that hydraulic energy is not lost during the transfer of the oil pipe.
  • the tubing joints (34, 36 in Figure 8) are resistant to high pressure seals.
  • the shut-off valve (Fig. 15) is a twisting switch (316a in Fig. 15), and a return spring (316e, 316f in Fig. 15) is provided on each side of the switch for changing in the beetle blocker. After the switch state, make some necessary callbacks to ensure that the beetle can be intercepted and changed the switch state once again.
  • the liquid storage bottle (33 in Figure 8) requires that after the cover is closed, it can prevent the entry of dust and allow air to enter and exit. There are two interfaces underneath, leaving some space under the interface for precipitating hydraulic oil due to long-term work. Impurities.
  • the main body of the stag beetle (Fig. 16, 16a) is a square slider.
  • a beetle (318b in Fig. 16a) is mounted on the left corner of the opening of the chute (Fig. 19a-318f).
  • a threaded hole (318c in Fig. 16a) is placed into the bolt (318a in Fig. 16a) for securing the position of the worm damper above the track.
  • Two identical beetle dampers are placed opposite the slide rails (Fig.
  • the scorpion damper slide rail scale (Fig. 17) is made of steel plate, and one-half of the width is the depth of the scorpion damper chute. The trajectory of the worm on the slide rail scale cannot be less than the extreme temperature difference.
  • the stroke of the piston telescopic rod of the cylinder is scaled on the slide rail to facilitate setting the in-orbit position of the worm damper, and the two ends have mate holes (339, 341 in Fig. 17) for docking with the bracket.
  • a tension spring (311 in Figure 8) is used to store energy.
  • the multi-function push plate (Fig. 14) is made of steel plate, and the steel plate is cut into a shape (38 in Fig.
  • the screw holes of the anastomosis are made to have a circular hole corresponding to the vertical shaft (38d in Fig. 14) at the position (38y, 38t in Fig. 14), and a position is made at the position (38c in Fig. 14).
  • the small hole of the tension spring is hung, and the two ends of the vertical shaft are made into bolts, and the vertical shaft is inserted (38t in FIG. 14), and sequentially penetrates into the pad cylinder 38p, the roller bearing 38b, the pad cylinder 38j, and finally passes through the circular hole 38y.
  • the two ends of the vertical shaft are screwed and fixed (38e, 38f in Fig. 14).
  • the lower frame of the main frame (Fig. 11) (313 in Fig. 11) is made of rectangular steel plate, the length of which is larger than the extreme temperature difference automatic adjustment hydraulic cylinder protruding from the piston telescopic rod (Fig. 6) plus the retractable telescopic rod
  • the length of an ordinary hydraulic cylinder (348 in Figure 12)
  • the bracket (328, 325 in Figure 11) is detachable, with a threaded hole at the bottom for inserting the bolt and fixed at a low price.
  • the sleeve (327, 326 in Figure 11) can be directly welded to the bracket. (324 and 319 in Fig.
  • Fig. 11 are rail brackets that can be directly welded to the main frame, and a threaded hole (345, 344 in Fig. 8) is provided on the bracket for mounting the slide rails
  • Fig. 312 in 11 is a conduit bracket
  • the piston telescopic rod conduit (310 in Fig. 11) is directly welded to the branch
  • (320, 319 in Fig. 11) is a scorpion damper slide rail bracket
  • the side of the bracket is made Two circular holes for the docking holes (41a and 41b in Fig. 2a) for docking (334 and 334b in Fig. 8)
  • the conduit (310 in Fig. 11) can be directly welded to the bracket (Fig.
  • the front end of the hydraulic cylinder is inserted into the sleeve (322a in Fig. 12) of the slider (322 in Fig. 12), and screwed into the nut type fixing hole (322b in Fig. 12) to be screwed and fixed. 6.
  • the slider covers, the middle line of the shutoff valve switch (316a in Figure 9) is the concentric middle line (321a in Figure 9), the worm damper (317 in Figure 9) and (in Figure 9 318) Mounted on both sides of the concentric middle line, respectively, the shut-off valve switch (316a in Figure 9) must be able to touch the beetle on both sides during its travel.
  • Moving position change temperature difference environment device the butt plate (41 in Fig. 18) is welded with steel to form a door frame type skeleton, and then a common plate is added. Hinge (43 and 42 in Fig. 18), soft hydraulic oil pipe (44 in Fig. 18), oil pipe fixing card (45 in Fig. 18), joint (46 in Fig. 18), right angle joint
  • the load-bearing doors (47a and 47b in Fig. 18c) are welded with steel to form a joint frame in the shape of an angled steel and then an insulating sheet is attached.
  • the carrier 49 in Figure 18b) is welded at right angles to the inner corner of the right angled loadgate door, requiring easy loading of large temperature differential sensing reservoirs.
  • the oil pipe (48 in Fig. 18), the oil pipe (410 in Fig. 18d), and the large temperature difference sensing liquid storage tank (1b in Fig. 18d) are composed.
  • Terminal power output device automatic adjustment of hydraulic cylinder by large extreme temperature difference (Fig. 19b), main bracket (Fig. 19a) steel welded structure, fixed bracket (53 and 54 in Fig. 19), tension spring (Fig. 19) 58), the tension spring bracket (57 in Figure 19)
  • the oil pipe (48 in Fig. 2) is connected to the soft oil pipe (44 in Fig. 2a) through a joint (46 in Fig. 2a), and the other end is connected to a tee joint (525 in Fig. 2a).
  • One end of the tension spring (311 in Fig. 2) is hung on the tension spring hanging hole (38c in Fig. 2), and the other end is hung on the tension spring hanging hole (329b in Fig. 2).
  • the telescopic rod (37 in Fig. 2) is internally contracted to the cylinder (39 in Fig. 2) by the tension of the tension spring (311 in Fig. 2), and the hydraulic oil in the cylinder is discharged into the liquid storage. Bottle (24 in Figure 1).
  • the shut-off valve of the setting control device (316a in Fig. 2) passes through the beetle (317a in Fig. 2), and the shutoff valve switch (316a in Fig. 2) is closed. Because the hydraulic oil in the cylinder stops discharging, the piston telescopic rod and the cylinder body extend synchronously, and the roller bearing of the multi-function push block at the front end of the telescopic rod (38b in FIG.
  • the tension springs (323 and 311 in Figure 3) are also tensioned to store enough energy as needed.
  • the uneven state of the power liquid shrinkage and concavity isolation film (113 in Fig. 4) in the temperature difference sensing liquid storage tank moves to the side of the power liquid chamber, and the extreme temperature difference adjusts the piston expansion and contraction of the hydraulic cylinder.
  • the rod then begins to retract in synchronism with the cooling process of the motive fluid under the tension of the tension springs (323 and 311 in Fig. 4).
  • the hydraulic cylinder block (319 in Fig. 4) is also retracted synchronously by the tension spring (323 and 311 in Fig. 4), and the piston telescopic rod (37 in Fig.
  • the temperature difference induces the thermal expansion reaction of the power liquid in the liquid storage tank to push the telescopic rod of the terminal power output device (512 in Fig. 2) to quickly extend.
  • Adjusting the on-orbit position of the M. serrata damper (318 in Figure 4) you can set the number of degrees Celsius in the afternoon to open the right-angled one-piece door (47a) to transfer the large temperature difference sensing reservoir from the room.
  • the temperature difference induces the power liquid in the liquid storage tank to produce a shrinkage reaction, so that the telescopic rod of the terminal power output device is quickly retracted under the assistance of the tension spring (512 in FIG. 2).
  • the telescopic movement of the piston telescopic rod (518 in FIG. 4) is that the present invention does not consume any energy, has no pollution, can be pre-set according to the needs of the working conditions, automatically adjusts, automatically adapts, and long-term independent operation.
  • the insulation of the greenhouse is taken up, and when the conditions are met in the afternoon, the greenhouse is covered with the terminal power of the insulation.
  • the invention can reduce pollution, save energy and liberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种从温差中获取动力实现自动化作业的机械装置,将对温差变化敏感的两种液体密封在容器中,并使用隔离膜将两者隔开。该装置利用热胀冷缩的原理,利用液体受热膨胀所产生的动能转化为机械能,并将该机械能用于驱动作业机器。这种装置利用自然规律,节省能源。

Description

[根据细则37.2由ISA制定的发明名称]一种从温差中获取动力实现自动化作业的机械装置 技术领域:
本发明公开了一种从自然界时空变化和位置变化产生的温差中获取机械能,能够自动调节适应自然界极端温差变化可以在各种自然条件下长期自主作业,利用自然变化规律实现自主控制动力的发功时间、按设定的要求长期自动化作业、在特定领域代替电脑和电机、发动机,实现自主自动化精确作业的方法。本发明不消耗任何能源、真正做到零排放,安全环保性能稳定。时空永远在变化,位置也可以永远变化,在时空或位置的变化中可以永远不停的得到温差的变化。本发明利用自然界永远变化的温差获取永不枯竭的动力,机械自动化程度高、安全可控、精确度高。属于新能源的开发利用和机械自动化技术领域。
技术背景:
目前,能源短缺,环境污染严重,因环境污染致病的人越来越多,风能、太阳能、水力发电都要受到地域或天气的限制,并且没有一种技术可以直接实现机械自主自动化控制、在特定领域取代电脑控制自动化作业。本发明提供的温差能获取和自动化作业技术可以自主适应任何极端自然环境,从时空变化产生的温差和移动位置获得的温差中获取机械能。利用自然规律的变化实现机械自身的自动化作业,在温室大棚覆盖保温被、收起保温被领域代替电脑和电机、发动机、人力,实现自主自动化作业,不需消耗任何能源,不会对环境造成任何污染,成本低,使用维护简单方便。
发明内容:
本发明的第一个内容是:解决能源短缺、环境污染严重的问题,提供一种不消耗任何能源没有任何排放,在自然界温差的变化中就可以自动产生机械能的装置;本发明的机械能获取技术,是利用热胀冷缩的原理,选用一种热胀冷缩性能稳定良好的液体(简称动力液)密封在一个连接着活塞伸缩杆式液压油缸(简称:液压油缸)、对温差变化敏感、耐高压的储液罐中(简称:温差感应储液罐),在温差感应储液罐所处的环境温度上升时,动力液遇热膨胀产生的压力把液压油缸的活塞伸缩杆推出,当温差感应储液罐所处环境温度下降时,动力液遇冷收缩产生负压空间,助力拉簧拉着液压油缸的活塞伸缩 杆回缩。获取自然温差的方式有两种:一种是把温差感应储液罐固定在一个位置,从大自然周而复始的温差变化中获取永不枯竭的机械能,另一种是利用温差感应储液罐和液压油缸伸缩杆配合产生的机械能改变温差感应储液罐的位置,从位置的变化中获取温差的变化,温差的变化又给活塞伸缩杆提供了伸缩的能量,如此周而复始的在两个温度不同的环境之间变换位置,可以获得永不枯竭的机械能。一种液体很难兼具良好的热胀冷缩和良好的润滑两种性能,如果使用热胀冷缩性能好的液体(煤油、酒精)势必会对活塞伸缩杆式液压油缸造成很大的磨损和腐蚀,会大大缩短液压油缸的使用寿命。使用润滑性能好的液体(润滑油、液压油)虽然提高了液压油缸的使用寿命,但是由于其热胀冷缩的性能差,在具备同样功率的前提下,必须增加液体的用量和温差感应储液罐的容量,这样成本也大大提高。为了解决这个问题,把温差感应储液罐的液体(简称动力液)和进入液压油缸的液体(简称传动液)用一种耐腐蚀、弹性良好的凹凸形状胶膜(简称:隔离膜)隔离开。本发明应用前景广阔,可以直接应用其产生的机械能,作为动力、温室控温通风、泵水、发电。
本发明的第二个内容是:提供一种和储液罐配合后,获取可供冬暖式大棚使用的,可以自动在下午温度下降时给大棚盖上保温层,早晨太阳升起后自动收起保温被的自动化动力,能自主调节适应自然界任何极端温差变化的极端温差自动调节液压油缸。普通的液压油缸只适合在正常恒定的温差变化环境下工作,不能适应复杂多变的自然环境中极端温差的变化。安装了极端温差自动适应调节装置的液压油缸和温差感应储液罐配合使用,可以在自然界中任何极端温差变化条件下正常工作,按设定的需要做功。安装了极端温差自动适应调节装置的液压油缸称做:极端温差自动调节液压油缸。本液压油缸前端设置了两个回流孔,在温度升高超过液压油缸的行程极限时,因继续热胀而多出的液压油通过回流孔流到外面的储液瓶。温度一旦开始下降,储液罐内部因液体冷缩形成负压,液压油缸的活塞伸缩杆在储能拉簧的助力下立即回缩,当温度下降超过液压油缸的活塞伸缩杆行程极限时,储液罐内部的负压使连接储液瓶和储液罐的液压油管之间设置的止回流阀打开,吸入储液瓶里的液压油,温度停止下降时止回流阀因为没有负压的吸力而关闭。储液罐和极端温差自动调节液压油缸配合,在自然界任何极端温差变化的情况下都能正常做功,使液压油缸活塞伸缩杆的行程不受温度忽然降低或忽然升高的影响,获取液压油缸活塞伸缩杆行程所需要的机械能。
本发明的第三个内容是:提供一种和储液罐、极端温差自动调节适应液压油缸、直角连体载物门配合使用可以设定在早晨温度升高任何摄氏度的条件下关闭直角连体载物门,在下午温度下降任何摄氏度的条件下打开直角连体载物门的作业条件设定控制装置。把普通液压油缸加装上滑块安装在滑轨上面,使液压油缸可以在轨运动,液压油缸尾部油孔连接一个高压油管,油管的中间安装一个截止阀,截止阀和液压油缸固定为一体,另一端连接一个储液瓶,在截止阀的阀门行程轨迹内安装两个磕头虫拦阻器,两个磕头虫拦阻器可以在液压油缸前后运行的轨道行程内任意移动,即在液压油缸缸体行程内的任何一个位置打开或者关闭阀门。由于拦阻器是磕头虫类型的,一个磕头虫拦阻器只能拦阻来自一个方向经过的阀门,当阀门从相反的方向经过时,磕头虫拦阻器就呈现磕头的状态而不会影响经过的阀门的开关状态,因为安装了两个拦阻方向不同的拦阻器,可以把打开阀门和关闭阀门的位置分别设定,液压油缸的活塞伸缩杆可以在设定的位置(液压油缸运行轨迹中的任何一个行程点)上快速回缩,也可以设定在任意一个点上开始和缸体一起同步伸出。在液压油缸缸体前行到截止阀阀门经过磕头虫拦阻器时,阀门关闭,因液压油缸内部的液压油无法排出而导致液压油缸的活塞伸缩杆和缸体同步前进。在液压油缸缸体后退,截止阀阀门经过另一个磕头虫拦阻器时截止阀阀门打开,在拉簧的作用下活塞伸缩杆快速回缩把液压油缸缸体内的液压油经打开的截止阀流排入储液瓶,直到活塞伸缩杆回缩到被导管拦住而停止回缩,缸体继续后退至行程的止点而伸缩杆则被拉出缸体。
本发明的第四个内容是:提供一种可以承载温差感应储液罐的,能够和温室大棚密封对接,使温差感应储液罐可以在温室内和温室外两个相对隔绝的环境之间来回变换位置,两扇大小相同的呈直角合在一起的连体门。在完全关闭任何一扇门时,另一扇就是完全打开的状态,两扇门之间有一个载物架用来放置温差感应储液罐,变换两扇门的开关状态就可以变换温差感应储液罐在两个相对隔绝的环境中的位置。
本发明的第五个内容是:提供一种由大型极端温差自动调节液压油缸和安装架组成的,通过拉簧存储机械能在符合预先设定条件下作业的终端动力输出装置。
在以上四项内容的配合使用下所产生的有益效果是:
1、在温差感应储液罐和液压油缸相结合,温差感应储液罐和液压油缸连接成一体,里面装满动力液排尽空气,密封在储液罐里的动力液的热胀冷缩效应通过液压油缸的活塞伸缩杆体现出来,温度上升储液罐内的动力液因热胀产生的压力把活塞伸缩杆推出,温度下降时储液罐内的动力液因冷缩产生负压, 蓄能拉簧把活塞伸缩杆拉动回缩。由于温差感应储液罐分为动力液室和传动液室两个储液室,中间用凹凸隔离膜把两种性能不同的液体隔绝开,所以温差感应储液罐具备了良好的热胀冷缩性能又兼顾了进入液压油缸的液体具备良好的润滑性能,使液压油缸的使用寿命得到最大限度的保障。温差感应储液罐和液压油缸相结合在温差感应储液罐所处环境温差的变化中获得活塞伸缩杆来回伸缩的机械能,就是获得了一种新的能源。这种组合只能适应于在恒定的温差变化环境工作,不能适应自然环境的温差变化。
2、温差感应储液罐和“极端温差适应调节液压油缸”相配合,在温度升高时活塞伸缩杆伸出,活塞伸缩杆前方的液压油从两个回流孔排出流入储液瓶,在活塞覆盖住一个回流孔的时候,活塞前方的液压油从回流孔排出缸体,在温度升高到活塞超过回流后,因继续热胀而多出的液压油通过回流孔(附图6a中的220)流到外面的储液瓶。温度一旦开始下降,储液罐内部因液体冷缩形成负压,液压油缸的活塞伸缩杆在储能拉簧的助力下立即回缩,当温度下降超过液压油缸的活塞伸缩杆行程极限时,储液罐内部的负压使连接储液瓶和储液罐的液压油管之间设置的止回流阀打开,吸入储液瓶里的液压油,温度停止下降时止回流阀因为没有负压的吸力而关闭,因此,温差感应储液罐和极端温差自动调节适应液压油缸配合,在自然界任何极端温差变化的情况下都能正常做功,无论是遇到温差变化过大的极端天气还是正常的天气变化都能保证液压油缸活塞伸缩杆的行程不受影响,温度过高时自动调节适应装置就会通过把多余的液压油排进储液瓶避免因温度升的过高压力过大而爆裂,温度过低时吸入储液瓶的液压油补充储液罐的空间保证温度降得再低储液罐内也不会出现真空。本装置可以保证缸体内在任何极端温差情况下都不会存在真空,在早晨温度刚刚回升时液压油缸的活塞伸缩杆就会随着温度的升高而开始伸出,下午温度刚刚开始下降,液压油缸的活塞伸缩杆就会随着动力液的冷缩而同步回缩。
3、温差感应储液罐、极端温差调节液压油缸、设定控制装置、直角连体载物门、终端动力输出装置相配合(附图1):在早晨温度开始上升时,温差感应储液罐内的动力液产生热胀反应,液压油缸的活塞伸缩杆(附图1中的29)前伸,推动设定控制装置的多功能滑块(附图1中的31)和液压油缸(附图1中的319)整体前行。伸缩杆(附图1中的37)在蓄能拉簧(附图1中的311)的作用下收缩进缸体,缸体里的液压油被排进储液瓶(附图1中的24)。在温度升高到设定条件时,设定控制装置的截止阀阀门(附图2中的316a)经过磕头虫(附图2中的317a),截止阀开关(附图2中的316a)关闭,缸体内的液压油停止排出,活塞伸缩杆和缸体同步伸出,推动直角连体载物门将 其关闭(附图2中的47a),大型温差感应储液罐(附图1中的1b)随着载物架进入温室大棚内部(附图2),大型温差感应储液罐因其所处的环境温度快速升高而产生动力液快速热胀反应,推动大型极端温差自动调节液压油缸的活塞伸缩杆(附图2中的512)快速伸出,直到活塞到达伸止点启动极端温差自动调节装置,把多余的液压油排入储液瓶(附图2中的518)。随着继续升高的温度,液压油缸活塞伸缩杆紧贴着已经关闭的位置转换门继续同步前伸(附图3中的38)。因此,调动磕头虫拦阻器(317a)的在轨位置就可以设定温度上升多少摄氏度的情况下关闭位置转换门(47a),使大型温差感应储液罐(附图1中的1b)从室外的低温环境进入室内的高温环境,产生热胀反应推动终端动力输出装置的伸缩杆(附图2中的512)快速伸出。在下午温度下降时温差感应储液罐(1x)里的动力液冷缩,极端温差调节液压油缸的活塞伸缩杆随着温度的下降在拉簧(附图4中的323)的拉力作用下开始和动力液的冷缩进程同步回缩。液压油缸缸体(附图4中的319)在拉簧(附图4中的323)的作用下也同步回缩,活塞伸缩杆(附图4中的37)在拉簧(附图4中的311)的拉力作用下同步后退,当截止阀阀门(附图4中的316a)经过磕头虫(附图4中的318b)时截止阀阀门打开,活塞伸缩杆(附图4中的37)在蓄能拉簧(附图4中的311)的作用下快速回缩,在多功能推块(附图14中的38)回缩至导管(附图4中的310)被拦住伸缩杆(附图4中的37)停止和缸体(附图4中的319)同步回缩,位置转换门(附图4中的47a)失去了伸缩杆(附图4中的37)的推力,在拉簧(附图4中的411)的拉力下打开,大型温差感应储液罐(附图4随之从室内的高温环境转移到室外的低温环境(附图4中的1b),大型温差感应储液罐所处的环境温度快速降低,此时,拉簧(附图4中的58)拉着活塞伸缩杆(附图4中的512)回缩填补储液罐因冷缩反应产生的真空,直到活塞(附图2中的530)回缩至缩止点(附图2中的531),温度继续下降动力液冷缩产生的真空吸力反应启动极端温差自动调节装置,储液瓶(附图4中的518)内的液压油经打开阀门止回流阀流入填补温差感应储液罐因动力液冷缩产生的空间。因此,移动磕头虫拦阻器(附图4中的318)的在轨位置,就可以设定在下午温度下降多少摄氏度的时候打开直角连体载物门(47a)使大型温差感应储液罐从室内转移到室外,终端动力输出装置的活塞伸缩杆(附图4中的518)回缩。在室外温度继续下降的情况下,缸体(319)多功能滑块(317)滑块(322)伸缩杆(29)继续同步回缩,直到活塞(附图10-216)抵达缩止点(附图7中的215),温度继续下降动力液冷缩冷缩产生的真空吸力启动极端温差自动调节装置,打开 止回流阀(附图4中的23)阀门,吸入储液瓶(附图1中的24)的液压油补充因温差感应储液罐内动力液冷缩产生的空间。
伸缩杆(518)的伸缩运动就是本装置所要获取的不消耗任何能源、没有任何污染、可以预先设定、自动调节、自动适应、长期自主稳定作业的、在早晨符合条件的时候收起温室大棚的保温被、下午符合条件的时候给温室大棚覆盖保被的终端动力。利用本发明后可以减少污染、节省能源、解放劳动力。
附图:
附图1:动态A,附图2:动态B,附图2a:整体装置分解图,附图3:动态C,附图4:动态D,附图5:温差感应储液罐分解图,附图6:极端温差自动调节液压油缸,附图6a:极端温差自动调节液压油缸分解图,附图7:液压油缸剖面图,附图8;自动控制设定装置平视图,附图9:自动控制设定装置俯视图,附图10:自动控制设定装置分解图,附图11:自动控制设定装置主架,附图12:液压油缸滑轨总成,附图13:多功能滑块,附图14:多功能推板,附图15:截止阀,附图16:磕头虫拦阻器,附图16a;磕头虫拦阻器侧视图,16b;两个磕头虫拦阻器的在轨状态,附图17;磕头虫拦阻器滑轨标尺,附图18:直角连体载物门,附图18a;直角连体载物门47a47b动态,附图18b;直角连体载物门47a动态,18c;呈直角状态固定在一起的两扇门,附图18d;直角连体载物门47b动态,附图18e;直角连体载物门处于密封状态,附图19:终端动力输出装置,附图19a和附图19b;终端动力输出装置,附图20:支架。
S10温差感应储液罐液压油室,S11液压油室注油孔,S12液压油室进出油孔,S13密封螺栓,S14锥形头螺栓,S15对接螺栓,S16压圈,S17动力液室,S18储液管六角紧固体,S19储液管,S20对接螺栓,112压圈对接孔,113隔离膜,114隔离膜对接孔,115动力液室螺纹对接孔,116动力液室注油排气孔,117储液管螺纹接头,118动力液室储液管螺母对接孔,120对接口,121锥形紧固孔,21油管,22三通接头,23止回流阀,24储液瓶,25接口,26接口,27三通接头,28接头,29伸缩杆,210液压缸体,211接头,212油管,213油管,214油管,215缩止点,216伸止点,217油封,218进出油孔,219回流孔A,220回流孔B,221活塞,222缸体尾端,223缸体前端,31多功能滑块,31f滑槽,31d拉簧挂孔,31a承力板,31b截止阀安装孔,31c套筒,33储液瓶,34接口,35接口,36回流孔,37伸缩杆,37a螺栓头,38多功能推板,38a螺母对接口38b滚筒轴承,38c拉簧挂孔,38f螺母,38d立轴,38e螺母,38j垫筒,38p垫筒,38y圆孔,38t圆孔,39液压油缸缸体,310导管,311拉簧,312导管支架,313主支架底板,314 接头,315滑轨,316截止阀,316a截止阀开关,316b对接孔,316c接口,316d接口,317磕头虫滑块A,317a磕头虫,317b固定螺栓,318磕头虫滑块B,318a固定螺栓,318b磕头虫,318c螺纹孔,318f滑槽,319支架,320支架,321磕头虫导轨标尺,321同心中间线,322滑块,322a套筒,322b螺纹孔,323拉簧,324滑轨支架,325液压油缸支架,325a螺纹孔,326套筒,327套筒,328支架,328a螺纹孔,329拉簧架,329a拉簧挂孔,329b拉簧挂孔,330油管,331油管,332油管,333支架,334对接孔,334b对接孔,335支架,336固定螺栓,337固定螺栓,338滑轨对接孔,339磕头虫滑轨对接孔,340滑轨对接孔,341磕头虫滑轨对接孔,342磕头虫滑轨支架对接孔,343磕头虫滑轨支架对接孔,344滑轨支架对接孔,345滑轨支架对接孔,346螺母孔,347螺母孔,348普通液压油缸,41对接板42合页,43,合页,44软液压油管,45油管固定卡,46接头,46a接头,46b接头,47a直角连体载物门A,47b直角连体载物门B,48油管,1b大型温差感应储液罐,49载物架,410油管,411拉簧,412拉簧挂钩,413拉簧挂钩,414穿管孔,415拦阻片,51支架主体,52拉簧支架,53支架,53a螺纹孔,54支架,54a螺纹孔,55拉簧挂孔,56伸缩杆57拉簧挂孔,58拉簧,59a固定螺栓,59b固定螺栓,53b对接孔,54b对接孔,53c螺纹孔,54c螺纹孔,510液压油缸前箍头,511缸体,512伸缩杆,513液压油缸后箍头,514接头,515三通接头,516油管,517接口,518储液瓶,519接口,520油管,521止回流阀,522油管,523接头,524油管,525三通接头,526回流孔,527油封,528回流孔,529申止点,530活塞,531缩止点,532进出油孔,533伸缩杆螺纹头,534拉簧支架螺纹对接孔,535拉簧挂孔。
实施
【第1项】
温差感应储液罐:温差感应储液罐的上盖(附图5中的S10)也是传动液储存室(简称传动液室),正面是三角形,顶部是注油孔(附图5中的S11),注油孔下面斜着伸出的是连接液压油缸的进出油孔(附图5-S12)这样的布局在注油时容易排尽传动液室内部的空气。传动液室和动力液室接口处是长方形接口为平边。动力液室为长方体形状(附图5中的S17),其上部是和传动液室的结合处,形状、大小和传动液室接口处一模一样,要求必须平滑,除了四个角的螺纹孔以外的螺丝孔和传动液室的接口孔完全对应吻合。压圈(附图5中的S16)的对接孔和动力液室的对接孔完全吻合,和隔离膜(附图5中的113)的对接孔(附图5中的114)完全吻合,压圈四个角的孔为锥形孔(附图5中的121),要求锥形头螺栓(附图5中的S14)必须可以完全拧进去,保证压圈的表面平整。动力液室的底部为螺丝接口(附图5中的118),在使用时根据需要安装储液管(附图5中的S19)的数量,储液管(附图5中的S19)的接口为螺栓形状(附图5中的117),用来和动力液室的螺纹接口(附图5中的118)对接。1、用储液管(附图5中的S19)的螺纹头拧进动力液室的螺纹孔(附图5中的118),用密封胶涂在螺纹头上面以保证接口的完全闭合。动力液室底部暂时不使用的接口(附图5中的118)用相吻合配套的螺栓(附图5中的S13)拧紧封闭。2、把动力液室的上接口(附图5中的120)和压圈的对接面都涂上密封胶,把隔离膜放在动力液室接口(附图5中的120)上面,把压圈放在隔离膜上边,用锥形头螺栓(附图5中的S14)放进压圈四个角的锥形孔固定。3在动力液室安装好储液管、固定好凹凸隔离膜之后,从注油排气孔(附图5中的116)往动力液室加注动力液,加注的标准要按操作时的温度和动温差感应储液罐工作环境的最高温差、凹凸隔离膜上下移动的距离计算,计算加注动力液的例题公式为:【温差感应储液罐的工作环境为最低零下10摄氏度最高30摄氏度,则工作环境温度的温差为40摄氏度,中间温度为10摄氏度,凹凸隔离膜上下运动的距离是20厘米即半径10厘米,那么,公式应该是40除以20等于每浮动2摄氏度加注的液体就必须相应的浮动1厘米的答案,即在加注动力液时的环境温度在10摄氏度时加注的液体与隔离膜(附图5中的113)和动力室接口(附图5中的115)为水平状态。加注动力液时的环境温度每高出温差感应储液罐(附图5)工作环境中间值(10摄氏度)2摄氏度,则加注的动力液就要高出动力液室接口1厘米。加注好适量的动力液(热胀冷缩性能稳定良好的液体)排尽里面的空气、拧紧密封螺栓(附图5中的116)后,动力液室(附图5中的 S17)和传动液室(附图5中的10)进行对接,把传动液室涂抹好密封胶,放在在动力液室的接口(附图5中的120)上面的压圈(附图5中的S16)上,对准螺丝孔,用螺栓插进拧紧固定(附图5中的119)。这种一体隔离式的设计完全隔离了两种性能不同的液体,使两种液体不会混合同时又兼顾了良好的润滑和良好的热胀冷缩性能又保证两种液体的一体同步运动。
【第2项】
极端温差自动适应调节装置:在液压油缸的活塞前伸止点(附图6a中的216)前后各设一个螺纹回流孔(附图6a中的219、附图6a中的220),在液压油缸的回流孔(附图6a中的219)安装上接头(附图6a中的28),回流孔(附图6a中的220)安装上三通接头(附图6a中的27),把油管(附图6a中的214a)的两端分别连接接头(附图6a中的28)和三通接头(附图6a中的27上)。把油管(附图6a中的214)的一端安装在储液瓶接口(附图6a中的26)上,另一端安装在三通接头(附图6a中的27)上。把油管(附图6a中的213)的一端安装在储液瓶接口(附图6a中的25)上,另一端安装在止回流阀(附图6a中的23)的下接口。把油管(附图6a中的212)的一端安装在止回流阀(附图6a中的23)的上接口,另一端安装在三通接头(附图6a中的22)上,把油管(附图6a中的221a)的一端安装在三通接头(附图6a中的22)上,另一端安装在液压油管尾部进出油孔(附图6a中的218)上。把三油管(附图6a中的21)的一端安装在三通接头上,把储液瓶(附图6a中的25)加满液压油,把油管(附图6a中的21)的末端放入装有液压油的容器里面,拉动液压油缸的伸缩杆进行伸缩运动进行注油排气。注油排气完成后把油管(附图6a中的21)的另一端和温差感应储液罐(附图5)的进出油孔(附图5中的S12)对接,对接完成后,从温差感应储液罐(附图5)的传动液室注油排气孔(附图5中的S11)注入液压油,注满油排尽空气后用密封螺栓拧紧密封。
温差感应储液罐(附图5)所需容的动力液容量和需要安装储液管数量的计算方法为:设定,温差感应储液罐(附图5)动力液的容量为A公升,环境温差每变化1摄氏度每公升动力液的涨缩涨缩值为B,液压油缸的容量为C,设定的、可以稳定获取的工作温差为D,动力液室的容量为E,储液罐的容量为F。计算温差感应储液罐动力液所需容量和需要安装储液管(附图5中的S19)数量的公式为:{A大于等于C除以(B乘以D)}是所需的动力液容量,{(A减D)除以F}是所需安装的储液管数量
【第3项】
控制设定装置(附图8):普通液压油缸(附图12中的348),要求:普通液压油缸的行程和总长度与极端温差自动调节液压油缸(附图6)相同。多功 能滑块(附图13)为一个长方体钢块,附图13中的1f是与滑轨对接的滑槽,滑槽正上方的(附图13中的31c)是用来和液压油缸尾部对接的套筒,套筒可以采取焊接的方式与滑块结合。(附图13中的31f)是螺纹孔,用于液压油缸尾部插进套筒以后用螺栓固定液压油缸。(附图13中的31b)是螺纹孔,用于安置截止阀。(附图13中的31a)是承力板,用于承受来自极端温差自动调节液压油缸的伸缩杆的推力,可以采用焊接的方式和滑块结合。(附图13中的31d)是用于挂拉簧的孔,用钻头钻往斜下方透就行。滑块(附图12中的322)为普通滑块。滑轨(附图12中的315)要求安置好液压油缸后的行程不能小于极端温差自动调节液压油缸(附图6)的行程。油管(附图8中的330、331、332)为在高压条件下不会膨胀的高强度金属油管,保证液压能不会在油管的传递过程中损失。油管接头(附图8中的34、36)耐高压密封性能良好的接头。截止阀(附图15)为扭动式开关(附图15中的316a),在开关两侧各设有一根回调弹簧(附图15中的316e,316f)用于在被磕头虫拦阻器改变开关状态以后做一些必要的回调,保证再一次经过磕头虫的时候可以被磕头虫拦截改变开关状态。储液瓶(附图8中的33)要求在盖上盖子以后既能防止尘土的进入又能让空气进出,在下方有两个接口,接口下方留一些空间用于沉淀液压油因长期工作产生的杂质。磕头虫拦阻器(附图16、16a、)主体为一块方形滑块,在滑槽(附图19a-318f)开口的左角上面安装一个磕头虫(附图16a中的318b),右角上面做一个螺纹孔(附图16a中的318c),放进螺栓(附图16a中的318a),用于固定磕头虫拦阻器在轨道上面的位置。两个相同的磕头虫拦阻器对面放在滑轨上面(附图16b)就可以分别拦截从两个方向来的截止阀开关。磕头虫拦阻器滑轨标尺(附图17)用钢板做成,其二分之一宽度为磕头虫拦阻器滑槽的深度,磕头虫在滑轨标尺上面的运行轨迹不能小于极端温差自动调节液压油缸的活塞伸缩杆的行程,在滑轨标尺上面做上刻度以方便设定磕头虫拦阻器的在轨位置,两头有对接孔(附图17中的339,341)用于和支架对接。拉簧(附图8中的311)用于存储能量。多功能推板(附图14)用钢板做成,把钢板切割成(附图14中的38)形状,在推板的中间做一个和液压油缸伸缩杆螺栓头(附图12中的37a)吻合的螺纹孔,在(附图14中的38y,38t)的位置各做一个和立轴(附图14中的38d)契合的圆孔,在(附图14中的38c)的位置做一个适合挂拉簧的小孔,立轴的两端做成螺栓,把立轴插进(附图14中的38t),依次穿进垫筒38p、滚筒轴承38b、垫筒38j、最后穿过圆孔38y,在立轴的两端用螺母拧紧固定(附图14中的38e,38f)。主架(附图11)低板(附图11中的313)用长方形钢板做成,其长度要大于伸出活塞伸缩杆的极端温差自动调节液压油缸(附图6)加上缩回伸缩杆的普通液压油缸(附图12中的348)的长度, 支架(附图11中的328、325)为可拆卸式,底部有螺纹孔用于插进螺栓和低价固定在一起,套筒(附图11中的327、326)可直接焊接在支架上面,(附图11中的324和319)是导轨支架,可直接焊接在主架上面,在支架上面各做一个螺纹孔(附图8中的345、344)用来安装滑轨,(附图11中的312)为导管支架,活塞伸缩杆导管(附图11中的310)直接焊接在支上,(附图11中的320、319)是磕头虫拦阻器滑轨标尺支架,支架侧面做两个和对接孔(附图2a中的41a和41b)对接用的圆孔(附图8中的334和334b),导管(附图11中的310)可直接焊接在支架上面,(附图11中的342和343)是磕头虫拦阻器滑轨标尺安装对接孔,制作安装时必须保证磕头虫拦阻器滑轨标尺(附图10中的321)和滑轨(附图10中的315)保持直线永不不交叉的平行状态,磕头虫拦阻器滑轨标尺要低于滑轨(315),必须确保在安装完毕后多功能滑块(附图8中的31)做在轨运行时,磕头虫(附图8中的317a)和(附图8中的318b)刚好可以改变截止阀开关(附图8中的316b)的开、关状态。
按顺序安装:1、把滑轨对接孔(附图10中的338)对准支架对接孔(附图11中的345)上面用螺栓固定。2、把滑轨对接孔(附图10中的340)对准支架对接孔(附图11中的344)上面用螺栓固定。3、多功能滑块的滑槽(附图13中的31F)安装在滑轨(附图12中的338)一端,滑块(附图12中的322)安装在滑轨(附图12中的340)一端。4、液压油缸尾部插进多功能模块的套筒(附图13中的31C)里面,用螺栓拧进螺母固定孔(附图13中的31f)拧紧固定。5、液压油缸的前端插进滑块(附图12中的322)的套筒(附图12中的322a)里面,用螺栓拧进螺母式固定孔(附图12中的322b)拧紧固定。6、把截止阀的对接孔(附图15中的316b)对准多功能模块的截止阀安装孔(附图13中的31b),用螺栓拧紧固定。安装时要求把截止阀的开关(附图15中的316a)拧向液压油缸伸缩杆一侧时为打开状态,把开关拧向液压油缸尾部一侧时为关闭状态,开关垂直向下(附图15)时处于关闭和打开的临界点状态。7、用油管(附图8中的332)的一端连接上接头(附图8中的36)安装在液压油缸回流孔(附图12中的347)上面,另一端连接储液瓶接口(附图8中的35)。8、用油管(附图8中的331)的一端连接储液瓶接口(附图8中的34),另一端连接截止阀接口(附图15中的316C)。9、用油管(附图8中的330)的一端连接截止阀接口(附图15中的316d),另一端连接接头(附图8中的314)安装在液压油缸进出油孔(附图12中的347)上面。10、把液压油加注到储液瓶里面,拉动液压油缸的活塞伸缩杆做伸缩运动,使液压油缸吸进液压油排尽空气。11、把拦阻器滑轨的对接孔(附图17中的339)对准支架对接孔(附图11中的342)用螺栓拧紧固定,对接孔 (附图17中的341)对准支架对接孔(附图11中的343)用螺栓拧紧固定。12、在磕头虫导轨标尺的两侧各安装一个磕头虫拦阻器(附图8中的317和318),参看(附图9),磕头虫拦阻器(附图8中的317)被多功能滑块覆盖,截止阀开关(附图9中的316a)的中间线为同心中间线(附图9中的321a),磕头虫拦阻器(附图9中的317)和(附图9中的318)分别安装在同心中间线的两侧,必须使截止阀开关(附图9中的316a)在其行程内可以碰触到两侧的磕头虫。
工作原理:当液压油缸的缸体体前行时,活塞伸缩杆由于拉簧(附图1中的311)的拉力作用同步回缩,把缸体内的液压油经过截止阀排入储液瓶,当截止阀的阀门遇到拦截器的阻拦阻,随着液压油缸罐体继续前行,截止阀被迫关闭,此时液压油缸里的液压油因截止阀已经关闭无处可以排出,液压油缸缸体里的液压油与外界是隔绝状态,迫使活塞伸缩杆同步前行。当液压油缸从前方往后运行时,活塞伸缩杆和液压油缸缸体同步运行,在运行到截止阀的阀门经过拦阻器时,阀门拦阻器打开,此时由于拉簧(311)的拉力作用,活塞伸缩杆把缸体内的液压油经过已经打开的截止阀排尽储液瓶,活塞伸缩杆不再和缸体保持同步运行,而是在拉簧(311)的拉力下迅速回缩,直到活塞伸缩杆的多功能推板抵达导管(附图8中的310)被拦住停止向后方运行。液压油缸缸体继续往后方运行,活塞伸缩杆在动力液继续冷缩的情况下被拉簧(323)拉出缸体。一个做功周期完成。
【第4项】
移动位置改变温差环境装置:对接板(附图18中的41)用钢材焊接做成门框式骨架,再加装普通板材。合页(附图18中的43和42)、软液压油管(附图18中的44)、油管固定卡(附图18中的45)、接头(附图18中的46)、直角连体载重门(附图18c中的47a和47b)用钢材焊接成角钢形状的连体骨架然后加装保温隔热板材。载物架(附图18b中的49)用钢材直角焊接在直角连体载物门的内角一侧,要求可以轻松承载大型温差感应储液罐。油管(附图18中的48)、油管(附图18d中的410)、大型温差感应储液罐(附图18d中的1b)组成。
1、首先把对接板安装在温室大棚的窗口上面(附图18e)。2、用合页(附图18中的42)、合页(附图18中的43)把直角连体载重门安装在对接板上(附图18)。3、把大型温差感应储液罐(附图18d中的1b)安装在直角连体载物门的载物架(附图18d中的49)上面。4、用油管(附图18d中的410))的一端结合接头(附图18d中的46d)安装在温差感应储液罐的动力液室进出油孔上面,另一端穿过穿管孔(附图18a中的414)结合接头(附图18中的46b) 与软油管(附图18中的44)连接。5、从动力液室的注油排气孔注入液压油,注满油排尽空气后用密封螺栓把注油孔密封。6、把拉簧(附图18中的411)挂在拉簧挂钩(附图18中的412)和(附图18中的413)上面,挂上拉簧以后直角连体载物门由于拉簧的拉力就会呈现(附图18b)的状态:门(47a)打开、门(47b)关闭、大型温差感应储液罐(1b)被移到温室大棚外面。
第5项
终端动力输出装置:由大型极端温差自动调节液压油缸(附图19b),主支架(附图19a)钢铁焊接结构,固定支架(附图19中的53和54),拉簧(附图19中的58),拉簧支架(附图19中的57)组成
1、把大型液压油缸的前部插进支架对接孔(附图20中的54b),尾部插入支架对接孔(附图20中的53b)。2、把支架螺纹孔(附图20中的54c)对准固定螺栓(附图19a中的59a),支架螺纹孔(附图20中的53c)对准固定螺栓(附图19a中的59b),拧紧固定螺栓把支架固定住。3、用螺栓插进支架螺纹孔(附图19中的54a和53a)拧紧固定。4、把拉簧支架的螺纹对接孔(附图19b中的534)对准伸缩杆螺纹头(附图19b中的533)拧紧使弹簧挂孔(535)呈垂直向上的状态。5、把终端动力输出装置安装到需要的位置,把油管(附图18中的48)的一端安装到三通接头(附图19中的525)上面,然后把另一端放入盛有液压油的容器里面,拉动伸缩杆(附图19中的56)做伸缩运动进行吸油排气,排尽空气后用油管(附图18中的48)结合接头(附图18中的46)与软油管(附图18中的44)连接,用油管固定卡(附图18中的45)和(附图18中的45a)把油管(附图18中的48)固定在对接板上面。
整体组装:
1、把温差感应液压油缸缸体尾端(附图2a中的222)插进套筒(附图2a中的327)缸体前端(附图2a中的223)插进套筒(附图2a中的326),螺纹孔(附图2a中的328a)对准螺栓(附图2a中的336),螺纹孔(附图2a中的325a)对准螺栓(附图2a中的337),拧紧螺栓固定。2、用油管(附图2a中的21)连接温差感应储液罐)的进出油孔(附图2a中的12)和三通接头(附图2a中的22)。3、把对接孔(附图2a中的334a)和(附图2a中的41a)对准,(附图2a中的334)和(附图2a中的41b)对准,插进螺栓拧紧固定。用油管(附图2中的48)通过接头(附图2a中的46)与软油管(附图2a中的44)连接,另一端和三通接头(附图2a中的525)连接。把拉簧(附图2中的311)的一端挂在拉簧挂孔(附图2中的38c)上面,另一端挂在拉簧挂孔(附图2中的329b)上面。把拉簧(附图2中的323)的一端挂在拉簧挂孔(附图2中的329a)上面,另一端挂在拉簧挂孔(附图2中的31d)上面。把拉簧(附图2中的58)的一端挂在前端拉簧挂孔上面,另一端挂在后端拉 簧挂孔上面。至此一个完整的“从温差中获取动力用自然规律实现自动化作业的机械装置(附图2)”就组装完成了。
整体装置作业原理:早晨室外温度开始上升时,温差感应储液罐内的动力液产生热胀反应,温差感应储液罐的凹凸隔离膜的凹凸状态随着动力液的热胀反应而移向传动液室一侧(附图2中的113),传动液室的液压油被挤压经由进出油孔流向液压油缸,液压油缸的活塞伸缩杆(附图2中的29)被液压油推动前伸,伸缩杆(附图2中的29)推动设定控制装置的多功能滑块(附图2中的31)和液压油缸(附图2中的39)整体前行。伸缩杆(附图2中的37)在拉簧(附图2中的311)的拉力作用下向缸体(附图2中的39)内部收缩,缸体里的液压油被排进储液瓶(附图1中的24)。在温度升高到设定条件时,设定控制装置的截止阀阀门(附图2中的316a)经过磕头虫(附图2中的317a),截止阀开关(附图2中的316a)关闭,由于缸体内的液压油停止排出导致活塞伸缩杆和缸体同步伸出,伸缩杆前端多功能推块的滚筒轴承(附图17中的38b)推动直角连体载物门将其关闭(附图2中的47a),大型温差感应储液罐(附图1-1b)随着载物架进入温室大棚内部(附图2),由于大型温差感应储液罐所处的环境温度快速升高而导致内部的动力液产生快速热胀反应,推动大型极端温差自动调节液压油缸的活塞伸缩杆(附图2中的512)快速伸出,直到活塞到达伸止点启动极端温差自动调节装置,把多余的液压油排入储液瓶(附图2中的518)。此后,随着室外温度的继续升高温差感应储液罐的凹凸隔离膜被继续热胀的动力液挤压凸入传动液室(附图3中的113),传动液室内的液压油被迫继续流向极端温差自动调节液压油缸导致活塞伸缩杆(附图3中的29)继续伸出,伸缩杆(附图3中的29)推动着前方的多功能滑块和液压油缸伸缩杆(附图3中的37)整体同步前行,伸缩杆(附图3中的37)前端多功能推板(附图3中的38)的滚筒轴承紧贴着已经关闭的直角连体载物门继续同步前伸,此时拉簧(附图3中的323和311)也被拉紧存储了所需要的足够的能量。下午室外温度开始下降后,温差感应储液罐里的动力液冷缩凹凸隔离膜(附图4中的113)的凹凸状态随之向动力液室一侧移动,极端温差调节液压油缸的活塞伸缩杆随即在拉簧(附图4中的323和311)的拉力作用下开始和动力液的冷缩进程同步回缩。液压油缸缸体(附图4中的319)在拉簧(附图4中的323和311)的作用下也同步回缩,活塞伸缩杆(附图4中的37)在拉簧(附图4中的311)的拉力作用下同步后退,当截止阀阀门(附图4中的316a)经过磕头虫(附图4中的318b)时截止阀开关被打开,活塞伸缩杆(附图4中的37)在拉簧(附图4中的311)的作用下快速回缩,在多功能推块(附图4中的38)回缩至导管(附图4中的310)被拦住伸缩杆(附图4中的37)不再和缸体(附图4中的319)同步回缩, 直角连体载物门(附图4中的47a)失去了伸缩杆(附图4中的37)的推力,在拉簧(附图4中的411)的拉力下打开同时直角连体载物门(附图4中的47b)关闭,大型温差感应储液罐随之从室内的高温环境转移到室外的低温环境(附图4中的1b),大型温差感应储液罐所处的环境温度快速降低,此时,拉簧(附图4中的58)拉着活塞伸缩杆(附图4中的512)回缩填补大型温差感应储液罐内部因动力液冷缩反应而产生的真空,直到活塞(附图2中的530)回缩至缩止点(附图2中的531),如果温度继续下降动力液冷缩产生的真空吸力反应就会启动极端温差自动调节装置,储液瓶(附图4中的518)内的液压油经打开阀门的止回流阀流入大型温差感应储液罐填补因动力液冷缩产生的空间。在室外温度继续下降的情况下,温差感应储液罐(附图1中的1x)内部的动力液继续冷缩导致凹凸隔离膜呈现向下凹的状态(附图1中的113),拉簧(附图1中的323)随即拉着多功能滑块(附图1中的31)、缸体(附图1中的319)滑块、伸缩杆(附图1中的29)随着室外温度的下降同步回缩,缸体(附图1中的319)内部的液压油被迫流向温差感应储液罐的传动液室(附图1中的10),直到活塞(附图7中的216)抵达缩止点(附图7中的215),拉簧(311)被拉紧存储了必要的能量,如果温度继续下降动力液继续冷缩产生的真空吸力就会启动极端温差自动调节装置,打开止回流阀(附图1中的23)阀门,吸入储液瓶(附图1中的24)的液压油补充因温差感应储液罐内动力液冷缩产生的空间止,直到温度降至最低点,然后等待着第二天早晨符合设定条件的情况下自动开始新一轮的作业。调整磕头虫拦阻器(317a)的在轨位置就可以设定温度上升多少摄氏度的情况下关闭位置转换门(47a),使大型温差感应储液罐(附图1-1b)从室外的低温环境进入室内的高温环境,温差感应储液罐里的动力液产生热胀反应推动终端动力输出装置的伸缩杆(附图2中的512)快速伸出。调整磕头虫拦阻器(附图4中的318)的在轨位置,就可以设定在下午温度下降多少摄氏度的时候打开直角连体载物门(47a)使大型温差感应储液罐从室内转移到室外的低温环境,温差感应储液罐里的动力液产生冷缩反应从而使终端动力输出装置的伸缩杆在拉簧的助力下(附图2中的512)快速回缩。
活塞伸缩杆(附图4中的518)的伸缩运动就是本发明所要获取的不消耗任何能源、没有任何污染、可以根据需要预先设定作业条件、自动调节、自动适应、长期自主稳定作业,在早晨符合条件的时候收起温室大棚的保温被、下午符合条件的时候给温室大棚覆盖保温被的终端动力。利用本发明后可以减少污染、节省能源、解放劳动力。

Claims (15)

  1. 根据说明书摘要所述这是一个从温差中获取动力利用自然规律实现自动化作业的机械装置,其特征在于:这个装置是由温差感应储液罐、凹凸隔离膜、动力液室、传动液室内、动力液、传动液、液压油室进出油孔、储液管接口、储液管、极端温差自动调节液压油缸、液压油缸进出油孔、活塞伸缩杆、伸止点、缩止点、阀门、高压油管、止回流阀、油管接头、储液瓶、储能装置、设定控制装置、阀门、储液瓶、液压油缸、两个拦阻器、拦阻器滑轨标尺、液压缸、移动位置改变温差环境装置、直角连体载物门、终端动力获取装置、大型温差感应储装置、大型极端温差自动调节液压油缸组成,利用热胀冷缩和液压原理把自然界温差的变化转换成可以长期自动化作业的机械能,把热胀冷缩性能良好的液体(简称:动力液)和润滑性能良好的液压油(简称:传动液)分别密封在温差感应储液罐里,通过温差感应储液罐和液压油缸相结合,利用液压的方式加上储能装置的配合把温差变化导致的液体热胀冷缩反应转变成机械能,通过排出多余的液体、补充缺少的液体的方式自动适应自然界的极端温差变化长期自动化自主作业,用从温差中获取的机械能驱动设定控制装置,设定控制装置按照设定的要求自动调整输出机械能的时机,在符合设定条件的时候改变温差感应储液罐所处的温度环境、从因温度环境改变而产生的温差中获取在符合设定条件的时候才会产生的机械能,利用温差变化的自然自然规律结合设定控制装置使机械长期自主自动化作业。
  2. 根据特征1所述把热胀冷缩性能良好的液体和润滑性能良好的液压油分别密封在温差感应储液装置里面,其特征在于;温差感应储液罐用可以改变凹凸形状的隔绝材料区分为动力液室和传动液室两个相对隔绝的部分,把两种性能不同的液体隔绝开,热胀冷缩性能良好的液体密封在动力液室里面,和液压油缸连接连通的是传动液室,流入液压油缸的只能是润滑性能良好的液体,兼顾了良好的润滑性能和良好的热胀冷缩性能。
  3. 根据特征1所述液体是放在温差感应储液罐里面的,其特征在于:温差感应储液罐是一个对温差变化敏感的、具备密封、稳固性能的储存液体的装置、简称温差感应储液罐,温差感应储液罐的动力液室设有多个储液管接口,可以按需要安装储液管的数量,温差感应储液罐的容量是可以按照需要自由调整的。
  4. 根据特征1所述利用液压的方式加上储能装置的配合把温差变化导致的热胀冷缩反应转变成机械能,其特征在于:用液压的方式把密封在储液罐里面的液体因温差变化而产生的热胀冷缩反应通过液压缸转变成机械能,储能装置在温度上升动力液热胀时储存下足够的能量,储能装置储存的能量是在温度下降动力液冷缩时作为辅助动力使用的,所有的动力都是通过液压的方式从液体热涨冷缩的变化过程中获取的。
  5. 根据特征1所述根据特征1所述通过排出多余的液体、补充缺少的液体的方式自动适应自然界的极端温差变化长期自动化自主作业,其特征在于:有一个由液压缸、储液瓶、止回流阀、高压油管、储能装置组成的极端温差自动调节液压油缸,温度升高值超过活塞伸缩杆行程需要时,极端温差自动调节装置自动启动,多余的液体被排入储液瓶(储液瓶是一个可以存储液体的容器,简称储液瓶),温度下降超过活塞伸缩杆行程需要值时,极端温差自动调节装置自动启动,储液瓶里的液体就会流进去补充,温度停止变化时自动调节装置随即自动关闭。
  6. 根据特征5所述温度升高超过需要时多余的液体被排入储液瓶温度下降超过需要时储液瓶里的液体流进去补充,其特征在于:极端温差自动调节液压油缸是通过和温差感应储液罐配合,通过排出多余的液体、补充缺少的液体来适应极端温差变化的,极端温差自动调节液压油缸设有最少不低于三个进出油孔。
  7. 根根据特征5、6所述极端温差自动调节液压油缸有一个止回流阀、一个储液瓶、液压油缸设有最少不低于三个进出油孔,其特征在于:极端温差自动调节液压缸前端有两个在温度升高超过行程需要时可以自动顺利排出多余的液体的进出油孔、有一个能在温度下降超过行程需要时自动补充缺少的液体的止回流阀。
  8. 根据特征1所述有一个设定控制装置,其特征在于:设定控制装置是由液压缸、两个拦阻器、拦阻器滑轨标尺、阀门、伸缩杆、储液瓶、储能装置组成的,利用自然规律结合设定控制装置代替电脑控制机械进行长期自动化作业,设定控制装置是依靠从自然界温差变化中获取的机械能驱动的。
  9. 根据特征8所述设定控制系统是依靠从自然规律的温差变化中获取的机械能驱动的,有一个液压油缸,其特征在于:在设定控制装置中的液压油缸是作为可伸缩的传动装置使用的,设定控制装置中液压油缸的缸体运行和温差变化是同步的,设定控制装置所控制的是伸缩杆在温度升降多少时和温差变化同步运行、在温度升降多少时不和温差变化同步运行。
  10. 根据特征9所述设定控制系统有一个液压缸,其特征在于设定控制系统所控制的是伸缩杆和温差变化是否同步的时机,有两个可以调整在轨位置的拦阻方向不同的拦阻器,分别调整两个拦阻器的在轨位置就可设定缸体前行多少时伸缩杆伸出,设定缸体后退多少时伸缩杆迅速回缩到缩止点。
  11. 根据特征10所述有两个可以调整在轨位置的拦阻方向不同的拦阻器,,其特征在于:拦阻器的作用是用来改变用来做开关使用的阀门的开关状态的,改变阀门的开关状态就可以改变伸缩杆的运行状态是否和缸体同步的状态,调拦阻器的在轨位置就可以设定伸缩杆的伸缩时机。
  12. 根据特征8、9、10、11所述设定控制装置是依靠从自然规律的温差变化中获取的机械能驱动的,有两个可以调整在轨位置的拦阻方向不同的拦阻器,其特征在于:分别调整两个拦阻器的在轨位置就可以设定在温度升降多少的时候输出机械能,可以按需要调整设定在温差分别升降多少度的时候分别输出需要的机械能。
  13. 根据特征1所述有一个直角连体载物门,其特征在于:温差感应储液罐是放在一个可以承载着温差感应储液罐在两个相对隔绝的、存在温差的环境中变换位置的直角连体载物门上面的,用从温差变化中获取的机械能改变温差感应储液罐所处的温度环境,再从因温度环境改变而产生的温差中获取机械能。
  14. 根据特征13所述直角连体载物门可以承载温差感应储液罐在两个相对隔绝的环境中变换位置,其特征在于:直角连体载物门其中的一扇门处于完全打开的状态时另一扇门就处于完全关闭状态,改变直角连体载物门的开关状态就可以使温差感应储液罐在两个相对隔绝的环境中变换位置,直角连体载物门的作用是改变温差感应储液罐所处的温度环境。
  15. 根据特征1、7、12、14所述用从温差变化中获取的机械能驱动设定控制系统,设定控制系统在符合设定条件的时候输出机械能改变直角连体载物门的开关状态、从而改变温差感应储液罐所处的温度环境并获取需要的终端机械能,其特征在于:在不消耗能源的情况下、利用自然规律的变化获取能够长期自动化自主作业的机械能。
PCT/CN2016/000171 2015-04-13 2016-03-28 一种从温差中获取动力实现自动化作业的机械装置 WO2016165411A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510168632.3 2015-04-13
CN201510168632 2015-04-13
CN201510386406.2A CN105298775B (zh) 2015-04-13 2015-07-06 从温差中获取动力利用自然规律实现自动化作业的机械装置
CN201510386406.2 2015-07-06

Publications (1)

Publication Number Publication Date
WO2016165411A1 true WO2016165411A1 (zh) 2016-10-20

Family

ID=55196444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000171 WO2016165411A1 (zh) 2015-04-13 2016-03-28 一种从温差中获取动力实现自动化作业的机械装置

Country Status (2)

Country Link
CN (1) CN105298775B (zh)
WO (1) WO2016165411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113384216A (zh) * 2021-07-20 2021-09-14 芜湖美的智能厨电制造有限公司 用于洗涤电器的通风组件和洗碗机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105298775B (zh) * 2015-04-13 2018-10-12 贾二芳 从温差中获取动力利用自然规律实现自动化作业的机械装置
CN106050588B (zh) * 2016-02-19 2020-12-25 贾二芳 温差能获取装置行程控制系统
CN107143472B (zh) * 2017-02-09 2019-08-09 贾二芳 主动持续从各种环境中获取温差转化成动力的温差发动机
CN112928850A (zh) * 2020-07-24 2021-06-08 韩建辉 一种空压内摆式实时温控电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2150354Y (zh) * 1993-03-22 1993-12-22 刘占增 温差式动力机
JP4242580B2 (ja) * 2001-12-07 2009-03-25 泰三 青山 温度変化により作動するアクチュエータ
DE102011088207A1 (de) * 2011-12-12 2013-06-13 Erich Kumpf Thermische Einrichtung zum Erzeugen von mechanischer und/oder elektrischer Energie
CN103321863A (zh) * 2013-06-28 2013-09-25 李先强 温差式空气能发电机
CN105298775A (zh) * 2015-04-13 2016-02-03 贾二芳 从温差中获取动力利用自然规律实现自动化作业的机械装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1899603A1 (en) * 2005-06-29 2008-03-19 Victhom Human Bionics Inc. Metal hydride actuator
CN203412708U (zh) * 2013-08-05 2014-01-29 白坤生 低温热能转化为机械能的装置
CN104481828B (zh) * 2014-11-26 2018-04-10 中国船舶重工集团公司第七一〇研究所 一种海洋监测设备的供电装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2150354Y (zh) * 1993-03-22 1993-12-22 刘占增 温差式动力机
JP4242580B2 (ja) * 2001-12-07 2009-03-25 泰三 青山 温度変化により作動するアクチュエータ
DE102011088207A1 (de) * 2011-12-12 2013-06-13 Erich Kumpf Thermische Einrichtung zum Erzeugen von mechanischer und/oder elektrischer Energie
CN103321863A (zh) * 2013-06-28 2013-09-25 李先强 温差式空气能发电机
CN105298775A (zh) * 2015-04-13 2016-02-03 贾二芳 从温差中获取动力利用自然规律实现自动化作业的机械装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113384216A (zh) * 2021-07-20 2021-09-14 芜湖美的智能厨电制造有限公司 用于洗涤电器的通风组件和洗碗机

Also Published As

Publication number Publication date
CN105298775B (zh) 2018-10-12
CN105298775A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2016165411A1 (zh) 一种从温差中获取动力实现自动化作业的机械装置
CN204831788U (zh) 发动机试车用冷却水循环控制装置
CN104514758A (zh) 基于集液器和夹心活塞的液封蓄能器及其液压系统
CN203097859U (zh) 稠油开采用太阳能集热水循环加热装置
CN207687317U (zh) 风力发电机齿轮箱的润滑油供给装置
CN109699456A (zh) 一种具有水压调节功能的便捷型滴灌设备
CN212716554U (zh) 一种利用抽油机动力的加药装置及其抽油机动力驱动机构
CN114753532B (zh) 一种具有集热功能的玻璃幕墙
CN101913123A (zh) 一种热管砂轮的制作装置及方法
CN216200724U (zh) 一种通过电驱动的旋塞阀
CN113339580B (zh) 一种天然气的计量调节阀
WO2018145232A1 (zh) 主动持续从各种环境中获取温差转化成动力的温差发动机
CN203837301U (zh) 防冻太阳能聚热装置
CN207437338U (zh) 一种智能液压泵
CN101850223A (zh) 一种向大型水合物反应器连续注液的装置
CN205956521U (zh) 自增压式阀组
CN206449908U (zh) 附壁式太阳能防冻介质补液罐
CN204283378U (zh) 一种自反馈引射器
CN205100927U (zh) 一种远程无线智能控制的组合密封双管注气的井口系统
CN204943913U (zh) 一种无循环管循环系统
CN2856491Y (zh) 液力采油机
CN100580249C (zh) 减压真空地面吸油机
CN215110529U (zh) 一种改进型截止阀
CN219220812U (zh) 一种给水泵密封水防气阻结构及给水泵支架
CN220134730U (zh) 手动阀门执行机构排水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779386

Country of ref document: EP

Kind code of ref document: A1