WO2018145232A1 - 主动持续从各种环境中获取温差转化成动力的温差发动机 - Google Patents

主动持续从各种环境中获取温差转化成动力的温差发动机 Download PDF

Info

Publication number
WO2018145232A1
WO2018145232A1 PCT/CN2017/000617 CN2017000617W WO2018145232A1 WO 2018145232 A1 WO2018145232 A1 WO 2018145232A1 CN 2017000617 W CN2017000617 W CN 2017000617W WO 2018145232 A1 WO2018145232 A1 WO 2018145232A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
temperature
temperature difference
valve
liquid
Prior art date
Application number
PCT/CN2017/000617
Other languages
English (en)
French (fr)
Inventor
贾二芳
Original Assignee
贾二芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贾二芳 filed Critical 贾二芳
Publication of WO2018145232A1 publication Critical patent/WO2018145232A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature

Definitions

  • the invention discloses a technology for continuously obtaining temperature difference and converting into power for a long time from various environments with different temperature differences, and can utilize temperature difference existing in different environments in nature, such as temperature difference between deep water and surface water, under sunlight and under shadow
  • the temperature difference, indoor and outdoor temperature difference can also use the temperature difference generated by industrial waste heat, as long as the temperature difference environment can obtain power.
  • the machine can be automatically adjusted and automatically started to work.
  • the invention can be widely used in various industries, and can provide power, pump water, solar floor heating, ground temperature cooling, and can be applied. Zero energy consumption and zero emissions. It belongs to the technical field of automatically obtaining power from various temperature difference environments.
  • the application number is 2015103864062.
  • the technique of creating a mechanical device (which acquires power from the temperature difference and uses the natural laws to achieve automated operation) cannot continuously generate power for a long time.
  • the invention makes further innovation based on the technology of obtaining mechanical means for realizing automatic operation by utilizing the natural law from the temperature difference, and can actively obtain the temperature difference in different environments and convert into mechanical energy, and continuously generate mechanical energy for a long time, and When the environmental temperature difference is reversed, it can automatically adjust to adapt to changes in environmental reversal and automatically restart the entire device for operation.
  • the present invention makes the temperature difference energy acquisition device a true differential energy engine that can be activated autonomously without any electronic components.
  • the first content of the present invention is to provide a heat exchange device for changing the temperature difference for the temperature difference energy acquiring device.
  • the device has a main box body and can accommodate the temperature difference sensing device, and the inlet pipe and the drain pipe each have a float valve and a
  • the float bin is located outside the float bin and has a float valve at the bottom of the main tank.
  • the control device opens the valves of the inlet pipe and the drain pipe
  • the inlet pipe does not fill the inside of the casing of the heat exchange device because the float valve is closed, and the drain pipe starts to drain because the float valve is open
  • the float valves of the two float bins are opened because there is no buoyancy.
  • the water in the two float bins starts to be discharged through the pipe, and the float valve of the inlet pipe starts to open as the water level in the float bin decreases.
  • the valve of the drain pipe begins to close, and the water injected into the inlet pipe flows into the timing water supply device instead of the main tank to avoid premature water injection.
  • the valve of the inlet pipe is already fully opened after the water in the two float bins is completely drained, and the float valve of the drain pipe is already completely closed.
  • the timing water supply device is turned to one side due to the eccentric shaft design principle, and the water inside is injected into the tank, and the water is completely discharged after the water supply device is automatically set up.
  • the float valve of the water pipe is closed after the float bin is filled with water, and the float valve of the drain pipe is opened, and the temperature difference sensing device is in the process due to the liquid in the tank.
  • the influence of the temperature difference power acquisition device has already closed the float valve of the drain pipe, and the valve of the water inlet pipe is also closed when the water is filled. This is a heat exchange cycle, and the entire work process is such a repeated operation.
  • the buoyancy bin is provided with two valves and the switch of the valve is indirectly controlled by the telescopic rod of the hydraulic cylinder. When the expansion and contraction degree of the telescopic rod reaches the standard of work, the two buoyancy chamber valves are opened, the liquid is quickly flowed into the buoyancy chamber, and the heat exchange device is started. Do work to avoid wasting too much temperature difference.
  • Two aspects of the present invention are to provide a hydraulic horizontal heat exchange cycle device capable of conducting temperatures in different temperature difference environments to a temperature difference power acquisition device.
  • This device mainly consists of a compression package pumping device, an energy storage device, a water pipe, a valve, a check valve, a temperature difference collecting device, a relay water tank, and a main body.
  • the work process is: pumping the liquid into a corresponding high-level energy storage device through a pumping device, and the liquid in the energy storage device flows through the circulation pipe through the temperature difference collecting device according to its own horizontal characteristics and then is turned on.
  • the valve enters the heat exchange device to perform heat exchange work on the temperature difference induction device of the temperature difference power acquisition device, and the liquid medium that completes the work is discharged into the relay water tank through the circulating pipe through the valve in the open state, and then flows into the corresponding time when appropriate.
  • the pumping unit has two sets of circulating devices with the same performance, one is responsible for the circulation of the cryogenic liquid, and the other is responsible for the circulation of the high temperature liquid.
  • the outlet of the relay water tank has a float valve to prevent the liquid from flowing back into the relay water tank when the pumping device is pumping water.
  • the water outlet of the pumping device has a check valve to avoid the liquid return of the upper water pipe.
  • the pumping device, the energy storage device and the temperature difference power acquiring device are all inside the main body, and the main body body and the circulating pipe are installed with the thermal insulation layer, thereby ensuring that the overall mechanical work is not affected by the unnecessary external environment.
  • Hybrid cycle It is suitable for use in terrestrial or high-altitude environments such as solar heating and power acquisition. When used for solar floor heating, it is suitable to use a mixed cycle, that is, the high temperature medium flows into the low temperature environment after completing the high temperature conduction of the temperature difference power acquiring device, and the heat energy carried by the medium is dissipated through the heat dissipating device to become a low temperature medium and then flows into the heat exchange device, The low-temperature medium is transferred to the heat-exchange device to transfer the low temperature to the temperature difference power acquisition device, and after being cooled to a high-temperature environment, the low-temperature medium is recycled to the high-temperature environment to collect the heat energy in the high-temperature environment, and the hybrid circulation device can maximize the heat and heat carried by the medium.
  • This cycle is the simplest and does not require the use of energy storage devices and temperature difference devices because the liquid has a level
  • the characteristics are as follows: two water pipes with different thermal insulation properties are respectively used to guide the water in two different temperature environments into the heat exchange device, and the pumping device directly discharges the liquid that performs the heat exchange work to the required place or directly discharges the liquid. Back to the lake can be.
  • This device utilizes the principle of hydraulic pressure and level, only needs to pump the medium into the fixed height energy storage device or directly discharge it back into the water. Because of the hydraulic action, the medium circulation inside the circulation system is driven, and the temperature difference and collection of 10 meters depth are collected.
  • the power required for the temperature difference of 10,000 meters is the same, for example, the temperature difference between the ocean surface and the 10,000-meter sea floor or the power required for the temperature difference between the ocean surface and the depth of one meter is the same.
  • the thermal insulation layer is installed on both the outer side of the circulation pipe and the inner and outer sides of the main body to effectively avoid the loss of the temperature difference during the cycle.
  • a third aspect of the present invention is to provide a timing splitting device and a driving device for injecting a medium carrying high temperature and low temperature respectively into a heat exchange chamber when needed, and the temperature difference power obtaining device is subjected to work by a high temperature medium to perform work.
  • a hot work cycle drives a corresponding pumping device to pump the medium inside the pumping device to the corresponding energy storage device. If it is used for pumping water, the pump can be directly pumped to the required place, and the low temperature medium is relayed. The low-temperature medium inside the device begins to flow into the corresponding pumping device.
  • the control rod is driven by the linkage drive device, and then the corresponding control valve is opened by the transmission of the cable to enable the liquid in the heat exchange chamber to be discharged into the corresponding relay.
  • the corresponding control valve is opened by the transmission of the cable to enable the liquid in the heat exchange chamber to be discharged into the corresponding relay.
  • the valve of the low temperature medium is opened to the heat exchange chamber. After the high temperature medium is completely discharged into the relay device, the low temperature medium flows into the heat exchange chamber, and is affected by the low temperature medium.
  • the temperature difference power acquisition device starts the low temperature work cycle, and the control valve for the high temperature medium discharge is closed after entering the low temperature work cycle.
  • the high temperature medium inside the relay device starts to flow into the corresponding pumping device, and the low temperature medium is pumped into the corresponding energy storage device (if used for pumping water, the pump can be directly pumped to the required place).
  • the temperature difference power acquisition device opens the buoyancy chamber valve at the same time, completes the high and low temperature work cycle, and causes the liquid to quickly flow into the buoyancy chamber to start the heat exchange device to work, open the low temperature medium discharge control valve and the high temperature medium injection heat exchange chamber control valve
  • the low-temperature medium in the open heat exchange chamber of the low-temperature medium discharge control valve flows into the corresponding relay device, and after the low-temperature medium is completely discharged, the high-temperature medium starts to be injected into the heat exchange chamber, and the temperature difference power acquisition device starts another high-temperature work cycle.
  • temperature difference power acquisition device can achieve long-term continuous work.
  • a fourth aspect of the present invention is to provide an engine capable of automatically adjusting and controlling a temperature difference energy when a temperature difference between two environments of high temperature and low temperature is reversed (that is, a low temperature environment becomes a high temperature environment and a high temperature environment becomes a low temperature environment).
  • the system adapts to the temperature difference environment after reversal, and automatically restarts the whole mechanical device to perform automatic adjustment of the work.
  • the temperature difference reversal automatic adjustment start device device adapts to the temperature difference change.
  • This device uses the temperature difference power acquisition device as the power source, without any electronic equipment. Under the automatic control function. This device utilizes the power generated by the reversal of the temperature difference between the two environments to control the corresponding system, and the two temperature environments are matched by the power generated by the temperature difference.
  • variable angle catheter is pulled inside to accommodate the increasing distance between the movable joint 1 (113 in Figure 8) and the movable joint (133 in Figure 8).
  • the variable angle guide pushes the push rod 1 (116 in Fig. 9) forward, and the push rod 1 pushes the slider 1 (119 in Fig. 9).
  • the variable angle guide (134 in Fig. 8) pulls the push rod 2 (136 in Fig. 9) back, and the push rod 2 pulls the slider 2 back.
  • the slider 1 (119 in Fig. 9) continues to push forward the force bearing of the head of the synchronous transmission 1A (120 in Fig. 9) (in Fig.
  • valve 11 is in a closed state, shunted.
  • Valve 2 (322 in Figure 11) is in an open state.
  • the pull wire 12 (519 in Fig. 12) pulls the valve D switch (521 in Fig. 12) and simultaneously pulls the valve C switch (522 in Fig. 12) through the drive wire (517 in Fig. 12), valve B.
  • Switch (525 in Figure 12), valve A switch (524 in Figure 12), when this process is completed, valve A (508 in Figure 12) is closed, valve B (509 in Figure 12)
  • valve C (510 in Fig. 12) is in an open state
  • valve D (511 in Fig. 12) is in a closed state.
  • the pull wire 1 (125 in Fig. 5) pulls the lever 1 (530 in Fig.
  • the heat exchange can be started by a manual control device, and the entire device can be turned off or started by the main switch. If a special situation occurs, the temperature difference between the two environments can meet the requirements of the mechanical work but the machine can not be started automatically.
  • the transmission gears that match the racks on the guide bars (33 and 34 in Fig. 4) are docked from the position of the power output pair interface (541 and 542 in Fig. 4). Get the power you need.
  • the radiator through which the low-temperature temperature-conducting medium flows is installed in an environment requiring refrigeration, and the impeller generated by the engine itself is used to drive the impeller to blow the low temperature carried by the radiator to the required environment.
  • the radiator through which the high-temperature temperature-conducting medium flows is installed in an environment where heating is required, and the power generated by the engine itself is used to drive the impeller to blow the high temperature carried by the radiator to the required environment.
  • the temperature difference sensing device in the temperature difference energy acquisition device is affected by the heat exchange device, and the generated power drives the medium circulation in the hydraulic horizontal heat exchange circulation device, and the driving timing flow dividing device sequentially injects the medium with different heat and cold into the heat exchange device.
  • the two hot and cold working mediums are discharged into the corresponding hydraulic horizontal heat exchange circulation device, and the hydraulic horizontal heat exchange circulation system relies on the self-leveling property of water without any additional mechanical energy consumption from any depth.
  • the temperature difference is obtained, and the medium carrying different temperatures is respectively circulated to the corresponding environment to obtain the required temperature difference, or the medium can be directly discharged to the required place, and then the temperature with different temperature in different temperature difference environments can be re-acquired.
  • the medium enables the temperature difference power acquisition device to continuously acquire the temperature difference for a long time to continuously generate mechanical energy.
  • the temperature difference reversal automatic adjustment starting device automatically adjusts the timing of the medium carrying different temperatures into the heat exchange device, and automatically adjusts the work done.
  • the rear media is discharged into the corresponding storage device and starts the whole
  • the device makes the device operate normally, so that the whole mechanical device can be automatically and autonomously operated for a long time without consuming any energy and without any electronic components.
  • a manual starting valve and a main switch are installed, and if a special situation occurs, the machine cannot.
  • Auto start can also be done manually, and can be turned off or on as needed.
  • the invention has wide application and can obtain heat exchange from different temperature environments for a long time without energy consumption, complete heat exchange and convert into power, can be used for pumping water, can be used for environmental heat exchange, can be used as a power source through the transmission
  • the device outputs mechanical energy, can be automated for a long time, and can be manually controlled.
  • FIG. 1 Automatic timed water inlet and outlet system of heat exchanger
  • Figure 2 Single cycle device
  • Figure 3 Double cycle device
  • Figure 4 Linkage drive
  • Figure 5 Installation of temperature difference power acquisition device
  • Figure 6 Installation timing diverting device
  • Figure 7 Installation timing diverting device
  • Figure 8 temperature difference reversal automatic control starting device
  • Figure 9 Temperature difference reversal automatic control starting device assembly
  • Figure 10 Installation temperature difference reverse transmission automatic control The shunt device of the restarting device
  • FIG. 11 the connection of the temperature difference reversal automatic control starting device and the shunt device
  • FIG. 12 the temperature difference reversal automatic control starting device drainage drainage device.
  • Heat exchange device It is made of a material with strong, corrosion-resistant, sealed and heat-insulating materials.
  • the box body should be insulated, strong and can store liquid without leakage. It can be made of steel plate and then with insulation layer.
  • a small part of the inside of the box is partitioned as the buoyancy chamber 1 (204 in Fig. 1).
  • the shape and size of the buoyancy chamber need only satisfy the running track of the float 1 (203 in Fig. 1). It does not need to be too large to take up too much space and consume too much medium, as long as the float and rocker (202 in Figure 1) can swing and the amplitude of the swing can open and close the float valve 1 (in Figure 1) 201) It will be fine.
  • the two float bins have the same practice and requirements. For details, refer to the processing steps of various water tanks. Install a hole in each of the positions of the intermediate heights of the two buoyancy chambers, one for each valve (553 and 554 in Figure 1), and one return spring on each of the two valve switches. The valves can be opened when they are subjected to external force, and can be pulled off by the tension spring when the external force is lost. Make a round hole on the upper side of the box, install an inlet pipe (300 in Figure 1), require a firm installation, seal without gaps, and install one at the inlet of the inlet pipe (300 in Figure 1). The float valve (201 in Fig.
  • the float valve 1 (201 in Fig. 1) is then connected to the inlet pipe 2 (211 in Fig. 1) and the float valve 1 (201 in Fig. 1).
  • the installation requirement of the float valve 1 is that the float valve 1 (201 in Fig. 1) is closed when the float chamber 1 floats the float 1 (203 in Fig. 1), in the buoyancy chamber 1 (Fig. 1) 204)
  • the float 1 (203 in Fig. 1) drops to a certain extent, and the float valve 1 (201 in Fig. 1) is closed.
  • Remove the baffle of the buoyancy chamber 2 (200 in Fig. 1) make a round hole in the place below the bottom plate of the box, and install the drain pipe (228 in Fig. 1) into the round hole.
  • the float valve 2 and the drain pipe (228) are connected together.
  • the float valve is installed in an open state when the water floats the float, and the float valve is closed when the float falls.
  • the installation requirement of this float valve is that the float valve is closed when the float floats, the float valve is opened when the float is lowered, and the buoyancy chamber partition (200 in Figure 1) Properly position a circular hole that can be inserted through the float valve drive rod, thread the drive rod (230 in Figure 1) into the round hole (preferably with a seal) and then the rocker (224 in Figure 1) Mounted on the float valve transmission rod (230 in Figure 1) and fitted with a float (225 in Figure 1). Make a round hole at the corresponding position of the buoyancy chamber 2 (217 in Fig.
  • the heat exchange chamber drain pipe (226 in Figure 1) is aligned with the corresponding bottom plate, the buoyancy bin 2 drain pipe is inserted into the corresponding round hole and sealed with sealant or Screw The way to seal.
  • sealant or Screw The way to seal Use a four-way joint to connect the buoyancy chamber 2 drain (229 in Figure 1) to the heat exchange chamber drain, buoyancy tank 1 drain (214 in Figure 1), and drain in the four-way joint and heat exchange chamber.
  • a check valve is installed at the pipe butt joint to prevent backflow into the heat exchange chamber when the buoyancy tank is drained.
  • the float valve 4 (205 in Fig. 1) is mounted on the drain pipe (214 in Fig. 1) at one end of the buoyancy bin.
  • the installation requirement of this float valve is that the float valve is closed when the float floats and the float is lowered when the float is lowered. Open the valve, make a round hole in the corresponding position of the baffle of the buoyancy chamber (231 in Figure 1), insert the transmission rod (206 in Figure 1) (to add a sealing ring) to dock the float valve 4 (205 in Fig.
  • a venting hole (312 in Fig. 2) is formed in the upper cover of the heat exchange chamber, and the upper cover is mounted on the casing of the heat exchange chamber, so that a complete heat exchange device is completed.
  • Hydraulic horizontal heat exchange circulation device This device mainly consists of a compression package pumping device, an energy storage device, a water pipe, a valve, a check valve, a temperature difference collecting device, a relay water tank, and a main body.
  • each box opens a circular hole at the high point as the liquid inlet hole, and a circular hole is opened at the lower position as the liquid outlet hole.
  • the box body has a good thermal insulation function and can be used. Insulation can also be added to materials with thermal insulation.
  • the pumping device (309 and 326 in Fig. 3) is to be compressed, and the manufacturing process of the compressed pumping device is described in detail in another disclosed invention, which will not be described here.
  • the body can be made of steel or model.
  • the main body must be able to be placed in the water without leaking water into the body. It is best to float in the machine. Floating body on the water surface.
  • the main body should be able to have good thermal insulation properties to avoid external temperature effects during mechanical operation.
  • the temperature difference collecting device may be a solar water heater, a heat sink, a tube with good thermal conductivity, a material that can collect the temperature in the environment, and different materials can be used as the temperature difference collecting device as the specific needs.
  • the steel frame angle steel, I-beam, steel plate, etc.
  • the steel frame can be used as a rectangular parallelepiped frame, which can be welded or riveted.
  • the specific dimensions are mechanical. Depending on the size of the device, the manufacture of the rectangular parallelepiped frame is common knowledge of the ordinary skilled person, and the specific manufacturing process is not repeated.
  • the pumping device 2 Mounted on the bottom plate (52 in Figure 5) below the inner end of the main body, the specific installation method of the pumping device is described in detail in another disclosed invention, the pumping device 2 (in Figure 3 326) Mounted on the bottom plate (52 in Fig. 5) at the other end of the main body.
  • the heat exchange device (301 in Fig. 5) is installed at a position above the two pumping devices inside the main body.
  • the specific installation method is not strictly required, as long as it meets the requirements of firmness and stability and is higher than the pumping device.
  • the height is ok.
  • the energy storage device 1 (319 in FIG. 5) and the energy storage device 2 (310 in FIG. 5) are respectively installed at both ends of the main body, and the low surface of the two energy storage devices is required to be higher than the heat exchange device. The highest level. Others can be as long as they meet the conditions of firmness and stability.
  • One end of the drain pipe 4 (26 in Fig. 3) is connected by a three-way joint and a connecting pipe (233 in Fig. 3), and the other end is connected to the water inlet of the pumping device 2 (326 in Fig. 3). Above the hole, a valve (22 in Fig. 3) is installed at an appropriate position in the middle of the drain pipe 4.
  • This valve is called a heat exchange timing device valve 4, and one end of the upper water pipe 1 (20 in Fig. 3) is installed.
  • a check valve 21 in Fig. 3 is installed at the water outlet, and the other end of the water pipe is installed in the pumping device 2 (Fig. Above the water inlet above 319), one end of the heat exchange tube (318 in Fig. 3) is connected to the water outlet below the energy storage device 2 (319 in Fig. 3), and the other end is connected.
  • the thermal timing device valve 2 (316 in Fig. 3)
  • one end of the heat exchange inlet pipe 300 in Fig. 12
  • the heat exchange device heat exchange timing device valve 2 316 in Fig. 3
  • the other end is installed on the heat exchange inlet (302 in Figure 3). Install a solar water heater or a suitable position in the middle of the heat transfer tube (318 in Figure 3) according to the working conditions.
  • Heater The heat exchange timing device valve 1 (308 in Fig. 3) is mounted at the end of the connecting pipe (233 in Fig. 3). One end of the drain pipe 3 (25 in Fig. 3) is mounted on the interface below the heat exchange timing device valve 1 (308 in Fig. 3), and the other end is mounted on the pumping device 1 (309 in Fig. 3). Above the water inlet, a check valve is installed at the water outlet of the pumping device, and then one end of the upper water pipe 2 (24 in Fig. 3) is mounted on the check valve (311 in Fig.
  • the outer water pipe (304 in Figure 3) must be equipped with a thermal insulation layer to provide good thermal insulation properties.
  • the lower end of the down pipe is connected to the water inlet of the temperature difference collecting device B (305 in FIG. 3), the water outlet of the temperature difference collecting device B and the water pipe (303 in FIG. 3) are connected, and the water pipe (in FIG. 3)
  • the upper end of 303) is connected with the heat exchange timing device valve 3 (314 in Fig.
  • the heat exchange timing device valve 3 is connected through a three-way joint and a heat exchange inlet pipe (300 in Fig. 3).
  • the upper water pipe (303 in Figure 3) should be insulated and insulated to make the water pipe have good thermal insulation properties. If it is used for working in water and used for pumping operation, there is no need to install two energy storage devices.
  • the down pipe (304 in Figure 3) is also not needed.
  • the temperature difference collecting device B and the temperature difference collecting device A are directly used.
  • the water inlets are placed in two different temperature environments, and the water temperature collection device (303 in Figure 3) and heat exchange can be used without the temperature difference collecting device.
  • the drain pipe of the relay water tank is connected to the water inlet of the pumping device 1, in the relay water tank
  • the water outlet is also a water inlet of the pumping device 1 is equipped with a float valve 1 (195 in Fig. 6), in the heat exchange timing device valve 4 (22 in Fig. 3) and the pumping device 2 (Fig. 3
  • a water tank 2 (197 in Fig. 6) is connected to the water pipe between the 326), and a float valve is installed at the water outlet of the relay water tank 2, that is, the water inlet of the pumping device 2, and the relay water tank is required.
  • the height must be lower than the heat exchanger (301 in Figure 12) and higher than the pumping unit (309 and 326 in Figure 3). Now a hydraulic horizontal heat exchange cycle unit is installed and installed.
  • Timing splitting and control device This device mainly has power generating device, linkage driving device, transmission device (pull wire), control rod, power generating device is the detailed production description of the temperature difference power acquiring device. In other inventions, there is detailed information here. No longer said. 1.
  • First make a linkage drive (Fig. 4), use steel as a conduit bracket (27 in Figure 4).
  • the conduit bracket can be welded, riveted or screwed, as long as it is stable and stable.
  • the conduit 2 (29 in Figure 4), install the conduit 1 (28 in Figure 4) in the lower center, and open a rectangular hole in the two conduits as the power output pair interface ( Figure 4 541 and 542), the hydraulic cylinder of the temperature difference acquisition device (the main hydraulic cylinder is a cylinder equipped with an automatic temperature difference adjustment device, which has been disclosed in the invention of the application No. 2015103864062, now known)
  • the installation is fixed in the middle of the two conduits. It is required that the conduit 1, the conduit 2 and the hydraulic cylinder must be in a linear parallel state.
  • the conduit used here should be a guide rod with a rack and the reverse lever 1 (Fig. 4) 33) Insert the inside of the catheter 1 (27 in Fig. 4) and insert the guide rod 2 (34 in Fig.
  • a tension spring hook 5 (538 in Fig. 5) is attached to one end of the main body toward the rear of the hydraulic cylinder, and a tension spring hook 6 is attached to the connecting plate 2 (36 in Fig. 4) (540 in Fig. 5).
  • one end of the tension spring 3 (539 in FIG. 5) is hung on the tension spring hook 5 (539 in FIG. 5), and the other end Hang on the tension spring hook (540 in Figure 5).
  • the specific position is based on the trajectory of the running plate 1 (35 in Fig. 4). That is, pushing and pulling the contact head (166 in Fig. 5) before the telescopic rod (31 in Fig. 4) is retracted to the retraction point can push the head of the control rod 1B (162 in Fig. 5) as a standard. Fix the movable joint of the control rod 2 (164 in Fig. 5) above the pumping device 1 (309 in Fig. 5), and the specific position is before the extension rod reaches the extension rod (31 in Fig. 4) The contact on the upper side of the plate 2 (36 in Fig. 4) (167 in Fig. 5) is capable of pushing the head of the control lever 2B (163 in Fig.
  • the pull wire 4A head fixing card (176 in Fig. 6) fixes the wire 4A head in a proper position, and fixes the wire (B 178 in Fig. 6) of the wire 4B to the head of the control lever 2A (165 in Fig. 5).
  • the wire 5A head fixing card (182 in Fig. 6) is used to fix the wire 5A head casing in a proper position, and the wire 5B head wire (185 in Fig.
  • the wire 8B head housing is fixed in position, and the wire (B9 in Fig. 7) of the wire 8B is fixed to the heat exchange control valve 3 switch (315 in Fig. 3).
  • One of the 89) is hung on the heat exchanger control valve 1 switch (307 in Figure 1) and the other end is fixed in position, above the switch of the buoyancy valve 1 (553 in Figure 1)
  • Two pull wires are attached, and the other ends of the two pull wires are also fixed to the A heads (160 and 165 in Fig. 5) of the control levers 1 and 2, respectively.
  • Temperature difference reversal automatic adjustment starting device This device includes four parts: temperature difference reversal automatic starting device, heat collecting device, diversion device and transmission device. Firstly, a main body bracket of temperature difference reversal automatic starting device is used, and angle steel or channel steel is used. For materials with good stability properties such as word steel, the process requirements of this bracket are not high, and a relatively simple welding method can be selected. First make a bracket bottom plate (Fig. 8 automatic 101), install a stand A (102 in Fig. 8) at one end of the bracket bottom plate, and then install a stand B (103 in Fig. 8). The tail of the hydraulic cylinder 1 (110 in FIG. 8) is mounted and fixed on the hydraulic cylinder fixing point 1 (106 in FIG.
  • the tail of the hydraulic cylinder 2 (130 in Fig. 8) is mounted and fixed on the hydraulic cylinder fixing point 3 (108 in Fig. 8), and the front end of the hydraulic cylinder 2 is fixedly fixed to the hydraulic cylinder fixing point 4 (Fig. 8) 109) above.
  • the double-sided slide rail 1 (117 in Fig. 8) is connected and fixed together with the telescopic rod (111 in Fig. 8) of the hydraulic cylinder 1 through the connecting device 1 (112 in Fig. 8), and the double-sided sliding
  • the rail 2 (138 in Fig. 8) is fixedly coupled together by a connecting device 2 (132 in Fig.
  • tension spring hooks (152 and 154 in Fig. 9) are mounted on the stand A (102 in Fig. 9), and a tension spring hook 2 is mounted under the connecting device 1 (112 in Fig. 9).
  • a tension spring hook 4 (155 in Fig. 9) is attached to the connecting device 2 (132 in Fig. 8), and one end of the tension spring 1 (156 in Fig. 9) is attached. It is hung on the tension spring hook 1 (152 in Fig. 9) and the other end is hung on the tension spring hook 2 (153 in Fig. 9).
  • One end of the tension spring 2 (157 in Fig.
  • Block 1 and directional slider 2 are simultaneously installed into the chutes of the double-sided slide rail 1 and the double-sided slide rail 2, respectively, and then an L-shaped right-angled vertical frame (104 in Fig. 8) and the right-angled stand is installed. It is fixed on the bottom plate of the bracket, and the connection point of the right angle stand (105 in Fig. 8) and the slider plate are fixed and fixed together.
  • variable angle catheter is mounted on the double-sided slide rail 1 through the movable joint 1 (113 in Fig. 8) as a variable angle telescopic rod
  • variable angle telescopic rod is composed of a variable angle duct (114 in Fig. 8) and
  • the angle guide (134 in Fig. 8) is composed of a variable angle guide (134 in Fig. 8) inserted into the variable angle duct (114 in Fig. 8) and passed through the movable joint 5 (Fig. 8)
  • the 133) is mounted on the slide rail 2 (138 in Fig. 8).
  • the push-pull rod 1 (116 in Fig. 8) is mounted on the variable angle duct (114 in Fig. 8) through the movable joint 2 (115 in Fig.
  • the slider 1 (119 in Fig. 8) Mounting into the chute above the double-sided slide rail 1 (117 in Fig. 8), the slider 1 (119 in Fig. 8) is mounted on the push rod by the movable joint 3 (118 in Fig. 8) At one end (116 in Fig. 8), the push-pull rod 2 (136 in Fig. 8) is mounted on the variable angle guide (134 in Fig. 8) through the movable joint 6 (135 in Fig. 8). At the lower end, the slider 2 (139 in Fig. 8) is fitted into the chute below the double-sided slide rail 2 (138 in Fig. 8), and the slider 2 (139 in Fig. 8) is passed through the movable joint. 7 (137 in Fig.
  • a load bearing is mounted on the A head of the two synchronizing gears (158 in Figure 9 and 159, the synchronous transmission 1 (122 in FIG. 8) is mounted on the synchronous transmission 1 bracket (126 in FIG. 8) through the movable joint 4 (123 in FIG. 8), and the synchronous transmission 2 is 141) in Fig. 8 is mounted on the synchronous transmission 2 bracket (144 in Fig. 8) by the movable joint 8 (140 in Fig. 8) because the brackets of the synchronous transmission are respectively fixed to the two slide rails
  • the two synchronous transmissions in 122 and 141 in Fig. 9 have the characteristics of synchronous operation with the double-sided slide rails.
  • the number of pull wires can be determined as needed, if one or two
  • the root puller drive can directly mount one end of the pull wire on the synchronous transmission bracket as shown in Figure 8.
  • the installation using multiple cable drives make two cable clamps ( Figure 9 527 and 526), the fixed frame can be made of round steel or angle steel, I-beam Without strict requirements, the wire holder A (526 in Figure 9) is mounted and fixed on the bracket of the synchronous transmission 1 (126 in Fig. 9), and the cable holder B is mounted and fixed on the bracket of the synchronous transmission 2 ( The upper surface of Fig. 9 can be mounted and fixed using a relatively simple welding method.
  • the pull wire 12 (519 in Fig.
  • the fixing points of the outer casings of one end are respectively fixed on the wire fixing frame A (526 in FIG. 9), and the inner wires of the three wire wires are fixed and fixed at the fixing points of the wire of the synchronous transmission device 1 (in FIG. 9 121)
  • the fixing points of the three ends of the three wires of the pull wire 2 (145 in FIG. 9), the pull wire 10 (505 in FIG. 9), and the pull wire 11 (514 in FIG. 9) are respectively fixed to the wire fixing frame.
  • B (527 in Fig. 9)
  • the inner wires of the three wires are mounted and fixed on the upper wire fixing point 2 (142 in Fig. 9) on the synchronous transmission device 2.
  • the high pressure oil pipe 1 is attached.
  • the temperature difference sensing liquid storage device 2 (149 in FIG. 9) is placed in the temperature difference collecting device B (305 in FIG. 5) or in the environment where the temperature difference collecting device B is located.
  • the branching portion is installed, and one end of the shunt pipe 1 (324 in FIG. 10) is connected to the heat exchange pipe (318 in FIG. 3) through a three-way joint, and the flow regulating valve is used as a standard, and the diverting valve 1 is used.
  • (331 in Fig. 10) is mounted on the heat exchange tube at the position behind the junction of the shunt tube 1 and the heat exchange tube, and the shunt valve 2 (322 in Fig.
  • the switch plate 1 (506 in Fig. 11) is respectively mounted and fixed to the diverter valve 1 switch (320 in Fig. 11) and the diverter valve 2 switch (Fig. 1 21 of 0) above, enabling the two switches to have the performance of synchronous linkage.
  • the switch plate 2 is mounted and fixed on the diverter valve 3 switch (329 in FIG. 11) and the diverter valve 4 switch (330 in FIG. 10) to enable the two switches to be synchronously linked.
  • the B-head inner wire of the pull wire 10 (505 in FIG. 9) connected to the temperature difference reversal automatic control device is mounted and fixed on the switch board 1 (506 in FIG.
  • valve A is installed on the drain pipe 4 at a position between the three-way joint and the heat exchange timing device valve 4
  • the draft tube C is installed on the drain pipe 4 at a position between the valve A and the heat exchange timing device valve 4 through a three-way joint
  • the valve B (509 in Fig. 12) is mounted on the upper side of the draft tube near the valve A
  • the other end of the draft tube C is installed in the relay water tank 1 through a three-way joint (523 in Fig. 12) Above the inlet pipe of 194) in Fig. 6 (198 in Fig. 6), the valve D (511 in Fig.
  • valve C (510 in Fig. 12) is mounted on the draft tube D near the valve D.
  • the drive wire (517 in Figure 12) is fixed on the switch of valve A, valve B, valve C, and valve D, so that the four valves can be linked.
  • the B-head inner wire of the pull wire 11 connected to the temperature difference reversing automatic adjustment to the driving device is mounted and fixed on the valve A switch, and the B-head inner wire of the wire 12 which is automatically adjusted to be adapted to the starting device is connected with the temperature difference reversal (Fig. 12) 518) Mounting is fixed on the valve D switch.
  • the lever can be made into a round long rod.
  • Use a hinge (529 in Fig. 5) to fix the end of the lever (530 in Fig. 5), and then fix the hinge to the rear panel of the main body directly behind the head of the lever 1A (Fig. 5) 53) above.
  • the lever (530 in Fig. 5) can be swung left and right.
  • a manual control device is also provided.
  • the manual control device has four start heat exchange tubes (555, 557, 559, 561 in Fig. 12) and four start valves (556, 558, 560, 562 in Fig. 12).
  • a main switch (563 in Fig. 12) one end of the starting heat exchange tube 1 (555 in Fig. 12) is connected to the heat exchange inlet pipe (318 in Fig. 12), and the other end is connected.
  • a start heat exchange valve 1 (556 in Fig. 12) is mounted on the start heat exchange pipe 1 (555 in Fig. 12) to start the heat exchange.
  • One end of the tube 2 (557 in Fig. 12) is attached to the upper water pipe (303 in Fig. 12), and the other end is attached to the heat exchange inlet pipe (303 in Fig. 12) to start the heat exchange.
  • Valve 2 (558 in Fig. 12) is mounted above the start heat exchange tube 2.
  • a circular hole is formed in the bottom of the heat exchange device (301 in Fig. 12), and one end of the starting heat exchange tube 3 (559 in Fig. 12) is mounted on the circular hole.
  • the face and the other end are attached to the draft tube C (512 in Fig. 12), and the start heat exchange valve 3 (560 in Fig. 12) is mounted on the start heat exchange tube 3.
  • One end of the starting heat exchange tube 4 (561 in Fig.
  • the main switch (563 in Fig. 12) is mounted on the heat exchange inlet pipe (300 in Fig. 12). If you need to use it as an air conditioner, you only need to install a radiator in the high temperature circulation system and a radiator in the low temperature circulation system. The radiator in the low temperature circulation system is used for cooling, and the radiator of the high temperature circulation system is used for heating. The power generated by the engine drives the impeller to blow the temperature carried by the radiator in the high temperature or low temperature system to the desired environment. The entire inventive device is now installed and installed.
  • the principle of the whole device is matched with the work done: (1) The temperature difference is reversed and the work of the starter is automatically adjusted: when the temperature difference is reversed, the temperature difference of the automatic start device is higher than that of the temperature difference induction liquid storage device 1 (148 in Fig. 9).
  • the temperature difference is generated by the induction liquid storage device 2 (149 in Fig. 9), (note: the process of generating the temperature difference does not limit the temperature rise or the temperature drop as long as the temperature difference between the two environments is higher, and the temperature in one environment is higher than that in the other environment.
  • the temperature difference can be reversed and the automatic control device can work to start the entire mechanical device.
  • hydraulic cylinder 1 telescopic rod (111 in Fig. 8) and hydraulic cylinder 2 telescopic rod (131 in Fig. 8) produces a reaction in which the telescopic stroke is asymmetrical, and is relatively the extension cylinder of the hydraulic cylinder 1 (111 in Fig. 8), the telescopic rod of the cylinder 2 (131 in Fig. 8).
  • the hydraulic cylinder 1 telescopic rod (111 in Fig. 8) pushes the double side rail forward, the movable joint 1 (113 in Fig. 8) and the movable joint 2 (133 in Fig.
  • variable angle duct (114 in Fig. 8) and the variable angle duct (134 in Fig. 8) are inclined, and the angle guide is increased with the tilt.
  • the variable angle catheter is pulled inside to accommodate the increasing distance between the movable joint 1 (113 in Figure 8) and the movable joint (133 in Figure 8).
  • the variable angle guide pushes the push rod 1 (116 in Fig. 9) forward, and the push rod 1 pushes the slider 1 (119 in Fig. 9).
  • the variable angle guide (134 in Fig. 8) pulls the push rod 2 (136 in Fig.
  • the slider 1 (119 in Fig. 9) continues to push forward the force bearing of the head of the synchronous transmission 1A (120 in Fig. 9) (in Fig. 9) 158), thereby pushing the head of the synchronous transmission 1A, and at the same time, because of the action of the lever, the B head of the synchronous transmission is inclined rearward and pulls the pull wire 1 (125 in FIG. 9), the pull wire 9 (500 in FIG. 9), Pull the wire 12 (519 in Figure 9).
  • the pull wire 12 (500 in Fig. 11) pulls the switch plate 2 (507 in Fig. 11) while pulling the switch plate 1 (506 in Fig.
  • valve 3 (328 in Fig. 11) is in an open state
  • the diverter valve 4 (332 in Fig. 11) is in a closed state
  • the diverter valve 1 (331 in Fig. 11) is in a closed state, shunted.
  • Valve 2 (322 in Figure 11) is in play Open state.
  • the pull wire 12 (519 in Fig. 12) pulls the valve D switch (521 in Fig. 12) and simultaneously pulls the valve C switch (522 in Fig. 12) through the drive wire (517 in Fig. 12), valve B.
  • valve A switch (524 in Figure 12), when this process is completed, valve A (508 in Figure 12) is closed, valve B (509 in Figure 12) In the open state, valve C (510 in Fig. 12) is in an open state, and valve D (511 in Fig. 12) is in a closed state.
  • the pull wire 1 (125 in Fig. 5) pulls the lever 1 (530 in Fig. 5) to swing, and the lever 1 swings while swinging the head of the control lever 1A (160 in Fig. 5) to the right (due to dialing)
  • the rod is swung left and right, so the lever and the lever are separated after the lever is turned to a certain position.)
  • the head of the lever 1B (162 in Fig.
  • the head of the control rod 1A pulls the inner wire of the pull wire 6 (180 in Fig. 7), and pulls the switch 4 of the heat exchange timing device (23 in Fig. 3) through the drive of the inner wire of the pull wire.
  • the heat exchange timing device valve 4 (22 in Fig. 3) is opened, and at the same time, the heat exchange timing device valve 3 switch (315 in Fig. 3) is pulled by the transmission of the pull wire 8 (96 in Fig. 7) to exchange heat.
  • the timing device valve 3 (314 in FIG. 3) is opened, and the heat transfer control device valve 2 switch (the 317 in FIG. 3) is pulled by the drive of the pull wire 3 (171 in FIG. 7).
  • (316 in Fig. 3) is opened, and the heat exchange control device valve 1 (308 in Fig. 3) is in a closed state due to the pulling force of the valve return tension spring 2 (89 in Fig. 7).
  • the above steps are done synchronously.
  • the liquid medium inside the heat exchange device flows through the heat exchange chamber drain pipe (228 in Fig. 1) through the open heat exchange control device valve (22 in Fig. 3) Then, the valve A (509 in FIG. 12) in the open state flows into the relay tank 1 (194 in FIG. 12) through the draft tube C (512 in FIG. 12), and the liquid medium passes through the float valve. 1 (195 in Fig. 6) flows into the pumping device 1 (309 in Fig. 3), and in the case where the pumping device 1 has insufficient space, the relay tank is temporarily loaded with the liquid medium.
  • the temperature difference induction acquisition device is affected by the higher temperature carried by the liquid medium to generate a thermal expansion effect, driving the hydraulic cylinder telescopic rod (31 in FIG. 4) to extend, and the hydraulic cylinder telescopic rod passes through the connecting plate 2 (attached 36) in Fig. 4 pushes the pumping device 1 (309 in Fig. 3), and presses the liquid in the pumping device 1 through the drain pipe 2 (24 in Fig. 3) into the energy storage device 1 (Fig. 3).
  • the relay tank float valve 1 (195 in Fig.
  • the hydraulic cylinder telescopic rod (31 in Fig. 4) continues to extend so that the push-pull contact 2 (167 in Fig. 7) above the web 2 can push the head of the control rod 2B (163 in Fig. 5), the lever The action causes the control rod 2A to pull the pull wire 4 (177 in Fig. 7) to open the heat exchange control device valve 1 (308 in Fig. 3), and to pass the heat exchange control device through the pull wire 5 (183 in Fig. 7).
  • Valve 3 (314 in Figure 3) closes and pulls pull wire 7 (90 in Figure 7) to open heat exchange control valve 2 (317 in Figure 3), pulling the two pull wires to separate the buoyancy chamber valve 1 (553 in Figure 1) and the buoyancy chamber valve 2 (554 in Figure 1) are open.
  • Pulling the head of the lever 1A (160 in Fig. 5) and the head of the lever 1B by the interaction of the pull wire 7 (90 in Fig. 7) and the pull wire 8 (96 in Fig. 7) push the rocker arm (Fig. 6) 549), the rocker arm is bent and deformed due to the characteristics of the spring piece, so that the head of the control rod 1B is separated from the rocker arm (549 in Fig.
  • the heat exchange timing device valve 4 (22 in Fig. 3) ) can be closed under the tension of the tension spring.
  • the buoyancy chamber is filled with liquid and the float 1 (201 in Figure 1) Floating up to close the float valve 1 (201 in Fig. 1), thereby stopping the injection of water into the heat exchange device, and the float 3 (219 in Fig. 1) floats to cause the float to make the valve 3 (221 in Fig. 1).
  • the water supply timing device (215 in Fig. 1) flows into the heat exchange device through the float valve 1 (201 in Fig. 1) in an open state.
  • the heat exchange device begins a refrigeration heat exchange cycle.
  • the hydraulic cylinder telescopic rod retracts synchronously as the medium in the temperature difference acquisition device decreases, until the thrust contact head 1 (166 in Fig. 6) pushes the lever 1B to cause the lever
  • the 1A head pulls the pull wire 3 (171 in Fig. 7) to open the heat exchange control device valve 2 (316 in Fig. 3), pull the pull wire 6 (180 in Fig. 7) to the heat exchange control device valve 4 ( 22) in Figure 3) opens and pulls the pull wire 8 (96 in Figure 7) to close the heat exchange control device valve 3 (314 in Figure 3) while pulling the two valves connected to the buoyancy chamber respectively (Fig.
  • the heat exchange device begins another heat exchange cycle, and the liquid medium inside the heat exchange device flows through the drain tube 4 (26 in Fig. 3) through the heat exchange in the open state.
  • the control device valve 4 (22 in Fig. 3), the flow guiding valve B (509 in Fig. 12) flowing through the open state flows through the draft tube C (512 in Fig. 12) into the relay water tank 1 (194 in Figure 12).
  • the float valve 1 (201 in Fig. 1) is in an open state, and the liquid in the high temperature environment in the high environment again flows into the heat exchange through the flow dividing device. Device.
  • the above is a complete power cycle of the entire device, so that the entire mechanical device is continuously and continuously performed for a long time.
  • variable angle conduit is tilted backward, and the variable angle duct is tilted backward while pulling the slider 1 (119 in Fig. 8) by the transmission of the push rod 1 (116 in Fig. 8) to retreat, thereby losing synchronization Control of the head of the transmission 1A (120 in Fig. 9).
  • the inclination of the variable angle conduit is increased to push the slider 2 by the transmission of the push-pull rod 2 (136 in Fig. 9) (139 in Fig. 9)
  • the slider 2 pushes the force bearing 2 (159 in Fig. 9) to push the head of the synchronous transmission 2A, and the head of the synchronous transmission 2B (141 in Fig.
  • the liquid medium in the heat exchange device flows into the relay water tank 2 (197 in FIG. 12) through the opened heat exchange control device valve 4 (22 in FIG. 3), and then flows through the temperature difference collecting device B to carry the high temperature.
  • the liquid medium enters the heat exchange device through the open heat exchange timing device valve 3 (314 in Figure 3).
  • the high temperature liquid medium discharged from the heat exchange device after the temperature difference high temperature work is discharged into the relay water tank 1 (194 in FIG. 12) through the open heat exchange timing device valve 1 (308 in FIG. 3).
  • flow through the temperature difference Device A (325 in Figure 3) carries a cryogenic liquid medium through the open heat exchange timing device valve into the heat exchange device.
  • the function of the flow guiding device is to return the high temperature liquid to the high temperature environment and the low temperature liquid to return to the low temperature environment.
  • the function of the flow dividing device is to make the high temperature liquid flow into the heat exchange device when the heat exchange device needs high temperature, and the low temperature liquid when the heat exchange device needs low temperature. Flow into the heat exchanger.
  • the radiator through which the low-temperature temperature-conducting medium flows is installed in an environment requiring refrigeration, and the impeller generated by the engine itself is used to drive the impeller to blow the low temperature carried by the radiator to the required environment.
  • the radiator through which the high-temperature temperature-conducting medium flows is installed in an environment where heating is required, and the power generated by the engine itself is used to drive the impeller to blow the high temperature carried by the radiator to the required environment.
  • the above is only a preferred embodiment of the present invention.
  • the core idea of the present invention is that it does not consume any conventional energy, does not require any external force assistance, does not require electronic product control, does not require any electrical appliances, does not have any pollution to the environment, and has no radiation.
  • It can adapt to various environments of water, land and air, adapt to various temperatures, adapt to various temperature differences, and obtain temperature difference from various temperature environments in a long-term, continuous and automatic manner, and transform it into a continuous source of power, automatically adapting to various environments.
  • the temperature between the two is reversed, automatically adapts to changes in the ambient temperature, and automatically starts the work of the entire machine.
  • the machine operates with various functions of cooling, heating, pumping, and outputting mechanical energy as a power source!
  • Inventions that do not meet all of the above conditions should not detract from the features of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

从各种环境中获取温差转化成动力的温差发动机,有高温低温分流装置、驱动装置、温差动力获取装置、换热装置、换热循环装置、导温介质、传动装置、温差逆转自动调节启动装置、人工控制装置、保温隔热装置、最少两个温度不同的环境、管道共同组成,整体装置对温度没有要求只需要存在温差、可以适应很大的温度范围和极大的温差变化范围。

Description

主动持续从各种环境中获取温差转化成动力的温差发动机 技术领域:
本发明公开了一种从各种存在不同温差的环境中长时间持续获取温差并转化成动力的技术,可以利用自然界中不同环境存在的温差、如深水和表层水的温差、阳光下和阴影下的温差、室内和室外的温差,也可以利用工业废热产生的温差,只要是存在温差的环境就可以获取动力。在两个温差环境中的温差发生逆转时可以自动调整适应并自动启动机器作功,本发明可以广泛用于各种工业,可以提供动力、泵水、太阳能地暖、地温制冷都可以应用,真正实现了零耗能、零排放。属于自动从各种不同的温差环境获中持续获取动力的技术领域。
技术背景:
目前,传统的化石能源面临枯竭且污染严重,人类亟需找到更多的不对环境造成破坏的清洁能源。申请号为2015103864062发明创造名称为(从温差中获取动力利用自然规律实现自动化作业的机械装置)的技术不能够长时间持续不断的产生动力。本发明以(从温差中获取动力利用自然规律实现自动化作业的机械装置)的技术为基础做了进一步的创新,可以主动获取不同环境里的温差并转化成机械能、长时间持续产生机械能,并且在环境温差发生逆转的时候能够自动调节适应环境逆转的变化并且自动重新启动整个装置进行作业。本发明使温差能获取装置成为真正意义上的、并且是在没有任何电子部件的情况下可以自主启动的温差能发动机。
发明内容:
本发明的第一个内容是:提供一种为温差能获取装置改变温差的换热装置,本装置有一个主箱体、可以容纳温差感应装置,进水管和排水管各有一个浮子阀门和一个浮子仓,浮子仓外面靠近主箱体底部又各有一个浮子阀门,进水管下方有一个定时供水装置,在浮子仓有水的情况下进水管的浮子阀门处于关闭状态、排水管的浮子阀门处于打开状态。当控制装置打开了进水管和排水管的阀门时、进水管由于浮子阀门处于关闭状态而不会往换热装置的箱体里面注水,而排水管因为浮子阀门是打开的而开始排水,当主箱体里面的水排尽后两个浮子仓的浮子阀门因为没有浮力而打开,此时两个浮子仓内的水开始通过管道排出、随着浮子仓内的水位下降进水管的浮子阀门开始打开、排水管的阀门开始关闭,进水管注入的水流入定时供水装置而不是主箱体从而避免了过早注水而 影响排水管浮子阀门的完全关闭和主水管浮子阀门的完全打开,到两个浮子仓内的水全部排尽后进水管的阀门早已完全打开、排水管的浮子阀门早已完全关闭。等进水管注入的水达到一定的量的时候定时供水装置因为偏心轴设计原理而歪向一边、把里面的水注入箱体、水全部流出后定时供水装置自动立起来。当箱体内的水超过浮子仓后或开始流入浮子仓、浮子仓注满水后注水管的浮子阀门随之关闭,排水管的浮子阀门随之打开、这个过程中由于箱体内液体对温差感应装置的影响作用温差动力获取装置早已经关闭了排水管的浮子阀门,等到注满水的时候进水管的阀门也随之被关闭,这是一个换热周期,整个做功过程就是如此周而复始的运行。另外浮力仓设有两个阀门、阀门的开关受到液压缸伸缩杆的间接控制,在伸缩杆的伸缩程度达到做功标准的时候打开两个浮力仓阀门、使液体快速流入浮力仓、启动换热装置做功从而避免浪费过多的温差。
本发明的二个内容是:提供一种能够把不同温差环境里的温度传导至温差动力获取装置的液压水平换热循环装置。这个装置主要有压缩包式泵水装置、储能装置、水管、阀门、止回阀、温差采集装置、中继水箱、主机体组成。做功过程为:通过一个泵水装置把液体泵到相对应的处于高位的储能装置里面,储能装置里面的液体因为本身具有的水平特性而通过循环管道流经温差采集装置再经过处于打开状态的阀门进入换热装置对温差动力获取装置的温差感应装置进行换热做功,完成做功的液体介质通过循环管道再通过处于打开状态的阀门排入中继水箱、在适当的时候再流入相对应的泵水装置,有两组性能相同的循环装置,一组负责低温液体的循环、一组负责高温液体的循环。中继水箱的出水口有有浮子阀门可以避免在泵水装置泵水作业的时候发生液体逆流进入中继水箱的状况,泵水装置的出水口有止回阀可以避免上水管的液体回流。泵水装置、储能装置和温差动力获取装置都处于主机体里面,主机体和循环管道都安装有保温隔热层,从而保证了整体机械做功的时候不会受到不必要的外界环境影响。
这个装置可以采用混合式循环、开放式循环、混合式循环、独立循环几种不同的循环方式。(1)混合式循环:适合用于太阳能供暖、动力获取一类的在陆地或者高空的环境中使用。在用于太阳能地暖使用时适合使用混合式循环、就是高温介质在完成对温差动力获取装置的高温传导后流入低温环境把介质携带的热能通过散热装置散发出去变成低温介质再流入换热装置、低温介质在流入换热装置把低温传导给温差动力获取装置、完成低温传导后再循环到高温环境中去采集高温环境里的热能,混合式循环的装置可以最大限度的把介质所携带的热热散发出去,和制热是相同的原理、混合式循环同样适合应用于水冷领域。(2)独立式循环:在用于获取动力使用的情况下适合选用独立式循环、就是高温介质完成高温传导后循环回高温环境、低温介质完成低温传导后循环回低温环境、这样可以避免低温和高温两种能量的额外消耗、最大限度的把高温和 低温两种能量转化为动力。(3)开放式循环这种循环适合用于在水中作业可以用于泵水泵水和作为轮船的动力使用,这种循环方式最简单、不需要使用储能装置和温差采集装置,因为液体具有水平的特性、只要分别用两根具有保温隔热性能的水管分别引导两个不同温度环境里的水进入换热装置进行,泵水装置直接把完成换热做功的液体排到需要的地方或者直接排回湖泊中都可以。
这个装置利用液压和水平的原理、只需要把介质泵到固定高度的储能装置里面或者直接排回水中都可以、因为液压的作用驱动循环系统里面的介质循环,采集十米深度的温差和采集一万米深度的温差所需要的动力是一样的,例如用于采集海洋表面和一万米海底之间的温差或者是海洋表面和一米深处的温差所需的动力是相同的。在循环管道外面和主机体的内外两面都安装有隔热保温层可以有效的避免温差在循环过程中的损失。
本发明的第三个内容是:提供一种把分别携带高温和低温的介质在需要的时候注入换热室的定时分流装置和驱动装置,温差动力获取装置受到高温介质的影响进行做功,完成每一个热做功周期的同时驱动一个对应的泵水装置把泵水装置里面的介质泵到对应的储能装置里面、如果是用于泵水可以直接把水泵到需要的地方,同时低温介质的中继装置里面的低温介质开始流入对应的泵水装置,在完成热做功周期的时候通过联动驱动装置驱动控制杆再通过拉线的传动打开对应的控制阀门使换热室内的液体可以排入对应的中继装置里面,同时打开低温介质通往换热室的阀门。到高温介质完全排入中继装置后低温介质流入换热室,受低温介质的影响温差动力获取装置开始低温作功周期,在进入低温做功周期后高温介质排放的控制阀门即行关闭。在进行低温做功的同时、中继装置里面的高温介质开始流入对应的泵水装置,同时低温介质被泵到对应的储能装置里面(如果用于泵水可以直接把水泵到需要的地方)。温差动力获取装置在完成每一次高、低温做功周期的同时、打开浮力仓阀门使液体快速流入浮力仓从而启动换热装置做功、打开低温介质排放控制阀门和高温介质注入换热室的控制阀门随着低温介质排放控制阀门的打开换热室内的低温介质流入对应的中继装置,到低温介质全部排放后、高温介质开始注入换热室,温差动力获取装置开始又一个高温做功周期。如此周而复始,只要存在两个以上不同的温差环境、温差动力获取装置就可以实现长时间持续做功。
本发明的第四个内容是:提供一种能够在高温低温两个环境的温差发生逆转(就是低温环境变成高温环境,高温环境变成低温环境)的情况下、能够自动调整控制温差能发动机系统适应逆转后的温差环境、并且自主重启整个机械装置进行做功的自动调节适应温差变化的温差逆转自动调节启动装置装置,这个装置利用温差动力获取装置作为动力源,在不需要任何电子设备的情况下实现自动控制功能。这个装置利用两个环境的温差发生逆转变化的过程产生的动力控制各自对应的系统、两个温度环境因温差变化产生的动力相互配 合控制整个装置,在两个环境的温差相同时无论同时升温或者是降温、只要两个环境的温度相同这个装置就不会打开,相反的只要两个温度环境之间存在温差并且温差达到做功的需要了、这个装置就会启动整个机械进行做功。在这里为了表述方便清晰、就设定为在单个温度环境升温的情况下作一个说明:受到热胀冷缩的影响,液压缸1伸缩杆(附图8中的111)和液压缸2伸缩杆(附图8中的131)产生伸缩行程不对称的反应,相对而言就是液压缸1伸缩杆(附图8中的111)前伸液、压缸2伸缩杆(附图8中的131)回缩,在这个过程中液压缸1伸缩杆(附图8中的111)推动双面滑轨前伸,活动关节1(附图8中的113)和活动关节2(附图8中的133)之间产生前后不同的变化距离也加大,变角导管(附图8中的114)和变角导管(附图8中的134)产生倾斜、随着倾斜的加大变角导杆从变角导管里面拉出从而适应活动关节1(附图8中的113)和活动关节(附图8中的133)之间逐渐加大的距离。随着变角导管和变角导杆的倾斜、变角导管推动推拉杆1(附图9中的116)前行、推拉杆1推动滑块1(附图9中的119)前行。同时:变角导杆(附图8中的134)拉动推拉杆2(附图9中的136)后退、推拉杆2拉动滑块2后退。当两个环境的温差达到设计标准的时候,滑块1(附图9中的119)继续前伸推动同步传动装置1A头(附图9中的120)的受力轴承(附图9中的158)、从而推动同步传动装置1A头,同时因为杠杆的作用、同步传动装置的B头往后倾斜并拉动拉线1(附图9中的125)、拉线9(附图9中的500)、拉线12(附图9中的519)。拉线12(附图11中的500)拉动开关连板2(附图11中的507)同时通过联动拉线(附图11中的502)拉动开关连板1(附图11中的506),在这个过程完成后分流阀门3(附图11中的328)处于打开状态、分流阀门4(附图11中的332)处于关闭状态、分流阀门1(附图11中的331)处于关闭状态、分流阀门2(附图11中的322)处于打开状态。拉线12(附图12中的519)拉动阀门D开关(附图12中的521)并通过传动钢丝(附图12中的517)同时拉动阀门C开关(附图12中的522)、阀门B开关(附图12中的525)、阀门A开关(附图12中的524)、当这个过程完成后阀门A(附图12中的508)处于关闭状态、阀门B(附图12中的509)处于打开状态、阀门C(附图12中的510)处于打开状态、阀门D(附图12中的511)处于关闭状态。拉线1(附图5中的125)拉动拨杆1(附图5中的530)摆动,拨杆1摆动的同时拨动控制杆1A头(附图5中的160)向右边摆动(由于拨杆是左右弧形摆动的所以在把控制杆拨到一定的位置后拨杆和控制杆就分离开了,)控制杆1B头(附图5中的162)拨动启动装置止回器的摇臂(附图6中的549),由于摇臂是做圆心运转的、控制杆1B头拨动摇臂转动一定的行程后就和摇臂分离开了摇臂(附图6中的549)在拉簧的拉力下回归至弹簧板定位杆被弹簧板定位杆拦阻,这样当拨杆(附图6中的530)因圆心运转失去对控制杆1(附图5中 的162)的控制后、控制杆1B头因被摇臂(附图6中的549)阻拦而不会被回归拉簧1(附图7中的87)拉回,也就不会改变和控制杆1相互关联对应的阀门的开关状态。从而不会影响换热装置的排水进程。控制杆1A头(附图5中的160)拉动拉线6(附图7中的180)的内丝,通过拉线内丝的传动拉动换热定时装置阀门4开关(附图3中的23)将换热定时装置阀门4(附图3中的22)打开、同时通过拉线8(附图7中的96)的传动而拉动换热定时装置阀门3开关(附图3中的315)将换热定时装置阀门3(附图3中的314)打开、通过拉线3(附图7中的171)的传动拉动换热控制装置阀门2开关(附图3中的317)把换热控制装置阀门2(附图3中的316)打开,换热控制装置阀门1(附图3中的308)由于阀门回归拉簧2(附图7中的89)的拉力而处于关闭状态中,在遇到特殊情况的时候可以通过人工控制装置进行换热启动,可以通过总开关关闭或者启动整个装置。如果出现特殊情况,在两个环境的温差符合机械做功的要求但机械没能自动启动的情况下可以人工启动,首先根据情况打开启动阀门3(附图12自动560)或者启动阀门4(附图)把换热装置里面的液体排入相对应温度的中继水箱里面,然后根据需要打开启动阀门1(附图12自动556)或者启动阀门2(附图12中的558)使需要的液体介质流入换热装置。如果不需要机械作业的时候可以关闭总开关(附图12中的563)、需要作业的时候打开总开关。在需要输出动力的情况下、使用和和导杆(附图4中的33和34)上面的齿条相吻合的传动齿轮从动力输出对接口(附图4中的541和542)的位置对接获取动力就可以了。在需要制冷的时候、把低温导温介质流经的散热器安装在需要制冷的环境里、使用发动机本身产生的动力驱动叶轮把散热器携带的低温吹向需要的环境。在需要制热的时候、把高温导温介质流经的散热器安装在需要制热的环境里、使用发动机本身产生的动力驱动叶轮把散热器携带的高温吹向需要的环境。
以上几项发明配合使用的有益效果是:
温差能获取装置中的温差感应装置受换热装置的影响、产生的动力驱动液压水平换热循环装置里面的介质循环,驱动定时分流装置按照顺序依次把把冷热不同的介质注入换热装置、按次序依次把冷热两种完成做功的介质排入相对应的液压水平换热循环装置,液压水平换热循环系统依靠水的自平特性在不额外消耗机械能的情况下从任意深度的两个存在不同温度的环境里面获取温差,分别使携带不同温度的介质循环到相对应的环境获取需要的温差,也可以直接把介质排放到需要的地方、然后重新获取不同温差环境中带有不同温度的介质,使温差动力获取装置能够长时间不断的获取温差从而持续产生机械能。当两个环境的温差发生逆转时(低温环境变成高温环境、高温环境变成低温环境),温差逆转自动调节启动装置会自动调整携带不同温度的介质进入换热装置的时机、自动调整完成做功后的介质排入到相应的存储装置、并且启动整个 装置使装置正常运转,从而实现了在不消耗任何能源、不需要任何电子部件的情况下使整个机械装置能够长期自动化自主运行,另外还安装有人工启动阀门和总开关、如果发生特殊情况机械不能自动启动还可以进行人工启动、可以按需要关闭或者开启机械作业。本发明用途广泛,在不消耗能源的情况下长时间持续从不同的温度环境中获取温差完成热交换并转化成动力、可以用于泵水、可以用于环境换热、可以作为动力源通过传动装置输出机械能、可以长期自动化作业、可以人工控制。
附图说明:
附图1:换热器的自动定时进水排水系统,附图2:单循环装置,附图3:双循环装置,附图4:联动驱动装置,附图5:安装温差动力获取装置,附图6:安装定时分流装置,附图7:安装定时分流装置,附图8温差逆转自动控制启动装置,附图9:温差逆转自动控制启动装置总成,附图10:安装温差逆传自动控制重启装置的分流装置,附图11:温差逆转自动控制启动装置和分流装置的连接,附图12:温差逆转自动控制启动装置的排水分流装置。
300换热进水管,301换热装置,302换热装置进液口,303上水管,304下水管,305温差采集装置B,306温差感应装置,307换热控制装置阀门1开关,308换热控制装置阀门1,309泵水装置1,310储能装置1,311单向阀2,312换气口,314换热定时装置阀门3,315换热定时装置阀门3开关,316换热定时装置阀门2,317换热定时装置阀门2开关,318换热进液管,319储能装置2,320分流阀门1开关,321分流阀门2开关,322分流阀门2,323三通管,324分流管1,325温差采集装置A,326泵水装置2,327分流管2,328分流阀门3,329分流阀门3开关,330分流阀门4开关,331分流阀门1,332分流阀门4,334穿管孔,20上水管1,21单向阀1,22换热定时装置阀门4,23换热定时装置4开关,24上水管2,25排水管3,26排水管4,27导管支架,28导管1,29导管2,30液压缸销子孔,31液压缸伸缩杆,32液压缸缸体,33导杆1,34导杆2,35连板1,36连板2,52主机体底板,53主机体后立板,54高压油管,83拉线7A头内丝,84拉线7A头固定卡,85拉线6A头固定卡,86拉线6B头固定卡,87回归拉簧1,89回归拉簧2,90拉线7,91拉线7B头固定卡,92拉线7B头内丝,93拉线5A头内丝,94拉线8B头内丝,95拉线8B头固定卡,96拉线8,97拉线8A头内丝,98拉线8A头固定卡,99拉线6A头内丝,180拉线6,181拉线6B头内丝,101支架底板,102立架A,103立架B,104直角立架,105连接点,106液压缸固定点1,107液压缸固定点2,108液压缸固定点3,109液压缸固定点4,110液压缸1,111液压缸1伸缩杆,112连接装置1,113活动关节1,114变角导管,115活动关节2,116推拉杆1,117双面导轨1,118活动关节3,119滑块1,120同步传动装置1A头,121拉线内丝固定点1,122同步传动装置1B头,123活动关节4,124拉线1A头内丝,125 拉线1,126同步传动装置1支架,127滑块连板,128定向滑块1,129定向滑块2,130液压缸2,131液压缸2伸缩杆,132连接装置2,133活动关节5,134变角导杆,135活动关节6,136推拉杆2,137活动关节7,138双面导轨2,139滑块2,140活动关节8,141同步传动装置2B头,142拉线内丝固定点2,143拉线2A他内丝,144同步传动装置2支架,145拉线2,146拉线2A他固定点,147同步传动装置2A头,148温差感应储液装置1,149温差感应储液装置2,150高压油管1,151高压油管2,152拉簧挂钩1,153拉簧挂钩2,154拉簧挂钩3,155拉簧挂钩4,156拉簧1,157拉簧2,158受力轴承1,159受力轴承2,160控制杆1A头,161控制杆1A头活动关节,162控制杆1B头,163控制杆2B头,164控制杆2活动关节,165控制杆2A头,166推力接触头1,167推力接触头2,168拉线3A头固定卡,169拉线3A头内丝,171拉线3,172拉线3B头固定卡,173拉线3B头内丝,176拉线4A头固定卡,177拉线4,178拉线4B头固定卡,179拉线4B头内丝,180拉线6,181拉线6B头内丝,182拉线5A,头固定卡。183拉线5,184拉线4A头内丝,185拉线5B头内丝,188拉线1B头内丝,189拉线2B头内丝,190拉线2B头固定卡,191拉线1B头固定卡,192拉线5A头内丝,193拉线5B头固定卡,194中继水箱1,195中继水箱浮子阀门1,196中继水箱浮子阀门2,197中继水箱2,198中继水箱1进水管,199中继水箱1排水管,200浮力仓隔板,201浮子阀门1,202摇杆1,203浮子1,204浮力仓1,205浮子阀门2,206浮子阀门2传动杆,207摇杆2,208浮子2,209供水定时装置配重板,210供水定时装置浮力板,211进水管2,212供水定时装置活动关节1,213供水定时装置支架1,214浮力仓1排水管,215供水定时装置,216供水定时装置活动关节2,217浮力仓2,218供水定时装置支架2,219浮子3,220摇杆3,221浮子阀门3,222浮力仓2排水口,223浮子阀门4,224摇杆,225浮子4,226换热室排水管,227止回阀,228换热室排水管,229浮力仓2排水管,230传动杆,231浮力仓隔板,232四通接头,233连接管,500拉线9,501拉线9B头固定卡,502联动拉线,503拉线10B头内丝,504拉线10B头固定卡,505拉线10,506开关连板1,507开关连板2,508阀门A,509阀门B,510阀门C,511阀门D,512导流管C,513导流管D,514拉线11,515拉线11B头固定卡,516拉线11B头内丝,517传动钢丝,518拉线12B头内丝,519拉线12,520拉线12B头固定卡,521阀门D开关,522阀门C开关,523三通接头,524阀门A开关,525阀门B开关,526拉线固定架A,527拉线固定架B,528拉线9B头内丝,合页1,530拨杆,531拉簧,532拉簧挂钩,538拉簧挂钩5,539拉簧3,540拉簧挂钩6,,541动力输出对接口1,542动力输出对接口2。543活动关节,544立杆,545支杆,546拉簧,547拉簧挂钩,548弹簧板定位杆,549摇臂,550启动装置止回器2,551定位杆,552摇臂,553浮力仓1阀门,554浮力仓2阀门,555启动换热管1,556启动阀门1,557启 动换热管2,558启动阀门2,559启动换热管3,560启动阀门3,561启动换热管4,562启动阀门4,563总开关。
具体实施:
【第1项】
换热装置:用具备坚固、耐腐蚀、密封、保温隔热的材料做一个外壳箱体,箱体要具备隔热保温、坚固、能储存液体不渗漏的要求。可以用钢板做成然后加装保温层。在箱体内部的一侧隔开一小部分作为浮力仓1(附图1中的204),浮力仓的形状和大小只需要满足浮子1(附图1中的203)的运行轨迹就可以了、不需要太大以免占用太多的空间和消耗过多的介质,只要浮子和摇杆(附图1中的202)能够摆动、且摆动的幅度能够开、关浮子阀门1(附图1中的201)就可以了。在另一侧隔开一小部分作为浮力仓2(附图1中的217),两个浮子仓的做法和要求相同,具体的做法可以参照各种水箱的加工步骤。在两个浮力仓的隔板的中间高度的位置上面各做一个孔、各安装一个阀门(附图1中的553和554),在两个阀门的开关上面各安装一个回归拉簧、使两个阀门在受到外力作用的时候可以打开、在失去外力的时候随即就可以被拉簧拉着关闭。在箱体的上方一侧做一个圆孔、安装一个进水管(附图1中的300)、要求安装牢固、密封无间隙,在进水管(附图1中的300)的箱体内一头安装一个浮子阀门(附图1中的201),然后再把进水管2(附图1中的211)和浮子阀门1(附图1中的201)连接。浮子阀门1的安装要求是、在浮力仓进水把浮子1(附图1中的203)浮起的时候浮子阀门1(附图1中的201)即行关闭,在浮力仓1(附图1中的204)水位下降到一定程度时浮子1(附图1中的203)下降到一定程度了浮子阀门1(附图1中的201)即行关闭。把浮力仓2的隔板(附图1中的200)取下、在下面贴着箱体底板的地方作一个圆孔、将排水管(附图1中的228)装进圆孔里面,把浮子阀门2和排水管(228)连接在一起,这个浮子阀门的安装要求是在水把浮子浮起来时阀门处于打开状态、浮子落下时浮子阀门处于关闭状态。把换热室排水管(附图1中的226)用直角接头和浮子阀门2(附图1中的223)连接在一起,把浮子阀门3(附图1中的223)安装在浮力仓排水管(附图1中的229)的进水口一端、这个浮子阀门的安装要求是在浮子浮起时浮子阀门关闭、浮子落下时浮子阀门打开,在浮力仓隔板(附图1中的200)适当的位置做一个能插过浮子阀门传动杆的圆孔、把传动杆(附图1中的230)穿进圆孔(最好加装密封圈)然后把摇杆(附图1中的224)安装在浮子阀门传动杆(附图1中的230)上面再装上浮子(附图1中的225)。在浮力仓2(附图1中的217)相对应的位置做一个圆孔,在底板和浮力仓2排水管相对应的位置作一个圆孔、把浮力仓隔板(附图1中的200)安装到原来的位置、换热室排水管(附图1中的226)对准相应的底板的圆孔、浮力仓2排水管对准相应的圆孔插进去并且用密封胶密封或者用螺接 的方式密封。用四通接头把浮力仓2排水管(附图1中的229)和换热室排水管、浮力仓1排水管(附图1中的214)连接起来,在四通接头和换热室排水管对接的位置安装一个止回阀、用于防止在浮力仓排水时逆流进入换热室。在浮力仓1下面的底板做一个圆孔使浮力仓1排水管(附图1中的214)可以插进去,插进去后要把连接口做好密封。把浮子阀门4(附图1中的205)安装在排水管(附图1中的214)位于浮力仓的一端、这个浮子阀门的安装要求是在浮子浮起时浮子阀门关闭、浮子落下时浮子阀门打开,在浮力仓的隔板(附图1中的231)相应的位置做一个圆孔、将传动杆(附图1中的206)插进去(要加一个密封圈)对接在浮子阀门4(附图1中的205)上面,把浮子和摇杆(附图1中的207)安装在传动杆(附图1中的206)上面。把连接管(附图1中的233)安装在四通接头(附图1中的232)下面的接口上面。做一个可以存储水的供水定时装置,先做一个和孔府的中庸之器相同原理的水槽,做成长形的,在一侧加装配重板(附图1中的209),另一侧加装浮力板(附图1中的210),在供水定时装置的两头侧板的适当的位置上面各做一个可以转动的活动关节(附图1中的212和216),在换热室箱体的钢板上面安装两个支架(附图1中的213和218),支架1(附图1中的213)安装在活动关节1(附图1中的212)上面,支架2(附图1中的218)安装在活动关节2(附图1中的216)上面。在换热室箱体的上盖做一个换气孔(附图2中的312),把上盖安装到换热室的箱体上面,这样一个完整的换热装置就做好了。
【第2项】
液压水平换热循环装置:这个装置主要有压缩包式泵水装置、储能装置、水管、阀门、止回阀、温差采集装置、中继水箱、主机体组成,做两个箱体(附图3中的310和319),每个箱体都在高处开一个圆孔作为进液孔,在低处开一个圆孔作为出液孔,箱体要具备良好的保温隔热功能,可以用具有保温隔热功能的材料做也可以加装保温层。泵水装置(附图3中的309和326)要用压缩包的方式,压缩泵水装置的制作过程在另一个已经公开的发明里面有详细的介绍、在这里就不再累述了,主机体可以采用钢结构,也可以用模型铸造,如果是在水中作业的机器、则主机体必须做到可以放在水中的情况下不会往机体里面漏水的要求,最好是做成可以漂浮在水面的漂浮式机体。主机体要能够具备良好的保温隔热性能、以避免在机械运行做功时受到外界温度的影响。温差采集装置可以是太阳能热水器、散热器、导热性能良好的管材一类可以采集所处环境中的温度的材料、可视具体需要采用不同的材料作为作为温差采集装置。在这里对主机体的制造列举一个最简单的制造方式简单的说明,用钢材(角钢、工字钢、钢板、)作一个长方体的框架,可以用焊接的方式也可以铆接,具体的尺寸视机械装置的大小而定,制造长方体框架是普通技术人员的常识、具体的制作过程不再累述。下面开始安装:把压缩包泵水装1附图3中的(309)安 装在主机体内部一端下面的底板(附图5中的52)上面,泵水装置具体的安装方式在另一个已经公开的发明里面有详细的说明,把泵水装置2(附图3中的326)安装在主机体另一端的底板(附图5中的52)上面。把换热装置(附图5中的301)安装在主机体内部两个泵水装置之间上方的位置,具体安装方式没有严格的要求、只要符合牢固稳定的条件并且高于泵水装置一定的高度就可以了。把储能装置1(附图5中的319)和储能装置2(附图5中的310)分别安装在主机体的两端、要求两个储能装置的低面必须高于换热装置的最高液位。其他的只要符合牢固稳定的条件就可以了。把排水管4(附图3中的26)的一头用三通接头和连接管(附图3中的233)连接、另一头连接在泵水装置2(附图3中的326)的进水孔上面,在排水管4的中间适当的位置安装一个阀门(附图3中的22)这个阀门称作:换热定时装置阀门4,把上水管1(附图3中的20)的一端安装在泵水装置2(附图3中的326)的出水口上面,在出水口位置安装一个止回阀(附图3中的21),上水管的另一端安装在泵水装置2(附图3中的319)上方的进水口上面,把换热管(附图3中的318)的一端连接在储能装置2(附图3中的319)下面的出水口上面,另一端连接在换热定时装置阀门2(附图3中的316)上面,把换热进水管(附图12中的300)的一端连接在换热装置换热定时装置阀门2(附图3中的316)上面、另一端安装在换热进液口(附图3中的302)上面,按工作条件需要、在换热管(附图3中的318)中间适当的位置安装一个太阳能热水器或者散热器。把换热定时装置阀门1(附图3中的308)安装在连接管(附图3中的233)末端。把排水管3(附图3中的25)的一端安装在换热定时装置阀门1(附图3中的308)下面的接口上面、另一端安装在泵水装置1(附图3中的309)的进水口上面,在泵水装置的出水口安装一个止回阀、然后把上水管2(附图3中的24)的一端安装在止回阀(附图3中的311)上面、另一端安装在储能装置1(附图3中的310)上方的进水口上面,把下水管(附图3中的304)的一端穿过主机体的穿管孔(附图5中的334)安装在储能装置1(附图3中的310)下面的出水口上面,下水管(附图3中的304)外面必须加装保温隔热层,使其具备良好的保温隔热性能。下水管的下端连接在温差采集装置B(附图3中的305)的进水口上面、温差采集装置B的出水口和上水管(附图3中的303)连接,上水管(附图3中的303)的上端和换热定时装置阀门3(附图3中的314)连接在一起、把换热定时装置阀门3通过一个三通接头和换热进水管(附图3中的300)连接在一起,上水管(附图3中的303)外面要做好保温隔热层、使上水管具备良好的保温隔热性能。如果是用于在水中作业并用于泵水作业,就不需要安装两个储能装置了,下水管(附图3中的304)也不需要了,直接把温差采集装置B和温差采集装置A的进水口分别放在两个不同温度的环境里面,也可以不用温差采集装置、直接把上水管(附图3中的303)和换热 管(附图3中的318)的进水口分别放在存在不同温度的水里面,把上水管1(附图3中的20)和上水管2(附图3中的24)的排水口通往需要水的地方,这样的的布局必须保证水平面要高于换热装置的液位以上,由于是开放式取水、必须在上水管(附图3中的304)和换热管(附图3中的318)的进水口加装过滤装置、以免杂物进入而影响机械正常运转,。在排水管3(附图3中的25)上面连接一个中继水箱1(附图6中的194),这个中继水箱的排水管连接在泵水装置1的进水口上面,在中继水箱的出水口也就是泵水装置1的进水口安装一个浮子阀门1(附图6中的195),在换热定时装置阀门4(附图3中的22)和泵水装置2(附图3中的326)之间的水管上面连接一个中继水箱2(附图6中的197),在中继水箱2的排水口也就是泵水装置2的进水口安装一个浮子阀门,要求中继水箱的高度必须要低于换热装置(附图12中的301)、高于泵水装置(附图3中的309和326)。现在一个液压水平换热循环装置就制作安装完成了。
【第3项】
定时分流和控制装置:这个装置主要有动力产生装置、联动驱动装置、传动装置(拉线)、控制杆,动力产生装置就是温差动力获取装置的详细制作说明在别的发明里面有详细资料在这里就不再累述。1、先做一个联动驱动装置(附图4),用钢材做一个导管支架(附图4中的27),,导管支架可以选用用焊接、铆接、螺接的方式,只要牢固稳定就行、支架的上方安装导管2(附图4中的29),中下方安装导管1(附图4中的28),在两个导管上面各开一个长方形的孔作为动力输出对接口(附图4中的541和542),把温差能获取装置的液压油缸(主这个液压油缸是安装了极端温差自动调节装置的,这个装置已经在申请号为2015103864062的发明创造中公开、现在为公知内容)的缸体安装固定在两个导管的中间,要求导管1、导管2和液压油缸必须处于直线平行状态,在这里使用的导管要选用一面带有齿条的导杆,把倒杆1(附图4中的33)插入导管1(附图4中的27)里面,把导杆2(附图4中的34)插入导管2(附图4中的28)里面,两个导杆(附图4中的34和33)的齿条面必须对应两个动力输出对接口(附图4中的541和542),把连板1(附图4中的35)的两端分别固定在导杆1和导杆2的一端,固定的方法可以是焊接也可以是螺接、具体的方法一般的技术人员都会操作。把连板2(附图4中的36)的两端分别固定在导杆1和导杆2的另一端、把液压油缸伸缩杆(附图4中的31)的前端固定在连板2的中间位置。安装完毕后把导管支架(附图4中的27)的底端固定在主机体底板(附图5中的52)上面两个泵水装置中间合适的位置。在主机体朝向液压缸尾部的一端安装一个拉簧挂钩5(附图5中的538),在连板2(附图4中的36)上面安装一个拉簧挂钩6(附图5中的540),把拉簧3(附图5中的539)的一端挂在拉簧挂钩5(附图5中的539)上面、另一端 挂在拉簧挂钩(附图5中的540)上面。把把温差感应储液罐也就是本发明所述的温差感应装置(附图5中的306)安装到换热装置的里面、温差感应装置和换热装置的底板必须留出一定的空隙,把高压油管(附图5中的54)的一端安装在温差感应装置的进出液孔上面、另一端安装在液压油缸缸体(附图4中的32)后面的进出液孔上面。用钢材作两个控制杆,每个控制杆的中间安装一个活动关节(附图6中的164和161),活动关节的安装位置要靠近控制杆的一端,使控制杆具备杠杆的特性。把控制杆1活动关节(附5中的161)安装在泵水装置2(附图5中的325)的上方,具体的位置以连板1(附图4中的35)运行的轨迹为标准,就是在伸缩杆(附图4中的31)回缩到缩止点之前推拉接触头(附图5中的166)能够推动控制杆1B头(附图5中的162)为标准。把控制杆2活动关节(附图5中的164)固定在泵水装置1(附图5中的309)的上方、具体位置为伸缩杆(附图4中的31)到达伸止点之前连板2(附图4中的36)上面的碰触头(附图5中的167)能够推动控制杆2B头(附图5中的163)为标准。把拉线3A头内丝(附图6中的169)固定在控制杆1A头(附图6中的160)上面,用拉线3A头用固定卡(附图6中的168)把拉线3的A头外壳固定在合适的位置,把拉线3B头内丝(附图6中的173)固定在换热定时装置阀门2开关(附图3中的317)上面,用拉线3B头固定卡(附图6中的172)把拉线3B头外壳固定在合适的位置,把拉线4A头内丝(附图6中的184)固定在换热定时装置阀门1开关(附图3中的307)上面,用拉线4A头固定卡(附图6中的176)把拉线4A头固定在合适的位置,把拉线4B头内丝(附图6中的178)固定在控制杆2A头(附图5中的165)上面,用拉线4B头固定卡(附图6中的179)把拉线4B头外壳固定在合适的位置,把拉线5A头内丝固定在换热定时装置阀门3开关(附图3中的315)上面,用拉线5A头固定卡(附图6中的182)把拉线5A头外壳固定在合适的位置,把拉线5B头内丝(附图6中的185)固定在换热定时装置阀门1开关(附图3中的307)上面,用拉线5B头固定卡(附图6中的193)把拉线5B头外壳固定在合适的位置,把拉线6A头内丝(附图7中的99)固定在控制杆1A头(附图5中的160)上面,用拉线6A头固定卡(附图7中的85)把拉线6A头外壳固定在合适的位置,把拉线6B头内丝(附图7中的181)固定在换热控制装置阀门4开关(附图3中的23)上面,用拉线6B头固定卡(附图7中的86)把拉线6B头外壳固定在合适的位置,把拉线7A头内丝(附图7中的83)固定在换热定时装置阀门2开关上面,用拉线7A头固定卡把拉线7A头外壳固定在合适的位置,把拉线7B头内丝(附图7中的92)固定在控制杆2A头(附图7中的165)上面,用拉线7B头固定卡(附图7中的91)把拉线7B头外壳固定在合适的位置,把拉线8A头内丝(附图7中的97)固定在控制杆1B头(附图5中的160)上面,用拉线8A头固定卡(附图7中的98)把 拉线8B头外壳固定在合适的位置,把拉线8B头内丝(附图7中的94)固定在换热控制装置阀门3开关(附图3中的315)上面。把回归拉簧1(附图7中的87)的一头挂在换热定时装置阀门4开关(附图3中的23)上面、另一头固定在合适的位置,把回归拉簧2(附图7中的89)的一头挂在换热控制装置阀门1开关(附图1中的307)上面、另一头固定在合适的位置,在浮力仓阀门1(附图1中的553)的开关上面安装两根拉线、把两个拉线的另一头分别安装在控制杆1和2的A头(附图5中的160和165),在浮力仓阀门2(附图1中的554)的开关上面安装两根拉线、也把两根拉线的另一头分别固定在控制杆1和2的A头(附图5中的160和165)上面。
【第4项】
温差逆转自动调节启动装置:这个装置包括温差逆转自动启动装置、分热装置、导流装置、传动装置四个部分,先做一个温差逆转自动启动装置的主体支架,要使用角钢或槽钢、工字钢之类的具备良好的稳固性能的材料,这个支架的工艺要求不高、可以选用比较简单的焊接方式。先做一个支架底板(附图8自动101),在支架底板的一端安装一个立架A(附图8中的102),再安装一个立架B(附图8中的103)。把液压缸1(附图8中的110)的尾部安装固定在液压缸固定点1(附图8中的106)上面、液压缸1的前端安装固定在液压缸固定点2(附图8中的107)上面。把液压缸2(附图8中的130)的尾部安装固定在液压缸固定点3(附图8中的108)上面、液压缸2的前端安装固定在液压缸固定点4(附图8中的109)上面。把双面滑轨1(附图8中的117)通过连接装置1(附图8中的112)和液压缸1的伸缩杆(附图8中的111)连接固定在一起,把双面滑轨2(附图8中的138)通过连接装置2(附图8中的132)和液压缸2的伸缩杆(附图8中的131)连接固定在一起。在立架A(附图9中的102)上面安装两个拉簧挂钩(附图9中的152和154),在连接装置1(附图9中的112)下面安装一个拉簧挂钩2(附图9中的153),在连接装置2(附图8中的132)上面安装一个拉簧挂钩4(附图9中的155),把拉簧1(附图9中的156)的一端挂在拉簧挂钩1(附图9中的152)上面、另一端挂在拉簧挂钩2(附图9中的153)上面。把拉簧2(附图9中的157)的一端挂在拉簧挂钩3(附图9中的154)上面、另一端挂在拉簧挂钩4(附图9中的155)上面。把定向滑块1(附图8中的128)和定向滑块2(附图8中的129)分别安装固定在滑块连板(附图8中的127)的两端、然后把定向滑块1和定向滑块2同时分别安装进双面滑轨1和双面滑轨2的滑槽里面,再做一个L形状的直角立架(附图8中的104)并把直角立架安装固定在支架底板上面,把直角立架的连接点(附图8中的105)和滑块连板安装固定在一起。把变角导管通过活动关节1(附图8中的113)安装在双面滑轨1上面,做一个变角伸缩杆,变角伸缩杆由一个变角导管(附图8中的114)和一个变 角导杆(附图8中的134)组成、把变角导杆(附图8中的134)插进变角导管(附图8中的114)里面、并通过活动关节5(附图8中的133)安装在滑轨2(附图8中的138)上面。把推拉杆1(附图8中的116)通过活动关节2(附图8中的115)安装在变角导管(附图8中的114)上面,把滑块1(附图8中的119)安装进双面滑轨1(附图8中的117)上面的滑槽里面,把滑块1(附图8中的119)通过活动关节3(附图8中的118)安装在推拉杆(附图8中的116)的一端,把推拉杆2(附图8中的136)通过活动关节6(附图8中的135)安装在变角导杆(附图8中的134)的下端,把滑块2(附图8中的139)安装进双面滑轨2(附图8中的138)下面的滑槽里面,把滑块2(附图8中的139)通过活动关节7(附图8中的137)和推拉杆2(附图8中的136)连接在一起。做两个L形状的同步传动装置支架(附图8中的126和144),把同步传动装置1支架(附图8中的126)安装在双面滑轨1(附图8中的117)的前端,把同步传动装置2支架(附图8中的144)安装在双面滑轨2(附图8中的138)的前端,安装这两个支架要注意、为了检修方便最好不用焊接的方式,要采用螺接的方式安装。做两个同步传动装置(附图8中的122和141),同步传动装置是一个杠杆原理的传动杆,在两个同步传动装置的A头安装一个受力轴承(附图9中的158和159,把同步传动装置1(附图8中的122)通过活动关节4(附图8中的123)安装在同步传动装置1支架(附图8中的126)上面,把同步传动装置2(附图8中的141)通过活动关节8(附图8中的140)安装在同步传动装置2支架(附图8中的144)上面,因为同步传动装置的支架是分别固定在两个滑轨上面的、所以使这两个同步传动装置(附图9中的122和141中的)具备了和双面滑轨同步在轨运行的特征。拉线的安装数量可以按需要决定,如果用一两根拉线传动,可以直接把拉线的一端安装在同步传动装置支架上面如(附图8)所示。现在对使用多个拉线传动的安装做一下说明:做两个拉线固定架(附图9中的527和526),固定架可以用圆钢或者角钢、工字钢做原料,没有严格的要求,把拉线固定架A(附图9中的526)安装固定在同步传动装置1支架(附图9中的126)上面,把拉线固定架B安装固定在同步传动装置2支架(附图9中的114)上面、可以使用比较简单的焊接方式安装固定。把拉线9(附图9中的500)、拉线12(附图9中的519)、拉线1(附图9中的125)一端的外壳固定点分别固定在拉线固定架A(附图9中的526)上面、把三根拉线的内丝都安装固定在同步传动装置1的拉线内丝固定点(附图9中的121)上面,把拉线2(附图9中的145)、拉线10(附图9中的505)、拉线11(附图9中的514)三根拉线一端的外壳固定点分别固定在拉线固定架B(附图9中的527)上面、把三根拉线的内丝都安装固定在同步传动装置2上面的拉线内丝固定点2(附图9中的142)上面。把高压油管1(附图9中的150)安装在温差感应储液装置1 (附图9中的148)的进出油孔上面,在高压油管外面加装性能良好的保温隔热层,把温差感应储液装置1(附图9中的148)放到温度采集装置A里面或者放在温度采集装置A(附图3中的325)所处的环境里面,然后把高压油管1(附图5中的150)的另一端安装在液压油缸1(附图9中的110)尾部的进出油孔上面。把高压油管2(附图9中的151)的一端安装在温差感应储液装置2(附图9中的149)的进出油孔上面,把高压油管2外面做好保温隔热层,然后把温差感应储液装置2(附图9中的149)放到温差采集装置B(附图5中的305)里面、或者放到温差采集装置B所处的环境里面也可以是上水管(附图5中的303)的进水口位置。接下来安装分流部分,把分流管1(附图10中的324)的一端通过三通接头连接在换热管(附图3中的318)上面、以水的流向为标准、把分流阀门1(附图10中的331)安装在分流管1和换热管连接点后面位置的换热管上面、把分流阀门2(附图10中的322)安装在分流管1(附图中的324)上面,把分流管1(附图10中的324)的另一端通过三通接头连接在上水管(附图3中的303)处于换热定时装置阀门3(附图3中的314)前方的位置,把分流阀门4(附图10中的332)安装在上水管(附图3中的303)上面处于上水管和分流管1连接点前方的位置,把分流管2(附图10中的327)通过三通接头连接在上水管(附图3中的303)上面处于分流阀门4(附图10中的332)前方的位置,把分流阀门3(附图10中的328)安装在分流管2(附图10中的327)上面,把开关连板1(附图11中的506)分别安装固定在分流阀门1开关(附图11中的320)和分流阀门2开关(附图10中的21)上面、使两个开关能够具备同步联动的性能。把开关连板2安装固定在分流阀门3开关(附图11中的329)和分流阀门4开关(附图10中的330)上面、使两个开关能够同步联动。把连接着温差逆转自动控制装置的拉线10(附图9中的505)的B头内丝安装固定在开关连板1(附图11中的506)上面、用拉线10B头固定卡(附图11中的504)把拉线10B头外壳固定在合适的位置,把连接着温差逆转自动控制启动装置的拉线9(附图9中的500)的B头内丝(附图11中的528)固定在开关连板2(附图11中的507)上面,用拉线9B头固定卡(附图11中的501)把拉线B头外壳固定在合适的位置,用联动拉线(附图11中的502)把开关连板1和开关连板2连接起来、使四个开关可以同步互动。接下来再安装排水分流:把导流管D(附图12中的513)的一端通过通接头连接在排水管4(附图3中的26)上面处于换热定时装置阀门4(附图3中的22)和中继水箱(附图6中的197)之间的位置,把阀门A安装在排水管4上面处于三通接头和换热定时装置阀门4之间的位置,把导流管C通过三通接头安装在排水管4上面处于阀门A和换热定时装置阀门4之间的位置,把阀门B(附图12中的509)安装在导流管上面靠近阀门A的位置,把导流管C的另一端通过三通接头(附图12中的523)安装在中继水箱1(附 图6中的194)的进水管(附图6中的198)上面,把阀门D(附图12中的511)安装在三通接头(附图12中的523)和换热控制装置阀门1(附图3中的307)之间的位置上面,把导流管D的另一端通过三通接头连接在阀门D(附图12中的511)和换热控制装置阀门1(附图3中的307)之间的水管上面,把阀门C(附图12中的510)安装在导流管D上面靠近阀门D的位置。把传动钢丝(附图12中的517)分别固定在阀门A阀门B阀门C阀门D的开关上面,使四个阀门能够具备联动的特征。把连接着温差逆转自动调节适应驱动装置的拉线11的B头内丝安装固定在阀门A开关上面,把连接着温差逆转自动调节适应启动装置的拉线12的B头内丝(附图12中的518)安装固定在阀门D开关上面。用钢材作一个拨杆(附图5中的530和532),拨杆可以做成圆形的长杆。用合页(附图5中的529)固定在拨杆(附图5中的530)的尾端,然后把合页固定在控制杆1A头正后面的主机体后立板(附图5中的53)上面。使拨杆(附图5中的530)能够左右摆头。在合适的位置安装一个拉簧挂钩(附图5中的531),把拉簧(附图5做的532)的一端挂在拨杆上面、另一端挂在拉簧挂钩(附图5中的531)上面。把拉线1(附图5中的125)和拉线2(附图5中的145)的B头内丝分别固定在拨杆(附图5中的530)上面,用拉线固定卡把两个拉线的外壳固定点固定在合适的位置。再制作一个启动装置止回器,把立杆(附图6中的544)安装固定在主机体的底板上面,用弹簧钢片制作一个摇臂(附图6中的549),把摇臂(附图6中的549)通过活动关节(附图6中的543)安装在立杆(附图6中的544)上面,把支杆(附图6中的545)平行焊接在立杆右边,用弹簧钢片作一个弹簧板定位杆(附图6中的548),把弹簧板定位杆(附图6中的548)垂直焊接在支杆上面,把拉簧挂钩(附图6中的547)焊接在支杆上面,把拉簧(附图6中的546)的一端挂在摇臂上面、另一端挂在拉簧挂钩上面。在控制杆2A头(附图7中的165)安装两根拉线、拉线的另一头分别连接在浮力仓1阀门(附图1中的553)和浮力仓2阀门(附图1中的554)的开关上面,把两个拉线的两头的外壳固定点分别固定在合适的位置。再做一个人工控制装置,人工控制装置有4个启动换热管(附图12中的555、557、559、561)和4个启动阀门(附图12中的556、558、560、562)和一个总开关(附图12中的563)组成,把启动换热管1(附图12中的555)的一端连接在换热进液管(附图12中的318)上面、另一端连接在换热进水管(附图12中的300)上面,在启动换热管1(附图12中的555)上面安装一个启动换热阀门1(附图12中的556),把换热启动管2(附图12中的557)的一端安装连接在上水管(附图12中的303)上面、另一端安装连接在换热进水管(附图12中的303)上面,把换热启动阀门2(附图12中的558)安装在启动换热管2上面。在换热装置(附图12中的301)底部作一个圆孔、把启动换热管3(附图12中的559)的一端安装在这个圆孔上 面、另一端安装连接在导流管C(附图12中的512)上面,把启动换热阀门3(附图12中的560)安装在启动换热管3上面。把启动换热管4(附图12中的561)的一端连接在启动换热管3上面、另一端连接在导流管D(附图12中的513)上面,把启动换热阀门4(附图12中的562)安装连接在启动换热管4上面。把总开关(附图12中的563)安装换热进水管(附图12中的300)上面。如果需要作为空调使用、只需要在高温循环系统中安装一个散热器、在低温循环系统中安装一个散热器,低温循环系统中的散热器用于制冷,高温循环系统的散热器用于制热,用温差发动机产生的动力驱动叶轮把高温或者低温系统中散热器携带的温度吹到需要的环境中。现在整个发明的装置就制作安装完成了。
整体装置相配合做功的原理:(1)、温差逆转自动调节启动装置的做功:当温差温差逆转自动启动装置的温差感应储液装置1(附图9中的148)所处的温度高出温差感应储液装置2(附图9中的149)而产生温差时,(注:这个产生温差的过程不局限升温或者降温只要两个环境产生温差,一个环境里的温度高于另一个环境里面的温度温差逆转自动控制装置就可以做功从而启动整个机械装置做功)。在这里为了表述方便清晰、就设定为在单个温度环境升温的情况下作一个说明:受到热胀冷缩的影响,液压缸1伸缩杆(附图8中的111)和液压缸2伸缩杆(附图8中的131)产生伸缩行程不对称的反应,相对而言就是液压缸1伸缩杆(附图8中的111)前伸液、压缸2伸缩杆(附图8中的131)回缩,在这个过程中液压缸1伸缩杆(附图8中的111)推动双面滑轨前伸,活动关节1(附图8中的113)和活动关节2(附图8中的133)之间产生前后不同的变化距离也加大,变角导管(附图8中的114)和变角导管(附图8中的134)产生倾斜、随着倾斜的加大变角导杆从变角导管里面拉出从而适应活动关节1(附图8中的113)和活动关节(附图8中的133)之间逐渐加大的距离。随着变角导管和变角导杆的倾斜、变角导管推动推拉杆1(附图9中的116)前行、推拉杆1推动滑块1(附图9中的119)前行。同时:变角导杆(附图8中的134)拉动推拉杆2(附图9中的136)后退、推拉杆2拉动滑块2后退。当两个环境的温差达到设计标准的时候,滑块1(附图9中的119)继续前伸推动同步传动装置1A头(附图9中的120)的受力轴承(附图9中的158)、从而推动同步传动装置1A头,同时因为杠杆的作用、同步传动装置的B头往后倾斜并拉动拉线1(附图9中的125)、拉线9(附图9中的500)、拉线12(附图9中的519)。拉线12(附图11中的500)拉动开关连板2(附图11中的507)同时通过联动拉线(附图11中的502)拉动开关连板1(附图11中的506),在这个过程完成后分流阀门3(附图11中的328)处于打开状态、分流阀门4(附图11中的332)处于关闭状态、分流阀门1(附图11中的331)处于关闭状态、分流阀门2(附图11中的322)处于打 开状态。拉线12(附图12中的519)拉动阀门D开关(附图12中的521)并通过传动钢丝(附图12中的517)同时拉动阀门C开关(附图12中的522)、阀门B开关(附图12中的525)、阀门A开关(附图12中的524)、当这个过程完成后阀门A(附图12中的508)处于关闭状态、阀门B(附图12中的509)处于打开状态、阀门C(附图12中的510)处于打开状态、阀门D(附图12中的511)处于关闭状态。拉线1(附图5中的125)拉动拨杆1(附图5中的530)摆动,拨杆1摆动的同时拨动控制杆1A头(附图5中的160)向右边摆动(由于拨杆是左右弧形摆动的所以在把控制杆拨到一定的位置后拨杆和控制杆就分离开了,)控制杆1B头(附图5中的162)拨动启动装置止回器的摇臂(附图6中的549),由于摇臂是做圆心运转的、控制杆1B头拨动摇臂转动一定的行程后就和摇臂分离开了摇臂(附图6中的549)在拉簧的拉力下回归至弹簧板定位杆被弹簧板定位杆拦阻,这样当拨杆(附图6中的530)因圆心运转失去对控制杆1(附图5中的162)的控制后、控制杆1B头因被摇臂(附图6中的549)阻拦而不会被回归拉簧1(附图7中的87)拉回,也就不会改变和控制杆1相互关联对应的阀门的开关状态。从而不会影响换热装置的排水进程。控制杆1A头(附图5中的160)拉动拉线6(附图7中的180)的内丝,通过拉线内丝的传动拉动换热定时装置阀门4开关(附图3中的23)将换热定时装置阀门4(附图3中的22)打开、同时通过拉线8(附图7中的96)的传动而拉动换热定时装置阀门3开关(附图3中的315)将换热定时装置阀门3(附图3中的314)打开、通过拉线3(附图7中的171)的传动拉动换热控制装置阀门2开关(附图3中的317)把换热控制装置阀门2(附图3中的316)打开,换热控制装置阀门1(附图3中的308)由于阀门回归拉簧2(附图7中的89)的拉力而处于关闭状态中。以上的步骤是同步完成的。
(2)在完成上述的动作后,换热装置里面的液体介质通过换热室排水管(附图1中的228)流经处于打开状态的换热控制装置阀门(附图3中的22)、再流经处于打开状态的阀门A(附图12中的509)通过导流管C(附图12中的512)流入中继水箱1(附图12中的194),液体介质通过浮子阀门1(附图6中的195)流入泵水装置1(附图3中的309),在泵水装置1空间不足的情况下中继水箱负担暂时存储液体介质。
(3)接下来进入换热装置的排水做功周期,换热装置里面的液体介质排净后,处于换热室内的浮子4(附图1中的225)没有水的浮力而落下、浮子阀门4(附图1中的223)随之打开,浮力仓2(附图1中的217)里面的液体经打开的浮子阀门4(附图1中的223)排出流入进入循环装置,到浮力仓2内部的液体排净后浮子3(附图1中的219)失去浮力而落下、浮子阀门3(附图1中的221)随之关闭、此时换热室内部的排水口被关闭。同时、浮子2(附图1中的208)因为失去浮力而落下浮子阀门2(附图1中的205)被打开、 浮力仓1(附图1中的204)内部的液体经过打开的浮子阀门2流出浮力仓1(附图1中的204)进入循环系统直到排尽,浮子1(附图1中的203)因失去浮力而落下、浮子阀门1(附图1中的201)随之被打开。
(4)处于高位的储能装置2(附图12中的319)里面的液体流经温差采集装置A(附图3中的325)获取高温后、流经处于打开状态的分流阀门2(附图11中的322),经过分流管1(附图11中的324)流经处于打开状态的换热控制装置阀门3(附图3中的314),向上流经换热进水管(附图11中的300)、经过处于打开状态的打开的浮子阀门1(附图1中的201)流入换热室内部的供水定时装置(附图1中的215),等到供水定时装置里面的水达到上限时,两个浮力仓(附图1中的204和217)内部的液体已经完全排净了,由于偏心原理、供水定时装置里面的液体达到上限后立即翻到、里面的液体倒入换热室内部温差感应获取装置已上面。换热室内的液体介质达到一定的高位后、由于液体对浮力板(附图1中的210)的浮力作用、定时供水装置重新恢复直立的状态。
(5)温差感应获取装置受到液体介质所携带的较高温度的影响而产生热胀效应、驱动液压缸伸缩杆(附图4中的31)前伸,液压缸伸缩杆通过连板2(附图4中的36)推动泵水装置1(附图3中的309),把泵水装置1里面的液体经过排水管2(附图3中的24)压入储能装置1(附图3中的310),由于2的出水口位于储能装置的高处位置加上止回阀(附图3中的311)的配合、任何情况下都不会发生液体介质回流的状况。这个时候由于液体位置的升高使的中继水箱浮子阀门1(附图6中的195)被关闭、从而避免了液体往中继水箱倒流的难题。液压缸伸缩杆(附图4中的31)继续前伸到能够使连板2上面的推拉接触头2(附图7中的167)推动控制杆2B头(附图5中的163),杠杆作用使控制杆2A头拉动拉线4(附图7中的177)把换热控制装置阀门1(附图3中的308)打开、通过拉线5(附图7中的183)把换热控制装置阀门3(附图3中的314)关闭、拉动拉线7(附图7中的90)把换热控制装置阀门2(附图3中的317)打开,拉动两根拉线分别把浮力仓阀门1(附图1中的553)和浮力仓阀门2(附图1中的554)打开。通过拉线7(附图7中的90)和拉线8(附图7中的96)的互动作用拉动控制杆1A头(附图5中的160)、控制杆1B头推动摇臂(附图6中的549)、摇臂由于弹簧片的特性而弯曲变形从而使控制杆1B头脱离摇臂(附图6中的549)的控制、最终使换热定时装置阀门4(附图3中的22)得以在拉簧的拉力下关闭。随着两个浮力仓阀门的打开、换热室内的液体介质开始快速流入两个浮力仓(附图1中的204和217),浮力仓内注满液体后浮子1(附图1中的201)浮起来使浮子阀门1(附图1中的201)关闭、从而停止往换热装置里面注水,浮子3(附图1中的219)浮起来使浮子使阀门3(附图1中的221)打开、从而开始把换热装置里面的 液体排出,换热装置里面的液体介质流经打开的换热定时装置阀门1(附图1中的308)、流经阀门C(附图12中的510)、通过导流管D流入中继水箱2(附图12中的197)、继续流入泵水装置2(附图3中的326)里面。此时、处于高位的储能装置1(附图3中的310)里面的液体促使温差采集装置B(附图3中的305)里面携带低温的液体介质通过上水管(附图3中的303)流经处于打开状态的分流阀门3(附图11中的328)、流经分流管2(附图11中的327)、流经处于打开状态的换热控制装置阀门(附图3中的316)、通过处于打开状态的浮子阀门1(附图1中的201)流入换热装置里面的供水定时装置(附图1中的215)。换热装置又开始了一个制冷换热周期。
(6)当换热装置里面的高温介质全部排出之后、携带低温的介质流入换热装置对温差感应装置(附图3中的306)进行低温影响时、液压油缸的伸缩杆(附图4中的31)开始回缩,在伸缩杆回缩一定的行程后、推力接触头(附图5中的167)和控制杆2B头分离,换热控制装置阀门1开关(附图3中的308)因为失去了外力的控制而在阀门回归拉簧2(附图7中的89)的拉力下被关闭,两个浮力仓阀门(附图1中的553和554)也在回归拉簧的拉力下关闭。同时通过两个伸缩杆(附图4中的33和34)推动连板1(附图4中的35)、推动泵水装置2(附图3中的326),把泵水装置2里面的介质通过排水管1(附图3中的20)排入储能装置2(附图3中的319)、由于排水管的出水口处于储能装置的高处位置加上排水管安装有止回阀、所以任何时候都不会发生液体介质回流的状况。同时由于泵水装置里面的液体位置升高导致中继水箱排水口的浮子阀门(附图6中的196)被关闭、从而避免了液体回流进入中继水箱2(附图6中的197)的可能。随着换热装置里面低温液体的增加、液压油缸伸缩杆随着温差获取装置里面介质的降低而同步回缩,直到推力接触头1(附图6中的166)推动控制杆1B头导致控制杆1A头拉动拉线拉线3(附图7中的171)把换热控制装置阀门2(附图3中的316)打开、拉动拉线6(附图7中的180)把换热控制装置阀门4(附图3中的22)打开、拉动拉线8(附图7中的96)把换热控制装置阀门3(附图3中的314)关闭,同时拉动两根分别连接着浮力仓阀门(附图1中的553和554)的拉线把两个浮力仓阀门打开。同时由于推力接触头的的推拉和摇臂的圆心运行特征导致摇臂(附图附图6中的549)和控制杆1B头(附图5中的162)分离,并且由于推力接触头1(附图6中的166)宽度较大、而导致在推力接触头随着伸缩杆前伸而失去对控制杆1B头(附图5中的162)分离后的一段行程内依然不能和摇臂把摇臂分离、从而导致了摇臂失去对控制杆1B头的控制,也就是说摇臂(附图6中的549)只能在每次温差发生逆转的情况下第一次启动的第一个做功周期内对控制杆1B头起到拦阻的作用,摇臂(附图6中的549)和拨杆(附图5中的530)相互配合起到了保证了在启动过程中机器的正常运转的效果。
(7)随着两个浮力仓阀门的打开,换热装置开始又一个换热周期,换热装置里面的液体介质通过排水管4(附图3中的26)流经处于打开状态的换热控制装置阀门4(附图3中的22)、流经处于打开状态的导流阀门B(附图12中的509)流经导流管C(附图12中的512)流入中继水箱1(附图12中的194)。到换热装置里面的介质完全排入中继水箱1里面之后,浮子阀门1(附图1中的201)处于打开状态,此时处于高位环境的高温环境里面的液体再次通过分流装置流入换热装置。
以上所述就是整个装置一个完整的做功周期,如此周而复始整个机械装置实现了长时间持续做功。
(8)、当两个环境的温差再次发生逆转,温差采集装置B(附图3中的305)变成高温环境、温差采集装置A(附图3中的319)变成低温环境时,温差逆转自动调节启动装置的两个温差感应装置也分别受到高低温度变化的影响导致各自对应的两个液压缸伸缩杆的伸缩行程发生逆转,变成液压缸1伸缩杆(附图8中的111)伸出的短、液压缸2伸缩杆(附图8中的131)伸出的长的状态,从而导致变角导杆(附图8中的134)向前倾斜、变角导管(附图8中的114)向后倾斜,变角导管向后倾的同时通过推拉杆1(附图8中的116)的传动作用拉动滑块1(附图8中的119)回撤、从而失去对同步传动装置1A头(附图9中的120)的控制。当两个环境之间的温差达到需要的标准的时候、变角导管的倾斜加大从而通过推拉杆2(附图9中的136)的传动而推动滑块2(附图9中的139),滑块2推动受力轴承2(附图9中的159)从而推动同步传动装置2A头、由于杠杆作用使同步传动装置2B头(附图9中的141)拉动拉线2(附图9中的145)、拉线10(附图9中的505)、拉线11(附图9中的514),拉线10(附图11中的505)拉动开关连板1(附图11中的506)通过联动拉线(附图11中的502)的传动拉动开关连板2(附图11中的507)、从而打开分流阀门1(附图11中的331)、关闭分流阀门2(附图11中的322)、打开分流阀门4(附图11中的332)、关闭分流阀门3(附图11中的328),拉线11(附图12中的514)通过传动钢丝(附图12中的517)的传动打开阀门A(附图12中的508)、关闭阀门B(附图12中的509)、打开阀门D(附图12中的511)、关闭阀门C(附图12中的510),拉线2(附图5中的145)拉动拨杆(附图5中的530)、这个过程和拉线1(附图5中的125)拉动拨杆后产生的效果和过程是相同的,就不再累述了。然后换热装置内的液体介质通过被打开的换热控制装置阀门4(附图3中的22)流入中继水箱2(附图12中的197),然后流经温差采集装置B后携带高温的液体介质经过处于打开状态的换热定时装置阀门3(附图3中的314)进入换热装置。温差高温做功的过程后从换热装置内排出的高温液体介质通过处于打开状态的换热定时装置阀门1(附图3中的308)排入中继水箱1(附图12中的194),然后流经温差采集 装置A(附图3中的325)携带低温的液体介质经过打开的换热定时装置阀门进入换热装置。导流装置的功能是使高温液体回归高温环境、低温液体回归低温环境,分流装置的功能是在换热装置需要高温的时候使高温液体流入换热装置、换热装置需要低温的时候使低温液体流入换热装置。
(9)如果出现特殊情况,在两个环境的温差符合机械做功的要求但机械没能自动启动的情况下可以人工启动,首先根据情况打开启动阀门3(附图12自动560)或者启动阀门4(附图)把换热装置里面的液体排入相对应温度的中继水箱里面,然后根据需要打开启动阀门1(附图12自动556)或者启动阀门2(附图12中的558)使需要的液体介质流入换热装置。如果不需要机械作业的时候可以关闭总开关(附图12中的563)、需要作业的时候打开总开关。在需要输出动力的情况下、使用和和导杆(附图4中的33和34)上面的齿条相吻合的传动齿轮从动力输出对接口(附图4中的541和542)的位置对接获取动力就可以了。在需要制冷的时候、把低温导温介质流经的散热器安装在需要制冷的环境里、使用发动机本身产生的动力驱动叶轮把散热器携带的低温吹向需要的环境。在需要制热的时候、把高温导温介质流经的散热器安装在需要制热的环境里、使用发动机本身产生的动力驱动叶轮把散热器携带的高温吹向需要的环境。
声明:
以上只是本发明的一个较佳实施方案,本发明的核心思想是在不消耗任何传统能源,不需要任何外力辅助,不需要电子产品控制,不需要任何电器,对环境没有任何污染,没有辐射的前提条件下:可以适应水、陆、空各种环境,适应各种温度,适应各种温差,长期、持续、自动从各种温度环境获取温差并转化成源源不断的动力,自动适应各种环境之间的温度高低逆转,自动适应环境温度的变化,自动启动整个机器做功。机器运转同时具备制冷、制热、泵水、作为动力源输出机械能的多种功能!不符合上述所有条件的发明均不应抵触本发明的特征。
而如果使用电子控制或者电器辅助、外力协助或者消耗能源的方式结合本发明的理论基础拼凑成一个新的发明、则是本领域普通技术人员所能够显而易见的想到的方案、而且比本发明所述方案更轻易的就能实现、所以本说明书也就不做这种实施方案的陈述了,综上所述:所有在本发明的核心思想及理论基础上进行修改的发明特征都应该属于抄袭。

Claims (10)

  1. 所述的是一个主动持续从各种环境中获取温差转化成动力的温差发动机,有高温低温分流装置、驱动装置、温差动力获取装置、换热装置、换热循环装置、导温介质、传动装置、温差逆转自动调节启动装置、人工控制装置、保温隔热装置、最少两个温度不同的环境、管道共同组成,其特征在于:换热循环装置连接最少两个存在不同温度的环境和换热装置、换热循环装置中安装高温低温分流装置、驱动装置安装在温差动力获取装置上面用来驱动换热循环装置、导温介质充装在循环装置里面、温差动力获取装置的温差感应装置安装在换热装置里面、传动装置安装在温差动力获取装置的动力输出装置上面、温差逆转自动调节启动装置对应两个不同温度的环境并连接循环装置和换热装置、换热循环装置和换热装置内外都设有保温隔热装置、管道连接不同的温度环境和循环装置和换热装置、人工控制装置安装在换热循环装置和换热装置上面,整体装置不需要任何电子部件、不需要消耗传统能源、可以适应水、陆、空各种环境、对温度没有要求只需要存在温差、可以适应很大的温度范围和极大的温差变化范围,在各种所要获取温差的环境中温差达到机械做功条件的时候、温差逆转自动调节启动装置自主启动换热装置开始换热做功,把换热装置里面的导温介质排入换热循环装置,随后换热循环装置里面携带高温的介质注入换热装置开始换热做功,温差动力获取装置受到高温流体导温介质的影响而做功、温差动力获取装置完成高温做功的同时驱动换热装置把完成做功的导温介质排入换热循环装置、完成换热使命后的高温导温介质通过循环回装置流至高温环境,随后低温环境中的导温介质通过换热循环装置进入换热装置开始降温做功、温差动力获取装置受低温影响进行低温做功,完成低温做功后低温导温介质通过换热循环装置回流至低温环境,随后换热装置再次进行高温换热做功、从而整个装置进行做功,如此周而复始、只要不同的环境中存在一定的温差、机械就能够持续不停的运转获取源源不断的机械能,每当两个环境的温度再次发生逆转且温差达到做功需要时、温差逆转自动调节启动装置就再次自动启动械进行运转,整体装置具有保温隔热功能,遇到突发情况的时候可以人工控制,所有的特征都是基于不用电子控制、不消耗传统能源、不需要任何外力辅助的要求苛刻的前提条件下完成的,所述的高温低温是指两个环境中的相对温差而言的、不是指的特定的温度,综上所述,这个发动机具备不受各种辐射干扰和能源枯竭的影响、能够在不消耗传统能源、不需要外力辅助的情况下在水、陆、空、各种环境、各种温度和各种温差条件下主动持续获取温差并转化 成源源不断的动力、长期自动持续运转,同时兼具制冷、制热、泵水和作为动力源输出机械能的功能。
  2. 根据权利要求1所述的换热装置,有外壳箱体、进水管、排水管、浮子阀门1、浮子阀门2、浮子阀门3、浮子阀门4、浮力仓、浮力仓隔板、浮力仓阀门、定时供水装置、配重装板、浮力材料、隔热材料组成,其特征在于:进水管和排水管各有一个浮子阀门和一个浮子仓,浮子仓外面靠近主箱体底部又各有一个浮子阀门,进水管下方有一个定时供水装置,在浮子仓有液体的情况下进水管的浮子阀门处于关闭状态、排水管的浮子阀门处于打开状态、因为在浮力仓有液体的情况下浮子阀门是打开的而开始排出液体,当主箱体里面的液体排尽后两个浮子仓的浮子阀门因为没有浮力而打开、两个浮子仓内的液体通过管道排出、随着浮子仓内的液体位下降进水管的浮子阀门开始打开、排水管的阀门开始关闭,进水管注入的水流入定时供水装置,等进水管注入的液体达到一定的量的时候定时供水装置因为偏心轴设计原理而歪向一边、把里面的液体全部注入箱体,到换热装置里面的液体达到一定的高位后液体对浮力材料的浮力加上配重板的作用使定时供水装置恢复站立的状态。当箱体内的液体超过浮子仓后开始流入浮子仓、使进水管的浮子阀门随之关闭,排水管的浮子阀门随之打开液体开始排出、从而开始一个新的换热周期,整个做功过程就是如此周而复始的运行,换热装置的箱体有隔热保温层,在两个浮力仓隔板上面各设有一个阀门。
  3. 根据权利要求2所述的换热装置的两个浮力仓隔板上面各有一个阀门,其特征在于:在换热装置里面的液体没有超过浮力仓隔板的情况下、打开阀门就可以使液体流入浮力仓、从而启动换热装置进行换热做功,换热装置进行换热的同时就启动了整个温差发动机开始自动做功、温差发动机具备在特殊情况下可以人工控制的性能。
  4. 所述的是一个液压水平换热循环装置,有储能装置、循环管道、保温隔热材料、高温温差采集装置、低温采集装置、散热装置、高温中继水箱、低温中继水箱、换热控制装置、阀门回归拉簧、止回阀、泵水装置、主机体组成,其特征在于:温差动力获取装置驱动泵水装置把液体泵到相对应的处于高位的储能装置里面,储能装置存储的能量利用液压水平的原理驱使液体通过循环管道流经温差采集装置再经过处于打开状态的阀门进入换热装置对温差动力获取装置的温差感应装置进行换热做功,完成做功的液体介质通过循环管道再通过处于打开状态的阀门排入中继水箱、在适当的时候再流入相对应的泵水装置,有两组性能相同的循环装置、每组都有换热控制装置阀门,一组负责低温液体的循环、一组负责高温液体的循环,中继水箱的出水口有有浮子阀门可以避免在泵水装置泵水作业的时候发生液体逆流进入中继水箱的状况,泵水装置的出水口有止回阀可以避免上水管的液体回流,泵水装置、储能装置和温差动 力获取装置都处于主机体里面,主机体和循环管道都安装有保温隔热层,可以保证整体机械做功的时候不会受到不必要的外界环境影响,利用水平的原理只要很小的动力驱就可以使流体导温介质在任意深度环境里循环从而获取任意深度的温差。
  5. 根据权利要求4所述这是一个液压水平换热循环装置,各主要部件之间用循环管道连接,其特征在于:管道的连接方式是可以按需要改变的,改变管道的循环途径就可以改变整体装置的性能,做成封闭式循环适合用于获取机械能作为动力源使用,做成开放式循环可以适合于泵水作业,也可以做成冷热两种流体导温介质混合式循环,加装散热器就可以适合于太阳能地暖和利用地温制冷。
  6. 根据权利要求4所述的液压水平换热装置有一个定时分流和驱动装置,有动力产生装置、联动驱动装置、动力输出对接口、传动装置(拉线)、控制杆组成,其特征在于:在温差动力获取装置完成热做功周的时候通过联动驱动控制杆再通过拉线打开对应的换热控制装置控制阀门使换热室内的液体可以排入对应的中继装置里面,同时打开低温介质通往换热室的阀门,在进每次热做功周期和冷做功周期开始后联动驱动装置失去对控制杆和传动拉线的的控制、高低、温介质排放的换热控制装置阀门即行关闭,温差动力获取装置在完成低温做功周期的同时通过联动驱动装置启动控制杆再通过传动拉线打开浮力仓阀门使液体快速流入浮力仓从而启动换热装置做功、打开流体导温介质排放控制阀门把携带低温的流体介质排放到对应的中继水箱、打开和携带高温的流体导温介质相对应的换热控制阀门使高温介质注入换热室、使温差动力获取装置开始新的做功周期,如此周而复始永不停息。
  7. 根据权利要求6所述这是一个定时分流和驱动装置,驱动装置上面有两个动力输出对接口,其特征在于:动力输出对接口是可以和传动装置对接并输出动力的,把传动装置和动力输出对接口对接就可以把整个机械获取的动力传输出去作为动力源使用。
  8. 所述的是一个温差逆转自动调节启动装置,有主支架、两个温差动力获取装置、高压油管、保温隔热材料、双面导轨、滑块、定向滑块、推拉杆、变角伸缩杆、同步传动装置、分热装置、启动开关、总开关组成,其特征在于:两个功率和行程都相同的温差动力获取装置的温差感应储液罐分安装在两个温度不同的环境,温差动力获取装置的液压油缸固定在主支架上面,高压油管外面安装保温隔热材料、连接液压油缸和温差感应储液罐,双面导轨安装在液压油缸的伸缩杆上面,定向滑块安装在主支架上面用来限制双面滑轨的运行轨迹,滑块安装在双面滑轨上面,推拉杆的一端安装在滑块上面另一端安装在变角伸缩杆上面,变角伸缩杆的伸缩杆的导杆和导管分别安装在两个双面滑轨上面,总开关安装在换热装置的进水口位置,启动开关安装在换热装置的排水口 位置,两个环境的温度高低发生逆转时、所在环境中的温度直接影响温差感应储液罐、继而反应在液压油缸伸缩杆的行程上面,两个环境的温差影响各自对应的液压油缸伸缩杆的行程、从而使变角伸缩杆发生相应的倾斜继而驱动同步传动装置,同步传动装置再把动力传递到相应的部件启动机械开始做功,在特殊情况下可以通过启动开关人工启动或者通过关闭总开关停止做功。
  9. 根据权利要求8所述的温差逆转自动调节装置有两个双面导轨,其特征在于:双面导轨的一面安装做功滑块另一面安装定向滑块、两个定向滑块是通过连板固定在一个牢固的位置的两个双面导轨通过定向滑轨的稳固作用而具备了稳定的运行轨迹、同时又能够安装做功用的滑块,两个双面滑轨上面有一个变角伸缩杆。
  10. 根据权利要求1或8或9所述的温差逆转自动调节装置的两个双面导轨上面有一个变角伸缩杆,变角伸缩杆是由导管和导杆组成的可以伸缩的,导管和导杆是通过活动关节分别安装在两个双面滑轨上面、可以随着驱动两个滑轨运行的伸缩杆的行程不同而改变角度的,两个功率和行程都相同的温差动力获取装置分别对应两个温度不同的环境,不同温差环境对两个温差动力获取装置的影响而导致的两个液压缸伸缩杆的行程不同而驱动变角伸缩杆发生相应的倾斜、从而通过相对应的推拉杆驱动滑块在轨运行,滑块推动同步传动装置上面的受力轴承、使同步传动装置中的传动拉线分别关闭和开启相对应的分热装置上面的阀门、从而改变液体介质在管道里面的流向,使携带不同温度的液体在需要的时间分别依次序流入换热装置,同步传动装置中的传动拉线分别关闭和开启相对应的导流装置上面的阀门、从而改变液体介质在管道里面的流向、使携带不同温度的液体排放到相对应的温度环境中,其特征在于:每当两个环境的温度发生逆转且温差达到做功需要时、温差逆转自动调节启动装置就自动启动发动机进行运转,使整体装置在不需要电子控制不需要人工辅助的情况下能够长期自动工作、自动适应各种环境之间温差逆转的变化。
PCT/CN2017/000617 2017-02-09 2017-10-09 主动持续从各种环境中获取温差转化成动力的温差发动机 WO2018145232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710070174.9A CN107143472B (zh) 2017-02-09 2017-02-09 主动持续从各种环境中获取温差转化成动力的温差发动机
CN201710070174.9 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018145232A1 true WO2018145232A1 (zh) 2018-08-16

Family

ID=59783326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000617 WO2018145232A1 (zh) 2017-02-09 2017-10-09 主动持续从各种环境中获取温差转化成动力的温差发动机

Country Status (2)

Country Link
CN (1) CN107143472B (zh)
WO (1) WO2018145232A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143472B (zh) * 2017-02-09 2019-08-09 贾二芳 主动持续从各种环境中获取温差转化成动力的温差发动机
CN108525951A (zh) * 2018-06-25 2018-09-14 江苏瑞合硕电子科技有限公司 Ro膜自动卷膜机的自动灌胶机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2613563A1 (en) * 2005-06-29 2007-01-04 Victhom Human Bionics Inc. Metal hydride actuator
CN203412708U (zh) * 2013-08-05 2014-01-29 白坤生 低温热能转化为机械能的装置
CN104481828A (zh) * 2014-11-26 2015-04-01 中国船舶重工集团公司第七一〇研究所 一种海洋监测设备的供电装置及方法
CN105298775A (zh) * 2015-04-13 2016-02-03 贾二芳 从温差中获取动力利用自然规律实现自动化作业的机械装置
CN106050588A (zh) * 2016-02-19 2016-10-26 贾二芳 温差能获取装置行程控制系统
CN107143472A (zh) * 2017-02-09 2017-09-08 贾二芳 主动持续从各种环境中获取温差转化成动力的温差发动机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101803A (zh) * 1987-03-07 1987-11-18 沈升日 水压式闭式循环海水温差发电方法,浮体式闭式循环海水温差发电方法
CN102852748A (zh) * 2012-04-18 2013-01-02 武汉高智创新科技有限公司 低温差空气热能发电的方法
CN204386829U (zh) * 2014-09-30 2015-06-10 林荣炎 温差发电设备
CN105507367A (zh) * 2016-01-25 2016-04-20 张方元 一种自然热交换空气造水方法、装置及系统
CN106194619A (zh) * 2016-07-05 2016-12-07 贾二芳 用从温差中获取的动力制造温差并获取动力的发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2613563A1 (en) * 2005-06-29 2007-01-04 Victhom Human Bionics Inc. Metal hydride actuator
CN203412708U (zh) * 2013-08-05 2014-01-29 白坤生 低温热能转化为机械能的装置
CN104481828A (zh) * 2014-11-26 2015-04-01 中国船舶重工集团公司第七一〇研究所 一种海洋监测设备的供电装置及方法
CN105298775A (zh) * 2015-04-13 2016-02-03 贾二芳 从温差中获取动力利用自然规律实现自动化作业的机械装置
CN106050588A (zh) * 2016-02-19 2016-10-26 贾二芳 温差能获取装置行程控制系统
CN107143472A (zh) * 2017-02-09 2017-09-08 贾二芳 主动持续从各种环境中获取温差转化成动力的温差发动机

Also Published As

Publication number Publication date
CN107143472A (zh) 2017-09-08
CN107143472B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2018145232A1 (zh) 主动持续从各种环境中获取温差转化成动力的温差发动机
CN105042888A (zh) 一种结合温差发电和太阳能的天然气管道防冻胀系统
CN203586647U (zh) 用于冷冻水系统的消防水箱蓄冷系统
CN207193301U (zh) 一种细胞培养液恒温调控系统
CN107238201B (zh) 一种同时具备储水箱和取水箱的空气能热水器
CN106455417B (zh) 一种换流阀冷却系统及使用该冷却系统的直流输电设备
CN209840250U (zh) 一种用于温室大棚的太阳能耦合土壤源热泵供暖系统
CN203810530U (zh) 太阳能供暖装置
CN114234266B (zh) 一种基于岩土热特性的房屋跨季节冷热调控方法
CN201852321U (zh) 新型排回防冻装置
CN208365712U (zh) 一种太阳能集成空气源热泵的冷暖系统
CN205783474U (zh) 一种太阳能吸收式空调系统
CN101907364A (zh) 太阳能与住宅一体化开水热水器装置
CN101566364B (zh) 一种用于油田的封闭式采暖系统
CN203837301U (zh) 防冻太阳能聚热装置
CN108561939B (zh) 基于相变换热技术的余热利用装置
CN203949395U (zh) 可双排空的分仓盘管式承压太阳能热水器
CN205066203U (zh) 一种塔式太阳能闭式带压吸热系统
CN203068816U (zh) 一种太阳能热水器
CN215930164U (zh) 一种撬装式原油光集热相变储能一体装置
CN203629135U (zh) 一种污水处理用热泵机组
CN212362482U (zh) 一种轻型船用模块式冷热水机组
CN202869017U (zh) 一种能定温防冻的单管非承压太阳能热水器系统
CN201828045U (zh) 太阳能与住宅一体化开水热水器装置
CN201255471Y (zh) 一种节能可转换供热制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895973

Country of ref document: EP

Kind code of ref document: A1