WO2016165391A1 - 一种视觉设备作为传感器的并联平台跟踪控制装置与方法 - Google Patents

一种视觉设备作为传感器的并联平台跟踪控制装置与方法 Download PDF

Info

Publication number
WO2016165391A1
WO2016165391A1 PCT/CN2015/098520 CN2015098520W WO2016165391A1 WO 2016165391 A1 WO2016165391 A1 WO 2016165391A1 CN 2015098520 W CN2015098520 W CN 2015098520W WO 2016165391 A1 WO2016165391 A1 WO 2016165391A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving platform
motion
platform
zero
source marker
Prior art date
Application number
PCT/CN2015/098520
Other languages
English (en)
French (fr)
Inventor
张宪民
莫嘉嗣
邱志成
魏骏杨
李海
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to JP2017551143A priority Critical patent/JP6424281B2/ja
Priority to US15/562,898 priority patent/US9971357B2/en
Priority to EP15889087.1A priority patent/EP3285131B1/en
Publication of WO2016165391A1 publication Critical patent/WO2016165391A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1623Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50162Stewart platform, hexapod construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the invention relates to position measurement and tracking control of a plane parallel platform, in particular to a parallel platform tracking control device and method for a visual device as a sensor.
  • Precision positioning platform is an important part of precision operation, precision manufacturing and precision measurement.
  • the traditional precision positioning platform is usually composed of a compliant mechanism driven by piezoelectric ceramics, which is characterized by high precision and fast response time; however, its inherent short stroke has limited its range of use.
  • Today's technological development has led to more and more cross-scale use occasions. Large strokes and high precision have become the bottleneck of precision positioning platforms.
  • the method of macro-micro combination has been proposed. The combination of macro and micro is to put the micro-motion platform on the macro-motion platform, use the large-stroke macro-motion platform for coarse positioning, and then use the fine-motion precision positioning platform for fine positioning.
  • the positioning accuracy of the macro-motion platform must be within the working space of the micro-motion platform, which puts high requirements on the positioning accuracy of the macro-motion platform.
  • the traditional parallel platform is a semi-closed positioning platform, that is, a platform with only closed joints. Due to practical applications, various uncertainties such as machining error, assembly error, joint clearance, friction, and elastic deformation are widespread. Although the joints of the parallel platform can be accurately positioned, after passing to the end of the platform, various aforementioned The error, therefore, must ensure the positioning accuracy of the end, not just the positioning accuracy of the joint.
  • the device can be used for end feedback of a planar parallel platform.
  • the position and attitude angle errors of the platform can be calculated by a single single degree of freedom sensor, such as a laser displacement sensor, after a certain arrangement measurement, but this undoubtedly increases the volume of the entire mechanism. This makes it impossible to apply the mechanism to a size limited situation such as a scanning electron microscope cavity.
  • the object of the present invention is to provide a parallel platform tracking control device and method for a visual device as a sensor in order to overcome the problems and deficiencies of a planar parallel mechanism without a suitable planar 3 degree of freedom measurement sensor.
  • the invention adopts the CCD camera vision measurement system and the position tracking feedback control device as the sensor, can not only solve the measurement problem of the plane 3 degrees of freedom by the image processing measurement method, but also realize the real-time feedback of the end position and the attitude angle, and realize the parallel platform.
  • the full closed-loop control has a significant effect on improving the end accuracy of the planar parallel positioning platform.
  • CCD camera vision measurement equipment only needs CCD camera, lens, light source and other equipment, the structure is simple, small size, suitable for integration in small space size.
  • the invention enables the moving platform to achieve sub-micron positioning accuracy under millimeter-scale travel.
  • a visual device as a parallel platform tracking control device for sensors, comprising a parallel platform mechanism, a CCD camera vision measurement system, and a position tracking feedback control device;
  • the parallel platform mechanism comprises: a static platform 4, a moving platform 3 disposed above the static platform 4, three ultrasonic linear motors, and an ultrasonic linear motor driver; the moving platform 3 has three rotating shafts, respectively arranged in an equilateral triangle The outer edge of the movable platform 3; the three ultrasonic linear motors 1 are respectively arranged in an equilateral triangle and are installed at the edge of the static platform 4; the shaft ends of the rotating shafts 10 mounted on the ultrasonic linear motors 1 respectively pass through a driven rod 2 connecting one of the rotating shafts of the moving platform 3; each ultrasonic linear motor 1 Each is provided with a linear encoder encoder 5;
  • An ultrasonic linear motor 1, a driven rod 2 and a rotating shaft of the moving platform 3 form a parallel branch;
  • Three ultrasonic linear motors 1 jointly drive the driven rod 2 to move the moving platform 3 to the target position;
  • the linear encoder 5 is driven to detect the actual position of the motor 1;
  • the first point source marker 8-1 and the second point source marker 8-2 of the two linearly distributed focused blue lasers are mounted on the moving platform 3 as visual detection features;
  • the CCD camera vision measurement system includes: a CCD camera 11 placed above the moving platform 3, a lens 6 mounted at an end of the CCD camera 11, a camera light source 9 disposed on one side of the lens 6, a USB interface, a computer; The camera 11 is connected to the computer via a USB interface;
  • the lens 6 is perpendicular to the moving platform 3, so that the center point of the lens 6 coincides with the origin of the moving platform 3;
  • the position tracking feedback control device comprises: a Dspace semi-physical simulation controller with an incremental encoder interface module and a D/AC interface, the D/AC interface is connected to a driver of the ultrasonic linear motor, and each linear encoder encoder 5 is The incremental encoder interface module is connected, the incremental encoder interface module is connected to the computer, and the computer is connected to the D/AC interface.
  • the CCD camera 11 further has a support mechanism including a bracket 7 with a movable joint and a magnetic base 12 for fixing the bracket 7, and the CCD camera 11 is fixed to the end of the bracket 7.
  • control method of the above-mentioned visual device as a parallel platform tracking control device of the sensor is as follows:
  • the CCD camera 11 takes a picture to acquire the image signal of the moving platform 3, and transmits the image signal to the computer through the USB interface;
  • the computer After acquiring the image signal, the computer performs image processing to extract features of the first point light source marker 8-1 and the second point light source marker 8-2 on the moving platform 3, and calculates coordinates;
  • the two translational displacement values ⁇ x, ⁇ y and one rotational angle value ⁇ of the moving platform 3 are calculated by the following formula:
  • the coordinates of the first point source marker 8-1 before the motion be (x 1, y 1 ), the coordinates after the motion be (x' 1, y' 1 ), and the second point source marker 8-2 before the motion
  • the coordinates are (x 2, y 2 ), and the coordinates after the motion are (x′ 2, y′ 2 ).
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the moving platform 3 has a position and attitude angle error
  • the ultrasonic linear motor 1 drives the linear encoder 5 to detect the actual position of the joint motion, and feeds back to the computer through the incremental encoder interface.
  • the actual position is different from the desired position to generate a deviation signal, and the deviation signal is controlled by the corresponding position.
  • the algorithm generates a poor control signal, and the control signal outputs a DC control signal to the driver of the ultrasonic linear motor through the D/AC interface, and drives the motor to move, so that the joint accurately moves to a desired position;
  • the CCD camera 11 takes a picture every sampling period, and the image signal is transmitted through the USB interface. Go to the computer, the computer runs the corresponding image processing, and obtains the coordinate information of the first point light source marker 8-1 and the second point light source marker 8-2, and obtains the position error and the attitude angle error of the moving platform by the following formula :
  • the coordinates of the first point source marker 8-1 before the motion be (x 1, y 1 ), the coordinates after the motion be (x' 1, y' 1 ), and the second point source marker 8-2 before the motion
  • the coordinates are (x 2, y 2 ), and the coordinates after the motion are (x′ 2, y′ 2 ).
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the computer corrects the joint driving amount, and the corrected joint control signal outputs a DC control signal to the driver of the ultrasonic linear motor through the D/AC interface, and drives the motor to move the moving platform 3 Moving to a desired position in a desired posture;
  • the centroid method is used to obtain the x, y coordinates of the binarized image signal.
  • the calculation formula is as follows:
  • the error of the dynamic platform position and the attitude angle is calculated by the following formula:
  • the coordinates of the first point source marker 8-1 before the motion be (x 1, y 1 ), the coordinates after the motion be (x' 1, y' 1 ), and the second point source marker 8-2 before the motion
  • the coordinates are (x 2, y 2 ), and the coordinates after the motion are (x′ 2, y′ 2 ).
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the average value calculated by the attitude angle calculated in the third step is used to correct the attitude angle error, and the image processing calculates the attitude angle by the following formula:
  • the central moment is defined as The rotation angle that minimizes the second-order central moment M' 11
  • the above control method further comprises a linear grating encoder joint position feedback step and a CCD camera visual measurement end feedback step;
  • the CCD camera vision measurement system takes pictures at each sampling period, the image signals are transmitted to the computer through the USB interface, and the computer runs corresponding image processing to acquire the first point light source marker 8-1 and the second point light source marker 8 that are captured. -2 coordinate information, and calculate the position and attitude angle error of the moving platform 3 by the following formula:
  • the coordinates of the first point source marker 8-1 before the motion be (x 1, y 1 ), the coordinates after the motion be (x' 1, y' 1 ), and the second point source marker 8-2 before the motion
  • the coordinates are (x 2, y 2 ), and the coordinates after the motion are (x′ 2, y′ 2 ).
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the ultrasonic linear motor drives the linear encoder.
  • the actual position of the measurement is fed back to the computer through the incremental encoder interface of the Dspace semi-physical simulation controller.
  • the computer executes the joint positioning control algorithm to generate the joint control drive signal, which is controlled by Dspace semi-physical simulation.
  • the D/AC interface outputs a DC control signal to the driver of the ultrasonic linear motor, driving the motor to move, allowing the joint to reach the desired position.
  • the invention utilizes a CCD camera visual measurement system combined with a position tracking feedback control device as a sensor, and has at least the following advantages and effects:
  • the mechanism is compact and compact, does not increase the added quality of the structure, does not change the structural features, and has the advantages of high measurement accuracy, high sampling frequency and fast dynamic response.
  • the point light source marker is used to take photos with the camera light source (LED shadowless lamp), and the imaging effect is good, which simplifies the image processing difficulty and improves the image processing speed;
  • the position tracking feedback control device is a double closed loop device, which not only has a closed loop of the driving joint, but also has a closed end ring, which can significantly improve the positioning accuracy of the end of the moving platform.
  • CCD camera vision measuring device as a sensor is non-contact measurement, the mechanism is compact and compact, does not increase the structural additional quality, does not change the structural features, has the advantages of high measurement accuracy, high sampling frequency and fast dynamic response; and can measure two flats simultaneously. Dynamic degrees of freedom and a degree of freedom of rotation.
  • the CCD camera vertically shoots the moving platform, and the captured image is used to measure the position of the corresponding marker on the moving platform in real time through the image processing algorithm, which can be used not only for measurement, but also real-time feedback of the end position of the moving platform to form a full closed loop system.
  • High-speed, high-resolution CCD camera is adopted to adopt pixel positioning in the process of dynamic trajectory tracking, and sub-pixel positioning is adopted in the case of static point stabilization to achieve precise tracking of the position of the parallel platform.
  • FIG. 1 is a schematic view showing the overall structure of a parallel platform tracking control device of a vision device as a sensor according to the present invention; wherein a broken line in the figure is an electrical signal connection diagram.
  • Figure 2 is a front elevational view of Figure 11.
  • Figure 3 is a plan view of Figure 1.
  • Fig. 5 is a view showing the relationship between the position of the first point light source marker 8-1 and the second point source marker 8-2 before and after the movement.
  • the invention relates to a visual device as a parallel platform tracking control device for a sensor, comprising a parallel platform mechanism, a CCD camera vision measurement system and a position tracking feedback control device;
  • the parallel platform mechanism comprises: a static platform 4, a moving platform 3 disposed above the static platform 4, three ultrasonic linear motors, and an ultrasonic linear motor driver; the moving platform 3 has three rotating shafts, respectively arranged in an equilateral triangle The outer edge of the movable platform 3; the three ultrasonic linear motors 1 are respectively arranged in an equilateral triangle and are installed at the edge of the static platform 4; the shaft ends of the rotating shafts 10 mounted on the ultrasonic linear motors 1 respectively pass through a driven rod 2 is connected to one of the rotating shafts of the moving platform 3; each of the ultrasonic linear motors 1 is respectively provided with a linear encoder encoder 5;
  • An ultrasonic linear motor 1, a driven rod 2 and a rotating shaft of the moving platform 3 form a parallel branch; a total of three parallel branches;
  • Three ultrasonic linear motors 1 jointly drive the driven rod 2 to move the moving platform 3 to the target position;
  • the linear encoder 5 is driven to detect the actual position of the motor 1;
  • the first point source marker of the two linearly distributed focused blue lasers is mounted on the moving platform 3 8-1, a second point light source marker 8-2, as a visual detection feature;
  • the CCD camera vision measurement system includes: a CCD camera 11 placed above the moving platform 3, a lens 6 mounted at an end of the CCD camera 11, a camera light source 9 disposed on one side of the lens 6, a USB interface, a computer; The camera 11 is connected to the computer via a USB (3.0) interface;
  • the lens 6 is perpendicular to the moving platform 3, so that the center point of the lens 6 coincides with the origin of the moving platform 3;
  • the position tracking feedback control device comprises: a Dspace semi-physical simulation controller with an incremental encoder interface module and a D/AC interface, the D/AC interface is connected to a driver of the ultrasonic linear motor, and each linear encoder encoder 5 is The incremental encoder interface module is connected, the incremental encoder interface module is connected to the computer, and the computer is connected to the D/AC interface.
  • Dspace semi-physical simulation controller Dspace DS1103 semi-physical simulation controller.
  • the CCD camera 11 further has a support mechanism including a bracket 7 with a movable joint and a magnetic base 12 for fixing the bracket 7, and the CCD camera 11 is fixed to the end of the bracket 7.
  • control method of the above-mentioned visual device as a parallel platform tracking control device of the sensor is as follows:
  • the CCD camera 11 takes a picture to acquire the image signal of the moving platform 3, and transmits the image signal to the computer through the USB interface;
  • the computer After acquiring the image signal, the computer performs image processing to extract features of the first point light source marker 8-1 and the second point light source marker 8-2 on the moving platform 3, and calculates coordinates;
  • the two translational displacement values ⁇ x, ⁇ y and one rotational angle value ⁇ of the moving platform 3 are calculated by the following formula:
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the moving platform 3 has a position and attitude angle error
  • the ultrasonic linear motor 1 drives the linear encoder 5 to detect the actual position of the joint motion, and feeds back to the computer through the incremental encoder interface.
  • the actual position is different from the desired position to generate a deviation signal, and the deviation signal is controlled by the corresponding position.
  • the algorithm generates a differential control signal, and the control signal outputs a DC control signal to the driver of the ultrasonic linear motor through the D/AC interface (the driver generates a 160 kHz AC high voltage) to drive the motor to move the joint to the desired position accurately;
  • the CCD camera 11 takes a picture at each sampling period, and the image signal is transmitted to the computer through the USB interface, and the computer runs corresponding image processing to acquire the first point light source marker 8-1 and the second point light source marker. 8-2 coordinate information, and obtain the dynamic platform position and attitude angle error by the following formula:
  • the coordinates of the first point source marker 8-1 before the motion be (x 1, y 1 ), the coordinates after the motion be (x′ 1 , y′ 1 ), and the second point source marker 8-2 before the motion
  • the coordinates are (x 2, y 2 ), and the coordinates after the motion are (x′ 2, y′ 2 ).
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the computer corrects the joint driving amount, and the corrected joint control signal outputs a DC control signal to the driver of the ultrasonic linear motor through the D/AC interface, and drives the motor to move the moving platform 3 Moving to a desired position in a desired posture;
  • the optimal threshold segmentation of the image is performed to obtain a binarized image
  • the connected region analysis is performed on the binarized image; the first light source marker and the second light source marker are distinguished by the connected region area feature, and the small-area connected region interference is excluded;
  • centroid coordinates of the connected region where the first marker and the second marker are located are respectively obtained by the moment method, and the specific calculation formula is as follows:
  • the error of the dynamic platform position and the attitude angle is calculated by the following formula:
  • the coordinates of the first point source marker 8-1 before the motion be (x 1, y 1 ), the coordinates after the motion be (x′ 1 , y′ 1 ), and the second point source marker 8-2 before the motion
  • the coordinates are (x 2 , y 2 ), and the coordinates after the motion are (x′ 2 , y′ 2 ).
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the above control method further comprises a linear grating encoder joint position feedback step and a CCD camera visual measurement end feedback step;
  • the CCD camera vision measurement system takes pictures at each sampling period, the image signals are transmitted to the computer through the USB interface, and the computer runs corresponding image processing to acquire the first point light source marker 8-1 and the second point light source marker 8 that are captured. -2 coordinate information, and calculate the position and attitude angle error of the moving platform 3 by the following formula:
  • the coordinates of the first point source marker 8-1 before the motion be (x 1, y 1 ), the coordinates after the motion be (x′ 1 , y′ 1 ), and the second point source marker 8-2 before the motion
  • the coordinates are (x 2 , y 2 ), and the coordinates after the motion are (x′ 2, y′ 2 ).
  • Moving platform 3 shift amount If ⁇ x is greater than zero, it means that the moving platform 3 moves in the positive direction of the x-axis. If ⁇ x is less than zero, it means that the moving platform 3 moves in the negative direction of the x-axis; if ⁇ y is greater than zero, it means that the moving platform 3 moves in the positive direction of the y-axis, if ⁇ y Less than zero means that the moving platform 3 moves in the negative direction of the y-axis;
  • the ultrasonic linear motor drives the linear encoder.
  • the actual position of the measurement is fed back to the computer through the incremental encoder interface of the Dspace semi-physical simulation controller.
  • the computer executes the joint positioning control algorithm to generate the joint control drive signal, which is controlled by Dspace semi-physical simulation.
  • the D/AC interface outputs a DC control signal to the driver of the ultrasonic linear motor, which drives the motor to move to the desired position.
  • the static platform 4 has a circumscribed circle radius of 365 mm or less, and can be placed in a Zeiss scanning electron microscope EVO LS15 cavity.
  • the top of the moving platform 3 is circular, the bottom is an equilateral triangle, and the equilateral triangle is circumscribed by a radius. It is 28mm, the thickness is 10mm, the size parameter of the follower rod 2 is: 95mm ⁇ 20mm ⁇ 30mm, all components are aluminum alloy, and no surface treatment.
  • the CCD camera 11 adopts the Canadian brand PointGrey model GS3-U3-41C6C/MC CCD camera with a resolution of 2048 ⁇ 2048, which can provide 10 ⁇ m pixel positioning accuracy in the field of 20mm ⁇ 20mm. If it is matched with sub-pixel positioning, it can be obtained. 1 ⁇ m positioning accuracy, frame rate 90fps, transmission protocol is USB3.0, rate 500mb/s, can meet the real-time feedback rate requirements.
  • the linear encoder 5 consists of a grating scale, a readhead, and a subdivision joint. They are: RELE scale: model RELE IN 20U 1A 0180 A, 20 ⁇ m pitch, due to steel scale, length 180 mm, distance end 20 mm reference zero Position; read head: model T161130M; TONIC series vacuum read head, compatible with REELE scale, all reference zero output, vacuum cable length 3m; Ti subdivision interface: model Ti0400A01A, resolution 50nm, linear drive output, all alarm, receive Clock 1MHz, standard reference zero;
  • Ultrasonic linear motor 1 adopts Germany PI company U-264.30 motor, stroke 150mm, open loop precision 0.1 ⁇ m, open loop speed 250mm/s, shutdown stiffness 1.5N/ ⁇ m, shutdown retention force 8N, push and pull force 7N (50mm/s) 2N (250mm/s), resonant frequency 158kHz, motor voltage 200Vpp, input impedance 40 to 80 ohms; ultrasonic linear motor 1 is driven by German PI company C-872.160 driver, supporting PI linear ultrasonic motor, point-to-point motion, slow Movement, precise positioning;
  • German Dspace semi-physical simulation controller PCI interface and computer connection, providing 16-bit A / D and D / AC interface, voltage range -10V ⁇ +10V, providing digital I / O, incremental encoder interface, RS232, SPI And I 2 C communication interface; software development uses Matlab/Simulink RTI real-time simulation, the sampling time is up to 0.01ms;
  • the selected computer CPU model is Core i7 4770, and the memory is 8G.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种视觉设备作为传感器的并联平台跟踪控制装置与方法,该装置包括并联平台本体、CCD相机(11)与镜头(6),相机光源(9),计算机(11)、Dspace半物理仿真控制器,超声电机驱动器等部件。并联平台包括超声直线电机(1)、直线光栅编码器(5)、从动杆(2)、动平台(3)、静平台(4)等部分。CCD相机(11)垂直正对动平台(3)进行拍摄,拍摄图像通过图像处理算法实时测量动平台(3)上相应标志物的位置,不仅能用于测量,还能实现动平台末端位置的实时反馈,构成全闭环系统。实现了对并联平台的位置精确跟踪目的。

Description

一种视觉设备作为传感器的并联平台跟踪控制装置与方法 技术领域
本发明涉及平面并联平台位置测量与跟踪控制,尤其涉及一种视觉设备作为传感器的并联平台跟踪控制装置与方法。
背景技术
精密定位平台是精密操作,精密制造,精密测量领域中的重要组成部分。传统的精密定位平台通常是由压电陶瓷驱动的柔顺机构构成,其特点是高精度,响应时间快;但其固有的行程短的缺点限制了其使用的范围。当今技术发展导致跨尺度的使用场合越来越多,大行程、高精度成为了精密定位平台的瓶颈,为了实现大行程的目标,宏微结合的方法被提出。宏微结合的方法是把微动平台放到宏动平台上,采用大行程的宏动平台进行粗定位,然后再用微动的精密定位平台进行精定位。为了实现这样的目标,宏动平台的定位精度必须在微动平台的工作空间内,这就为宏动平台的定位精度提出了很高的要求。由于缺乏合适的传感器,传统的并联平台都是半闭环的定位平台,也就是只有关节闭环的平台。由于实际应用当中,加工误差、装配误差、关节间隙、摩擦、弹性变形等各种不确定性因素广泛存在,尽管并联平台的关节能精确定位,但传递到平台末端后,会引入各种前述的误差,因此,必须保证末端的定位精度,而不单纯是关节的定位精度。
目前还没有一种可以测量平面3自由度(两个平动,一个转动)的传感 器可用于平面并联平台的末端反馈。为了精确测量平面3自由度的误差,可通过三个单自由度传感器,例如激光位移传感器,通过一定的排布测量后计算平台的位置与姿态角误差,但这无疑增加了整个机构的体积,使得机构不能应用于例如扫描电镜腔体等有尺寸限制的场合。
发明内容
本发明的目的在于为了克服平面并联机构没有合适的平面3自由度测量传感器存在的问题和不足,提供一种视觉设备作为传感器的并联平台跟踪控制装置与方法。本发明采用CCD相机视觉测量系统并结合位置跟踪反馈控制装置作为传感器,不仅能通过图像处理测量的方法解决平面3自由度的测量问题,还能实现末端位置与姿态角的实时反馈,实现并联平台的全闭环控制,对提高平面并联定位平台的末端精度有显著的作用。并且CCD相机视觉测量设备只需要CCD相机、镜头、光源等设备,结构简单,体积小,适合集成于空间尺寸狭小的场合。本发明能使动平台在毫米级行程下达到亚微米级别定位精度。
本发明通过下述技术方案实现:
一种视觉设备作为传感器的并联平台跟踪控制装置,包括并联平台机构、CCD相机视觉测量系统、位置跟踪反馈控制装置;
所述并联平台机构包括:静平台4、设置在静平台4上方的动平台3、三台超声直线电机1、超声直线电机的驱动器;动平台3具有三个转轴,分别呈等边三角形分布在动平台3的外边缘;三台超声直线电机1分别呈等边三角形分布并安装在静平台4的边沿处;各超声直线电机1上安装的转动轴10的轴端分别通过一根从动杆2连接动平台3的其中一个转轴;各超声直线电机1 上分别设有直线光栅编码器5;
一台超声直线电机1、一根从动杆2和动平台3的一个转轴,组成一个并联分支;
三台超声直线电机1联合驱动从动杆2,使动平台3移动定位到目标位置;
超声直线电机1运动过程中带动直线光栅编码器5运动,用于检测电机1实际位置;
动平台3上安装有两个直线分布的聚焦蓝光激光的第一点光源标志物8-1、第二点光源标志物8-2,作为视觉检测特征物;
所述CCD相机视觉测量系统包括:置于动平台3上方的CCD相机11、安装在CCD相机11端部的镜头6、设置在镜头6一侧的相机光源9、USB接口、计算机;所述CCD相机11通过USB接口连接计算机;
镜头6垂直并正对动平台3,使镜头6的中心点与动平台3的原点重合;
所述位置跟踪反馈控制装置包括:具有增量式编码器接口模块和D/AC接口的Dspace半物理仿真控制器,所述D/AC接口连接超声直线电机的驱动器,各直线光栅编码器5与增量式编码器接口模块连接,增量式编码器接口模块连接计算机,计算机连接D/AC接口。
所述CCD相机11还具有一个支撑机构,该支撑机构包括带活动关节的支架7和用于固定支架7的磁性底座12,所述CCD相机11固定在支架7的端部。
上述视觉设备作为传感器的并联平台跟踪控制装置的控制方法如下:
(一)CCD相机视觉测量步骤
CCD相机11拍照获取动平台3图像信号,并通过USB接口传输给计算机;
计算机获取图像信号后经过图像处理,提取动平台3上第一点光源标志物8-1及第二点光源标志物8-2的特征,计算得到坐标;
通过第一点光源标志物8-1及第二点光源标志物8-2坐标计算动平台3运动的平移量Δx,Δy与转动角度Δθ;
动平台3的两个平动位移值Δx,Δy和一个转动角度值Δθ通过以下公式计算出:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000001
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000002
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台3逆时针转动;
(二)并联平台位置跟踪测量反馈控制步骤
第一,超声直线电机1接收到超声直线电机驱动器传输的驱动信号后,通过从动杆2使动平台3定位到目标位置之后,动平台3有位置与姿态角误差;
第二,超声直线电机1带动直线光栅编码器5,检测关节运动的实际位置,通过增量式编码器接口反馈到计算机,实际位置与期望位置作差产生偏差信号,偏差信号通过相应的位置控制算法差生控制信号,控制信号通过D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使关节精确运动到期望位置;
第三,CCD相机11在每个采样周期拍照,图像信号通过USB接口传输 到计算机,计算机运行相应的图像处理,获取所拍到的第一点光源标志物8-1及第二点光源标志物8-2的坐标信息,并通过如下公式获得动平台位置与姿态角误差:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000003
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000004
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台3逆时针转动;
第四,计算机计算出动平台3位置与姿态角误差后,修正关节驱动量,修正后的关节控制信号通过D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使动平台3以期望姿态运动到期望位置;
(三)动平台位置与姿态角误差计算步骤
第一歩,对图像进行二值化处理,得到第一点光源标志物8-1与第二点光源标志物8-2的边界以及区域信息;
第二步,对于二值化后的图像信号运用质心法求取其x,y坐标,计算公式如下:
二元有界图像函数f(x,y),其j+k阶矩为
Figure PCTCN2015098520-appb-000005
因二值图像质量分布是均匀的,故质心和形心重合,若图像中的物体对应的像素位置坐标为(xi+yj)(i=0,1,...n-1;j=0,1,...m-1),则
Figure PCTCN2015098520-appb-000006
第三步,获取所拍到的第一点光源标志物8-1与第二点光源标志物8-2的坐标信息后,通过如下公式计算动平台位置与姿态角误差:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000007
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000008
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台逆时针转动;
第四步,根据矩不变特征,使用二阶中心矩计算姿态角后,与第三步所计算姿态角进行平均值运算,修正姿态角误差,图像处理计算姿态角通过如下公式:
中心矩定义为
Figure PCTCN2015098520-appb-000009
使二阶中心矩M′11变得最小的旋转角
Figure PCTCN2015098520-appb-000010
上述控制方法还包括直线光栅编码器关节位置反馈步骤、CCD相机视觉测量末端反馈步骤;
CCD相机视觉测量末端反馈步骤
CCD相机视觉测量系统在每个采样周期拍照,图像信号通过USB接口传输到计算机,计算机运行相应的图像处理,获取所拍到的第一点光源标志物8-1与第二点光源标志物8-2的坐标信息,并通过如下公式计算动平台3位置与姿态角误差:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000011
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000012
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台3逆时针转动;
直线光栅编码器关节位置反馈步骤
超声直线电机带动直线光栅编码器,测量的实际位置通过Dspace半物理仿真控制器的增量式编码器接口反馈到计算机,计算机执行关节定位控制算法,产生关节控制驱动信号,通过Dspace半物理仿真控制器的D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使关节到达期望 位置。
本发明利用CCD相机视觉测量系统结合位置跟踪反馈控制装置作为传感器,至少具有如下的优点及效果:
作为传感器检测动平台末端的位置与姿态角误差,是非接触式测量,机构小巧紧凑,不增加结构附加质量,不改变结构特征,具有测量精度高,采样频率高,动态响应快的优点。
易于集成到本身已经具有视觉设备的使用场合,例如SEM(扫描式电子显微镜)的腔体中;
采用点光源标志物配合相机光源(LED无影灯)拍照,成像效果好,简化了图像处理的难度和提高了图像处理的速度;
位置跟踪反馈控制装置是双闭环装置,不仅具有驱动关节闭环,还具有末端闭环,能显著的提高动平台末端的定位精度。
利用CCD相机视觉测量设备作为传感器是非接触式测量,机构小巧紧凑,不增加结构附加质量,不改变结构特征,具有测量精度高,采样频率高,动态响应快的优点;并能同时测量两个平动自由度与一个转动自由度。
CCD相机垂直正对动平台进行拍摄,拍摄图像通过图像处理算法实时测量动平台上相应标志物的位置,不仅能用于测量,还能实现动平台末端位置的实时反馈,构成全闭环系统。采用高速、高分辨率CCD相机,在动态轨迹跟踪过程中采用像素定位,在静态点镇定的情况下采用亚像素定位,实现对并联平台的位置精确跟踪目的。
附图说明
图1为本发明视觉设备作为传感器的并联平台跟踪控制装置整体结构示意图;其中,图中虚线为电信号连接图。
图2为图11正视图。
图3为图1俯视图。
图4表示动平台上第一点光源标志物8-1、第二点光源标志物8-2,在CCD相机的视场内呈直线分布。
图5表示第一点光源标志物8-1、第二点光源标志物8-2在运动前后的位置变化关系示意图。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述。
实施例
如图1至5所示。本发明一种视觉设备作为传感器的并联平台跟踪控制装置,包括并联平台机构、CCD相机视觉测量系统、位置跟踪反馈控制装置;
所述并联平台机构包括:静平台4、设置在静平台4上方的动平台3、三台超声直线电机1、超声直线电机的驱动器;动平台3具有三个转轴,分别呈等边三角形分布在动平台3的外边缘;三台超声直线电机1分别呈等边三角形分布并安装在静平台4的边沿处;各超声直线电机1上安装的转动轴10的轴端分别通过一根从动杆2连接动平台3的其中一个转轴;各超声直线电机1上分别设有直线光栅编码器5;
一台超声直线电机1、一根从动杆2和动平台3的一个转轴,组成一个并联分支;总共有三个并联分支;
三台超声直线电机1联合驱动从动杆2,使动平台3移动定位到目标位置;
超声直线电机1运动过程中带动直线光栅编码器5运动,用于检测电机1实际位置;
动平台3上安装有两个直线分布的聚焦蓝光激光的第一点光源标志物 8-1、第二点光源标志物8-2,作为视觉检测特征物;
所述CCD相机视觉测量系统包括:置于动平台3上方的CCD相机11、安装在CCD相机11端部的镜头6、设置在镜头6一侧的相机光源9、USB接口、计算机;所述CCD相机11通过USB(3.0)接口连接计算机;
镜头6垂直并正对动平台3,使镜头6的中心点与动平台3的原点重合;
所述位置跟踪反馈控制装置包括:具有增量式编码器接口模块和D/AC接口的Dspace半物理仿真控制器,所述D/AC接口连接超声直线电机的驱动器,各直线光栅编码器5与增量式编码器接口模块连接,增量式编码器接口模块连接计算机,计算机连接D/AC接口。Dspace半物理仿真控制器,为Dspace DS1103半物理仿真控制器。
所述CCD相机11还具有一个支撑机构,该支撑机构包括带活动关节的支架7和用于固定支架7的磁性底座12,所述CCD相机11固定在支架7的端部。
上述视觉设备作为传感器的并联平台跟踪控制装置的控制方法如下:
(一)CCD相机视觉测量步骤
CCD相机11拍照获取动平台3图像信号,并通过USB接口传输给计算机;
计算机获取图像信号后经过图像处理,提取动平台3上第一点光源标志物8-1及第二点光源标志物8-2的特征,计算得到坐标;
通过第一点光源标志物8-1及第二点光源标志物8-2坐标计算动平台3运动的平移量Δx,Δy与转动角度Δθ;
动平台3的两个平动位移值Δx,Δy和一个转动角度值Δθ通过以下公式计算出:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1), 第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物(8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000013
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000014
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台3逆时针转动;
(二)并联平台位置跟踪测量反馈控制步骤
第一,超声直线电机1接收到超声直线电机驱动器传输的驱动信号后,通过从动杆2使动平台3定位到目标位置之后,动平台3有位置与姿态角误差;
第二,超声直线电机1带动直线光栅编码器5,检测关节运动的实际位置,通过增量式编码器接口反馈到计算机,实际位置与期望位置作差产生偏差信号,偏差信号通过相应的位置控制算法差生控制信号,控制信号通过D/AC接口输出直流控制信号到超声直线电机的驱动器(驱动器产生160kHz交流高电压),驱动电机运动,使关节精确运动到期望位置;
第三,CCD相机11在每个采样周期拍照,图像信号通过USB接口传输到计算机,计算机运行相应的图像处理,获取所拍到的第一点光源标志物8-1及第二点光源标志物8-2的坐标信息,并通过如下公式获得动平台位置与姿态角误差:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动 前第一点光源标志物8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000015
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000016
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台3逆时针转动;
第四,计算机计算出动平台3位置与姿态角误差后,修正关节驱动量,修正后的关节控制信号通过D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使动平台3以期望姿态运动到期望位置;
(三)动平台位置与姿态角误差计算步骤
第一歩,对图像进行最佳阈值分割得到二值化图像;
第二歩,对二值化图像进行连通区域分析;通过连通区域面积特征辨别第一光源标志物和第二光源标志物,并排除小面积连通区域干扰;
第三歩,通过矩方法分别求取第一标志物和第二标志物所在连通区域的形心坐标,具体计算公式如下:
二元有界图像函数f(x,y),其j+k阶矩为
Figure PCTCN2015098520-appb-000017
因二值图像质量分布是均匀的,故质心和形心重合,若图像中的物体对应的像素位置坐标为(xi+yj)(i=0,1,...n-1;j=0,1,...m-1),则
Figure PCTCN2015098520-appb-000018
因此对两个标志物所在的 连通区域分别进行质心计算便可得到对应的形心坐标。
第四歩,获取所拍到的第一点光源标志物8-1与第二点光源标志物8-2的坐标信息后,通过如下公式计算动平台位置与姿态角误差:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000019
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000020
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台逆时针转动;
上述控制方法还包括直线光栅编码器关节位置反馈步骤、CCD相机视觉测量末端反馈步骤;
CCD相机视觉测量末端反馈步骤
CCD相机视觉测量系统在每个采样周期拍照,图像信号通过USB接口传输到计算机,计算机运行相应的图像处理,获取所拍到的第一点光源标志物8-1与第二点光源标志物8-2的坐标信息,并通过如下公式计算动平台3位置与姿态角误差:
设第一点光源标志物8-1运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物8-2运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动 前第一点光源标志物8-1与第二点光源标志物8-2组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
动平台3平移量
Figure PCTCN2015098520-appb-000021
若Δx大于零,表示动平台3向x轴正方向运动,若Δx小于零,表示动平台3向x轴负方向运动;若Δy大于零,表示动平台3向y轴正方向运动,若Δy小于零,表示动平台3向y轴负方向运动;
动平台3转动角度
Figure PCTCN2015098520-appb-000022
其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台3顺时针转动,若Δθ小于零,表示动平台3逆时针转动;
直线光栅编码器关节位置反馈步骤
超声直线电机带动直线光栅编码器,测量的实际位置通过Dspace半物理仿真控制器的增量式编码器接口反馈到计算机,计算机执行关节定位控制算法,产生关节控制驱动信号,通过Dspace半物理仿真控制器的D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使关节到达期望位置。
在本实施例中,静平台4尺寸为外接圆半径小于等于365mm,能放置于蔡司扫描电子显微镜EVO LS15腔体内,动平台3顶部为圆形,底部为等边三角形,等边三角形外接圆半径为28mm,厚度为10mm,从动杆2的尺寸参数为:95mm×20mm×30mm,所有构件均为铝合金,均未表面处理。
CCD相机11采用加拿大品牌PointGrey型号GS3-U3-41C6C/M-C的CCD相机,分辨率为2048×2048,可在20mm×20mm的视场内提供10μm的像素定位精度,若配合亚像素定位,可得到1μm的定位精度,帧率90fps,传输协议为USB3.0,速率500mb/s,能满足实时反馈的速率要求。
直线光栅编码器5由光栅尺,读数头,细分接头组成,分别为:RELE光栅尺:型号RELE IN 20U 1A 0180 A,20μm栅距,因钢栅尺,长度180mm,距离端部20mm参考零位;读数头:型号T161130M;TONIC系列真空读数头,兼容RELE栅尺,所有参考零点均输出,真空电缆长度3m;Ti细分接口:型号Ti0400A01A,分辨率50nm,线性驱动输出,所有报警,接收器时钟1MHz,标准参考零位;
超声直线电机1采用德国PI公司U-264.30电机,行程150mm,开环精度0.1μm,开环速度250mm/s,关机刚度1.5N/μm,关机保持力8N,推、拉力7N(50mm/s),2N(250mm/s),谐振频率158kHz,电机电压200Vpp,输入阻抗40到80欧姆;超声直线电机1采用德国PI公司C-872.160驱动器驱动,支持PI的直线超声电机,点到点运动,慢运动,精确定位;
德国Dspace半物理仿真控制器,PCI接口与计算机连接,提供16位A/D与D/AC接口,电压范围-10V~+10V,提供数字I/O,增量式编码器接口,RS232、SPI以及I2C通信接口;软件开发采用Matlab/Simulink RTI实时仿真,采样时间最高为0.01ms;
选用的计算机CPU型号为Core i7 4770,内存8G。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (4)

  1. 一种视觉设备作为传感器的并联平台跟踪控制装置,其特征在于,包括并联平台机构、CCD相机视觉测量系统、位置跟踪反馈控制装置;
    所述并联平台机构包括:静平台(4)、设置在静平台(4)上方的动平台(3)、三台超声直线电机(1)、超声直线电机的驱动器;动平台(3)具有三个转轴,分别呈等边三角形分布在动平台(3)的外边缘;三台超声直线电机(1)分别呈等边三角形分布并安装在静平台(4)的边沿处;各超声直线电机(1)上安装的转动轴(10)的轴端分别通过一根从动杆(2)连接动平台(3)的其中一个转轴;各超声直线电机(1)上分别设有直线光栅编码器(5);
    一台超声直线电机(1)、一根从动杆(2)和动平台(3)的一个转轴,组成一个并联分支;
    三台超声直线电机(1)联合驱动从动杆(2),使动平台(3)移动定位到目标位置;
    超声直线电机(1)运动过程中带动直线光栅编码器(5)运动,用于检测电机(1)实际位置;
    动平台(3)上安装有两个直线分布的聚焦蓝光激光的第一点光源标志物(8-1)、第二点光源标志物(8-2),作为视觉检测特征物;
    所述CCD相机视觉测量系统包括:置于动平台(3)上方的CCD相机(11)、安装在CCD相机(11)端部的镜头(6)、设置在镜头(6)一侧的相机光源(9)、USB接口、计算机;所述CCD相机(11)通过USB接口连接计算机;
    镜头(6)垂直并正对动平台(3),使镜头(6)的中心点与动平台(3)的原点重合;
    所述位置跟踪反馈控制装置包括:具有增量式编码器接口模块和D/AC接口的Dspace半物理仿真控制器,所述D/AC接口连接超声直线电机的驱动器,各直线光栅编码器(5)与增量式编码器接口模块连接,增量式编码器接 口模块连接计算机,计算机连接D/AC接口。
  2. 根据权利要求1所述视觉设备作为传感器的并联平台跟踪控制装置,其特征在于:所述CCD相机(11)还具有一个支撑机构,该支撑机构包括带活动关节的支架(7)和用于固定支架(7)的磁性底座(12),所述CCD相机(11)固定在支架(7)的端部。
  3. 权利要求1或2所述视觉设备作为传感器的并联平台跟踪控制装置的控制方法,其特征在于如下步骤:
    (一)CCD相机视觉测量步骤
    CCD相机(11)拍照获取动平台(3)图像信号,并通过USB接口传输给计算机;
    计算机获取图像信号后经过图像处理,提取动平台(3)上第一点光源标志物(8-1)及第二点光源标志物(8-2)的特征,计算得到坐标;
    通过第一点光源标志物(8-1)及第二点光源标志物(8-2)坐标计算动平台(3)运动的平移量Δx,Δy与转动角度Δθ;
    动平台(3)的两个平动位移值Δx,Δy和一个转动角度值Δθ通过以下公式计算出:
    设第一点光源标志物(8-1)运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物(8-2)运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物(8-1)与第二点光源标志物(8-2)组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
    动平台(3)平移量
    Figure PCTCN2015098520-appb-100001
    若Δx大 于零,表示动平台(3)向x轴正方向运动,若Δx小于零,表示动平台(3)向x轴负方向运动;若Δy大于零,表示动平台(3)向y轴正方向运动,若Δy小于零,表示动平台(3)向y轴负方向运动;
    动平台(3)转动角度
    Figure PCTCN2015098520-appb-100002
    其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台(3)顺时针转动,若Δθ小于零,表示动平台(3)逆时针转动;
    (二)并联平台位置跟踪测量反馈控制步骤
    第一,超声直线电机(1)接收到超声直线电机驱动器传输的驱动信号后,通过从动杆(2)使动平台(3)定位到目标位置之后,动平台(3)有位置与姿态角误差;
    第二,超声直线电机(1)带动直线光栅编码器(5),检测关节运动的实际位置,通过增量式编码器接口反馈到计算机,实际位置与期望位置作差产生偏差信号,偏差信号通过相应的位置控制算法差生控制信号,控制信号通过D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使关节精确运动到期望位置;
    第三,CCD相机(11)在每个采样周期拍照,图像信号通过USB接口传输到计算机,计算机运行相应的图像处理,获取所拍到的第一点光源标志物(8-1)及第二点光源标志物(8-2)的坐标信息,并通过如下公式获得动平台位置与姿态角误差:
    设第一点光源标志物(8-1)运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物(8-2)运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物(8-1)与第二点光源标志物(8-2)组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
    动平台(3)平移量
    Figure PCTCN2015098520-appb-100003
    若Δx大于零,表示动平台(3)向x轴正方向运动,若Δx小于零,表示动平台(3)向x轴负方向运动;若Δy大于零,表示动平台(3)向y轴正方向运动,若Δy小于零,表示动平台(3)向y轴负方向运动;
    动平台(3)转动角度
    Figure PCTCN2015098520-appb-100004
    其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台(3)顺时针转动,若Δθ小于零,表示动平台(3)逆时针转动;
    第四,计算机计算出动平台(3)位置与姿态角误差后,修正关节驱动量,修正后的关节控制信号通过D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使动平台(3)以期望姿态运动到期望位置;
    (三)动平台位置与姿态角误差计算步骤
    第一步,对图像进行最佳阈值分割得到二值化图像;
    第二步,对二值化图像进行连通区域分析;通过连通区域面积特征辨别第一光源标志物(8-1)和第二光源标志物(8-2),并排除小面积连通区域干扰;
    第三步,通过矩方法分别求取第一标光源志物(8-1)和第二光源标志物(8-2)所在连通区域的形心坐标,具体计算公式如下:
    二元有界图像函数f(x,y),其j+k阶矩为
    Figure PCTCN2015098520-appb-100005
    因二值图像质量分布是均匀的,故质心和形心重合,若图像中的物体对应的像素位置坐标为(xi+yj)(i=0,1,...n-1;j=0,1,...m-1),则
    Figure PCTCN2015098520-appb-100006
    第四步,获取所拍到的第一点光源标志物(8-1)与第二点光源标志物(8-2)的坐标信息后,通过如下公式计算动平台位置与姿态角误差:
    设第一点光源标志物(8-1)运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1),第二点光源标志物(8-2)运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物(8-1)与第二点光源标志物(8-2)组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
    动平台(3)平移量
    Figure PCTCN2015098520-appb-100007
    若Δx大于零,表示动平台(3)向x轴正方向运动,若Δx小于零,表示动平台(3)向x轴负方向运动;若Δy大于零,表示动平台(3)向y轴正方向运动,若Δy小于零,表示动平台(3)向y轴负方向运动;
    动平台(3)转动角度
    Figure PCTCN2015098520-appb-100008
    其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台(3)顺时针转动,若Δθ小于零,表示动平台逆时针转动;
  4. 根据权利要求3所述视觉设备作为传感器的并联平台跟踪控制装置的控制方法,其特征在于还包括直线光栅编码器关节位置反馈步骤、CCD相机视觉测量末端反馈步骤;
    CCD相机视觉测量末端反馈步骤
    CCD相机视觉测量系统在每个采样周期拍照,图像信号通过USB接口传输到计算机,计算机运行相应的图像处理,获取所拍到的第一点光源标志物
    (8-1)与第二点光源标志物(8-2)的坐标信息,并通过如下公式计算动平台(3)位置与姿态角误差:
    设第一点光源标志物(8-1)运动前的坐标为(x1,y1),运动后的坐标为(x′1,y′1), 第二点光源标志物(8-2)运动前的坐标为(x2,y2),运动后的坐标为(x′2,y′2),设运动前第一点光源标志物(8-1)与第二点光源标志物(8-2)组成矢量S=((x2-x1),(y2-y1)),运动后变为矢量S′=((x′2-x′1),(y′2-y′1));
    动平台(3)平移量
    Figure PCTCN2015098520-appb-100009
    若Δx大于零,表示动平台(3)向x轴正方向运动,若Δx小于零,表示动平台(3)向x轴负方向运动;若Δy大于零,表示动平台(3)向y轴正方向运动,若Δy小于零,表示动平台(3)向y轴负方向运动;
    动平台(3)转动角度
    Figure PCTCN2015098520-appb-100010
    其中S·S′=(x2-x1)(x′2-x′1)+(y2-y1)(y′2-y′1),|S|2=(x2-x1)2+(y2-y1)2,若Δθ大于零,表示动平台(3)顺时针转动,若Δθ小于零,表示动平台(3)逆时针转动;
    直线光栅编码器关节位置反馈步骤
    超声直线电机带动直线光栅编码器,测量的实际位置通过Dspace半物理仿真控制器的增量式编码器接口反馈到计算机,计算机执行关节定位控制算法,产生关节控制驱动信号,通过Dspace半物理仿真控制器的D/AC接口输出直流控制信号到超声直线电机的驱动器,驱动电机运动,使关节到达期望位置。
PCT/CN2015/098520 2015-04-16 2015-12-23 一种视觉设备作为传感器的并联平台跟踪控制装置与方法 WO2016165391A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017551143A JP6424281B2 (ja) 2015-04-16 2015-12-23 視覚デバイスをセンサとする並列プラットフォーム追跡制御装置及びその方法
US15/562,898 US9971357B2 (en) 2015-04-16 2015-12-23 Parallel platform tracking control apparatus using visual device as sensor and control method thereof
EP15889087.1A EP3285131B1 (en) 2015-04-16 2015-12-23 Parallel connection platform tracking control device and method using visual equipment as sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510182053.4A CN104820439B (zh) 2015-04-16 2015-04-16 一种视觉设备作为传感器的并联平台跟踪控制装置与方法
CN201510182053.4 2015-04-16

Publications (1)

Publication Number Publication Date
WO2016165391A1 true WO2016165391A1 (zh) 2016-10-20

Family

ID=53730759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098520 WO2016165391A1 (zh) 2015-04-16 2015-12-23 一种视觉设备作为传感器的并联平台跟踪控制装置与方法

Country Status (5)

Country Link
US (1) US9971357B2 (zh)
EP (1) EP3285131B1 (zh)
JP (1) JP6424281B2 (zh)
CN (1) CN104820439B (zh)
WO (1) WO2016165391A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323294A (zh) * 2016-11-04 2017-01-11 新疆大学 变电站巡检机器人定位方法及定位装置
CN106530357A (zh) * 2016-11-30 2017-03-22 深圳市泰沃德自动化技术有限公司 视觉对位控制装置以及校准方法
CN107014345A (zh) * 2017-03-30 2017-08-04 长安大学 一种智能驱动式测量仪器三维形变精度检测仪及检测方法
CN108225316A (zh) * 2016-12-22 2018-06-29 成都天府新区光启未来技术研究院 载体姿态信息的获取方法和装置及系统
CN108931196A (zh) * 2018-08-02 2018-12-04 珠海市运泰利自动化设备有限公司 基于光栅尺高速飞拍锁存的高精度测量装置及其使用方法
CN109606755A (zh) * 2018-12-10 2019-04-12 燕山大学 可平衡负载的六维运动模拟舱
CN109947139A (zh) * 2017-12-21 2019-06-28 广州中国科学院先进技术研究所 一种高精密并联平台及其控制器
CN109960284A (zh) * 2017-12-22 2019-07-02 广州中国科学院先进技术研究所 一种高精密并联平台及其控制器
CN113359577A (zh) * 2021-07-02 2021-09-07 中国科学院空间应用工程与技术中心 超声电机嵌入式状态监测与故障诊断系统及方法
CN114087984A (zh) * 2021-11-12 2022-02-25 北京新联铁集团股份有限公司 挂接盘定位方法与挂接盘挂接方法
CN116713735A (zh) * 2023-08-04 2023-09-08 科瑞工业自动化系统(苏州)有限公司 一种光电编码器动码盘组装设备及组装方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420041B2 (ja) * 2014-02-04 2018-11-07 Ckd日機電装株式会社 画像処理を利用した絶対角度誤差算出
CN104088871B (zh) * 2014-06-27 2016-03-02 华南理工大学 一种精密定位驱动端预紧装置
CN104820439B (zh) 2015-04-16 2017-10-20 华南理工大学 一种视觉设备作为传感器的并联平台跟踪控制装置与方法
CN106054806B (zh) * 2016-07-13 2018-11-02 华南理工大学 一种基于二维编码器的平面并联机构末端跟踪控制系统与方法
JP7068307B2 (ja) * 2016-08-31 2022-05-16 モレキュラー デバイシーズ, エルエルシー テンプレートベースの画像分析のためのシステムおよび方法
CN106313013A (zh) * 2016-10-25 2017-01-11 华南理工大学 一种宏微集成运动高精度并联机构装置及控制方法
CN106767406B (zh) * 2016-12-20 2022-08-16 华南理工大学 微纳定位系统及其对柔顺机构平台的全闭环在线控制方法
CN107289865A (zh) * 2017-05-31 2017-10-24 天津大学 一种基于曲面基准件的二维位移测量方法
CN107300357B (zh) * 2017-06-22 2023-05-12 昆明理工大学 一种非接触式三自由度光学三维测量转台
CN107942933A (zh) * 2017-12-29 2018-04-20 华南理工大学 一种视觉伺服的平面三自由度宏微复合定位系统及方法
CN108297079B (zh) * 2018-03-30 2023-10-13 中山市中科智能制造研究院有限公司 一种蛇形机械臂及其姿态变化的获取方法
CN109035326A (zh) * 2018-06-19 2018-12-18 北京理工大学 基于亚像素图像识别的高精度定位技术
CN109061998B (zh) * 2018-09-28 2020-10-16 北京工业大学 一种实现大范围延时摄影的自动化装置和控制方法
CN109506561B (zh) * 2018-10-22 2020-01-14 华南理工大学 含轴孔间隙关节的平面多关节机构的轴孔轨迹测量方法
CN109859273B (zh) * 2018-12-24 2022-05-10 武汉大音科技有限责任公司 一种在线式动态视觉加工系统的标定方法
CN109693252A (zh) * 2019-01-21 2019-04-30 昆山塔米机器人有限公司 一种机器人运动控制装置及运动控制方法
CN110008937B (zh) * 2019-04-22 2021-09-03 西安图玛智能科技有限公司 开关柜运行状态管理监测系统、方法和计算设备
CN110030932B (zh) * 2019-05-24 2020-12-15 广东嘉腾机器人自动化有限公司 Agv偏移测量方法及agv偏移测量装置
CN112472110A (zh) * 2019-09-12 2021-03-12 通用电气精准医疗有限责任公司 X射线成像系统及方法
CN111272072A (zh) * 2020-03-15 2020-06-12 华中科技大学 一种基于Tsai并联机构的视频测量方法及测量仪
EP3896641A1 (en) * 2020-04-16 2021-10-20 Siemens Healthcare GmbH Correcting object movement during mr imaging
CN111678446B (zh) * 2020-06-29 2022-08-23 浙江农林大学 一种用于检测重卡轮毂轴承内径的检测机及其检测方法
CN112066914B (zh) * 2020-08-14 2021-12-21 常州机电职业技术学院 基于机器视觉的3362电位器机械角度复位系统及复位方法
CN112102368B (zh) * 2020-08-18 2024-04-16 东南大学 一种基于深度学习的机器人垃圾分类分拣方法
CN112040192B (zh) * 2020-09-09 2021-12-14 广东省科学院半导体研究所 并联式运动目标视觉追踪装置
CN112345554A (zh) * 2020-10-30 2021-02-09 凌云光技术股份有限公司 一种光栅尺基准成像装置及方法
CN112631145B (zh) * 2020-11-20 2022-05-17 福州大学 一种用于无人机视觉组合导航测试的半实物仿真系统
CN112631342B (zh) * 2020-12-22 2022-07-12 博迈科海洋工程股份有限公司 大型海洋模块滑移装船协同作业方法
EP4295117A1 (en) * 2021-02-17 2023-12-27 Novanta Corporation Rotary position encoding using non-maximal-length pseudo-random codes
CN114371176A (zh) * 2021-12-23 2022-04-19 昆山摩建电子科技有限公司 卷料视觉检测机
CN114757917B (zh) * 2022-04-08 2024-04-16 湘潭大学 一种高精度的轴偏移、偏转测量及其修正方法
CN114654467A (zh) * 2022-04-08 2022-06-24 中国电子科技集团公司第十四研究所 一种基于视觉定位技术的大负载并联机构的运动控制方法
CN115556104B (zh) * 2022-10-20 2023-06-09 北京精准医械科技有限公司 一种机器人单个关节位置的控制方法和系统及相关设备
CN116092571B (zh) * 2022-12-15 2024-03-26 齐鲁工业大学 一种三自由度柔性并联运动平台及系统
CN116374191B (zh) * 2023-06-02 2023-12-29 成都国营锦江机器厂 一种直升机尾梁自动安装方法及系统
CN117351077B (zh) * 2023-09-14 2024-07-02 广东凯普科技智造有限公司 一种点样仪动态预测的视觉修正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207719A (ja) * 2002-01-16 2003-07-25 Yamato Tekkosho:Kk 画像処理機能付き顕微鏡用ステージ自動トラッキング装置
CN102339069A (zh) * 2011-07-20 2012-02-01 西安理工大学 一种基于视觉信号反馈的四轴电机控制方法
CN103292127A (zh) * 2013-05-20 2013-09-11 哈尔滨工业大学 多轴支撑气浮平台的测量控制系统
CN103544714A (zh) * 2013-10-22 2014-01-29 中国科学院半导体研究所 一种基于高速图像传感器的视觉追踪系统及方法
CN104820439A (zh) * 2015-04-16 2015-08-05 华南理工大学 一种视觉设备作为传感器的并联平台跟踪控制装置与方法
CN204595620U (zh) * 2015-04-16 2015-08-26 华南理工大学 一种视觉设备作为传感器的并联平台跟踪控制装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004223A2 (en) * 2001-07-05 2003-01-16 Microdexterity Systems, Inc. Parallel manipulator
US7535193B2 (en) * 2007-06-18 2009-05-19 Xradia, Inc. Five axis compensated rotating stage
CN103085060B (zh) * 2012-12-31 2015-04-22 中国科学院自动化研究所 基于力视混合检测的对接/分离装置及其方法
CN104002299B (zh) * 2014-05-12 2015-09-30 西安理工大学 六自由度并联微平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207719A (ja) * 2002-01-16 2003-07-25 Yamato Tekkosho:Kk 画像処理機能付き顕微鏡用ステージ自動トラッキング装置
CN102339069A (zh) * 2011-07-20 2012-02-01 西安理工大学 一种基于视觉信号反馈的四轴电机控制方法
CN103292127A (zh) * 2013-05-20 2013-09-11 哈尔滨工业大学 多轴支撑气浮平台的测量控制系统
CN103544714A (zh) * 2013-10-22 2014-01-29 中国科学院半导体研究所 一种基于高速图像传感器的视觉追踪系统及方法
CN104820439A (zh) * 2015-04-16 2015-08-05 华南理工大学 一种视觉设备作为传感器的并联平台跟踪控制装置与方法
CN204595620U (zh) * 2015-04-16 2015-08-26 华南理工大学 一种视觉设备作为传感器的并联平台跟踪控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3285131A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323294A (zh) * 2016-11-04 2017-01-11 新疆大学 变电站巡检机器人定位方法及定位装置
CN106323294B (zh) * 2016-11-04 2023-06-09 新疆大学 变电站巡检机器人定位方法及定位装置
CN106530357A (zh) * 2016-11-30 2017-03-22 深圳市泰沃德自动化技术有限公司 视觉对位控制装置以及校准方法
CN106530357B (zh) * 2016-11-30 2023-10-03 深圳市泰沃德技术有限公司 视觉对位控制装置以及校准方法
CN108225316B (zh) * 2016-12-22 2023-12-29 成都天府新区光启未来技术研究院 载体姿态信息的获取方法和装置及系统
CN108225316A (zh) * 2016-12-22 2018-06-29 成都天府新区光启未来技术研究院 载体姿态信息的获取方法和装置及系统
CN107014345B (zh) * 2017-03-30 2023-02-28 长安大学 一种智能驱动式测量仪器三维形变精度检测仪及检测方法
CN107014345A (zh) * 2017-03-30 2017-08-04 长安大学 一种智能驱动式测量仪器三维形变精度检测仪及检测方法
CN109947139B (zh) * 2017-12-21 2024-01-23 广州中国科学院先进技术研究所 一种高精密并联平台及其控制器
CN109947139A (zh) * 2017-12-21 2019-06-28 广州中国科学院先进技术研究所 一种高精密并联平台及其控制器
CN109960284A (zh) * 2017-12-22 2019-07-02 广州中国科学院先进技术研究所 一种高精密并联平台及其控制器
CN108931196A (zh) * 2018-08-02 2018-12-04 珠海市运泰利自动化设备有限公司 基于光栅尺高速飞拍锁存的高精度测量装置及其使用方法
CN109606755A (zh) * 2018-12-10 2019-04-12 燕山大学 可平衡负载的六维运动模拟舱
CN109606755B (zh) * 2018-12-10 2023-09-26 燕山大学 可平衡负载的六维运动模拟舱
CN113359577A (zh) * 2021-07-02 2021-09-07 中国科学院空间应用工程与技术中心 超声电机嵌入式状态监测与故障诊断系统及方法
CN113359577B (zh) * 2021-07-02 2023-08-11 中国科学院空间应用工程与技术中心 超声电机嵌入式状态监测与故障诊断系统及方法
CN114087984A (zh) * 2021-11-12 2022-02-25 北京新联铁集团股份有限公司 挂接盘定位方法与挂接盘挂接方法
CN114087984B (zh) * 2021-11-12 2024-05-03 北京新联铁集团股份有限公司 挂接盘定位方法与挂接盘挂接方法
CN116713735A (zh) * 2023-08-04 2023-09-08 科瑞工业自动化系统(苏州)有限公司 一种光电编码器动码盘组装设备及组装方法
CN116713735B (zh) * 2023-08-04 2023-12-01 科瑞工业自动化系统(苏州)有限公司 一种光电编码器动码盘组装设备及组装方法

Also Published As

Publication number Publication date
EP3285131B1 (en) 2020-06-10
CN104820439A (zh) 2015-08-05
CN104820439B (zh) 2017-10-20
EP3285131A4 (en) 2018-09-26
JP2018513369A (ja) 2018-05-24
EP3285131A1 (en) 2018-02-21
JP6424281B2 (ja) 2018-11-14
US20180081376A1 (en) 2018-03-22
US9971357B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2016165391A1 (zh) 一种视觉设备作为传感器的并联平台跟踪控制装置与方法
CN107830813B (zh) 激光线标记的长轴类零件图像拼接及弯曲变形检测方法
WO2020147397A1 (zh) 用于弧面外观检测的机器视觉系统及检测方法
CN104567690B (zh) 一种激光束现场标定方法及装置
WO2020024178A1 (zh) 一种手眼标定方法、系统及计算机存储介质
CN109781164B (zh) 一种线激光传感器的静态标定方法
CN204595620U (zh) 一种视觉设备作为传感器的并联平台跟踪控制装置
TWI493153B (zh) 非接觸式物件空間資訊量測裝置與方法及取像路徑的計算方法
CN208818162U (zh) 定位机器人
CN111366908B (zh) 一种激光雷达转台及其测量装置和测量方法
CN102937418A (zh) 一种扫描式物体表面三维形貌测量方法及装置
CN109712139B (zh) 基于线性运动模组的单目视觉的尺寸测量方法
CN108253939A (zh) 可变视轴单目立体视觉测量方法
CN111759463A (zh) 一种提高手术机械臂定位精度的方法
CN105698700A (zh) 一种桌面式高自由度激光三维扫描装置
CN109900204A (zh) 基于线结构光扫描的大型锻件尺寸视觉测量装置及方法
CN110017852A (zh) 一种导航定位误差测量方法
CN110568866B (zh) 一种三维立体曲面视觉引导对位系统及对位方法
TW201900316A (zh) 雷射加工裝置
CN110992416A (zh) 基于双目视觉与cad模型的高反光面金属零件位姿测量方法
CN207833315U (zh) 一种视觉伺服的平面三自由度宏微复合定位系统
CN109596074A (zh) 轴承同轴度检测系统
CN114359393B (zh) 跨平台的视觉引导点胶引导方法
WO2020113978A1 (zh) 位于平面上的孔的中心位置的计算方法
CN108709509A (zh) 轮廓照相机、配套的超大直径回转体工件非接触式测径仪以及非接触式回转体测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551143

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015889087

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15562898

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE