WO2016165295A1 - 动中通卫星天线倾角校准过程中零点漂移值的测量方法 - Google Patents

动中通卫星天线倾角校准过程中零点漂移值的测量方法 Download PDF

Info

Publication number
WO2016165295A1
WO2016165295A1 PCT/CN2015/091952 CN2015091952W WO2016165295A1 WO 2016165295 A1 WO2016165295 A1 WO 2016165295A1 CN 2015091952 W CN2015091952 W CN 2015091952W WO 2016165295 A1 WO2016165295 A1 WO 2016165295A1
Authority
WO
WIPO (PCT)
Prior art keywords
acc
gyro
accelerometer
angle
antenna
Prior art date
Application number
PCT/CN2015/091952
Other languages
English (en)
French (fr)
Inventor
胡名军
周晓辉
Original Assignee
深圳市宏腾通电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市宏腾通电子有限公司 filed Critical 深圳市宏腾通电子有限公司
Publication of WO2016165295A1 publication Critical patent/WO2016165295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Definitions

  • the invention relates to a tilting calibration of a satellite antenna in a moving medium, in particular to a method for measuring a zero drift value in a tilting calibration process of a satellite antenna in a moving medium.
  • the mobile communication is an abbreviation of "mobile earth station communication system".
  • mobile carriers such as vehicles, ships and airplanes can track satellites and other platforms in real time during the movement, and continuously transmit multimedia information such as voice, data and images, which can meet various military and civilian emergency communication and mobile conditions.
  • multimedia communication As an important part of the dynamic communication system, the moving antenna is responsible for receiving and/or transmitting communication signals. If the antenna is able to align with the selected communication satellite in the event of a change in carrier attitude and heading, and quickly resume communication in the event of a momentary loss of signal.
  • the tilt measuring device is applied to the automatic tracking satellite antenna for detecting the antenna motion posture in real time, adjusting the pitch angle and the polarization angle of the antenna, so that the satellite antenna keeps accurately aiming at the satellite during the motion.
  • the tilt calibration device is also widely used in drones, automatic balancing cars, and the like.
  • the MEMS (Micro-Electro-Mechanical System) accelerometer can easily measure the pitch angle and polarization angle deviation of the satellite antenna.
  • Figure 1 shows the MEMS-based accelerometer. Because this sensor is tightly attached to the flat-panel satellite antenna, the tilt angle measured by the sensor is consistent with the tilt angle of the panel antenna.
  • 90° - the pitch angle of the antenna
  • Acc_x the measured value of the X-axis of the accelerometer
  • Acc_y the measured value of the accelerometer Y axis
  • Acc_z The measured value of the Z-axis of the accelerometer.
  • the inertial measurement unit IMU Inertial Measurement Unit
  • the pitch angle of the antenna is 90°- ⁇
  • the local polarization angle is Through the calculated pitch angle and polarization angle offset, the system can automatically adjust the pitch angle and polarization angle of the antenna to the target angle according to the calculation result.
  • the above algorithm requires accurate measurement of the accelerometer, especially when the base of the antenna is placed horizontally, the measurement error of the accelerometer will cause a large error in the calculation of the inclination angle or the calculation of the polarization angle. Specifically, the angle is calculated by the accelerometer.
  • the error is mainly reflected in:
  • a cost MEMS accelerometer device has a sensitivity of 1/1024g, a sensitivity temperature drift of 0.02%/degree, a sensitivity voltage drift of 0.05%/degree, a zero drift of plus or minus 70mg, and a zero temperature drift. At 1 mg/degree, the voltage fluctuation drift is 0.5 mg/V. From the above data, it can be concluded that if the accelerometer cannot be calibrated and directly calculated by the measurement result of the accelerometer, an inclination error of about 4-10 degrees will occur, which is unacceptable for the automatic tracking satellite antenna.
  • the most influential ones are zero drift and zero temperature drift.
  • a precision indexing head can be used for multi-position testing.
  • the measured PCB with the accelerometer is firmly mounted horizontally on the precision indexing head.
  • the output signals of the accelerometer's sensitive axes are recorded in four different attitudes, corresponding to the acting on the axis.
  • Acceleration values of 0g, 1g, 0g, and -1g at each position, record a series of data and repeat it several times throughout the test. By averaging the measured values of 1g and -1g, the zero drift value can be obtained, and the test can be performed at different temperatures to obtain the zero temperature drift value.
  • the accelerometer needs to be vertically mounted on the indexing head and retested to obtain the zero drift value of the other axis.
  • accelerometers can be calibrated in a simple way.
  • Some special inclinometers have self-checking functions, such as placing the inclinometer on a flat surface (either vertically or horizontally) and fixing it. In a corner or mark its location. Then press the on/off button and wait for about 10 seconds, then press and hold the calibration button until the LCD displays “CAL1” and then flashes to display the first measured angle value. Release the calibration button, then rotate 180° around the vertical axis of the plane in the selected plane, and place the electronic inclinometer in the same corner or marked position, wait for about 10 seconds, and flash the second After the measurement angle value is stable, press and hold the calibration button until the LCD displays “CAL2”; release the calibration button, “ ⁇ ——”, the calibration is completed.
  • a similar method can be used for verification of the automatic tracking satellite antenna.
  • the above scheme can obtain relatively accurate test results, but it also has the problems of cumbersome testing and long time.
  • the temperature drift test of the accelerometer at various temperatures should be completed at the factory and the data should be saved to the system.
  • the method of manual verification in the example is obviously not suitable.
  • This scheme can only perform verification in a temperature range, and must be re-verified when the temperature changes. Recalibration is not allowed for automatic tracking of satellite antennas during operation.
  • the accelerometer In order to measure the basic parameters of the performance of the accelerometer over the entire temperature range, it is more feasible to install the accelerometer on the indexing head and the accelerometer is sealed into the high and low temperature chamber.
  • the low temperature box can adjust the temperature inside the box from -40 ° C to +70 ° C.
  • the indexing head When the high and low temperature box is in the "insulation" state, the indexing head is rotated to measure the values of 1g, 0g, -1g, 0g respectively. The zero drift value at a certain temperature. Then adjust the temperature and measure the zero drift value at other temperatures.
  • the accelerometer and the main controller are separated, and the test data needs to be entered into the main controller, and the correspondence between the accelerometer and the main controller needs to be carefully recorded and recorded.
  • the technical problem to be solved by the present invention is to provide a method for measuring the zero drift value during the inclination calibration of the moving satellite antenna in a mobile station with accurate measurement and simple operation.
  • the technical solution adopted by the present invention is a method for measuring the zero drift value in the tilting calibration process of the satellite antenna in the moving medium, the base of the satellite antenna is placed on the horizontal plane, and the inertial measurement unit is installed on the antenna of the satellite antenna.
  • the method for measuring the zero drift value includes the following steps:
  • the antenna rotates clockwise or counterclockwise at a certain angle in the horizontal plane.
  • the 3-axis data of the gyroscope is read and accumulated, and the cumulative value of the gyroscope that rotates the angle is obtained;
  • acc_xi is the measured value of the x-axis of the accelerometer measured at the ith time
  • acc_yi is The measured value of the Y-axis of the accelerometer measured in the i-th time
  • acc_zi is the measured value of the Z-axis of the accelerometer measured in the i-th time
  • gyro_sum_zi is the cumulative value of the Z-axis gyroscope measured in the ith time
  • gyro_sum_yi is the Y measured in the i-th time
  • the inclination angle ( ⁇ i_acc) calculated by the accelerometer is:
  • Tan( ⁇ i_acc) (acc_zi-acc_z0i)/(sqrt((acc_xi-acc_x0i)*(acc_xi-acc_x0i)+(acc_yi-acc_y0i)*(acc_yi-acc_y0i));
  • acc_x0i, acc_y0i and acc_z0i are the zero drift values of the i-th measurement of the three axes of the accelerometer, respectively, obtained from the data sheet of the accelerometer;
  • the measurement method described above repeats steps 101-104 in different temperature environments, and after obtaining a plurality of temperature drift data, a polynomial curve fitting or a piecewise linear approximation method is used to obtain a function curve of zero drift with temperature. .
  • step 101 the pitch maximum limit angle is subtracted from the pitch minimum limit angle, and then divided by (n-1) to obtain an adjustment angle of each pitch angle.
  • step 102 the antenna is rotated n times, and the total angle rotated clockwise or counterclockwise in the horizontal plane is >90°.
  • the measuring method of the zero drift value in the tilting calibration process of the moving satellite antenna of the invention is accurate, simple to operate, and can be automatically executed.
  • Figure 1 is a schematic diagram of the measurement of the pitch angle and polarization angle deviation of a satellite antenna using an acceleration sensor.
  • the structure of the automatic satellite tracking antenna is a horizontal and pitch two-axis stabilization system.
  • the horizontal can realize 360° automatic rotation, and the pitch can rotate up and down within a limited range, generally in the range of 0-90°, which is larger or smaller.
  • the range, but generally does not reach 180°, the triaxial stabilization system can also employ the method of the present invention.
  • the motion detecting device such as the accelerometer of the present invention is mounted on the antenna for measuring the motion posture of the antenna, and the mounting position is installed parallel to the normal direction of the antenna or vertically at 90°.
  • the IMU inertial measurement unit used in the present invention generally includes a 3-axis accelerometer and a 3-axis gyro. If only for measuring the tilt angle, at least a 2-axis accelerometer and a 2-axis gyro are required, and the 2-axis accelerometer is located. The plane and the plane where the 2-axis gyro is located are required to be parallel to the normal direction of the antenna. Inertia
  • the measuring unit can comprise a multi-axis device or a single-axis discrete device can be combined as appropriate.
  • the present invention can be applied to an automatic tracking satellite antenna, but is not limited to a satellite antenna, a 2-axis or 3-axis stabilization system, and the method of the present invention can be employed. Most 2-axis stable or 3-axis stable automatic tracking satellite antennas are generally installed in this manner.
  • the method of the invention is as follows:
  • the software controls the antenna to automatically adjust the pitch angle to a certain angle, stand still for 2 seconds, read the 3-axis data of the accelerometer, and read the average to read the average to eliminate the measurement error, and obtain the accurate 3-accuracy data acc_x1, acc_y1 and acc_z1 of the accelerometer. ;
  • the software controls the antenna to automatically rotate a certain angle clockwise or counterclockwise in the horizontal plane.
  • the 3-axis data of the gyroscope is read and accumulated, and the cumulative value of the gyroscope rotating at this angle is obtained, gyro_sum_z1, gyro_sum_y1.
  • gyro_sum_z1 is the gyro cumulative value of the Z axis
  • gyro_sum_y1 is the cumulative value of the gyro of the Y axis.
  • the automatic tracking satellite antenna has a range of pitch angle limits.
  • the pitch maximum limit angle is subtracted from the pitch minimum limit angle, and then divided by (n-1) to obtain an average adjustment angle of each measurement pitch angle; in order to achieve high measurement accuracy, the antenna is at the level
  • the angle of clockwise or counterclockwise rotation in the surface is more than 90°.
  • Tan( ⁇ 1_acc) (acc_z1-acc_z0)/(sqrt((acc_x1-acc_x0)*(acc_x1-acc_x0)+(acc_y1-acc_y0)*(acc_y1-acc_y0))
  • the result calculated by the accelerometer should be the same as the result calculated by the gyro:
  • the above formula is calculated by the embedded chip, and all the data in this range is calculated once, and the time required for such a calculation is about 1-2 seconds.
  • the minimum acc_x0, acc_y0, and acc_z0 obtained by the above formula are the zero drift values of the accelerometer we need.
  • the obtained zero drift value is about plus or minus 8 mg, which is greatly improved compared with the error range of the device itself of plus or minus 70 mg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种动中通卫星天线倾角校准过程中零点漂移值的测量方法,包括以下步骤:调节天线俯仰角到某个角度,读加速度计的3轴数据;天线在水平面内转动某一角度,读陀螺仪的3轴数据,进行累加,得到转动这个角度的陀螺仪累积值;重复以上步骤n次;通过加速度计计算的倾角(θi_acc),用陀螺仪计算出该位置的倾角(θi_gyro),当Σ[tan(θi_gyro)-tan(θi_acc)]*[tan(θi_gyro)-tan(θi_acc)的值为最小时,所代入的acc_x0i,acc_y0i和acc_z0i即测量得到的加速度计的零点漂移值。该方法与现有技术相比,测量精确、操作简单,且能够自动执行。

Description

动中通卫星天线倾角校准过程中零点漂移值的测量方法 [技术领域]
本发明涉及动中通卫星天线倾角校准,尤其涉及一种动中通卫星天线倾角校准过程中零点漂移值的测量方法。
[背景技术]
动中通是“移动中的卫星地面站通信系统”的简称。通过动中通系统,车辆、轮船、飞机等移动载体在运动过程中可实时跟踪卫星等平台,不间断地传递语音、数据、图像等多媒体信息,可满足各种军民用应急通信和移动条件下的多媒体通信的需要。作为动中通系统的一个重要组成部分,动中通天线负责通信信号的接收和/或发送。如果天线能够在载体姿态和航向变化的情况下,始终对准所选定的通信卫星,并且在信号瞬间丢失的情况下迅速恢复通信。
倾角测量装置应用于自动跟踪卫星天线,用于实时检测天线运动姿态,调整天线的俯仰角和极化角,使得卫星天线在运动的过程中保持准确对准卫星。倾角校准装置也大量应用于无人机,自动平衡小车等。
采用微机电系统(MEMS,Micro-Electro-Mechanical System)加速度传感器可以很方便地测量卫星天线的俯仰角和极化角偏离。图1显示的基于MEMS技术的加速度传感器,因为这个传感器紧紧贴在平板卫星天线上,因此该传感器测量的倾角和平板天线的倾角是一致的。
由于重力加速度始终垂直向下,那么3轴加速度计测量的值分别为:
Figure PCTCN2015091952-appb-000001
Figure PCTCN2015091952-appb-000002
Figure PCTCN2015091952-appb-000003
Figure PCTCN2015091952-appb-000004
θ=arctan(acc_z/(sqrt(acc_x*acc_x+acc_y*acc_y));
Figure PCTCN2015091952-appb-000005
其中,
θ:90°-天线的俯仰角;
Figure PCTCN2015091952-appb-000006
天线的极化角;
acc_x:加速度计X轴的测量值;
acc_y:加速度计Y轴的测量值;
acc_z:加速度计Z轴的测量值。
通常把惯性测量单元IMU(Inert ial measurement unit),安装在天线的背部,天线的俯仰角为90°-θ,针对本地的极化角偏移为
Figure PCTCN2015091952-appb-000007
通过计算得到的俯仰角和极化角偏移,系统可以根据计算结果,自动调节天线的俯仰角和极化角到目标角度。
以上算法要求加速度计的测量准确,特别是当天线的底座水平放置的时候,加速度计的测量误差会导致倾角计算或者极化角计算出现很大的误差,具体来说,通过加速度计来计算角度的误差主要体现在:
1:灵敏度
2:零点温度漂移
3:灵敏度温度漂移
4:电压波动漂移
5:零点漂移
例如,某成本的MEMS加速度计器件,灵敏度为1/1024g,灵敏度温度漂移为0.02%/度,灵敏度电压漂移为:0.05%/度,零点漂移为正负70mg,零点温度漂移 为1mg/度,电压波动漂移为0.5mg/V。从上述数据可以得出,如果加速度计不能校准,直接用加速度计的测量结果来计算,会出现4-10度左右的倾角误差,这对自动跟踪卫星天线来说是不可接受的。
其中影响最大的,就是零点漂移和零点温度漂移。通过对加速度计的校准,可以把零点漂移的问题解决,从而大大提高倾角测量的准确度。
对于需求高精度的倾角校准,采用精密分度头进行多位置测试即可。
被测的装有加速度计的PCB板牢固地水平安装到精密分度头上,一般来说,要记录加速度计敏感轴的4种不同姿态下的输出信号,分别对应于作用在该轴上的0g,1g,0g,-1g的加速度值,在每个位置上,记录一系列的数据,且在整个测试过程中要重复数次。利用1g,-1g的测量值求平均,就能得到零点漂移值,在不同的温度下进行测试,就能得到零点温度漂移值。为了得到3轴加速度计的零点漂移值,在测试完成以后,需要把加速度计垂直安装到分度头上,重新测试,能得到另外的轴的零点漂移值。
另外,用简易的方法也可以进行加速度计的校验,一些特别的倾角仪设备具有自行校验的功能,例如:把倾角仪放在平面上(无论垂直还是水平都可以),并把它固定在某一角落里或标记它的位置。然后按一下开/关按钮,大约等10秒钟后,按住校准按钮,直到LCD显示“CAL1”,然后闪烁显示第一个测量角度值。放开校准按钮,然后在所选的平面内绕该平面的垂直轴旋转180°,并把电子倾角仪准确的放置在同一角落或标记的位置上,等待约10秒钟,在闪烁显示第二个测量角度值稳定后,则再按住校准按钮,直到LCD显示“CAL2”;放开校准按钮,“嘀——”一声后,校准完毕。针对自动跟踪卫星天线也可以采取类似的方法进行校验。
上述方案能得到比较准确的测试结果,但也具有测试繁琐,时间长的问题。 作为自动跟踪卫星天线,应该在出厂的时候把加速度计在各种温度下的温度漂移测试完成,并把这些数据保存到系统中。举例中的手工进行校验的方法显然是不合适的,这种方案只能完成一种温度范围内的校验,当温度发生变化的时候,必须重新校验。重新校验对于在运行过程中自动跟踪卫星天线是不允许的。
为了测量出在整个温度范围内,加速度计的性能的基本参数随着问题的变化,比较可行的做法是把测试的加速度计安装在分度头上,且加速度计密封到高低温箱中,高低温箱可以调节箱内的温度,从-40℃到+70℃,当高低温箱处于“保温”状态的时候,转动分度头,分别测量1g,0g,-1g,0g的值,得到在某个温度下的零点漂移值。然后调节温度,在其他的温度下测量出零点漂移值。
这种方法的缺点是:
1、需要为了测试,专门购置分度头等器件,改造高低温箱
2、在测试的时候,需要人工小心调整分度头,并记录数据,或者需要专门写一套测试代码,自动记录测试数据并导入到目标系统中。中间人工操作分度头,记录数据,导入到目标系统中,容易出现人工记录,录入错误。
3、针对移动卫星天线的应用,加速度计和主控器是分离的,需要把测试的数据录入到主控器中,需要小心录入并记录好加速度计和主控器的对应关系。
4、测试工作繁重,因为每个加速度计的特性并不一致,因此每个加速度计都必须如此测试一次,测试时间长,效率低,工作量很大,对于一些消费级的产品,成本是相当高的。
5产品在运行以后,如果出现加速度计或者主控器的故障,需要重新测试,因为现场无测试条件,必须在测试完成以后,数据录入交给现场做,增加了产品维护的难度。
[发明内容]
本发明要解决的技术问题是提供一种测量精确、操作简单的动中通卫星天线倾角校准过程中零点漂移值的测量方法。
为了解决上述技术问题,本发明采用的技术方案是,一种动中通卫星天线倾角校准过程中零点漂移值的测量方法,卫星天线的底座放置到水平面上,惯性测量单元安装在卫星天线的天线上,零点漂移值的测量方法包括以下步骤:
101、调节天线俯仰角到某个角度,读加速度计的3轴数据;
102、天线在水平面内顺时针或者逆时针转动某一的角度,在转动过程中,读陀螺仪的3轴数据,进行累加,得到转动这个角度的陀螺仪累积值;
103、重复步骤101和102共n次,得到acc_xi,acc_yi,acc_zi,gyro_sum_zi,gyro_sum_yi,其中i=1-n,n≥3;acc_xi是第i次测量的加速度计X轴的测量值,acc_yi是第i次测量的加速度计Y轴的测量值,acc_zi是第i次测量的加速度计Z轴的测量值,gyro_sum_zi是第i次测量的Z轴陀螺仪累积值,gyro_sum_yi是第i次测量的Y轴陀螺仪累积值;
104、通过加速度计计算的倾角(θi_acc)为:
tan(θi_acc)=(acc_zi-acc_z0i)/(sqrt((acc_xi-acc_x0i)*(acc_xi-acc_x0i)+(acc_yi-acc_y0i)*(acc_yi-acc_y0i));
用陀螺计算出该位置的倾角(θi_gyro)为:
tan(θi_gyro)=gyro_sum_yi/gyro_sum_zi;
其中,acc_x0i,acc_y0i和acc_z0i分别为加速度计三个轴第i次测量的零点漂移值,从加速度计的数据表中得到;
当Σtan(θi_gyro)-tan(θi_acc)]*[tan(θi_gyro)-tan(θi_acc)的值为最小时,所代入的acc_x0i,acc_y0i和acc_z0i即测量得到的加速度计的 零点漂移值。
以上所述的测量方法,在不同的温度环境下,重复步骤101-104,得到复数个温度漂移数据以后,采用多项式曲线拟合或者分段线性近似方法,得到零点漂移随着温度变化的函数曲线。
以上所述的测量方法,在步骤101中,把俯仰最高限制角减去俯仰最低限制角,然后除以(n-1),得到每次俯仰角的调节角度。
以上所述的测量方法,在步骤102中,天线经过n次旋转,在水平面内顺时针或者逆时针转过的总角度>90°。
本发明的动中通卫星天线倾角校准过程中零点漂移值的测量方法测量精确、操作简单,能够自动执行。
[附图说明]
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1利用加速度传感器测量卫星天线的俯仰角和极化角偏离的示意图。
[具体实施方式]
本发明实现的基本条件:
1、自动卫星跟踪天线的架构为水平和俯仰两轴稳定系统,水平能实现360°自动旋转,俯仰能在有限范围内上下旋转,一般在0-90°范围内,有更大或者更小的范围,但一般不会达到180°,三轴稳定系统也可以采用本发明的方法。
2、本发明的加速度计等运动检测器件安装在天线上,用于测量天线的运动姿态,安装的位置与天线的法线方向平行或者垂直90°安装。
3、本发明采用的IMU惯性测量单元,一般包括了3轴加速度计和3轴陀螺,如果仅仅是为了测量倾角,则要求有至少2轴加速度计和2轴陀螺,且该2轴加速度计所在的平面以及2轴陀螺所在的平面要求与天线法线方向平行。惯性 测量单元可以包含多轴的器件,也可以采用单轴的分立器件经过恰当的组合。
4、本发明可以应用于自动跟踪卫星天线上,但不限于卫星天线,2轴或者3轴稳定系统,有测试倾角要求的,都可以采用本发明的方法。大多数的2轴稳定或者3轴稳定自动跟踪卫星天线一般采用这样的安装方式。
本发明的方法如下:
将自动跟踪天线的底座放置到水平面上,上电,启动产品加速度计自动跟踪程序。该程序运行过程为:
1、软件控制天线自动调节俯仰角到某个角度,静止2秒,读加速度计的3轴数据,多读几次求均值以排除测量误差,得到加速度计的3轴准确数据acc_x1,acc_y1和acc_z1;
2、软件控制天线自动在水平面内顺时针或者逆时针转动某一的角度,在转动过程中,读陀螺仪的3轴数据,进行累加,得到转动这个角度的陀螺仪累积值,gyro_sum_z1,gyro_sum_y1。
其中,gyro_sum_z1是Z轴的陀螺仪累积值,gyro_sum_y1是Y轴的陀螺仪累积值。
3、重复1,2的步骤,每次调整俯仰角到不同的角度,分别得到acc_x2,acc_y2,acc_z2,gyro_sum_z2,gyro_sum_y2,一直进行n次重复,得到acc_xn,acc_yn,acc_zn,gyro_sum_zn,gyro_sum_yn。为了得到比较精确的结果,重复次数可以多一些,n最小为3。较好的情况下n=6,而且俯仰角的调节是均匀的,力求达到较好的效果。
均匀调节俯仰角能得到较好的测试结果,自动跟踪卫星天线有俯仰角的范围限制。测试过程中是把俯仰最高限制角减去俯仰最低限制角,然后除以(n-1),得到平均的每次测量俯仰角的调节角度;为了达到测量的高精度,天线在水平 面内顺时针或者逆时针转动的角度合计在90°以上,。
4、利用最小方差算法求出加速度计的零点漂移值:设加速度计的零点漂移值分别为acc_x0,acc_y0,acc_z0,则通过加速度计计算的倾角(θ1_acc)为:
tan(θ1_acc)=(acc_z1-acc_z0)/(sqrt((acc_x1-acc_x0)*(acc_x1-acc_x0)+(acc_y1-acc_y0)*(acc_y1-acc_y0))
用陀螺计算出该位置的倾角(θ1_gyro)为:
tan(θ1_gyro)=gyro_sum_y1/gyro_sum_z1
很明显,如果不存在误差,通过加速度计计算的结果与通过陀螺计算的结果应该是相同的:
tan(θ1_gyro)-tan(θ1_acc)=0
因为有三个未知量,所以至少要3个等式才能求出加速度计的静态值(acc_x0,acc_y0和acc_z0),因为有测量误差,仅有3个等式,求出的结果是不够精确的,误差比较大。在相同的测试环境下进行不同的测试,得到的零点漂移值大约是正负50mg,这个数值和器件本身的误差范围正负70mg没有明显的改善。
为此,需要有足够的俯仰角测试次数,采用最小平方和的算法:将acc_x0i,acc_y0i和acc_z0i,代入到下面的公式中,使得下面公式的值为最小:
[tan(θ1_gyro)-tan(θ1_acc)]*[tan(θ1_gyro)-tan(θ1_acc)]+[tan(θ2_gyro)-tan(θ2_acc)]*[tan(θ2_gyro)-tan(θ2_acc)]+...[tan(θn_gyro)-tan(θn_acc)]*[tan(θn_gyro)-tan(θn_acc)]
其中,不同条件下的acc_x0i,acc_y0i和acc_z0i(i=1-n)这三个值可以从加速度计的数据表(datasheet)中得到。上式通过嵌入式芯片计算,把这个范围内的所有数据计算一次,进行这样一次计算所需要花费的时间大约是1-2秒。
通过上式计算所得到的最小的acc_x0,acc_y0,acc_z0就是我们需要的加速度计的零点漂移值。
在有6个不同的角度的测试情况下,在相同的测试环境下进行不同的测试,得到的零点漂移值大约是正负8mg,相对于器件本身的误差范围正负70mg有很大的改善。
5、把测量得到的数据写入到控制器的FLASH存储中,这样在后续的运行过程中,可以利用这个零点漂移数据进行准确的计算了。
6、把整个天线放入到温度控制箱中,在不同的温度环境下,重复步骤1-5的测试,软件自动记录在不同温度下的零点漂移值并写入到控制器的存储中。这样得到了整个温度方位内的加速度计的零点漂移值。在高低温箱校准的过程中,通过温度传感器,因此在整个测试过程中,系统将自动记录温度和零点漂移的关系,无需人工干预。在得到多个温度漂移数据以后,采用多项式曲线拟合,或者分段线性近似方法,得到零点漂移随着温度变化的函数曲线,作为最终的结果。
本发明以上实施例的有益效果:
1能够精确测量出加速度计的零点漂移值,从而大大提高了倾角的测量精度。
2直接利用自动跟踪卫星天线的软件硬件和结构件,无需采购分度头等设备。
3校测是全自动的,无需担心人工干扰出错,同时也节约了人工。
4可以在现场校验,针对某个特定的外部环境,温度,湿度,磁场灵敏度环境,在现场可以进行一次校验,更加精准地反映当地的情况。

Claims (4)

  1. 一种动中通卫星天线倾角校准过程中零点漂移值的测量方法,其特征在于,卫星天线的底座放置到水平面上,惯性测量单元安装在卫星天线的天线上,零点漂移值的测量方法包括以下步骤:
    101、调节天线俯仰角到某个角度,读加速度计的3轴数据;
    102、天线在水平面内顺时针或者逆时针转动某一的角度,在转动过程中,读陀螺仪的3轴数据,进行累加,得到转动这个角度的陀螺仪累积值;
    103、重复步骤101和102共n次,得到acc_xi,acc_yi,acc_zi,gyro_sum_zi,gyro_sum_yi,其中i=1-n,n≥3;acc_xi是第i次测量的加速度计X轴的测量值,acc_yi是第i次测量的加速度计Y轴的测量值,acc_zi是第i次测量的加速度计Z轴的测量值,gyro_sum_zi是第i次测量的Z轴陀螺仪累积值,gyro_sum_yi是第i次测量的Y轴陀螺仪累积值;
    104、通过加速度计计算的倾角(θi_acc)为:
    tan(θi_acc)=(acc_zi-acc_z0i)/(sqrt((acc_xi-acc_x0i)*(acc_xi-acc_x0i)+(acc_yi-acc_y0i)*(acc_yi-acc_y0i));
    用陀螺计算出该位置的倾角(θi_gyro)为:
    tan(θi_gyro)=gyro_sum_yi/gyro_sum_zi;
    其中,acc_x0i,acc_y0i和acc_z0i分别为加速度计三个轴第i次测量的零点漂移值,从加速度计的数据表中得到;
    当Σtan(θi_gyro)-tan(θi_acc)]*[tan(θi_gyro)-tan(θi_acc)的值为最小时,所代入的acc_x0i,acc_y0i和acc_z0i即测量得到的加速度计的零点漂移值。
  2. 根据权利要求1所述的测量方法,其特征在于,在不同的温度环境下,重复步骤101-105,得到复数个温度漂移数据以后,采用多项式曲线拟合或者分段线性近似方法,得到零点漂移随着温度变化的函数曲线。
  3. 根据权利要求1所述的测量方法,其特征在于,在步骤101中,把俯仰最高限制角减去俯仰最低限制角,然后除以(n-1),得到每次俯仰角的调节角度。
  4. 根据权利要求1所述的测量方法,其特征在于,在步骤102中,天线经过n次旋转,在水平面内顺时针或者逆时针转过的总角度>90°。
PCT/CN2015/091952 2015-04-14 2015-10-14 动中通卫星天线倾角校准过程中零点漂移值的测量方法 WO2016165295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510173211.X 2015-04-14
CN201510173211.XA CN104807475B (zh) 2015-04-14 2015-04-14 动中通卫星天线倾角校准过程中零点漂移值的测量方法

Publications (1)

Publication Number Publication Date
WO2016165295A1 true WO2016165295A1 (zh) 2016-10-20

Family

ID=53692511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091952 WO2016165295A1 (zh) 2015-04-14 2015-10-14 动中通卫星天线倾角校准过程中零点漂移值的测量方法

Country Status (2)

Country Link
CN (1) CN104807475B (zh)
WO (1) WO2016165295A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304339A (zh) * 2020-11-06 2021-02-02 迪泰(浙江)通信技术有限公司 一种卫星移动通信天线的惯导校准方法
CN116953729A (zh) * 2023-09-21 2023-10-27 成都恪赛科技有限公司 一种卫星跟踪方法、存储介质及动中通设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807475B (zh) * 2015-04-14 2017-05-10 深圳市宏腾通电子有限公司 动中通卫星天线倾角校准过程中零点漂移值的测量方法
US9966650B2 (en) * 2015-06-04 2018-05-08 Viasat, Inc. Antenna with sensors for accurate pointing
CN105466456B (zh) * 2015-12-22 2018-02-23 中国电子科技集团公司第五十四研究所 动中通天线稳定陀螺动态消除零点漂移的方法
CN106441361B (zh) * 2016-09-26 2019-07-16 西安坤蓝电子技术有限公司 一种移动式vsat天线角速率陀螺零偏的动态补偿方法
CN108168516B (zh) * 2017-12-13 2020-07-03 陕西宝成航空仪表有限责任公司 基于光纤陀螺测量待测台面与基准水平面之间倾斜夹角的方法
CN110488220B (zh) * 2018-05-14 2021-07-27 瑞昱半导体股份有限公司 测向芯片、测向方法及信标
CN111693019B (zh) * 2020-05-20 2021-04-20 西安交通大学 一种姿态传感装置及数据融合、姿态解算方法
CN111536999B (zh) * 2020-05-27 2023-03-31 浙江中星光电子科技有限公司 陀螺仪的零点电压校准方法、装置、设备及介质
WO2023070440A1 (zh) * 2021-10-28 2023-05-04 华为技术有限公司 校准方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026574A1 (en) * 2008-07-31 2010-02-04 Raytheon Company Methods and apparatus for multiple beam aperture
CN101982897A (zh) * 2010-09-01 2011-03-02 郴州希典科技有限公司 动态跟踪卫星天线
CN102064386A (zh) * 2010-07-31 2011-05-18 华为技术有限公司 一种用于调整天线角度的方法及辅助装置
CN102539838A (zh) * 2011-12-28 2012-07-04 北京达顺威尔科技有限公司 一种基于移动卫星天线角速度计的自动补偿方法
EP2650962A1 (en) * 2012-04-12 2013-10-16 Satcube AB Antenna support system
CN104807475A (zh) * 2015-04-14 2015-07-29 深圳市宏腾通电子有限公司 动中通卫星天线倾角校准过程中零点漂移值的测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026574A1 (en) * 2008-07-31 2010-02-04 Raytheon Company Methods and apparatus for multiple beam aperture
CN102064386A (zh) * 2010-07-31 2011-05-18 华为技术有限公司 一种用于调整天线角度的方法及辅助装置
CN101982897A (zh) * 2010-09-01 2011-03-02 郴州希典科技有限公司 动态跟踪卫星天线
CN102539838A (zh) * 2011-12-28 2012-07-04 北京达顺威尔科技有限公司 一种基于移动卫星天线角速度计的自动补偿方法
EP2650962A1 (en) * 2012-04-12 2013-10-16 Satcube AB Antenna support system
CN104807475A (zh) * 2015-04-14 2015-07-29 深圳市宏腾通电子有限公司 动中通卫星天线倾角校准过程中零点漂移值的测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA, LIN ET AL.: "Influence of Zero Drift of Tracking Gyro of Ship-Borne Satcom Antenna on Acquisition Capability.", JOURNAL OF SPACECRAFT TT&C TECHNOLOGY, vol. 29, no. 6, 31 December 2010 (2010-12-31), ISSN: 1674-5620 *
WU, HONGWEI ET AL.: "Correction Method of Zero Drift of Gyroscope for Shipborne Satellite Antenna.", PROCESS AUTOMATION INSTRUMENTATION, vol. 35, no. 2, 28 February 2014 (2014-02-28), ISSN: 1000-0380 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304339A (zh) * 2020-11-06 2021-02-02 迪泰(浙江)通信技术有限公司 一种卫星移动通信天线的惯导校准方法
CN112304339B (zh) * 2020-11-06 2023-01-06 迪泰(浙江)通信技术有限公司 一种卫星移动通信天线的惯导校准方法
CN116953729A (zh) * 2023-09-21 2023-10-27 成都恪赛科技有限公司 一种卫星跟踪方法、存储介质及动中通设备
CN116953729B (zh) * 2023-09-21 2023-12-22 成都恪赛科技有限公司 一种卫星跟踪方法、存储介质及动中通设备

Also Published As

Publication number Publication date
CN104807475B (zh) 2017-05-10
CN104807475A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2016165295A1 (zh) 动中通卫星天线倾角校准过程中零点漂移值的测量方法
CN111678538B (zh) 一种基于速度匹配的动态水平仪误差补偿方法
CN106647791B (zh) 三维姿态测控装置、机械设备及三维姿态的测控方法
CN105910624B (zh) 一种惯组光学瞄准棱镜安装误差的标定方法
CN110926468B (zh) 基于传递对准的动中通天线多平台航姿确定方法
US10396426B2 (en) Alignment determination for antennas
US9014975B2 (en) System on a chip inertial navigation system
CN112197790B (zh) 一种机载高精度地理指示光电转塔的几何精度校准方法
CN102168990B (zh) 惯性定向设备的高精度检测标定装置及其检测标定方法
CN103399335B (zh) 一种移动平台测试系统
CN109459585B (zh) 一种加速度计零位偏置修正方法
US10677934B2 (en) Rapid azimuth determination in a GPS interferometer
CN109631940B (zh) 一种四环惯性稳定平台框架零位标校方法
CN110873578B (zh) 一种基于转台传递的六面体棱镜和imu安装误差标定方法
CN107402022B (zh) 一种稳定云台的加速度计校准方法及装置
CN113267794B (zh) 一种基线长度约束的天线相位中心校正方法及装置
CN113008227A (zh) 一种基于三轴加速度计测姿的地磁二分量测量方法
US10310132B2 (en) Absolute vector gravimeter and methods of measuring an absolute gravity vector
CN110895149B (zh) 局部基准传递对准精度内场测试系统及测试方法
CN104596542A (zh) 移动卫星通信的惯导系统自标定方法
CN109470274B (zh) 一种车载光电经纬仪载车平台变形测量系统及方法
CN109631952B (zh) 航天器用光学陀螺组件姿态基准镜安装误差标定方法
CN108020243B (zh) 一种基于载体滚转的棱镜安装参数标定方法
CN115079728A (zh) 小视场相机快速恒星瞄准跟踪装置、方法及探测装置
CN105606125A (zh) 一种惯性稳定设备的测试装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 15.03.2018

122 Ep: pct application non-entry in european phase

Ref document number: 15888992

Country of ref document: EP

Kind code of ref document: A1