WO2016165259A1 - 有机电致发光器件及其制造方法、电子设备 - Google Patents

有机电致发光器件及其制造方法、电子设备 Download PDF

Info

Publication number
WO2016165259A1
WO2016165259A1 PCT/CN2015/087775 CN2015087775W WO2016165259A1 WO 2016165259 A1 WO2016165259 A1 WO 2016165259A1 CN 2015087775 W CN2015087775 W CN 2015087775W WO 2016165259 A1 WO2016165259 A1 WO 2016165259A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
organic electroluminescent
electroluminescent device
emitting layer
Prior art date
Application number
PCT/CN2015/087775
Other languages
English (en)
French (fr)
Inventor
吴海东
邱云
赖韦霖
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/907,047 priority Critical patent/US10115909B2/en
Publication of WO2016165259A1 publication Critical patent/WO2016165259A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/181Metal complexes of the alkali metals and alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an organic electroluminescent device, a method of manufacturing the same, and an electronic device.
  • Organic electroluminescent devices are highly valued in the field of flat panel display and illumination due to their high brightness, color saturation, lightness and flexibility.
  • the structure of a common organic electroluminescent device has two structures, a top light emitting device structure and a bottom light emitting device structure, and the top light emitting device structure has a high aperture ratio, high color purity, and high PPI, compared with the bottom light emitting device structure. And so on, so it has become the mainstream organic electroluminescent device structure.
  • the top-emitting organic electroluminescent device structure also has some technical problems, such as low efficiency of the device, high driving voltage, poor lifetime, viewing angle and the like.
  • the structure of the existing organic electroluminescent device generally includes an anode layer, a hole transport layer (HTL), an emissive layer (EML), an electron transport layer (ETL), and a cathode layer ( As shown in Figure 1).
  • the device works by injecting holes from the anode and transporting them on the HOMO level of the hole transport layer (the highest occupied molecular orbital), eventually reaching the HOMO level of the luminescent layer; and electrons are injected from the cathode at the electron transport layer.
  • the LUMO level (the lowest unoccupied molecular orbital) is transmitted and finally reaches the LUMO level of the luminescent layer.
  • the electrons located on the LUMO level of the light-emitting layer are combined with the holes located at the HOMO level of the light-emitting layer by the applied voltage to finally realize the light emission of the organic electroluminescent device.
  • the optimal device structure is to achieve balanced injection of electrons and holes, so that each electron and hole are recombined to obtain a highly efficient device structure.
  • luminescent materials having the same electron mobility and hole mobility are difficult to obtain.
  • the electrons and holes transported to the interface of the luminescent layer cannot be combined into the luminescent layer in the same amount, which is disadvantageous to the efficiency and lifetime of the organic electroluminescent device. improve.
  • embodiments of the present invention provide an organic electroluminescent device and a method of fabricating the same, which achieve balanced implantation of holes and electrons, thereby improving luminous efficiency and lifetime of the organic electroluminescent device.
  • anode layer a sequentially stacked anode layer, a hole transport layer, a first light emitting layer, a second light emitting layer, an electron transport layer, and a cathode layer;
  • first luminescent layer and the second luminescent layer comprise the same substrate, and the first luminescent layer and/or the second luminescent layer are doped such that the first luminescent layer has a hole mobility and a The electron mobility of the second light-emitting layer is equal.
  • Existing luminescent material matrices are typically hole-transport materials or electron-transport materials.
  • Embodiments of the present invention use the same substrate to make two light-emitting layers, and the hole mobility of the light-emitting layer near the anode is equal to the electron mobility of the light-emitting layer near the cathode; thus, a balanced injection of holes and electrons can be achieved. It also ensures the physical properties of the two luminescent layers.
  • the present invention uses two light-emitting layers including the same substrate to achieve balanced injection of holes and electrons, thereby improving the luminous efficiency and lifetime of the organic electroluminescent device.
  • the substrate is 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl-julidine--4-vinyl)-4H- Pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq3), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4-TCNQ) , 4,4-bis(2,2-distyryl)-1,1-biphenyl (DPVBi), or 6,6-bis(2-(1-indolyl)-4-phenylquinoline) (BPYPQ).
  • DCJTB 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl-julidine--4-vinyl)-4H- Pyran
  • Alq3 8-hydroxyquinoline aluminum
  • F4-TCNQ 2,3,5,6-tetrafluoro-7,
  • the first luminescent layer is doped with a p-type dopant, and the p-type dopant is 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanate.
  • the second luminescent layer is doped with an n-type dopant, and the n-type dopant is lithium quinolate (Liq), lithium fluoride (LiF), and pyridinium chrome (Cr ( Bpy) 3 ), or terpyridine pyridinium (Ru(bpy) 3 ).
  • the n-type dopant is lithium quinolate (Liq), lithium fluoride (LiF), and pyridinium chrome (Cr ( Bpy) 3 ), or terpyridine pyridinium (Ru(bpy) 3 ).
  • the material of the hole transport layer is N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine (NPB), triphenyldiamine derivative (TPD), N,N'-bis(phenyl)-N,N'-bis(4'-(N,N-di(phenylamino)-4) -biphenyl)benzidine (TPTE) or 1,3,5-tris(N-3-methylphenyl-N-phenylamino)benzene (TDAB).
  • NBP N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine
  • TPD triphenyldiamine derivative
  • TPTE N,N'-bis(phenyl)-N,N'-bis(4'-(N,N-di(phenylamino)-4)
  • the material of the electron transport layer is 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di(1-naphthyl)-1,3,5. - Oxadiazole (BND), or 2,4,6-triphenoxy-1,3,5-triazine (TRZ).
  • PBD 2-(4-biphenyl)-5-phenyloxadiazole
  • BND 2,5-di(1-naphthyl)-1,3,5.
  • TRZ 2,4,6-triphenoxy-1,3,5-triazine
  • the material of the anode layer is ITO (In 2 O 3 :SnO 2 ), IZO (In 2 O 3 :ZnO), GITO (Ga 0.08 In 0.28 Sn 0.64 O 3 ), or ZITO (Zn 0.64 In 0.88 Sn 0.66 O 3 ).
  • the material of the cathode layer is Mg, Ag, Al, Li, K, Ca, Mg x Ag (1-x) , Li x Al (1-x) , Li x Ca (1-x) , Or Li x Ag (1-x) .
  • Embodiments of the present invention also provide a method of fabricating an organic electroluminescent device, the method comprising:
  • first luminescent layer and the second luminescent layer comprise the same substrate, and the first luminescent layer and/or the second luminescent layer are doped such that the first luminescent layer has a hole mobility and a The electron mobility of the second light-emitting layer is equal.
  • Embodiments of the present invention use the same substrate to make two light-emitting layers, and the hole mobility of the light-emitting layer near the anode is equal to the electron mobility of the light-emitting layer near the cathode; thus, a balanced injection of holes and electrons can be achieved. It also ensures the physical properties of the two luminescent layers.
  • the present invention uses two light-emitting layers including the same substrate to achieve balanced injection of holes and electrons, thereby improving the luminous efficiency and lifetime of the organic electroluminescent device.
  • the substrate is 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl-julidine--4-vinyl)-4H- Pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq3), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4-TCNQ) , 4,4-bis(2,2-distyryl)-1,1-biphenyl (DPVBi), or 6,6-bis(2-(1-indolyl)-4-phenylquinoline) (BPYPQ).
  • DCJTB 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl-julidine--4-vinyl)-4H- Pyran
  • Alq3 8-hydroxyquinoline aluminum
  • F4-TCNQ 2,3,5,6-tetrafluoro-7,
  • the first luminescent layer is doped with a p-type dopant, and the p-type dopant is 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanate.
  • the second luminescent layer is doped with an n-type dopant, and the n-type dopant is lithium quinolate (Liq), lithium fluoride (LiF), and pyridinium chrome (Cr ( Bpy) 3 ), or terpyridine pyridinium (Ru(bpy) 3 ).
  • the n-type dopant is lithium quinolate (Liq), lithium fluoride (LiF), and pyridinium chrome (Cr ( Bpy) 3 ), or terpyridine pyridinium (Ru(bpy) 3 ).
  • the material of the hole transport layer is N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine (NPB), triphenyldiamine derivative (TPD), N,N'-bis(phenyl)-N,N'-bis(4'-(N,N-di(phenylamino)-4) -biphenyl)benzidine (TPTE) or 1,3,5-tris(N-3-methylphenyl-N-phenylamino)benzene (TDAB).
  • NBP N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine
  • TPD triphenyldiamine derivative
  • TPTE N,N'-bis(phenyl)-N,N'-bis(4'-(N,N-di(phenylamino)-4)
  • the material of the electron transport layer is 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di(1-naphthyl)-1,3,5. - Oxadiazole (BND), or 2,4,6-triphenoxy-1,3,5-triazine (TRZ).
  • PBD 2-(4-biphenyl)-5-phenyloxadiazole
  • BND 2,5-di(1-naphthyl)-1,3,5.
  • TRZ 2,4,6-triphenoxy-1,3,5-triazine
  • the material of the anode layer is ITO (In 2 O 3 :SnO 2 ), IZO (In 2 O 3 :ZnO), GITO (Ga 0.08 In 0.28 Sn 0.64 O 3 ), or ZITO (Zn 0.64 In 0.88 Sn 0.66 O 3 ).
  • the material of the cathode layer is Mg, Ag, Al, Li, K, Ca, Mg x Ag (1-x) , Li x Al (1-x) , Li x Ca (1-x) , Or Li x Ag (1-x) .
  • Embodiments of the present invention also provide an electronic device including the organic electroluminescent device as described above.
  • FIG. 1 is a schematic view showing the structure of a prior art organic electroluminescent device
  • FIG. 2 shows a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention
  • FIG. 3 shows a flow chart of a method of fabricating an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention, wherein the organic electroluminescent device includes:
  • anode layer a hole transport layer HTL, a first light emitting layer EML I, a second light emitting EML II, an electron transport layer ETL, and a cathode layer;
  • first luminescent layer EML I and the second luminescent layer EML II comprise the same substrate, and the first luminescent layer EML I and/or the second luminescent layer EML II are doped such that the first illuminating
  • the hole mobility of the layer EML I is equal to the electron mobility of the second light-emitting layer EML II.
  • Existing luminescent material matrices are typically hole transporting materials or electron transporting materials.
  • Embodiments of the present invention use the same substrate to make two light-emitting layers, and the hole mobility of the light-emitting layer near the anode is equal to the electron mobility of the light-emitting layer near the cathode; thus, a balanced injection of holes and electrons can be achieved. It also ensures the physical properties of the two luminescent layers.
  • the present invention uses two light-emitting layers including the same substrate to achieve balanced injection of holes and electrons, thereby improving the luminous efficiency and lifetime of the organic electroluminescent device.
  • the first luminescent layer EML I and the second luminescent layer EML II use the same substrate, and the first luminescent layer EML I and/or the second luminescent layer EML II are doped.
  • the first luminescent layer EML I is p-type doped to improve the hole transporting ability of the first luminescent layer EML I and pass Adjusting the concentration of the p-type dopant to control its hole transporting ability;
  • the hole transporting ability of the first light-emitting layer EML I is the same as the electron transporting ability of the second light-emitting layer EML II.
  • the second light-emitting layer EML II is n-type doped to improve the electron transport capability of the second light-emitting layer EML II, and is controlled by adjusting the concentration of the n-type dopant.
  • the electron transport capability; ultimately, the hole transporting ability of the first light-emitting layer EML I is the same as the electron transport capability of the second light-emitting layer EML II.
  • first light-emitting layer EML I and the second light-emitting layer EML II may be doped, the hole transporting ability of the first light-emitting layer EML I and the electron-transporting capability of the second light-emitting layer EML II are adjusted, and finally The hole transporting ability of the first light-emitting layer EML I is the same as the electron transporting ability of the second light-emitting layer EML II.
  • the carrier mobility of the light-emitting layer may be performed using a method such as time of flight (TOF) or space charge limited current (SCLC) (ie, the embodiment of the present invention)
  • TOF time of flight
  • SCLC space charge limited current
  • the hole mobility of the first light-emitting layer EML I and the electron mobility of the second light-emitting layer EML II are measured to determine the concentration of the dopant.
  • the substrate may be 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl) Nitidine-4-vinyl)-4H-pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq3), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanate Dimethyl-p-benzoquinone (F4-TCNQ), 4,4-bis(2,2-distyryl)-1,1-biphenyl (DPVBi), or 6,6-di(2(1-quinone) Base)-4-phenylquinoline) (BPYPQ).
  • DCJTB 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl) Nitidine-4-vinyl)-4H-pyran
  • Alq3 8-hydroxyquinoline aluminum
  • Alq3 2,3,5,6-tetrafluoro-7,7',8,8'-
  • the first light emitting layer is doped with a p-type dopant
  • the p-type dopant may be 2,3,5,6-tetrafluoro- 7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4-TCNQ), tris(4-bromophenyl)ammonium hexachloroantimonate (TBAHA), or 4,4',4"- Tris(N-(1-naphthyl)-N-phenylamino)triphenylamine (TNATA).
  • F4-TCNQ 2,3,5,6-tetrafluoro- 7,7',8,8'-tetracyanodimethyl-p-benzoquinone
  • TAAHA tris(4-bromophenyl)ammonium hexachloroantimonate
  • TNATA 4,4',4"- Tris(N-(1-naphthyl)-N-phenylamino)
  • the second light emitting layer is doped with an n-type dopant
  • the n-type dopant may be lithium quinolate (Liq), Lithium fluoride (LiF), pyridinium chromium (Cr(bpy) 3 ), or terpyridine pyridinium (Ru(bpy) 3 ).
  • the hole transport layer is made of a material having a higher hole mobility, and the material of the hole transport layer may be N,N'-bis(1-naphthyl)-N,N'-diphenyl.
  • NPB N,1'-biphenyl-4-4'-diamine
  • TPD triphenyldiamine derivative
  • TPTE N,N'-di(phenyl)-N,N'-di(4) '-(N,N-Di(phenylamino)-4-biphenyl)benzidine
  • TDAB 1,3,5-tris(N-3-methylphenyl-N-phenylamino ) Benzene
  • a hole transport layer is fabricated using a material having a higher electron mobility, the electron transport
  • the material of the layer may be 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di(1-naphthyl)-1,3,5-oxadiazole (BND). Or 2,4,6-triphenyloxy-1,3,5-triazine (TRZ).
  • an anode layer is formed using a reflective material; when the organic electroluminescent device is a bottom emitting device, an anode layer is formed using a transparent material;
  • the material of the anode layer may be ITO (In 2 O 3 :SnO 2 ), IZO (In 2 O 3 :ZnO), GITO (Ga 0.08 In 0.28 Sn 0.64 O 3 ), or ZITO (Zn 0.64 In 0.88 Sn 0.66 O 3 ).
  • a cathode layer is formed using a transparent material; when the organic electroluminescent device is a bottom emitting device, a cathode layer is formed using a reflective material;
  • the material of the cathode layer may be Mg, Ag, Al, Li, K, Ca, Mg x Ag (1-x) , Li x Al (1-x) , Li x Ca (1-x) , or Li x Ag ( 1-x) .
  • Embodiments of the present invention also provide a method of fabricating an organic electroluminescent device, the method comprising:
  • first luminescent layer and the second luminescent layer comprise the same substrate, and the first luminescent layer and/or the second luminescent layer are doped such that the first luminescent layer has a hole mobility and a The electron mobility of the second light-emitting layer is equal.
  • Embodiments of the present invention use the same substrate to make two light-emitting layers, and the hole mobility of the light-emitting layer near the anode is equal to the electron mobility of the light-emitting layer near the cathode; thus, a balanced injection of holes and electrons can be achieved. It also ensures the physical properties of the two luminescent layers.
  • the present invention uses two light-emitting layers including the same substrate to achieve balanced injection of holes and electrons, thereby improving the luminous efficiency and lifetime of the organic electroluminescent device.
  • the substrate may be 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl) Nitidine-4-vinyl)-4H-pyran (DCJTB), 8-hydroxyquinoline aluminum (Alq3), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanate Dimethyl-p-benzoquinone (F4-TCNQ), 4,4-bis(2,2-distyryl)-1,1-biphenyl (DPVBi), or 6,6-di(2-(1-) Mercapto)-4-phenylquinoline) (BPYPQ).
  • DCJTB 4-(dicyanovinyl)-2-tert-butyl-6-(1,1,7,7-tetramethyl) Nitidine-4-vinyl)-4H-pyran
  • Alq3 8-hydroxyquinoline aluminum
  • Alq3 2,3,5,6-tetrafluoro-7,7',8,8'-t
  • the first light emitting layer is doped with a p-type dopant
  • the p-type dopant may be 2,3,5,6-tetrafluoro- 7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4-TCNQ), tris(4-bromophenyl)ammonium hexachloroantimonate (TBAHA), or 4,4',4"- Tris(N-(1-naphthyl)-N-phenylamino)triphenylamine (TNATA).
  • F4-TCNQ 2,3,5,6-tetrafluoro- 7,7',8,8'-tetracyanodimethyl-p-benzoquinone
  • TAAHA tris(4-bromophenyl)ammonium hexachloroantimonate
  • TNATA 4,4',4"- Tris(N-(1-naphthyl)-N-phenylamino)
  • the second light emitting layer is doped with an n-type dopant
  • the n-type dopant may be lithium quinolate (Liq), Lithium fluoride (LiF), pyridinium chromium (Cr(bpy) 3 ), or terpyridine pyridinium (Ru(bpy) 3 ).
  • the hole transport layer is made of a material having a higher hole mobility, and the material of the hole transport layer may be N,N'-bis(1-naphthyl)-N,N'-diphenyl.
  • NPB N,1'-biphenyl-4-4'-diamine
  • TPD triphenyldiamine derivative
  • TPTE N,N'-di(phenyl)-N,N'-di(4) '-(N,N-Di(phenylamino)-4-biphenyl)benzidine
  • TDAB 1,3,5-tris(N-3-methylphenyl-N-phenylamino ) Benzene
  • the hole transport layer is made of a material having a higher electron mobility
  • the material of the electron transport layer may be 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2. 5-bis(1-naphthyl)-1,3,5-oxadiazole (BND), or 2,4,6-triphenoxy-1,3,5-triazine (TRZ).
  • an anode layer is formed using a reflective material; when the organic electroluminescent device is a bottom emitting device, an anode layer is formed using a transparent material;
  • the material of the anode layer may be ITO (In 2 O 3 :SnO 2 ), IZO (In 2 O 3 :ZnO), GITO (Ga 0.08 In 0.28 Sn 0.64 O 3 ), or ZITO (Zn 0.64 In 0.88 Sn 0.66 O 3 ).
  • a cathode layer is formed using a transparent material; when the organic electroluminescent device is a bottom emitting device, a cathode layer is formed using a reflective material;
  • the material of the cathode layer may be Mg, Ag, Al, Li, K, Ca, Mg x Ag (1-x) , Li x Al (1-x) , Li x Ca (1-x) , or Li x Ag ( 1-x) .
  • FIG. 3 shows a flow chart of a method of fabricating an organic electroluminescent device according to an embodiment of the present invention. It should be noted that the flowchart shown in FIG. 3 includes the following two examples of the fabrication method of the organic electroluminescence device.
  • the material of the anode layer may be ITO (In 2 O 3 :SnO 2 ), IZO (In 2 O 3 :ZnO), GITO (Ga 0.08 In 0.28 Sn 0.64 O 3 ), or ZITO (Zn) 0.64 In 0.88 Sn 0.66 O 3 ) conductive film;
  • a hole transport layer is prepared by a vacuum evaporation process; preferably, a hole transport layer is formed using a material having a higher hole mobility, the hole transport layer
  • the material may be N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine (NPB), triphenyldiamine derivative (TPD), N,N'-bis(phenyl)-N,N'-bis(4'-(N,N-di(phenylamino)-4) -biphenyl)benzidine (TPTE), or 1,3,5-tris(N-3-methylphenyl-N-phenylamino)benzene (TDAB);
  • the substrate is an electron transport type material
  • the first light-emitting layer is doped with a p-type dopant
  • the p The type dopant may be 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4-TCNQ), tris(4-bromophenyl)hexa Ammonium chloroantimonate (TBAHA), or 4,4',4"-tris(N-(1-naphthyl)-N-phenylamino)triphenylamine (TNATA);
  • EML II is prepared by a vacuum evaporation process, and the EML II luminescent layer is the same as the luminescent material of the EML I which is not p-doped;
  • an electron transport layer by a vacuum evaporation process; preferably, a hole transport layer is formed using a material having a higher electron mobility, and the material of the electron transport layer may be 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di(1-naphthyl)-1,3,5-oxadiazole (BND), or 2,4 , 6-triphenoxy-1,3,5-triazine (TRZ), etc.;
  • PBD 2-(4-biphenyl)-5-phenyloxadiazole
  • BND 2,5-di(1-naphthyl)-1,3,5-oxadiazole
  • TRZ 6-triphenoxy-1,3,5-triazine
  • the cathode layer is formed using a transparent material;
  • the electroluminescent device is a bottom emitting device, a cathode layer is formed using a reflective material; the material of the cathode layer may be Mg, Ag, Al, Li, K, Ca, Mg x Ag (1-x) , Li x Al (1-x) , Li x Ca (1-x) , or Li x Ag (1-x) .
  • the material of the anode layer may be ITO (In 2 O 3 :SnO 2 ), IZO (In 2 O 3 :ZnO), GITO (Ga 0.08 In 0.28 Sn 0.64 O 3 ), or ZITO (Zn) 0.64 In 0.88 Sn 0.66 O 3 ) conductive film;
  • a hole transport layer is prepared by a vacuum evaporation process; preferably, a hole transport layer is formed using a material having a higher hole mobility, the hole transport layer
  • the material may be N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine (NPB), triphenyldiamine derivative (TPD), N,N'-di(phenyl)-N,N'-bis(4'-(N,N-di(phenylamino)-4-biphenyl)benzidine (TPTE) Or 1,3,5-tris(N-3-methylphenyl-N-phenylamino)benzene (TDAB);
  • EML I is prepared by vacuum evaporation process, and the EML I luminescent layer and EML II are not advanced.
  • the n-doped luminescent materials are the same;
  • EML II is prepared by vacuum evaporation process, and EML II is doped n-type at the same time.
  • the n-type dopant is mainly an organic material with a low work function, and the preferred n-type dopant is 8-hydroxyquinoline.
  • an electron transport layer by a vacuum evaporation process; preferably, a hole transport layer is formed using a material having a higher electron mobility, and the material of the electron transport layer may be 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di(1-naphthyl)-1,3,5-oxadiazole (BND), or 2,4 , 6-triphenoxy-1,3,5-triazine (TRZ), etc.;
  • PBD 2-(4-biphenyl)-5-phenyloxadiazole
  • BND 2,5-di(1-naphthyl)-1,3,5-oxadiazole
  • TRZ 6-triphenoxy-1,3,5-triazine
  • a cathode layer is formed using a transparent material;
  • a cathode layer is formed using a reflective material; the material of the cathode layer may be Mg, Ag, Al, Li, K, Ca, Mg x Ag (1-x) , Li x Al ( 1-x) , Li x Ca (1-x) , or Li x Ag (1-x) .
  • an embodiment of the present invention further provides an electronic device, including the above-mentioned organic electroluminescent device provided by the embodiment of the present invention, which may be: a lighting device, a mobile phone, a tablet computer, a television, a display, Any product or component that has lighting or display functions, such as a laptop, digital photo frame, and navigator.
  • an electronic device including the above-mentioned organic electroluminescent device provided by the embodiment of the present invention, which may be: a lighting device, a mobile phone, a tablet computer, a television, a display, Any product or component that has lighting or display functions, such as a laptop, digital photo frame, and navigator.
  • the electronic device reference may be made to the embodiment of the above organic electroluminescent device, and the repeated description is omitted.
  • Existing luminescent material matrices are typically hole transporting materials or electron transporting materials.
  • Embodiments of the present invention use the same substrate to make two light-emitting layers, and the hole mobility of the light-emitting layer near the anode is equal to the electron mobility of the light-emitting layer near the cathode; thus, a balanced injection of holes and electrons can be achieved. It also ensures the physical properties of the two luminescent layers.
  • the present invention uses two light-emitting layers including the same substrate to achieve balanced injection of holes and electrons, thereby improving the luminous efficiency and lifetime of the organic electroluminescent device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及其制造方法、和电子设备。该有机电致发光器件包括:顺序地堆叠的阳极层、空穴传输层(HTL)、第一发光层(EML I)、第二发光层(EML II)、电子传输层(ETL)以及阴极层;其中,该第一发光层(EML I)和第二发光层(EML II)包括相同的基质,并且该第一发光层(EML I)和/或第二发光层(EML II)被掺杂,使得该第一发光层(EML I)的空穴迁移率与该第二发光层(EML II)的电子迁移率相等。使用包括了相同基质的两个发光层,实现了空穴和电子的平衡注入,从而提高了有机电致发光器件的发光效率和寿命。

Description

有机电致发光器件及其制造方法、电子设备 技术领域
本发明涉及显示技术领域,尤其涉及一种有机电致发光器件及其制造方法、电子设备。
背景技术
有机电致发光器件(OLED)由于具有亮度高、色彩饱和、轻薄、可弯曲等优点而受到了平板显示与照明领域的高度重视。目前,常见有机电致发光器件的结构有顶发光器件结构和底发光器件结构两种,而顶发光器件结构与底发光器件结构相比,具有器开口率高、色纯度高、容易实现高PPI等优点,因此成为目前主流的有机电致发光器件结构。但是顶发光有机电致发光器件结构也存在一些技术问题,例如器件的效率低、驱动电压高、寿命较差、视角等问题。
现有的有机电致发光器件结构,通常包括阳极层、空穴传输层(HTL,hole transport layer)、发光层(EML,emissive layer)、电子传输层(ETL,electron transport layer)、阴极层(如图1所示)。器件的工作原理为空穴从阳极注入,并在空穴传输层的HOMO能级(最高已占分子轨道)上传输,最终到达发光层的HOMO能级;而电子从阴极注入,在电子传输层的LUMO能级(最低未占分子轨道)上传输,最终到达发光层的LUMO能级。位于发光层LUMO能级上的电子,在外加电压的作用下,与位于发光层HOMO能级上的空穴发生复合,最终实现有机电致发光器件的发光。通常,最佳的器件结构要实现电子和空穴的平衡注入,使得每个电子和空穴都发生了复合,从而获得高效率的器件结构。然而,电子迁移率和空穴迁移率相同的发光材料是很难获得的。
由于发光层对于电子和空穴传输能力的不一致,进而导致传输到发光层界面处的电子和空穴,不能以相同的数量进入发光层发生复合,从而不利于有机电致发光器件效率和寿命的提高。
发明内容
有鉴于此,本发明的实施例提供了一种有机电致发光器件及其制造方法,实现了空穴和电子的平衡注入,从而提高了有机电致发光器件的发光效率和寿命。
本发明的实施例提供了一种有机电致发光器件,包括:
顺序地堆叠的阳极层、空穴传输层、第一发光层、第二发光层、电子传输层以及阴极层;
其中,所述第一发光层和第二发光层包括相同的基质,并且所述第一发光层和/或第二发光层被掺杂,使得所述第一发光层的空穴迁移率与所述第二发光层的电子迁移率相等。
现有的发光材料基质通常为空穴传输型(hole-transport)材料或电子传输型(electron-transport)材料。本发明的实施例使用同一种基质制作两个发光层,并使靠近阳极的发光层的空穴迁移率等于靠近阴极的发光层的电子迁移率;这样既能实现空穴和电子的平衡注入,又确保了两个发光层在物理性质上的匹配。本发明使用包括了相同基质的两个发光层,实现了空穴和电子的平衡注入,从而提高了有机电致发光器件的发光效率和寿命。
较佳地,所述基质为4-(二氰乙烯基)-2-叔丁基-6-(1,1,7,7-四甲基久落尼定基-4-乙烯基)-4H-吡喃(DCJTB)、8-羟基喹啉铝(Alq3)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、4,4-二(2,2-二苯乙烯基)-1,1-联苯(DPVBi)、或6,6-二(2-(1-芘基)-4-苯基喹啉)(BPYPQ)。
较佳地,所述第一发光层由p型掺杂剂掺杂,所述p型掺杂剂为2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)、或4,4′,4″-三(N-(1-萘基)-N-苯基氨基)三苯胺(TNATA)。
较佳地,所述第二发光层由n型掺杂剂掺杂,所述n型掺杂剂为8-羟基喹啉锂(Liq)、氟化锂(LiF)、三联吡啶铬(Cr(bpy)3)、或三联吡啶钌(Ru(bpy)3)。
较佳地,所述空穴传输层的材料为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)。
较佳地,所述电子传输层的材料为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)。
较佳地,所述阳极层的材料为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)。
较佳地,所述阴极层的材料为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)
本发明的实施例还提供了一种有机电致发光器件的制作方法,所述方法包括:
顺序地堆叠阳极层、空穴传输层、第一发光层、第二发光层、电子传输层以及阴极层;
其中,所述第一发光层和第二发光层包括相同的基质,并且所述第一发光层和/或第二发光层被掺杂,使得所述第一发光层的空穴迁移率与所述第二发光层的电子迁移率相等。
本发明的实施例使用同一种基质制作两个发光层,并使靠近阳极的发光层的空穴迁移率等于靠近阴极的发光层的电子迁移率;这样既能实现空穴和电子的平衡注入,又确保了两个发光层在物理性质上的匹配。本发明使用包括了相同基质的两个发光层,实现了空穴和电子的平衡注入,从而提高了有机电致发光器件的发光效率和寿命。
较佳地,所述基质为4-(二氰乙烯基)-2-叔丁基-6-(1,1,7,7-四甲基久落尼定基-4-乙烯基)-4H-吡喃(DCJTB)、8-羟基喹啉铝(Alq3)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、4,4-二(2,2-二苯乙烯基)-1,1-联苯(DPVBi)、或6,6-二(2-(1-芘基)-4-苯基喹啉)(BPYPQ)。
较佳地,所述第一发光层由p型掺杂剂掺杂,所述p型掺杂剂为2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)、或4,4′,4″-三(N-(1-萘基)-N-苯基氨基)三苯胺(TNATA)。
较佳地,所述第二发光层由n型掺杂剂掺杂,所述n型掺杂剂为8-羟基喹啉锂(Liq)、氟化锂(LiF)、三联吡啶铬(Cr(bpy)3)、或三联吡啶钌(Ru(bpy)3)。
较佳地,所述空穴传输层的材料为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)。
较佳地,所述电子传输层的材料为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)。
较佳地,所述阳极层的材料为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)。
较佳地,所述阴极层的材料为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)
本发明的实施例还提供了一种电子设备,所述电子设备包括如上所述的有机电致发光器件。
附图说明
图1示出了现有技术的有机电致发光器件的结构示意图;
图2示出了根据本发明实施例的有机电致发光器件的结构示意图;以及
图3示出了根据本发明实施例的有机电致发光器件的制作方法的流程图。
具体实施方式
下面结合附图,对本发明实施例提供的有机电致发光器件及其制造方法、电子设备的具体实施方式进行详细地说明。
附图中各膜层的形状和厚度不反映阵列基板的真实比例,目的只是示意说明本发明内容。
图2示出了根据本发明实施例的有机电致发光器件的结构示意图,其中所述有机电致发光器件包括:
顺序地堆叠的阳极层、空穴传输层HTL、第一发光层EML I、第二发光EML II、电子传输层ETL以及阴极层;
其中,所述第一发光层EML I和第二发光层EML II包括相同的基质,并且所述第一发光层EML I和/或第二发光层EML II被掺杂,使得所述第一发光层EML I的空穴迁移率与所述第二发光层EML II的电子迁移率相等。
现有的发光材料基质通常为空穴传输型材料或电子传输型材料。本发明的实施例使用同一种基质制作两个发光层,并使靠近阳极的发光层的空穴迁移率等于靠近阴极的发光层的电子迁移率;这样既能实现空穴和电子的平衡注入,又确保了两个发光层在物理性质上的匹配。本发明使用包括了相同基质的两个发光层,实现了空穴和电子的平衡注入,从而提高了有机电致发光器件的发光效率和寿命。
在本发明的实施例中,第一发光层EML I和第二发光层EML II使用相同的基质,并且第一发光层EML I和/或第二发光层EML II被掺杂。
具体地,如果发光层材料(即,所使用的基质)为电子传输型材料:则对第一发光层EML I进行p型掺杂来提高第一发光层EML I的空穴传输能力,并通过调整p型掺杂剂的浓度来控制其空穴传输能力;最终使得 第一发光层EML I的空穴传输能力和第二发光层EML II的电子传输能力相同。如果发光层材料为空穴传输型材料:则对第二发光层EML II进行n型掺杂来提高第二发光层EML II的电子传输能力,并通过调整n型掺杂剂的浓度来控制其电子传输能力;最终使得第一发光层EML I的空穴传输能力和第二发光层EML II的电子传输能力相同。类似地,可以对第一发光层EML I和第二发光层EML II均进行掺杂,调整第一发光层EML I的空穴传输能力和第二发光层EML II的电子传输能力,并最终使得第一发光层EML I的空穴传输能力和第二发光层EML II的电子传输能力相同。
在具体实施时,可以使用诸如飞行时间法(time of flight,TOF)、空间电荷限制电流法(space charge limited current,SCLC)等方法对发光层的载流子迁移率(即,本发明实施例中的第一发光层EML I的空穴迁移率与所述第二发光层EML II的电子迁移率)进行测量,从而确定掺杂剂的浓度。
较佳地,使用易于实现掺杂的材料作为基质,所述基质可以为4-(二氰乙烯基)-2-叔丁基-6-(1,1,7,7-四甲基久落尼定基-4-乙烯基)-4H-吡喃(DCJTB)、8-羟基喹啉铝(Alq3)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、4,4-二(2,2-二苯乙烯基)-1,1-联苯(DPVBi)、或6,6-二(2(1-芘基)-4-苯基喹啉)(BPYPQ)。
较佳地,当所述基质为电子传输型材料时,所述第一发光层由p型掺杂剂掺杂,所述p型掺杂剂可以为2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)、或4,4′,4″-三(N-(1-萘基)-N-苯基氨基)三苯胺(TNATA)。本领域技术人员能够理解,当使用2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)作为基质时,可以使用除2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)以外的其他掺杂剂进行掺杂。
较佳地,当所述基质为空穴传输型材料时,所述第二发光层由n型掺杂剂掺杂,所述n型掺杂剂可以为8-羟基喹啉锂(Liq)、氟化锂(LiF)、三联吡啶铬(Cr(bpy)3)、或三联吡啶钌(Ru(bpy)3)。
较佳地,使用空穴迁移率较高的材料制作空穴传输层,所述空穴传输层的材料可以为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)。
较佳地,使用电子迁移率较高的材料制作空穴传输层,所述电子传输 层的材料可以为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)。
较佳地,当所述有机电致发光器件为顶发射器件时,使用反射性材料制作阳极层;当所述有机电致发光器件为底发射器件时,使用透明的材料制作阳极层;所述阳极层的材料可以为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)。
较佳地,当所述有机电致发光器件为顶发射器件时,使用透明的材料制作阴极层;当所述有机电致发光器件为底发射器件时,使用反射性材料制作阴极层;所述阴极层的材料可以为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)
本发明的实施例还提供了一种有机电致发光器件的制作方法,所述方法包括:
顺序地堆叠阳极层、空穴传输层、第一发光层、第二发光层、电子传输层以及阴极层;
其中,所述第一发光层和第二发光层包括相同的基质,并且所述第一发光层和/或第二发光层被掺杂,使得所述第一发光层的空穴迁移率与所述第二发光层的电子迁移率相等。
本发明的实施例使用同一种基质制作两个发光层,并使靠近阳极的发光层的空穴迁移率等于靠近阴极的发光层的电子迁移率;这样既能实现空穴和电子的平衡注入,又确保了两个发光层在物理性质上的匹配。本发明使用包括了相同基质的两个发光层,实现了空穴和电子的平衡注入,从而提高了有机电致发光器件的发光效率和寿命。
较佳地,使用易于实现掺杂的材料作为基质,所述基质可以为4-(二氰乙烯基)-2-叔丁基-6-(1,1,7,7-四甲基久落尼定基-4-乙烯基)-4H-吡喃(DCJTB)、8-羟基喹啉铝(Alq3)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、4,4-二(2,2-二苯乙烯基)-1,1-联苯(DPVBi)、或6,6-二(2-(1-芘基)-4-苯基喹啉)(BPYPQ)。
较佳地,当所述基质为电子传输型材料时,所述第一发光层由p型掺杂剂掺杂,所述p型掺杂剂可以为2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)、或4,4′,4″-三(N-(1-萘基)-N-苯基氨基)三苯胺(TNATA)。本领域技术人员能够理解,当使用2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)作为基质时,可以使用 除2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)以外的其他掺杂剂进行掺杂。
较佳地,当所述基质为空穴传输型材料时,所述第二发光层由n型掺杂剂掺杂,所述n型掺杂剂可以为8-羟基喹啉锂(Liq)、氟化锂(LiF)、三联吡啶铬(Cr(bpy)3)、或三联吡啶钌(Ru(bpy)3)。
较佳地,使用空穴迁移率较高的材料制作空穴传输层,所述空穴传输层的材料可以为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)。
较佳地,使用电子迁移率较高的材料制作空穴传输层,所述电子传输层的材料可以为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)。
较佳地,当所述有机电致发光器件为顶发射器件时,使用反射性材料制作阳极层;当所述有机电致发光器件为底发射器件时,使用透明的材料制作阳极层;所述阳极层的材料可以为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)。
较佳地,当所述有机电致发光器件为顶发射器件时,使用透明的材料制作阴极层;当所述有机电致发光器件为底发射器件时,使用反射性材料制作阴极层;所述阴极层的材料可以为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)
图3示出了根据本发明实施例的有机电致发光器件的制作方法的流程图。应当注意,图3中示出的流程图包括了有机电致发光器件的制作方法的以下两个实例。
实例一
1)在基板上溅射阳极导电薄膜;当所述有机电致发光器件为顶发射器件时,使用反射性材料制作阳极层;当所述有机电致发光器件为底发射器件时,使用透明的材料制作阳极层;所述阳极层的材料可以为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)等导电薄膜;
2)在完成阳极导电薄膜制备后,采用真空蒸镀工艺制备空穴传输层(HTL);较佳地,使用空穴迁移率较高的材料制作空穴传输层,所述空穴传输层的材料可以为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺 (NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)等;
3)采用真空蒸镀工艺制备EML I,同时对EML I进行p型掺杂;当所述基质为电子传输型材料时,所述第一发光层由p型掺杂剂掺杂,所述p型掺杂剂可以为2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)、或4,4′,4″-三(N-(1-萘基)-N-苯基氨基)三苯胺(TNATA)等;
4)采用真空蒸镀工艺制备EML II,其EML II发光层与EML I未进行p掺杂的发光材料相同;
5)在完成发光层的制备后,通过真空蒸镀工艺制备电子传输层(ETL);较佳地,使用电子迁移率较高的材料制作空穴传输层,所述电子传输层的材料可以为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)等;
6)在完成上述步骤5)后,采用真空蒸镀工艺蒸镀阴极层;较佳地,当所述有机电致发光器件为顶发射器件时,使用透明的材料制作阴极层;当所述有机电致发光器件为底发射器件时,使用反射性材料制作阴极层;所述阴极层的材料可以为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)等。
实例二
1)在基板上溅射阳极导电薄膜;当所述有机电致发光器件为顶发射器件时,使用反射性材料制作阳极层;当所述有机电致发光器件为底发射器件时,使用透明的材料制作阳极层;所述阳极层的材料可以为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)等导电薄膜;
2)在完成阳极导电薄膜制备后,采用真空蒸镀工艺制备空穴传输层(HTL);较佳地,使用空穴迁移率较高的材料制作空穴传输层,所述空穴传输层的材料可以为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)等;
3)采用真空蒸镀工艺制备EML I,其EML I发光层与EML II未进 行n掺杂的发光材料相同;
4)采用真空蒸镀工艺制备EML II,,同时对EML II进行n型掺杂,n型掺杂剂主要为具有低功函数的有机材料,优选的n型掺杂剂有8-羟基喹啉锂(Liq)、氟化锂(LiF)、三联吡啶铬(Cr(bpy)3)、三联吡啶钌(Ru(bpy)3)等;
5)在完成发光层的制备后,通过真空蒸镀工艺制备电子传输层(ETL);较佳地,使用电子迁移率较高的材料制作空穴传输层,所述电子传输层的材料可以为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)等;
6)在完成上述步骤5后,采用真空蒸镀工艺蒸镀阴极层;较佳地,当所述有机电致发光器件为顶发射器件时,使用透明的材料制作阴极层;当所述有机电致发光器件为底发射器件时,使用反射性材料制作阴极层;所述阴极层的材料可以为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)等。
基于同一发明构思,本发明实施例还提供了一种电子设备,包括本发明实施例提供的上述有机电致发光器件,该电子设备可以为:照明设备、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有照明或显示功能的产品或部件。该电子设备的实施可以参见上述有机电致发光器件的实施例,重复之处不再赘述。
现有的发光材料基质通常为空穴传输型材料或电子传输型材料。本发明的实施例使用同一种基质制作两个发光层,并使靠近阳极的发光层的空穴迁移率等于靠近阴极的发光层的电子迁移率;这样既能实现空穴和电子的平衡注入,又确保了两个发光层在物理性质上的匹配。本发明使用包括了相同基质的两个发光层,实现了空穴和电子的平衡注入,从而提高了有机电致发光器件的发光效率和寿命。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (17)

  1. 一种有机电致发光器件,其特征在于,包括:
    顺序地堆叠的阳极层、空穴传输层、第一发光层、第二发光层、电子传输层以及阴极层;
    其中,所述第一发光层和第二发光层包括相同的基质,并且所述第一发光层和/或第二发光层被掺杂,使得所述第一发光层的空穴迁移率与所述第二发光层的电子迁移率相等。
  2. 如权利要求1所述的有机电致发光器件,其特征在于,所述基质为4-(二氰乙烯基)-2-叔丁基-6-(1,1,7,7-四甲基久落尼定基-4-乙烯基)-4H-吡喃(DCJTB)、8-羟基喹啉铝(Alq3)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、4,4-二(2,2-二苯乙烯基)-1,1-联苯(DPVBi)、或6,6-二(2-(1-芘基)-4-苯基喹啉)(BPYPQ)。
  3. 如权利要求1所述的有机电致发光器件,其特征在于,所述第一发光层由p型掺杂剂掺杂,所述p型掺杂剂为2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)、或4,4′,4″-三(N-(1-萘基)-N-苯基氨基)三苯胺(TNATA)。
  4. 如权利要求1所述的有机电致发光器件,其特征在于,所述第二发光层由n型掺杂剂掺杂,所述n型掺杂剂为8-羟基喹啉锂(Liq)、氟化锂(LiF)、三联吡啶铬(Cr(bpy)3)、或三联吡啶钌(Ru(bpy)3)。
  5. 如权利要求1所述的有机电致发光器件,其特征在于,所述空穴传输层的材料为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)。
  6. 如权利要求1所述的有机电致发光器件,其特征在于,所述电子传输层的材料为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)。
  7. 如权利要求1所述的有机电致发光器件,其特征在于,所述阳极层的材料为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)。
  8. 如权利要求1所述的有机电致发光器件,其特征在于,所述阴极 层的材料为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)
  9. 一种有机电致发光器件的制作方法,其特征在于,所述方法包括:
    顺序地堆叠阳极层、空穴传输层、第一发光层、第二发光层、电子传输层以及阴极层;
    其中,所述第一发光层和第二发光层包括相同的基质,并且所述第一发光层和/或第二发光层被掺杂,使得所述第一发光层的空穴迁移率与所述第二发光层的电子迁移率相等。
  10. 如权利要求9所述的方法,其特征在于,所述基质为4-(二氰乙烯基)-2-叔丁基-6-(1,1,7,7-四甲基久落尼定基-4-乙烯基)-4H-吡喃(DCJTB)、8-羟基喹啉铝(Alq3)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、4,4-二(2,2-二苯乙烯基)-1,1-联苯(DPVBi)、或6,6-二(2-(1-芘基)-4-苯基喹啉)(BPYPQ)。
  11. 如权利要求9所述的方法,其特征在于,所述第一发光层由p型掺杂剂掺杂,所述p型掺杂剂为2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)、或4,4′,4″-三(N-(1-萘基)-N-苯基氨基)三苯胺(TNATA)。
  12. 如权利要求9所述的方法,其特征在于,所述第二发光层由n型掺杂剂掺杂,所述n型掺杂剂为8-羟基喹啉锂(Liq)、氟化锂(LiF)、三联吡啶铬(Cr(bpy)3)、或三联吡啶钌(Ru(bpy)3)。
  13. 如权利要求9所述的方法,其特征在于,所述空穴传输层的材料为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、N,N′-二(苯基)-N,N′-二(4′-(N,N-二(苯基胺基)-4-联苯基)联苯胺(TPTE)、或1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)。
  14. 如权利要求9所述的方法,其特征在于,所述电子传输层的材料为2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、或2,4,6-三苯氧基-1,3,5-三嗪(TRZ)。
  15. 如权利要求9所述的方法,其特征在于,所述阳极层的材料为ITO(In2O3:SnO2)、IZO(In2O3:ZnO)、GITO(Ga0.08In0.28Sn0.64O3)、或ZITO(Zn0.64In0.88Sn0.66O3)。
  16. 如权利要求9所述的方法,其特征在于,所述阴极层的材料为Mg、Ag、Al、Li、K、Ca、MgxAg(1-x)、LixAl(1-x)、LixCa(1-x)、或LixAg(1-x)
  17. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-9之一所述的有机电致发光器件。
PCT/CN2015/087775 2015-04-16 2015-08-21 有机电致发光器件及其制造方法、电子设备 WO2016165259A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,047 US10115909B2 (en) 2015-04-16 2015-08-21 Organic electroluminescent device, manufacturing method thereof and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510180124.7A CN104795507B (zh) 2015-04-16 2015-04-16 有机电致发光器件及其制造方法、电子设备
CN201510180124.7 2015-04-16

Publications (1)

Publication Number Publication Date
WO2016165259A1 true WO2016165259A1 (zh) 2016-10-20

Family

ID=53560173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087775 WO2016165259A1 (zh) 2015-04-16 2015-08-21 有机电致发光器件及其制造方法、电子设备

Country Status (3)

Country Link
US (1) US10115909B2 (zh)
CN (1) CN104795507B (zh)
WO (1) WO2016165259A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795507B (zh) 2015-04-16 2017-03-22 京东方科技集团股份有限公司 有机电致发光器件及其制造方法、电子设备
KR102389833B1 (ko) 2015-10-23 2022-04-21 엘지디스플레이 주식회사 유기발광 표시장치
CN105895819B (zh) * 2016-04-28 2018-07-06 京东方科技集团股份有限公司 一种oled器件及其制备方法、oled显示面板
CN106856225B (zh) * 2016-12-15 2019-10-15 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置
CN110010773B (zh) * 2018-01-05 2023-08-18 固安鼎材科技有限公司 一种调节载流子迁移率的发光层及有机电致发光器件
CN112599676B (zh) * 2020-09-29 2022-11-01 湖南大学 一种有机铵盐p型掺杂剂
CN114634419B (zh) * 2022-04-06 2023-04-18 长春海谱润斯科技股份有限公司 一种芳香胺化合物及其有机电致发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607878A (zh) * 2003-09-30 2005-04-20 三洋电机株式会社 有机电致发光器件以及有机电致发光器件用有机化合物
CN1822409A (zh) * 2006-01-10 2006-08-23 陕西科技大学 一种无机盐掺杂型有机电致发光显示器件
JP2008053664A (ja) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd 有機発光素子
CN101394696A (zh) * 2007-09-20 2009-03-25 清华大学 有机电致发光器件
CN104795507A (zh) * 2015-04-16 2015-07-22 京东方科技集团股份有限公司 有机电致发光器件及其制造方法、电子设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG138466A1 (en) * 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
JP2005276583A (ja) * 2004-03-24 2005-10-06 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及び表示装置
CN101575352B (zh) * 2004-05-20 2012-11-28 株式会社半导体能源研究所 发光元件及发光装置
US20060194077A1 (en) * 2005-02-28 2006-08-31 Fuji Photo Film Co., Ltd. Organic light emitting diode and display using the same
US8112324B2 (en) 2006-03-03 2012-02-07 Amazon Technologies, Inc. Collaborative structured tagging for item encyclopedias
JP4702145B2 (ja) 2006-03-31 2011-06-15 株式会社豊田自動織機 斜板式圧縮機
EP3156439B1 (en) 2007-03-20 2019-08-21 Toray Industries, Inc. Molding material, prepreg, fiber-reinforced composite material, and process for production of fiber-reinforced molding base material
US20100176380A1 (en) * 2007-05-30 2010-07-15 Ho Kuk Jung Organic photoelectric device and material used therein
GB2456298A (en) * 2008-01-07 2009-07-15 Anthony Ian Newman Electroluminescent materials comprising oxidation resistant fluorenes
CN100484353C (zh) * 2008-01-29 2009-04-29 清华大学 有机电致发光器件
CN101562232B (zh) 2009-05-25 2012-05-23 中国科学院长春应用化学研究所 一种颜色可调有机电致发光器件及其制备方法
GB0917083D0 (en) * 2009-09-30 2009-11-11 Lomox Ltd Electroluminescent materials
CN102074660A (zh) 2010-12-01 2011-05-25 郑州大学 一种顶发射有机电致发光器件
US9299942B2 (en) * 2012-03-30 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
CN102651454B (zh) * 2012-04-25 2015-02-11 京东方科技集团股份有限公司 一种电致发光器件、显示装置和电致发光器件制备方法
CN102969459A (zh) 2012-10-23 2013-03-13 上海大学 有机电致发光器件及其制备方法
KR102067415B1 (ko) * 2012-12-26 2020-01-17 엘지디스플레이 주식회사 적색 인광 호스트 물질 및 이를 이용한 유기전계발광소자
KR20140083413A (ko) * 2012-12-26 2014-07-04 엘지디스플레이 주식회사 적색 인광 화합물 및 이를 이용한 유기전계발광소자
CN103050634B (zh) 2013-01-07 2015-04-22 陕西科技大学 一种高电子注入效率有机电致发光器件及其制备方法
TWI729686B (zh) * 2013-10-16 2021-06-01 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置及照明裝置
JP6435626B2 (ja) * 2014-04-04 2018-12-12 セイコーエプソン株式会社 発光素子、発光装置、表示装置および電子機器
JP6432149B2 (ja) * 2014-04-04 2018-12-05 セイコーエプソン株式会社 発光素子、発光装置、表示装置および電子機器
KR102273616B1 (ko) * 2014-12-08 2021-07-06 엘지디스플레이 주식회사 유기전계발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607878A (zh) * 2003-09-30 2005-04-20 三洋电机株式会社 有机电致发光器件以及有机电致发光器件用有机化合物
CN1822409A (zh) * 2006-01-10 2006-08-23 陕西科技大学 一种无机盐掺杂型有机电致发光显示器件
JP2008053664A (ja) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd 有機発光素子
CN101394696A (zh) * 2007-09-20 2009-03-25 清华大学 有机电致发光器件
CN104795507A (zh) * 2015-04-16 2015-07-22 京东方科技集团股份有限公司 有机电致发光器件及其制造方法、电子设备

Also Published As

Publication number Publication date
US20170179405A1 (en) 2017-06-22
US10115909B2 (en) 2018-10-30
CN104795507A (zh) 2015-07-22
CN104795507B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2016165259A1 (zh) 有机电致发光器件及其制造方法、电子设备
US9065075B1 (en) Organic light emitting display device and fabricating method thereof
US9136495B2 (en) Organic light-emitting device
KR101453874B1 (ko) 백색 유기발광소자
KR101434358B1 (ko) 백색 유기발광소자
US9923031B2 (en) Organic light-emitting diode array substrate and display apparatus
US20120032186A1 (en) White organic light emitting device
US20090091255A1 (en) White organic light emitting device
JP2004335468A (ja) Oledデバイスの製造方法
US20190198790A1 (en) Organic light-emitting diode, organic light-emitting display including the same, and method of manufacturing the same
JP2009206512A (ja) 有機発光素子
TWI623119B (zh) 有機發光裝置及包含其之平板顯示裝置
US9142795B2 (en) Organic light-emitting diode
US20070013297A1 (en) Organic light emitting display device
US20220302404A1 (en) Organic electroluminescent device, display panel and display apparatus
US20140124753A1 (en) Organic light-emitting diode
US20100181561A1 (en) Organic light-emitting device
KR20140055452A (ko) 유기 발광 소자
KR101453875B1 (ko) 공통의 호스트 물질을 이용한 유기 발광 소자 및 이를채용한 평판 표시 소자
US11296295B2 (en) Organic light-emitting diode, organic light-emitting display including the same, and method of manufacturing the same
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
KR100594775B1 (ko) 백색 유기발광소자
KR20160082895A (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR20160082551A (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
US8735879B2 (en) Organic light-emitting diode comprising at least two electroluminescent layers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14907047

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15888960

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.04.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888960

Country of ref document: EP

Kind code of ref document: A1