WO2016165096A1 - 信道质量指示的反馈和接收方法、装置以及通信系统 - Google Patents

信道质量指示的反馈和接收方法、装置以及通信系统 Download PDF

Info

Publication number
WO2016165096A1
WO2016165096A1 PCT/CN2015/076717 CN2015076717W WO2016165096A1 WO 2016165096 A1 WO2016165096 A1 WO 2016165096A1 CN 2015076717 W CN2015076717 W CN 2015076717W WO 2016165096 A1 WO2016165096 A1 WO 2016165096A1
Authority
WO
WIPO (PCT)
Prior art keywords
noma
cqi
user equipment
ofdm
base station
Prior art date
Application number
PCT/CN2015/076717
Other languages
English (en)
French (fr)
Inventor
张健
王昕�
周华
Original Assignee
富士通株式会社
张健
王昕�
周华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 王昕�, 周华 filed Critical 富士通株式会社
Priority to PCT/CN2015/076717 priority Critical patent/WO2016165096A1/zh
Priority to CN201580077510.1A priority patent/CN107431556A/zh
Publication of WO2016165096A1 publication Critical patent/WO2016165096A1/zh
Priority to US15/723,577 priority patent/US20180026743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a feedback and reception method, apparatus, and communication system for Channel Quality Indicator (CQI) of Non-Orthogonal Multiple Access (NOMA).
  • CQI Channel Quality Indicator
  • NOMA Non-Orthogonal Multiple Access
  • the theoretical research work of the fifth generation (5G) mobile communication technology has gradually begun.
  • One of the requirements of the 5G communication system is to support a higher system capacity (for example, 1000 times) than 4G and more terminal connections (for example, 100 times) than 4G.
  • mobile communication has adopted orthogonal multiple access technology.
  • Research shows that non-orthogonal multiple access technology can realize larger capacity domain than orthogonal multiple access technology.
  • This theoretical guidance makes non-orthogonal multiple access technology become 5G research.
  • One of the key technologies One of the key technologies.
  • NOMA Non-orthogonal
  • LTE-A Release 13 One of the ways to achieve non-orthogonality is that the power domain is non-orthogonal, and its representative technology, NOMA, has been included in the discussion of LTE-A Release 13. NOMA technology is based on the theory of superposition codes. The transmitting end sends superimposed symbols, and the receiving end needs to use SIC (Successive Interference Cancel) technology to separate and recover data information. For the case where the transmitting end uses a single antenna, the NOMA technology can theoretically realize the entire capacity domain of the downlink broadcast channel and the uplink multiple access channel.
  • SIC Successessive Interference Cancel
  • the downlink channel of two user equipments is taken as an example to provide the transceiving models of orthogonal and non-orthogonal modes respectively. It is assumed that the base station and the user equipment both use a single antenna, the user equipment 1 is located at the center of the cell, the experienced channel is represented as h 1 , the noise is represented as n 1 , the user equipment 2 is located at the cell edge, the experienced channel is represented as h 2 , and the noise is represented as n 2 .
  • the base station transmits the symbol s 1 to the user equipment 1, and transmits the symbol s 2 to the user equipment 2, and the total power of the base station is P.
  • the base station transmits the symbols of the user equipment 1 and the user equipment 2 by using different time or frequency resources
  • the receiving symbols of the user equipment 1 and the user equipment 2 may be respectively represented as
  • the user equipment independently demodulates its own data symbols.
  • the base station allocates different powers for different symbols and sends them using the same time-frequency resource. Superimposed symbol on a power domain.
  • the cell edge user equipment 2 independently demodulates its own symbol s 2 , and the cell center user equipment 1 needs to use the serial interference cancellation to demodulate its own symbol s 1 .
  • the user equipment 1 since it has better channel conditions than the cell edge user equipment 2, it is also possible to demodulate the symbol s 2 , perform interference cancellation after demodulating s 2 , remove s 2 interference, and obtain interference after deletion. Intermediate results Further, based on the result, the self symbol s 1 is demodulated.
  • the user equipment feeds back OFDM (Orthogonal Frequency Division Multiplexing) CQI to the base station, and the base station performs a NOMA modulation and coding scheme according to the OFDM CQI (MCS, Modulation and Coding Scheme). )s Choice.
  • MCS Signal to Interference Noise Ratio
  • the base station calculates the NOMA SINR based on the quantized SINR, the quantization error accumulation may occur, and the calculation result may further deviate from the true value of the NOMA SINR. Thereby affecting the accuracy of the MCS selection.
  • Embodiments of the present invention provide a NOMA CQI feedback and reception method, apparatus, and communication system.
  • the user equipment is allowed to feed back the NOMA CQI, thereby enhancing the accuracy of the MCS selection.
  • a feedback method of a CQI is provided, which is applied to a user equipment of a NOMA system, and the feedback method includes:
  • indication information for performing NOMA CQI feedback where the indication information includes at least NOMA power distribution factor
  • the NOMA CQI is fed back to the base station.
  • a feedback device for a CQI which is configured in a user equipment of a NOMA system, and the feedback device includes:
  • the information receiving unit receives indication information for performing NOMA CQI feedback sent by the base station, where the indication information includes at least a NOMA power allocation factor;
  • a calculating unit calculating a NOMA signal to interference and noise ratio based on the NOMA power allocation factor
  • the NOMA indication obtaining unit obtains a corresponding NOMA CQI based on the NOMA signal to interference and noise ratio;
  • the NOMA indicates a feedback unit that feeds back the NOMA CQI to the base station.
  • a method for receiving a CQI is provided, which is applied to a base station of a NOMA system, where the feedback method includes:
  • indication information for performing NOMA CQI feedback where the indication information includes at least a NOMA power allocation factor
  • a receiving apparatus for a CQI is provided, which is configured in a base station of a NOMA system, where the feedback apparatus includes:
  • the information sending unit sends, to the user equipment, indication information for performing NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor;
  • the NOMA indicates a receiving unit that receives the NOMA CQI fed back by the user equipment.
  • a communication system using NOMA comprising:
  • the base station sends, to the user equipment, indication information for performing NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor; and receiving a NOMA CQI fed back by the user equipment;
  • a computer readable program is provided, wherein when executed in a base station When the program is executed, the program causes a computer to execute the CQI receiving method as described above in the base station.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a CQI receiving method as described above in a base station.
  • a computer readable program wherein when the program is executed in a user device, the program causes a computer to execute a CQI feedback method as described above in the user device.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a CQI feedback method as described above in a user equipment.
  • An embodiment of the present invention provides a user equipment that receives a NOMA power allocation factor sent by a base station, calculates a NOMA signal to interference and noise ratio based on the NOMA power allocation factor, and obtains a NOMA CQI corresponding to the NOMA signal to interference and noise ratio; The NOMA CQI is fed back to the base station. Therefore, the user equipment feeds back the NOMA CQI, which can reduce the accumulation of quantization errors and enhance the accuracy of the MCS selection.
  • FIG. 1 is a schematic diagram of a feedback method of a CQI according to Embodiment 1 of the present invention
  • FIG. 2 is another schematic diagram of a feedback method of a CQI according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a method for receiving a CQI according to Embodiment 2 of the present invention.
  • FIG. 4 is another schematic diagram of a method for receiving a CQI according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a feedback device of a CQI according to Embodiment 3 of the present invention.
  • FIG. 6 is another schematic diagram of a feedback device of a CQI according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of a user equipment according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of a CQI receiving apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is another schematic diagram of a CQI receiving apparatus according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of a base station according to Embodiment 4 of the present invention.
  • Figure 11 is a schematic diagram of a communication system according to Embodiment 5 of the present invention.
  • the signal-to-noise ratio of the user equipment under the non-NOMA (ie, conventional OFDM) condition can be obtained by the above formulas (1) and (2), which is recorded as
  • the signal-to-noise ratio of the user equipment under the NOMA condition can be obtained by the above formulas (3) and (4), and is recorded as
  • the base station can calculate the NOMA signal to interference and noise ratio according to the non-NOMA signal to interference and noise ratio.
  • the base station obtains the signal to interference and noise ratio based on the feedback of the user equipment. For example, in the LTE system, the user equipment performs OFDM CQI feedback, and then the base station performs MCS selection based on the feedback CQI.
  • This complete process actually quantifies the true signal to interference and noise ratio of the user equipment, and the quantization result is to obtain the modulation mode and code rate suitable for the current transmission. Since the CQI itself is a quantization of the signal to interference and noise ratio, if the base station calculates the NOMA signal to interference and noise ratio based on the quantized signal to interference and noise ratio, the quantization error accumulation will be caused, and the calculation result may further deviate from the true value of the NOMA signal to interference and noise ratio. Thereby affecting the accuracy of the MCS selection.
  • the embodiment of the invention provides a solution for improving the accuracy of the NOMA feedback, wherein the traditional OFDM CQI feedback is used to determine the NOMA power allocation, and further the user equipment is allowed to feed back the NOMA CQI to further enhance the accuracy of the MCS selection.
  • the invention is described in detail below.
  • FIG. 1 is a schematic diagram of a feedback method according to an embodiment of the present invention. As shown in FIG. 1, the feedback method includes:
  • Step 101 The user equipment receives indication information that is sent by the base station to perform NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor.
  • Step 102 The user equipment calculates a NOMA signal to interference and noise ratio based on the NOMA power allocation factor.
  • Step 103 The user equipment obtains a corresponding NOMA CQI based on the NOMA signal to interference and noise ratio;
  • Step 104 The user equipment feeds back the NOMA CQI to the base station.
  • the base station may use a Physical Downlink Control Channel (PDCCH) or a Radio Resource Control (RRC) signaling to notify the user equipment that the device is currently in the NOMA transmission mode, and notify the user equipment to perform the NOMA solution. Reconcile the necessary information required for decoding, including at least the NOMA power allocation factor.
  • PDCCH Physical Downlink Control Channel
  • RRC Radio Resource Control
  • the user equipment When the user equipment is configured to perform NOMA CQI feedback, the user equipment will calculate the NOMA SINR according to the above equations (7) and (8). Where ⁇ 1 and ⁇ 2 are the NOMA power allocation factors. Other parameters about the formula (7) or (8) may be directly obtained by the user equipment from the base station side, or may be derived according to parameters sent by the base station, and may refer to related technologies.
  • the user equipment may obtain the corresponding NOMA CQI according to the NOMA SINR.
  • the NOMA CQI corresponding to the NOMA SINR can be found by searching for a CQI table supporting NOMA or a CQI table supporting OFDM, and then feeding the NOMA CQI back to the base. station. Since the calculation of the NOMA SINR occurs on the user equipment side, the SINR used is an actually measured estimate, not a quantized result. Therefore, the accumulation of quantization errors can be reduced, and the accuracy of MCS selection can be enhanced.
  • the NOMA CQI is obtained according to the NOMA SINR, and the NOMA SINR is calculated by the UE according to the NOMA power allocation factor sent by the base station and whether the SIC is performed. Therefore, unlike the OFDM CQI in the prior art, the NOMA CQI of the embodiment of the present invention reflects the influence of the NOMA power allocation; in addition, the NOMA CQI of the embodiment of the present invention also reflects the interference between the user equipment and the impact of the SIC. .
  • the indication information may further include: serial interference deletion (SIC) indication information and/or MCS information.
  • SIC serial interference deletion
  • MCS MCS information.
  • the SIC indication information may be used to indicate whether the user equipment needs to perform SIC, and the user equipment that needs to perform the SIC operation is also notified of the MCS used by the interference signal that needs to be deleted.
  • the user equipment may pre-store a CQI table supporting NOMA.
  • the CQI table supporting NOMA can be formed by modifying a conventional CQI table supporting OFDM.
  • the NOMA-enabled CQI table supports a lower code rate than OFDM than a OFDM-supported CQI table.
  • Table 1 supports CQI tables for OFDM
  • Table 2 supports the CQI table of NOMA
  • the NOMA CQI table can be obtained by replacing the high modulation order and the high code rate term with a QPSK lower code rate term without increasing the bit number overhead of the CQI feedback.
  • the CQI table supporting NOMA can reuse the table in the existing standard, that is, the CQI table supporting OFDM, or the newly defined NOMA CQI table.
  • the CQI table supporting NOMA can be used only in the NOMA transmission mode, and the support for the lower bit rate of QPSK is added, which is used to adapt to the situation where the signal to interference and noise ratio caused by the NOMA transmission is reduced.
  • the user equipment may pre-store a CQI table (Table 1) supporting OFDM and a CQI table (No. 2 table) supporting NOMA.
  • the user equipment can feed back OFDM CQI or NOMA CQI according to the indication of the base station.
  • the user equipment may only feed back the NOMA CQI, and may also feed back both the NOMA CQI and the traditional OFDM CQI.
  • the specific implementation manner can be determined according to the actual scenario.
  • FIG. 2 is another schematic diagram of a feedback method according to an embodiment of the present invention. As shown in FIG. 2, the feedback method includes:
  • step 201 the user equipment feeds back the OFDM CQI to the base station.
  • Step 202 After receiving the OFDM CQI, the base station obtains an OFDM signal to interference and noise ratio according to the OFDM CQI, and determines the NOMA power allocation factor according to the OFDM signal to interference and noise ratio.
  • the user equipment can feed back the traditional OFDM CQI, and the base station uses the OFDM CQI information to determine the user scheduling and power allocation of the NOMA, that is, determine the power allocation factor.
  • the base station uses the OFDM CQI information to determine the user scheduling and power allocation of the NOMA, that is, determine the power allocation factor.
  • Step 203 The user equipment receives indication information that is sent by the base station to perform NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor.
  • Step 204 The user equipment calculates a NOMA signal to interference and noise ratio based on the NOMA power allocation factor.
  • SINR 1 and SINR 2 are OFDM signal to interference and noise ratios.
  • Other parameters of the above formula except the power allocation factor may be directly obtained by the user equipment from the base station side, or may be derived according to parameters sent by the base station. .
  • Step 205 The user equipment obtains a corresponding NOMA CQI based on the NOMA signal to interference and noise ratio;
  • a CQI table supporting NOMA may be searched, and a CQI table supporting OFDM may also be searched. By looking up these tables, the corresponding NOMA CQI can be obtained based on the NOMA signal to interference and noise ratio.
  • Step 206 The user equipment feeds back the NOMA CQI to the base station.
  • the formula in step 204 is only an example of the embodiment of the present invention, but the present invention is not limited thereto.
  • the NOMA SINR is calculated by the UE according to the NOMA power allocation factor sent by the base station and whether the SIC is performed. Therefore, the NOMA CQI of the embodiment of the present invention reflects the influence of the NOMA power allocation; in addition, the NOMA CQI of the embodiment of the present invention also reflects the interference between the user equipment and the impact of the SIC.
  • the user equipment receives the NOMA power allocation factor sent by the base station, calculates the NOMA signal to interference and noise ratio based on the NOMA power allocation factor, obtains the NOMA CQI corresponding to the NOMA signal to interference and noise ratio, and the NOMA.
  • the CQI is fed back to the base station. Therefore, the user equipment feeds back the NOMA CQI, which can reduce the accumulation of quantization errors and enhance the accuracy of the MCS selection.
  • the embodiment of the invention provides a method for receiving CQI, which is applied to a base station of a NOMA system.
  • the same contents as those of Embodiment 1 will not be described again.
  • FIG. 3 is a schematic diagram of a receiving method according to an embodiment of the present invention. As shown in FIG. 3, the receiving method includes:
  • Step 301 The base station sends, to the user equipment, indication information for performing NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor.
  • Step 304 The base station receives the NOMA CQI fed back by the user equipment.
  • FIG. 4 is another schematic diagram of a receiving method according to an embodiment of the present invention. As shown in FIG. 4, the receiving method includes:
  • Step 401 The base station receives an OFDM CQI sent by the user equipment.
  • Step 402 The base station obtains an OFDM signal to interference and noise ratio according to the OFDM CQI, and determines the NOMA power allocation factor according to the OFDM signal to interference and noise ratio.
  • Step 403 The base station sends indication information for performing NOMA CQI feedback to the user equipment, where the indication information includes at least a NOMA power allocation factor.
  • Step 404 The base station receives the NOMA CQI fed back by the user equipment.
  • the indication information may further include: SIC indication information and/or MCS information.
  • the base station sends a NOMA power allocation factor to the user equipment; the user equipment obtains the NOMA CQI based on the NOMA power allocation factor; and feeds back the NOMA CQI to the base station. Therefore, the user equipment feeds back the NOMA CQI, which can reduce the accumulation of quantization errors and enhance the accuracy of the MCS selection.
  • the embodiment of the invention provides a CQI feedback device, which is configured in a user equipment of the NOMA system.
  • the embodiment of the present invention corresponds to the feedback method of the CQI of Embodiment 1, and the same content is not described again.
  • FIG. 5 is a schematic diagram of a feedback device according to an embodiment of the present invention. As shown in FIG. 5, the feedback device 500 of the CQI includes:
  • the information receiving unit 501 receives, by the base station, indication information for performing NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor;
  • the calculating unit 502 calculates a NOMA signal to interference and noise ratio based on the NOMA power allocation factor
  • the NOMA indication obtaining unit 503 obtains a corresponding NOMA CQI based on the NOMA signal to interference and noise ratio;
  • the NOMA indication feedback unit 504 feeds back the NOMA CQI to the base station.
  • the NOMA indication obtaining unit 503 may obtain the NOMA CQI by searching for a CQI table supporting NOMA or a CQI table supporting OFDM.
  • the indication information may further include: SIC indication information and/or MCS information.
  • calculation unit 502 can use the following formula:
  • SINR 1 and SINR 2 are OFDM signal to interference and noise ratios
  • ⁇ 1 and ⁇ 2 are the NOMA power allocation factors.
  • FIG. 6 is another schematic diagram of a feedback apparatus according to an embodiment of the present invention.
  • the feedback apparatus 600 of the CQI includes: an information receiving unit 501, a calculating unit 502, a NOMA indication obtaining unit 503, and a NOMA indicating feedback unit. 504, as described above.
  • the feedback device 600 of the CQI may further include:
  • the OFDM indication feedback unit 601 feeds back Orthogonal Frequency Division Multiplexing (OFDM) CQI to the base station, so that the base station determines the NOMA power allocation factor according to the OFDM CQI.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the feedback device 600 of the CQI may further include:
  • the storage unit 602 stores the CMOI table supporting the NOMA. In addition, the storage unit 602 can also store a CQI table supporting OFDM.
  • the NOMA-enabled CQI table supports a lower code rate than OFDM than the OFDM-supported CQI table.
  • the embodiment of the invention further provides a user equipment, which is provided with the above-mentioned CQI feedback device 500 or 600.
  • FIG. 7 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 700 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functionality of the CQI feedback device 500 or 600 can be integrated into the central processor 100.
  • the central processing unit 100 may be configured to: receive receiving, by the base station, indication information for performing NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor; and calculating a NOMA signal to interference and noise ratio based on the NOMA power allocation factor Obtaining a corresponding NOMA CQI based on the NOMA signal to interference and noise ratio; and feeding back the NOMA CQI to the base station.
  • the feedback device 500 or 600 of the CQI may be configured separately from the central processing unit 100.
  • the feedback device 500 or 600 of the CQI may be configured as a chip connected to the central processing unit 100.
  • the function of the feedback device 500 or 600 of the CQI is implemented by the control of the central processing unit.
  • the user equipment 700 may further include: a communication module 110, an input unit 120, an audio processing unit 130, a memory 140, a camera 150, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 700 does not have to include all the components shown in FIG. 7, and the above components are not required; in addition, the user equipment 700 may further include components not shown in FIG. There are technologies.
  • the user equipment receives the NOMA power allocation factor sent by the base station, calculates the NOMA signal to interference and noise ratio based on the NOMA power allocation factor, obtains the NOMA CQI corresponding to the NOMA signal to interference and noise ratio, and the NOMA.
  • the CQI is fed back to the base station. Therefore, the user equipment feeds back the NOMA CQI, which can reduce the accumulation of quantization errors and enhance the accuracy of the MCS selection.
  • An embodiment of the present invention provides a CQI receiving apparatus, which is configured in a base station of a NOMA system.
  • the embodiment of the present invention corresponds to the method for receiving the CQI of the second embodiment, and the same content is not described herein again.
  • FIG. 8 is a schematic diagram of a receiving apparatus according to an embodiment of the present invention. As shown in FIG. 8, the receiving apparatus 800 of the CQI includes:
  • the information sending unit 801 sends, to the user equipment, indication information for performing NOMA CQI feedback, where the indication information includes at least a NOMA power allocation factor;
  • the NOMA indication receiving unit 802 receives the NOMA CQI fed back by the user equipment.
  • FIG. 9 is another schematic diagram of a receiving apparatus according to an embodiment of the present invention.
  • the receiving apparatus 900 of the CQI includes: an information transmitting unit 801 and a NOMA indicating receiving unit 802, as described above.
  • the receiving device 900 of the CQI may further include:
  • the OFDM indication receiving unit 901 receives the OFDM CQI sent by the user equipment
  • the information determining unit 902 obtains an OFDM signal to interference and noise ratio according to the OFDM CQI, and determines the NOMA power allocation factor according to the OFDM signal to interference and noise ratio.
  • the indication information may further include: SIC indication information and/or MCS information.
  • the embodiment further provides a base station, which is configured with the CQI receiving apparatus 800 or 900 as described above.
  • FIG. 10 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 1000 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200. Its
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the base station 1000 can implement the CQI receiving method as described in Embodiment 2.
  • the central processing unit 200 may be configured to implement the functions of the receiving device 800 or 900 of the CQI; that is, the central processing unit 200 may be configured to perform control of transmitting indication information for performing NOMA CQI feedback to the user equipment, the indication information including at least a NOMA power allocation factor; and a NOMA CQI that receives feedback from the user equipment.
  • the base station 1000 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and are not described herein again. It should be noted that the base station 1000 does not necessarily have to include all of the components shown in FIG. 10; in addition, the base station 1000 may further include components not shown in FIG. 10, and reference may be made to the prior art.
  • the base station sends a NOMA power allocation factor to the user equipment; the user equipment obtains the NOMA CQI based on the NOMA power allocation factor; and feeds back the NOMA CQI to the base station. Therefore, the user equipment feeds back the NOMA CQI, which can reduce the accumulation of quantization errors and enhance the accuracy of the MCS selection.
  • FIG. 11 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the communication system 1100 includes: a base station 1101 and a user equipment 1102;
  • the base station 1101 sends the indication information of the NOMA CQI feedback to the user equipment 1102, where the indication information includes at least a NOMA power allocation factor; and receives the NOMA CQI fed back by the user equipment 1102;
  • the user equipment 1102 receives the indication information of the NOMA CQI feedback sent by the base station 1101; calculates a NOMA signal to interference and noise ratio based on the NOMA power allocation factor; obtains a corresponding NOMA CQI based on the NOMA signal to interference and noise ratio; The NOMA CQI is fed back to the base station 1101.
  • the user equipment 1102 may obtain the NOMA CQI by searching for a CQI table supporting NOMA or a CQI table supporting OFDM.
  • the user equipment 1102 is further configured to feed back an OFDM CQI to the base station 1101; the base station 1101 is further configured to obtain an OFDM signal to interference and noise ratio according to the OFDM CQI, and according to the OFDM signal The noise ratio determines the NOMA power allocation factor.
  • An embodiment of the present invention provides a computer readable program, wherein when the program is executed in a user equipment, the program causes a computer to execute a feedback method of the CQI as described in Embodiment 1 in the user equipment.
  • An embodiment of the present invention provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a CQI feedback method as described in Embodiment 1 in a user equipment.
  • An embodiment of the present invention provides a computer readable program, wherein when the program is executed in a base station, the program causes a computer to execute a CQI receiving method as described in Embodiment 2 in the base station.
  • An embodiment of the present invention provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute a CQI receiving method as described in Embodiment 2 in a base station.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种CQI的反馈和接收方法、装置以及通信系统。所述CQI的反馈方法包括:用户设备接收基站发送的进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;基于所述NOMA功率分配因子计算NOMA信干噪比;基于所述NOMA信干噪比获得对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站。由此,用户设备反馈NOMA CQI,可以减少量化误差积累,增强MCS选择的准确性。

Description

信道质量指示的反馈和接收方法、装置以及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种非正交多址接入(NOMA,Non-Orthogonal Multiple Access)的信道质量指示(CQI,Channel Quality Indicator)的反馈和接收方法、装置以及通信系统。
背景技术
第五代(5G)移动通信技术的理论研究工作已经逐渐展开。5G通信系统的需求之一是支持比4G更高的系统容量(例如1000倍)以及比4G更多的终端连接数目(例如100倍)。之前历代移动通信均采用正交多址技术,研究表明,非正交多址技术能够实现比正交多址技术更大的容量域,这一理论指导使得非正交多址技术成为5G研究的关键技术之一。
实现非正交的方式之一是功率域非正交,其代表性技术NOMA目前已经被纳入LTE-A Release 13的讨论范围。NOMA技术基于叠加码理论,发送端发送叠加符号,接收端需要使用串行干扰删除(SIC,Successive Interference Cancel)技术分离并恢复数据信息。对于发送端使用单天线的情形,NOMA技术理论上能够实现下行广播信道和上行多址信道的全部容量域。
下面以两用户设备下行信道为例,分别给出正交方式与非正交方式的收发模型。假设基站、用户设备均使用单天线,用户设备1位于小区中心,所经历信道表示为h1,噪声表示为n1;用户设备2位于小区边缘,所经历信道表示为h2,噪声表示为n2。基站发送符号s1给用户设备1,发送符号s2给用户设备2,基站总功率为P。
对于正交方式,例如基站使用不同的时间或频率资源发送用户设备1和用户设备2的符号,则用户设备1、用户设备2的接收符号可分别表示为
Figure PCTCN2015076717-appb-000001
Figure PCTCN2015076717-appb-000002
对于正交方式,用户设备独立解调自身数据符号。
对于非正交方式,基站为不同的符号分配不同的功率,使用相同的时频资源发送 一个功率域上的叠加符号。
假设分配给两个用户设备的功率分别为P1、P2,其中P1+P2=P,则叠加符号为
Figure PCTCN2015076717-appb-000003
用户设备1、用户设备2接收符号分别表示为
Figure PCTCN2015076717-appb-000004
Figure PCTCN2015076717-appb-000005
对于非正交方式,小区边缘用户设备2独立解调自身符号s2,小区中心用户设备1需要使用串行干扰删除解调自身符号s1。对于用户设备1,由于其具有比小区边缘用户设备2更好的信道条件,因此也能够解调符号s2,在解调出s2后进行干扰删除,去除s2的干扰,干扰删除后得到中间结果
Figure PCTCN2015076717-appb-000006
进而基于该结果解调自身符号s1
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现,目前的方案中由用户设备向基站反馈正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)CQI,基站根据该OFDM CQI进行NOMA的调制编码方案(MCS,Modulation and Coding Scheme)的选择。由于CQI本身是对信干噪比(SINR,Signal to Interference Noise Ratio)的量化,如果基站基于量化后的SINR计算NOMA SINR,会带来量化误差积累,计算结果可能进一步偏离NOMA SINR的真实值,从而影响MCS选择的准确性。
本发明实施例提供一种NOMA CQI的反馈和接收方法、装置以及通信系统。允许用户设备反馈NOMA CQI,由此增强MCS选择的准确性。
根据本发明实施例的第一个方面,提供一种CQI的反馈方法,应用于NOMA系统的用户设备,所述反馈方法包括:
接收基站发送的进行NOMA CQI反馈的指示信息,其中所述指示信息至少包括 NOMA功率分配因子;
基于所述NOMA功率分配因子计算NOMA信干噪比;
基于所述NOMA信干噪比获得对应的NOMA CQI;
将所述NOMA CQI反馈给所述基站。
根据本发明实施例的第二个方面,提供一种CQI的反馈装置,配置于NOMA系统的用户设备中,所述反馈装置包括:
信息接收单元,接收基站发送的进行NOMA CQI反馈的指示信息,其中所述指示信息至少包括NOMA功率分配因子;
计算单元,基于所述NOMA功率分配因子计算NOMA信干噪比;
NOMA指示获得单元,基于所述NOMA信干噪比获得对应的NOMA CQI;
NOMA指示反馈单元,将所述NOMA CQI反馈给所述基站。
根据本发明实施例的第三个方面,提供一种CQI的接收方法,应用于NOMA系统的基站,所述反馈方法包括:
向用户设备发送进行NOMA CQI反馈的指示信息,其中所述指示信息至少包括NOMA功率分配因子;
接收所述用户设备反馈的NOMA CQI。
根据本发明实施例的第四个方面,提供一种CQI的接收装置,配置于NOMA系统的基站中,所述反馈装置包括:
信息发送单元,向用户设备发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
NOMA指示接收单元,接收所述用户设备反馈的NOMA CQI。
根据本发明实施例的第五个方面,提供一种通信系统,使用NOMA,所述通信系统包括:
基站,向用户设备发送进行NOMA CQI反馈的指示信息,其中所述指示信息至少包括NOMA功率分配因子;以及接收所述用户设备反馈的NOMA CQI;
用户设备,接收所述基站发送的进行NOMA CQI反馈的指示信息;基于所述NOMA功率分配因子计算NOMA信干噪比;基于所述NOMA信干噪比获得对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在基站中执 行所述程序时,所述程序使得计算机在所述基站中执行如上所述的CQI接收方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行如上所述CQI接收方法。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得计算机在所述用户设备中执行如上所述的CQI反馈方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在用户设备中执行如上所述CQI反馈方法。
本发明实施例的有益效果在于,用户设备接收基站发送的NOMA功率分配因子;基于所述NOMA功率分配因子计算NOMA信干噪比;获得所述NOMA信干噪比所对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站。由此,用户设备反馈NOMA CQI,可以减少量化误差积累,增强MCS选择的准确性。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例1的CQI的反馈方法的一示意图;
图2是本发明实施例1的CQI的反馈方法的另一示意图;
图3是本发明实施例2的CQI的接收方法的一示意图;
图4是本发明实施例2的CQI的接收方法的另一示意图;
图5是本发明实施例3的CQI的反馈装置的一示意图;
图6是本发明实施例3的CQI的反馈装置的另一示意图;
图7是本发明实施例3的用户设备的一示意图;
图8是本发明实施例4的CQI的接收装置的一示意图;
图9是本发明实施例4的CQI的接收装置的另一示意图;
图10是本发明实施例4的基站的一示意图;
图11是本发明实施例5的通信系统的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本实施例中,由上述(1)、(2)式可以得到非NOMA(即传统的OFDM)条件下的用户设备的信干噪比,记为
Figure PCTCN2015076717-appb-000007
Figure PCTCN2015076717-appb-000008
由上述(3)、(4)式可以得到NOMA条件下的用户设备的信干噪比,记为
Figure PCTCN2015076717-appb-000009
Figure PCTCN2015076717-appb-000010
其中α12为功率分配因子,满足P1=α1P,P2=α2P,N0为噪声功率。
因此,基站可以根据非NOMA信干噪比计算出NOMA信干噪比。实际系统中, 基站对信干噪比的获得基于用户设备的反馈,例如LTE系统中,用户设备进行OFDM CQI反馈,然后基站基于反馈的CQI进行MCS选择。
这一完整过程实际上是在对用户设备的真实信干噪比进行量化,量化结果是得到适合当前传输的调制方式及码率。由于CQI本身是对信干噪比的量化,如果基站基于量化后的信干噪比计算NOMA信干噪比,会带来量化误差积累,计算结果可能进一步偏离NOMA信干噪比的真实值,从而影响MCS选择的准确性。
本发明实施例提供一种提高NOMA反馈准确性的方案,其中传统的OFDM CQI反馈用于决定NOMA功率分配,此外允许用户设备反馈NOMA CQI来进一步增强MCS选择的准确性。以下对本发明进行详细说明。
实施例1
本发明实施例提供一种CQI的反馈方法,应用于NOMA系统的用户设备。图1是本发明实施例的反馈方法的一示意图,如图1所示,所述反馈方法包括:
步骤101,用户设备接收基站发送的进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
步骤102,用户设备基于所述NOMA功率分配因子计算NOMA信干噪比;
步骤103,用户设备基于所述NOMA信干噪比获得对应的NOMA CQI;
步骤104,用户设备将所述NOMA CQI反馈给所述基站。
在本实施例中,基站可以使用物理下行控制信道(PDCCH,Physical Downlink Control Channel)或无线资源控制(RRC,Radio Resource Control)信令通知用户设备当前处于NOMA传输模式,并通知用户设备进行NOMA解调及译码所需的必要信息,其中至少包括NOMA功率分配因子。
在用户设备被配置需要进行NOMA CQI反馈时,用户设备将按照上述式(7)、(8)计算NOMA SINR。其中α1和α2为所述NOMA功率分配因子。关于公式(7)或(8)的其他参数可以由用户设备从基站侧直接获得,也可以根据基站发送的参数推导出来,可以参考相关技术。
在本实施例中,在计算出NOMA SINR之后,用户设备可以根据NOMA SINR获得对应的NOMA CQI。具体地,可以通过查找支持NOMA的CQI表或支持OFDM的CQI表,找到NOMA SINR所对应的NOMA CQI,然后将该NOMA CQI反馈给基 站。由于NOMA SINR的计算发生在用户设备侧,所使用的SINR是实际测量的估计值,而非量化后结果。因此,可以减少量化误差积累,增强MCS选择的准确性。
在本实施例中,NOMA CQI根据NOMA SINR获得,而NOMA SINR由UE根据基站发送的NOMA功率分配因子以及是否进行SIC而计算得到。由此,与现有技术中的OFDM CQI不同的是,本发明实施例的NOMA CQI体现了NOMA功率分配的影响;此外,本发明实施例的NOMA CQI还体现了用户设备间干扰和SIC的影响。
在本实施例中,所述指示信息还可以包括:串行干扰删除(SIC)指示信息和/或MCS信息。例如,SIC指示信息可以用于指示用户设备是否需要执行SIC,对于需要进行SIC操作的用户设备,还通知其需要删除的干扰信号所使用的MCS。
在本实施例中,用户设备可以预先存储有支持NOMA的CQI表。该支持NOMA的CQI表可以通过修改传统的支持OFDM的CQI表而形成。所述支持NOMA的CQI表与支持OFDM的CQI表相比,支持比OFDM更低的码率。
表1支持OFDM的CQI表
Figure PCTCN2015076717-appb-000011
表2支持NOMA的CQI表
Figure PCTCN2015076717-appb-000012
如上表2所示,NOMA CQI表可以通过使用QPSK更低码率项替换掉高调制阶数、高码率项而得到,不会增加CQI反馈的比特数开销。
在本实施例中,支持NOMA的CQI表可以重用现有标准中表格,即支持OFDM的CQI表,也可以是新定义的NOMA CQI表。支持NOMA的CQI表可以仅在NOMA传输模式下使用,增加了对QPSK更低码率的支持,用于适配NOMA传输带来的信干噪比降低的情况。
在本实施例中,用户设备可以预先存储有支持OFDM的CQI表(第1表)和支持NOMA的CQI表(第2表)。用户设备可以根据基站的指示,反馈OFDM CQI或者NOMA CQI。此外,在进行CQI反馈时,用户设备可以仅反馈NOMA CQI,也可以既反馈NOMA CQI又反馈传统的OFDM CQI。可以根据实际场景确定具体的实施方式。
图2是本发明实施例的反馈方法的另一示意图,如图2所示,所述反馈方法包括:
步骤201,用户设备将OFDM CQI反馈给基站。
步骤202,基站接收该OFDM CQI后;根据所述OFDM CQI获得OFDM信干噪比,并根据所述OFDM信干噪比确定所述NOMA功率分配因子。
在初始阶段,用户设备可以反馈传统的OFDM CQI,基站利用该OFDM CQI信息决定NOMA的用户调度及功率分配,即决定功率分配因子。关于具体如何进行NOMA调度和确定NOMA功率分配因子,可以参考相关技术。
步骤203,用户设备接收基站发送的进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
步骤204,用户设备基于所述NOMA功率分配因子计算NOMA信干噪比;
可以使用如下公式进行计算:
Figure PCTCN2015076717-appb-000013
其中,
Figure PCTCN2015076717-appb-000014
Figure PCTCN2015076717-appb-000015
为所述NOMA信干噪比,SINR1和SINR2为OFDM信干噪比,上述公式中除功率分配因子的其他参数可以由用户设备从基站侧直接获得,也可以根据基站发送的参数推导出来。
步骤205,用户设备基于所述NOMA信干噪比获得对应的NOMA CQI;
具体地,可以查找支持NOMA的CQI表,也可以查找支持OFDM的CQI表。通过查找这些表,可以基于NOMA信干噪比获得对应的NOMA CQI。
步骤206,用户设备将所述NOMA CQI反馈给所述基站。
值得注意的是,步骤204中的公式仅是本发明实施例的一个示例,但本发明不限于此。在本实施例中,NOMA SINR由UE根据基站发送的NOMA功率分配因子以及是否进行SIC而计算得到。由此,本发明实施例的NOMA CQI体现了NOMA功率分配的影响;此外,本发明实施例的NOMA CQI还体现了用户设备间干扰和SIC的影响。
由上述实施例可知,用户设备接收基站发送的NOMA功率分配因子;基于所述NOMA功率分配因子计算NOMA信干噪比;获得所述NOMA信干噪比所对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站。由此,用户设备反馈NOMA CQI,可以减少量化误差积累,增强MCS选择的准确性。
实施例2
本发明实施例提供一种CQI的接收方法,应用于NOMA系统的基站。与实施例1相同的内容不再赘述。
图3是本发明实施例的接收方法的一示意图,如图3所示,所述接收方法包括:
步骤301,基站向用户设备发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
步骤304,基站接收所述用户设备反馈的NOMA CQI。
图4是本发明实施例的接收方法的另一示意图,如图4所示,所述接收方法包括:
步骤401,基站接收用户设备发送的OFDM CQI;
步骤402,基站根据所述OFDM CQI获得OFDM信干噪比,并根据所述OFDM信干噪比确定所述NOMA功率分配因子;
步骤403,基站向用户设备发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
步骤404,基站接收所述用户设备反馈的NOMA CQI。
在本实施例中,所述指示信息还可以包括:SIC指示信息和/或MCS信息。
由上述实施例可知,基站向用户设备发送NOMA功率分配因子;用户设备基于所述NOMA功率分配因子获得NOMA CQI;以及将所述NOMA CQI反馈给所述基站。由此,用户设备反馈NOMA CQI,可以减少量化误差积累,增强MCS选择的准确性。
实施例3
本发明实施例提供一种CQI的反馈装置,配置于NOMA系统的用户设备中。本发明实施例对应于实施例1的CQI的反馈方法,相同的内容不再赘述。
图5是本发明实施例的反馈装置的一示意图,如图5所示,所述CQI的反馈装置500包括:
信息接收单元501,接收基站发送的进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
计算单元502,基于所述NOMA功率分配因子计算NOMA信干噪比;
NOMA指示获得单元503,基于所述NOMA信干噪比获得对应的NOMA CQI;
NOMA指示反馈单元504,将所述NOMA CQI反馈给所述基站。
在本实施例中,所述NOMA指示获得单元503可以通过查找支持NOMA的CQI表或者支持OFDM的CQI表而获得所述NOMA CQI。
在本实施例中,所述指示信息还可以包括:SIC指示信息和/或MCS信息。
在本实施例中,所述计算单元502可以使用如下公式:
Figure PCTCN2015076717-appb-000016
其中,
Figure PCTCN2015076717-appb-000017
Figure PCTCN2015076717-appb-000018
为所述NOMA信干噪比,SINR1和SINR2为OFDM信干噪比,α1和为α2所述NOMA功率分配因子。
图6是本发明实施例的反馈装置的另一示意图,如图6所示,所述CQI的反馈装置600包括:信息接收单元501,计算单元502,NOMA指示获得单元503,以及NOMA指示反馈单元504,如上所述。
如图6所示,所述CQI的反馈装置600还可以包括:
OFDM指示反馈单元601,将正交频分复用OFDM CQI反馈给所述基站,使得所述基站根据所述OFDM CQI确定所述NOMA功率分配因子。
如图6所示,所述CQI的反馈装置600还可以包括:
存储单元602,存储所述支持NOMA的CQI表。此外,所述存储单元602还可以存储支持OFDM的CQI表。
在本实施例中,所述支持NOMA的CQI表与支持OFDM的CQI表相比,支持比OFDM更低的码率。
本发明实施例还提供一种用户设备,配置有上述的CQI的反馈装置500或600。
图7是本发明实施例的用户设备的一示意图。如图7所示,该用户设备700可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,CQI的反馈装置500或600的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为进行如下控制:接收基站发送的进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;基于所述NOMA功率分配因子计算NOMA信干噪比;基于所述NOMA信干噪比获得对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站。
在另一个实施方式中,CQI的反馈装置500或600可以与中央处理器100分开配置,例如可以将CQI的反馈装置500或600配置为与中央处理器100连接的芯片, 通过中央处理器的控制来实现CQI的反馈装置500或600的功能。
如图7所示,该用户设备700还可以包括:通信模块110、输入单元120、音频处理单元130、存储器140、照相机150、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备700也并不是必须要包括图7中所示的所有部件,上述部件并不是必需的;此外,用户设备700还可以包括图7中没有示出的部件,可以参考现有技术。
由上述实施例可知,用户设备接收基站发送的NOMA功率分配因子;基于所述NOMA功率分配因子计算NOMA信干噪比;获得所述NOMA信干噪比所对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站。由此,用户设备反馈NOMA CQI,可以减少量化误差积累,增强MCS选择的准确性。
实施例4
本发明实施例提供一种CQI的接收装置,配置于NOMA系统的基站中。本发明实施例对应于实施例2的CQI的接收方法,相同的内容不再赘述。
图8是本发明实施例的接收装置的一示意图,如图8所示,所述CQI的接收装置800包括:
信息发送单元801,向用户设备发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
NOMA指示接收单元802,接收所述用户设备反馈的NOMA CQI。
图9是本发明实施例的接收装置的另一示意图,如图9所示,所述CQI的接收装置900包括:信息发送单元801以及NOMA指示接收单元802,如上所述。
如图9所示,所述CQI的接收装置900还可以包括:
OFDM指示接收单元901,接收所述用户设备发送的OFDM CQI;
信息确定单元902,根据所述OFDM CQI获得OFDM信干噪比,并根据所述OFDM信干噪比确定所述NOMA功率分配因子。
在本实施例中,所述指示信息还可以包括:SIC指示信息和/或MCS信息。
本实施例还提供一种基站,配置有如上所述的CQI的接收装置800或900。
图10是本发明实施例的基站的一构成示意图。如图10所示,基站1000可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其 中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,基站1000可以实现如实施例2所述的CQI的接收方法。中央处理器200可以被配置为实现CQI的接收装置800或900的功能;即中央处理器200可以被配置为进行如下控制:向用户设备发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;以及接收所述用户设备反馈的NOMA CQI。
此外,如图10所示,基站1000还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1000也并不是必须要包括图10中所示的所有部件;此外,基站1000还可以包括图10中没有示出的部件,可以参考现有技术。
由上述实施例可知,基站向用户设备发送NOMA功率分配因子;用户设备基于所述NOMA功率分配因子获得NOMA CQI;以及将所述NOMA CQI反馈给所述基站。由此,用户设备反馈NOMA CQI,可以减少量化误差积累,增强MCS选择的准确性。
实施例5
本发明实施例还提供一种使用NOMA的通信系统,与实施例1至4相同的内容不再赘述。图11是本发明实施例的通信系统的一示意图,如图11所示,所述通信系统1100包括:基站1101和用户设备1102;
其中,基站1101向用户设备1102发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;以及接收所述用户设备1102反馈的NOMA CQI;
用户设备1102接收所述基站1101发送的进行NOMA CQI反馈的指示信息;基于所述NOMA功率分配因子计算NOMA信干噪比;基于所述NOMA信干噪比获得对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站1101。
在本实施例中,所述用户设备1102可以通过查找支持NOMA的CQI表或者支持OFDM的CQI表而获得所述NOMA CQI。
在本实施例中,所述用户设备1102还用于将OFDM CQI反馈给所述基站1101;所述基站1101还用于根据所述OFDM CQI获得OFDM信干噪比,并根据所述OFDM信干噪比确定所述NOMA功率分配因子。
本发明实施例提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得计算机在所述用户设备中执行如实施例1所述的CQI的反馈方法。
本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在用户设备中执行如实施例1所述的CQI的反馈方法。
本发明实施例提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行如实施例2所述的CQI的接收方法。
本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行如实施例2所述的CQI的接收方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (14)

  1. 一种信道质量指示即CQI的反馈装置,配置于非正交多址接入即NOMA系统的用户设备中,所述反馈装置包括:
    信息接收单元,接收基站发送的进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
    计算单元,基于所述NOMA功率分配因子计算NOMA信干噪比;
    NOMA指示获得单元,基于所述NOMA信干噪比获得对应的NOMA CQI;
    NOMA指示反馈单元,将所述NOMA CQI反馈给所述基站。
  2. 根据权利要求1所述的反馈装置,其中,所述反馈装置还包括:
    OFDM指示反馈单元,将正交频分复用即OFDM CQI反馈给所述基站,使得所述基站根据所述OFDM CQI确定所述NOMA功率分配因子。
  3. 根据权利要求1所述的反馈装置,其中,所述指示信息还包括:串行干扰删除指示信息和/或调制编码方案信息。
  4. 根据权利要求1所述的反馈装置,其中,所述NOMA指示获得单元通过查找支持NOMA的CQI表或者支持OFDM的CQI表而获得所述NOMA CQI。
  5. 根据权利要求4所述的反馈装置,其中,所述反馈装置还包括:
    存储单元,存储所述支持NOMA的CQI表。
  6. 根据权利要求5所述的反馈装置,其中,所述支持NOMA的CQI表与支持OFDM的CQI表相比,支持比OFDM更低的码率。
  7. 根据权利要求5所述的反馈装置,其中,所述存储单元还存储有所述支持OFDM的CQI表。
  8. 根据权利要求1所述的反馈装置,其中,所述计算单元使用如下公式:
    Figure PCTCN2015076717-appb-100001
    其中,
    Figure PCTCN2015076717-appb-100002
    Figure PCTCN2015076717-appb-100003
    为所述NOMA信干噪比,SINR1和SINR2为OFDM信干噪比,α1和α2为所述NOMA功率分配因子。
  9. 一种信道质量指示即CQI的接收装置,配置于非正交多址接入即NOMA系统的基站中,所述接收装置包括:
    信息发送单元,向用户设备发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;
    NOMA指示接收单元,接收所述用户设备反馈的NOMA CQI。
  10. 根据权利要求8所述的接收装置,其中,所述接收装置还包括:
    OFDM指示接收单元,接收所述用户设备发送的OFDM CQI;
    信息确定单元,根据所述OFDM CQI获得OFDM信干噪比,并根据所述OFDM信干噪比确定所述NOMA功率分配因子。
  11. 根据权利要求8所述的接收装置,其中,所述指示信息还包括:串行干扰删除指示信息和/或调制编码方案信息。
  12. 一种通信系统,使用非正交多址接入即NOMA,所述通信系统包括:
    基站,向用户设备发送进行NOMA CQI反馈的指示信息,所述指示信息至少包括NOMA功率分配因子;以及接收所述用户设备反馈的NOMA CQI;
    用户设备,接收所述基站发送的进行NOMA CQI反馈的指示信息;基于所述NOMA功率分配因子计算NOMA信干噪比;基于所述NOMA信干噪比获得对应的NOMA CQI;以及将所述NOMA CQI反馈给所述基站。
  13. 根据权利要求12所述的通信系统,其中,所述用户设备还用于将OFDM CQI反馈给所述基站;
    所述基站还用于根据所述OFDM CQI获得OFDM信干噪比,并根据所述OFDM信干噪比确定所述NOMA功率分配因子。
  14. 根据权利要求12所述的通信系统,其中,所述用户设备通过查找支持NOMA的CQI表或者支持OFDM的CQI表而获得所述NOMA CQI。
PCT/CN2015/076717 2015-04-16 2015-04-16 信道质量指示的反馈和接收方法、装置以及通信系统 WO2016165096A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/076717 WO2016165096A1 (zh) 2015-04-16 2015-04-16 信道质量指示的反馈和接收方法、装置以及通信系统
CN201580077510.1A CN107431556A (zh) 2015-04-16 2015-04-16 信道质量指示的反馈和接收方法、装置以及通信系统
US15/723,577 US20180026743A1 (en) 2015-04-16 2017-10-03 Method and Apparatus for Feeding Back and Receiving CQI and Communications System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076717 WO2016165096A1 (zh) 2015-04-16 2015-04-16 信道质量指示的反馈和接收方法、装置以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/723,577 Continuation US20180026743A1 (en) 2015-04-16 2017-10-03 Method and Apparatus for Feeding Back and Receiving CQI and Communications System

Publications (1)

Publication Number Publication Date
WO2016165096A1 true WO2016165096A1 (zh) 2016-10-20

Family

ID=57125627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076717 WO2016165096A1 (zh) 2015-04-16 2015-04-16 信道质量指示的反馈和接收方法、装置以及通信系统

Country Status (3)

Country Link
US (1) US20180026743A1 (zh)
CN (1) CN107431556A (zh)
WO (1) WO2016165096A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172701A (zh) * 2017-03-15 2017-09-15 中山大学 一种非正交多址接入系统的功率分配方法
CN107426808A (zh) * 2017-08-21 2017-12-01 北京工业大学 一种非正交多址技术中对下行链路中各用户的功率分配方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526057A (zh) * 2017-09-18 2019-03-26 株式会社Ntt都科摩 一种用于生成扩展符号的方法及装置
CN111492698A (zh) * 2017-11-09 2020-08-04 株式会社Ntt都科摩 用户终端以及无线通信方法
TWI759920B (zh) * 2020-10-22 2022-04-01 國立清華大學 非正交多重接取系統中的功率分配方法及使用所述方法的基地台
US20230422255A1 (en) * 2022-06-27 2023-12-28 Qualcomm Incorporated Control signaling for sic in nr 2-codeword operating mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595670A (zh) * 2006-11-01 2009-12-02 Lm爱立信电话有限公司 基于mimo的无线通信系统中的sinr反馈方法和装置
WO2014104114A1 (ja) * 2012-12-28 2014-07-03 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595670A (zh) * 2006-11-01 2009-12-02 Lm爱立信电话有限公司 基于mimo的无线通信系统中的sinr反馈方法和装置
WO2014104114A1 (ja) * 2012-12-28 2014-07-03 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172701A (zh) * 2017-03-15 2017-09-15 中山大学 一种非正交多址接入系统的功率分配方法
CN107172701B (zh) * 2017-03-15 2020-11-10 中山大学 一种非正交多址接入系统的功率分配方法
CN107426808A (zh) * 2017-08-21 2017-12-01 北京工业大学 一种非正交多址技术中对下行链路中各用户的功率分配方法

Also Published As

Publication number Publication date
US20180026743A1 (en) 2018-01-25
CN107431556A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US10439664B2 (en) Information signalling for network assisted interference mitigation
WO2016165096A1 (zh) 信道质量指示的反馈和接收方法、装置以及通信系统
TWI707569B (zh) 無授予之實體上行鏈路共享通道(pusch)上行鏈路
US10050692B2 (en) Method and system of advanced interference cancellation on PDSCH at the UE
EP3562082B1 (en) Resource indication method, resource acquisition method and related device
US8811207B2 (en) Allocating control data to user equipment
US10033601B2 (en) Method of reporting CQI and related communication device
EP3703289A1 (en) Method for feeding back channel state information, ue and system
JP2022547779A (ja) 端末、ネットワーク装置、端末の方法、及びネットワーク装置の方法
EP3544347B1 (en) Method for transmitting information, network device and terminal device
US20200186286A1 (en) Transport Block Size Determination for Equal Size Code Blocks
US20200146018A1 (en) Method for Sending Control Information, Method for Receiving Control Information, and Apparatus
WO2020143696A1 (en) Multiple physical uplink control channel (pucch) resources for an uplink control information (uci) report
JP2023071647A (ja) 物理アップリンク制御チャネルリソースの選択
WO2021035466A1 (en) Physical channnels for sl communication
US9979509B2 (en) Apparatus, system, and method for blind decoding PCFICH for wireless communication devices
WO2016165095A1 (zh) 信息传输方法、装置以及通信系统
WO2020191761A1 (zh) 数据的传输方法、装置、设备及存储介质
KR20160045732A (ko) 네트워크 통신을 위한 채널의 식별
CN116034603A (zh) Pucch资源选择和具有不同优先级的harq-ack在pucch上的复用
US11259315B2 (en) Data transmission method, network device, and terminal device
JP6664415B2 (ja) 電力制御方法、端末、および基地局
US20160056931A1 (en) Multi-System Coordinated Communication Method and Apparatus, and Communications Node
US11252702B2 (en) Uplink control information sending method, uplink control information receiving method, and device
EP3739944B1 (en) Information indication method and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888801

Country of ref document: EP

Kind code of ref document: A1