WO2016163549A1 - ネットワーク装置、ユーザ端末、及び基地局 - Google Patents

ネットワーク装置、ユーザ端末、及び基地局 Download PDF

Info

Publication number
WO2016163549A1
WO2016163549A1 PCT/JP2016/061620 JP2016061620W WO2016163549A1 WO 2016163549 A1 WO2016163549 A1 WO 2016163549A1 JP 2016061620 W JP2016061620 W JP 2016061620W WO 2016163549 A1 WO2016163549 A1 WO 2016163549A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
transmission
mbms
user terminal
control unit
Prior art date
Application number
PCT/JP2016/061620
Other languages
English (en)
French (fr)
Inventor
真人 藤代
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP16776715.1A priority Critical patent/EP3270623A4/en
Priority to JP2017511113A priority patent/JP6273071B2/ja
Publication of WO2016163549A1 publication Critical patent/WO2016163549A1/ja
Priority to US15/726,625 priority patent/US20180035405A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1881Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with schedule organisation, e.g. priority, sequence management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present invention relates to a network device, a user terminal, and a base station in a mobile communication system.
  • MBMS Multimedia Broadcast Multicast Service
  • multicast / broadcast data is transmitted via MBCH (Physical Multicast Channel) in units of MBSFN (Multicast-Broadcast Single-Frequency Network) consisting of multiple cells (MBSFN transmission).
  • MBCH Physical Multicast Channel
  • MBSFN Multicast-Broadcast Single-Frequency Network
  • SC-PTM Single Cell Point to Multi-point
  • PDSCH Physical Downlink Shared Channel
  • the base station includes a control unit that acquires, from the MCE, the QCI associated with the MBMS bearer between the MBMS gateway and the own base station.
  • the control unit provides a multicast service by SC-PTM transmission based on the QCI.
  • the network device is provided in a network that provides a multicast service by SC-PTM transmission.
  • the network apparatus includes a control unit that determines whether or not to perform the SC-PTM transmission in the cell based on information notified from user terminals in the cell or the setting status of MBMS in the network.
  • the user terminal is provided with a multicast service from the network by SC-PTM transmission.
  • the user terminal includes a control unit that performs a process of transmitting a measurement report to the network when the SC-PTM transmission is started.
  • the measurement report includes information indicating whether the modulation / coding scheme applied to the SC-PTM transmission is sufficient.
  • the user terminal is provided with a multicast service from the network by SC-PTM transmission.
  • the user terminal transmits an MBMS counting response to the network in response to an MBMS counting request from the network.
  • the control part which performs is provided.
  • the MBMS counting response includes information indicating a geographical position of the user terminal or information on a neighboring cell detected by the user terminal.
  • the base station provides a multicast service by SC-PTM transmission.
  • the base station includes a control unit that performs processing of transmitting data to a user terminal having a first bearer for unicast transmission and a second bearer for SC-PTM transmission.
  • the control unit switches between the unicast transmission and the SC-PTM transmission by routing data received from the core network to either the first bearer or the second bearer. .
  • a network device a user terminal, and a base station that can appropriately perform determination or switching regarding SC-PTM transmission are disclosed.
  • the network device is provided in a network that provides a multicast service by SC-PTM (Single Cell Point to Multi-point) transmission.
  • the network device determines whether or not to perform the SC-PTM transmission in the cell based on information notified from a user terminal in the cell or the setting status of MBMS (Multimedia Broadcast Multicast Service) in the network A part.
  • SC-PTM Single Cell Point to Multi-point
  • MBMS Multimedia Broadcast Multicast Service
  • the user terminal is provided with a multicast service from the network by SC-PTM (Single Cell Point to Multi-point) transmission.
  • the user terminal includes a control unit that performs a process of transmitting a measurement report to the network when the SC-PTM transmission is started.
  • the measurement report includes information indicating whether the modulation / coding scheme applied to the SC-PTM transmission is sufficient.
  • the user terminal is provided with a multicast service from the network by SC-PTM (Single Cell Point to Multi-point) transmission, and the user terminal is counting MBMS (Multimedia Broadcast Service) from the network.
  • SC-PTM Single Cell Point to Multi-point
  • MBMS Multimedia Broadcast Service
  • a control unit that performs processing for transmitting an MBMS counting response to the network is provided.
  • the MBMS counting response includes information indicating a geographical position of the user terminal or information on a neighboring cell detected by the user terminal.
  • the base station provides a multicast service by SC-PTM (Single Cell Point to Multi-point) transmission.
  • the base station includes a control unit that performs processing of transmitting data to a user terminal having a first bearer for unicast transmission and a second bearer for SC-PTM transmission.
  • the control unit switches between the unicast transmission and the SC-PTM transmission by routing data received from the core network to either the first bearer or the second bearer. .
  • FIG. 1 is a diagram illustrating a configuration of an LTE system according to the embodiment.
  • FIG. 2 is a diagram illustrating a network configuration related to MBMS / eMBMS according to the embodiment.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the E-UTRAN 10 includes an MCE (Multi-Cell / Multicast Coordinating Entity) 11.
  • the MCE 11 is connected to the eNB 200 via the M2 interface and is connected to the MME 300 via the M3 interface (see FIG. 2).
  • the MCE 11 performs MBSFN radio resource management / allocation and the like.
  • the EPC 20 includes an MBMS GW (Multimedia Broadcast Multicast Service Gateway) 21.
  • the MBMS GW 21 is connected to the eNB 200 via the M1 interface, is connected to the MME 300 via the Sm interface, and is connected to the BM-SC 22 via the SG-mb and SGi-mb interfaces (see FIG. 2).
  • the MBMS GW 21 performs IP multicast data transmission and session control for the eNB 200.
  • the EPC 20 includes a BM-SC (Broadcast Multicast Service Center) 22.
  • the BM-SC 22 is connected to the MBMS GW 21 via the SG-mb and SGi-mb interfaces, and is connected to the P-GW 23 via the SGi interface (see FIG. 2).
  • the BM-SC 22 mainly manages and allocates TMGI (Temporary Mobile Group Identity).
  • GCS AS Group Communication Service Application Server
  • GCS AS31 is an application server for group communication.
  • the GCS AS 31 is connected to the BM-SC 22 via the MB2-U and MB2-C interfaces, and is connected to the P-GW 23 via the SGi interface.
  • the GCS AS 31 performs group management, data distribution (including determination of whether to use an MBMS (multicast) bearer or a unicast bearer), and the like.
  • FIG. 3 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, HARQ (Hybrid ARQ) retransmission processing, random access procedures, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected mode, otherwise, the UE 100 is in the RRC idle mode.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 4 is a diagram illustrating a downlink channel configuration in the LTE system.
  • FIG. 4A shows a mapping between a logical channel (Downlink Logical Channel) and a transport channel (Downlink Transport Channel).
  • PCCH Paging Control Channel
  • PCH PCH
  • BCCH Broadcast Control Channel
  • the BCCH is a logical channel for broadcast system information.
  • the BCCH is mapped to the transport channel BCH (Broadcast Control Channel) or DL-SCH (Downlink Shared Channel).
  • CCCH Common Control Channel
  • CCCH is a logical channel for transmission control information between the UE 100 and the eNB 200.
  • the CCCH is used when the UE 100 does not have an RRC connection with the network.
  • CCCH is mapped to DL-SCH.
  • DCCH (Dedicated Control Channel) is a logical channel for transmitting individual control information between the UE 100 and the network.
  • the DCCH is used when the UE 100 has an RRC connection.
  • DCCH is mapped to DL-SCH.
  • DTCH (Dedicated Traffic Channel) is an individual logical channel for data transmission. DTCH is mapped to DL-SCH.
  • MCCH Multicast Control Channel
  • MCH Multicast Channel
  • MTCH Multicast Traffic Channel
  • MCH Multicast Traffic Channel
  • FIG. 4B shows mapping between a transport channel (Downlink Transport Channel) and a physical channel (Downlink Physical Channel).
  • the BCH is mapped to a PBCH (Physical Broadcast channel).
  • PBCH Physical Broadcast channel
  • MCH is mapped to PMCH (Physical Multicast Channel). MCH supports MBSFN transmission by multiple cells.
  • PCH and DL-SCH are mapped to PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • DL-SCH supports HARQ, link adaptation, and dynamic resource allocation.
  • PDCCH carries PDSCH (DL-SCH, PCH) resource allocation information, HARQ information related to DL-SCH, and the like.
  • the PDCCH carries an uplink scheduling grant.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is an area mainly used as a PDCCH for transmitting a downlink control signal.
  • the remaining part of each subframe is an area that can be used mainly as a PDSCH for transmitting downlink data.
  • an MBSFN subframe that is a subframe for MBSFN transmission can be set.
  • both ends in the frequency direction in each subframe are regions used mainly as PUCCH for transmitting an uplink control signal.
  • the remaining part in each subframe is an area that can be used mainly as a PUSCH for transmitting uplink data.
  • FIG. 6 is a block diagram of the UE 100 (user terminal) according to the embodiment.
  • the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal.
  • the processor executes various communication protocols described above and various processes described later.
  • FIG. 7 is a block diagram of the eNB 200 (base station) according to the embodiment.
  • the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor executes various communication protocols described above and various processes described later.
  • the backhaul communication unit 240 is connected to the adjacent eNB via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • FIG. 8 is a diagram for explaining the outline of SC-PTM transmission according to the first embodiment.
  • the process in eNB200 is mainly demonstrated.
  • the eNB 200 according to the first embodiment provides a multicast service by SC-PTM transmission.
  • an MBMS bearer to which SC-PTM transmission is applied is associated with a TMGI (Temporary Mobile Group Identity) indicating a multicast service (MBMS service).
  • TMGI Temporal Mobile Group Identity
  • the MBMS bearer is a broadcast / multicast bearer established between the UE 100 and the BM-SC 22.
  • an IP multicast bearer is established between the MBMS GW 21 and the eNB 200
  • an MBMS PTM radio bearer is established between the eNB 200 and the UE 100.
  • the MBMS bearer to which SC-PTM transmission is applied is mapped to the MTCH, which is a logical channel, after being segmented in the RLC layer.
  • MTCH exists for each TMGI. That is, TMGI is associated with LCID which is an identifier of a logical channel.
  • An EPS (Evolved Packet System) bearer to which unicast transmission is applied is subjected to ROHC processing and security processing in the PDCP layer, and after being subjected to segmentation and ARQ processing in the RLC layer, it is mapped to the logical channel DTCH.
  • the EPS bearer is a unicast bearer established between the UE 100 and the P-GW 23.
  • the control unit 230 (MAC layer) of the eNB 200 performs unicast / SC-PTM scheduling and priority control for each logical channel of MTCH, DTCH, CCCH, BCCH, and PCCH. Also, the control unit 230 (MAC layer) of the eNB 200 multiplexes MTCH and DTCH (Multiplexing), performs HARQ processing, and then maps the DL-SCH of each component carrier (CC).
  • the eNB 200 may apply MBSFN transmission to the MBMS bearer and provide a broadcast / multicast service by MBSFN transmission.
  • the control unit 230 (MAC layer) of the eNB 200 refers to the MBMS scheduling information received from the MCE 11 for the MCCH and MTCH, performs MBMS scheduling, multiplexes them, and maps them to the MCH.
  • the network device is provided in a network that provides a multicast service by SC-PTM transmission.
  • the network device is the eNB 200.
  • the network device may be MCE11 or the like.
  • the network device performs control (SC-PTM control) including determination as to whether or not to perform SC-PTM transmission in the cell based on information notified from the UE 100 in the cell or the setting status of MBMS in the network. .
  • FIG. 9 is a sequence diagram showing an operation pattern 1 of the first embodiment. 9 and 10, only one UE 100 belonging to the multicast group is illustrated, but actually, a plurality of UEs 100 belong to the multicast group.
  • G-RNTI Group-Radio Network Temporary Identity
  • UE 100 belonging to the multicast group from eNB 200 or the like.
  • step S111 the eNB 200 starts SC-PTM transmission in its own cell.
  • multicast data is transmitted to the UEs 100 belonging to the multicast group by SC-PTM transmission.
  • G-RNTI is applied to the transmission of the multicast data.
  • the UE 100 that receives multicast data by SC-PTM transmission may be in an RRC connected state or an RRC idle state in the cell of the eNB 200. In the following, it is assumed that the UE 100 that receives the SC-PTM transmission is in the RRC connected state.
  • step S112 the eNB 200 transmits a measurement setting (Measurement Config) to the UE 100 by an individual RRC message.
  • step S112 may be performed before step S111.
  • “Measurement Config” may include report setting information (ReportConfig), measurement target (MeasObject), and measurement identifier (MeasId). “ReportConfig” is for setting a condition for transmitting “Measurement Report” from the UE 100 to the eNB 200. For example, according to the conditions defined in Event-A3, when the measurement result for the neighboring cell is better than the measurement result for the current serving cell, “Measurement Report” is transmitted. Further, according to the conditions defined by “Periodic”, “Measurement Report” is transmitted at a predetermined report cycle by “Measurement Report”.
  • An offset value, a predetermined threshold value, a predetermined reporting cycle, the number of reports, a report condition type, and the like are set by “ReportConfig”.
  • “MeasObject” is used to set a frequency and / or RAT (Radio Access Technology) to be measured by the UE 100.
  • “MeasId” is used to associate one “ReportConfig” with one “MeasObject”. The UE 100 performs measurement on the measurement target specified by “MeasObject” corresponding to “MeasId”, and when the condition specified by “ReportConfig” corresponding to “MeasObject” is satisfied by “MeasId”, “Measurement Report” is transmitted to the eNB 200.
  • “Measurement Config” may include identification information indicating an MBMS service (multicast service) targeted for MCS information described later.
  • the identification information is G-RNTI corresponding to the MBMS service (multicast group).
  • the identification information may be TMGI (Temporary Mobile Group Identity) corresponding to the MBMS service.
  • “Measurement Config” may include information for requesting that MCS information described later be included in “Measurement Report”. “Measurement Config” may include information for requesting to include location information and / or neighboring cell information, which will be described later, in “Measurement Report”. “Measurement Config” may include information for setting a report condition based on a reception state of SC-PTM transmission. For example, a report condition may be set such that “Measurement Report” is transmitted when the reception quality (for example, error rate) of SC-PTM transmission falls below a predetermined threshold.
  • a report condition may be set such that “Measurement Report” is transmitted when the reception quality (for example, error rate) of SC-PTM transmission falls below a predetermined threshold.
  • the UE 100 performs measurement on a downlink reference signal (CRS: Cell-specific Reference Signal) for each cell, and obtains a measurement result.
  • the measurement results include reference signal received power (RSRP) and / or reference signal received quality (RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the UE 100 measures the reception quality of SC-PTM transmission and determines whether the modulation / coding scheme (MCS) applied to the SC-PTM transmission is sufficient.
  • MCS modulation / coding scheme
  • step S113 the UE 100 transmits “Measurement Report”, which is a type of RRC message, to the eNB 200 based on “Measurement Config”.
  • the eNB 200 receives “Measurement Report”.
  • MCS information includes not only the cell measurement result (RSRP / RSRQ) but also information (MCS information) indicating whether or not the MCS applied to the SC-PTM transmission is sufficient.
  • MCS information is 1-bit information (for example, OK / NG) indicating whether or not the MCS applied to the SC-PTM transmission is sufficient.
  • the MCS information is information requesting increase / decrease (UP / DOWN) of MCS.
  • MCS information is an index value which shows MCS which UE100 expects.
  • the “Measurement Report” may include information indicating the geographical location of the UE 100 (location information) and / or information regarding neighboring cells detected by the UE 100 (neighboring cell information).
  • the position information is, for example, GNSS (Global Navigation Satelite System) position information.
  • the neighboring cell information includes a neighboring cell measurement result.
  • the neighbor cell measurement result includes the cell ID of the neighbor cell.
  • the neighboring cell information may include information indicating whether or not the neighboring cell provides an MBMS service (which the UE 100 is interested in).
  • step S114 the eNB 200 controls the SC-PTM transmission based on the information included in the “Measurement Report”.
  • the eNB 200 may increase or decrease the MCS applied to SC-PTM transmission based on the MCS information obtained from each UE 100 belonging to the multicast group. Further, when there is a UE 100 that does not satisfy the required reception quality even if the MCS increases or decreases, it may be determined that the UE 100 is switched from SC-PTM transmission to unicast transmission. Alternatively, when there are more than a predetermined percentage of UEs 100 that do not satisfy the required reception quality due to increase / decrease in MCS, the eNB 200 may determine to stop SC-PTM transmission for the multicast group and switch to unicast transmission. . Alternatively, the eNB 200 may determine to switch from SC-PTM transmission to MBSFN transmission and notify the MCE 11 to that effect.
  • the eNB 200 may determine to switch from SC-PTM transmission to MBSFN transmission based on the location information / neighboring cell information obtained from each UE 100 belonging to the multicast group. For example, when a multicast group is located in the vicinity of the cell edge of the own cell, the eNB 200 may determine to switch to MBSFN transmission using the MBSFN area including the own cell and the adjacent cell in order to avoid interference with the adjacent cell.
  • the eNB 200 may perform grouping of the UEs 100 based on information included in the “Measurement Report”. For example, the eNB 200 may set a multicast group including UEs 100 having similar reception quality (that is, expected MCS) of MBSFN transmission among a plurality of UEs 100 that receive the same multicast data (MBMS service). Or eNB200 may set the multicast group which consists of UE100 which adjoins mutually.
  • MBMS service multicast data
  • FIG. 10 is a sequence diagram showing an operation pattern 2 of the first embodiment.
  • step S201 the MCE 11 transmits an MBMS counting request (MBMS Counting Request) to the eNB 200.
  • step S202 the eNB 200 transmits an MBMS counting request to the UE 100 in response to a request from the MCE 11.
  • “MBMS Counting Request” includes a TMGI list that is a list of TMGIs (MBMS services) to be counted.
  • step S203 the UE 100 transmits an MBMS counting response (MBMS Counting Response) to the eNB 200 in response to the reception of the “MBMS Counting Request”.
  • MBMS Counting Response MBMS Counting Response
  • MBMS Counting Response includes information indicating whether the UE 100 is interested in each TMGI in the TMGI list.
  • the “MBMS Counting Response” includes information indicating the geographical position of the UE 100 (position information) and / or information related to neighboring cells detected by the UE 100 (neighboring cell information).
  • step S ⁇ b> 204 the eNB 200 transfers the “MBMS Counting Response” received from the UE 100 to the MCE 11. In that case, you may include own cell ID.
  • the MCE 11 determines whether to start SC-PTM transmission based on the information included in the “MBMS Counting Response”. For example, when a plurality of UEs 100 interested in the same TMGI (MBMS service) are close to each other, the MCE 11 may determine to start SC-PTM transmission to the plurality of UEs 100. Alternatively, when a plurality of UEs 100 interested in the same TMGI (MBMS service) are located near the cell edge of the cell of the eNB 200, the MCE 11 includes an MBSFN area including the cell and the neighboring cell in order to avoid interference with the neighboring cell. May be determined to start MBSFN transmission.
  • the MCE 11 may transmit an instruction to start SC-PTM transmission to the eNB 200 (step S206).
  • FIG. 11 is a flowchart showing the operation pattern 3 of the first embodiment.
  • step S311 when the MBMS bearer (IP multicast bearer) with the MBMS GW 21 is not established (step S311: NO), the eNB 200 determines to perform unicast transmission (step S312).
  • IP multicast bearer IP multicast bearer
  • step S311 When the MBMS bearer with the MBMS GW 21 is established (step S311: YES) and the MBSFN (MBSFN area) corresponding to the MBMS bearer is set in the eNB 200 (step S313: YES), It is determined that data received via the MBMS bearer is transmitted by MBSFN transmission.
  • MBSFN MBSFN area
  • step S311 YES
  • MBSFN MBSFN area
  • step S313 NO
  • data received via the MBMS bearer is transmitted by SC-PTM transmission. It may be determined that unicast transmission is performed by establishing an EPS bearer.
  • the eNB 200 autonomously determines to stop the SC-PTM transmission even when performing SC-PTM transmission in response to an instruction from another network device (for example, the MCE 11).
  • the eNB 200 may perform SC-PTM transmission according to an instruction from another network device (for example, the MCE 11). It may be determined that the SC-PTM transmission is to be stopped. Alternatively, the eNB 200 may determine to cancel SC-PTM transmission based on CQI (Channel Quality Indicator) or HARQ ACK / NACK from the UE 100.
  • CQI Channel Quality Indicator
  • HARQ ACK / NACK from the UE 100.
  • ENB200 may switch to the unicast transmission with respect to each of the said several UE100, when it judges that SC-PTM transmission is canceled with respect to the multicast group which consists of several UE100.
  • the eNB 200 may stop the SC-PTM transmission and switch to multicast transmission when there is a large variation in reception quality (that is, expected MCS) or position of the SC-PTM transmission in the plurality of UEs 100. .
  • the eNB 200 may stop SC-PTM transmission and switch to multicast transmission when the available radio resources in the own cell become large.
  • eNB 200 When eNB 200 performs SC-PTM transmission in response to an instruction from another network device (for example, MCE 11), it determines that SC-PTM transmission is to be stopped when it is determined that SC-PTM transmission is to be stopped. You may notify to the said other network apparatus.
  • another network device for example, MCE 11
  • FIG. 12 is a sequence diagram showing an operation pattern 5 according to the first embodiment.
  • step S501 when an MBMS bearer (IP multicast bearer) with the MBMS GW 21 is established, the eNB 200 transmits QCI (QoS Class Identifier) information associated with the MBMS bearer from the MCE 11. get. Prior to step S501, the eNB 200 may request the MCE 11 to transmit the QCI information.
  • QCI QoS Class Identifier
  • step S502 the eNB 200 performs scheduling in SC-PTM transmission corresponding to the MBMS bearer based on the QCI information. For example, the eNB 200 determines the MCS and / or the number of resource blocks to be applied to SC-PTM transmission so that the required QoS is satisfied based on the QCI information.
  • the eNB 200 provides a multicast service by SC-PTM transmission.
  • the eNB 200 performs a process of transmitting data to the UE 100 having the first bearer for unicast transmission and the second bearer for SC-PTM transmission.
  • the eNB 200 switches (dynamically) between unicast transmission and SC-PTM transmission by routing data received from the core network to one of the first bearer and the second bearer.
  • FIG. 13 is a diagram for explaining an operation pattern 1 of the second embodiment.
  • the first bearer for unicast transmission is an EPS bearer established between the UE 100 and the P-GW 23 via the eNB 200.
  • the second bearer for SC-PTM transmission is an MBMS bearer established between the UE 100 and the MBMS GW 21 via the eNB 200.
  • the eNB 200 switches from unicast transmission to SC-PTM transmission by routing data received from the P-GW 23 via the EPS bearer to the MBMS bearer.
  • the eNB 200 switches from SC-PTM transmission to unicast transmission by routing data received from the MBMS GW 21 via the MBMS bearer to the EPS bearer.
  • the eNB 200 may dynamically switch between unicast transmission and SC-PTM transmission based on feedback information from the UE 100 (CQI, HARQ ACK / NACK, etc.).
  • the eNB 200 may notify the UE 100 of setting information for setting both the first bearer for unicast transmission (EPS bearer) and the second bearer for SC-PTM transmission (MBMS bearer). Good.
  • the setting information may be notified by an RRC message.
  • Or eNB200 may acquire the information regarding both bearers of the 1st bearer (EPS bearer) and the 2nd bearer (MBMS bearer) which UE100 has established from UE100.
  • EPS bearer 1st bearer
  • MBMS bearer 2nd bearer
  • FIG. 14 is a diagram for explaining an operation pattern 2 of the second embodiment.
  • the first bearer for unicast transmission is a first radio bearer established between the UE 100 and the eNB 200.
  • the second bearer for SC-PTM transmission is a second radio bearer established between the UE 100 and the eNB 200.
  • An MBMS PTM bearer (radio bearer for MBSFN transmission) may be established as the third radio bearer.
  • the eNB 200 switches from unicast transmission to SC-PTM transmission by routing data received from the P-GW 23 via the EPS bearer (see FIG. 13) to the second radio bearer.
  • the eNB 200 performs switching from SC-PTM transmission to unicast transmission by routing data received from the MBMS GW 21 to the first radio bearer via the MBMS bearer (see FIG. 13).
  • the first radio bearer is associated with a C-RNTI (Cell-Radio Network Temporary Identifier).
  • the second radio bearer is associated with G-RNTI (Group-Radio Network Temporary Identifier).
  • the UE 100 identifies the first radio bearer by C-RNTI and identifies the second radio bearer by G-RNTI.
  • the first radio bearer and the second radio bearer may be associated with one logical channel ID (LCID).
  • LCID logical channel ID
  • the data of the first radio bearer and the data of the second radio bearer are mapped to the same logical channel.
  • a method of associating the EPS bearer and the MBMS bearer with one LCID may be adopted.
  • the eNB 200 may dynamically switch between unicast transmission and SC-PTM transmission based on feedback information from the UE 100 (CQI, HARQ ACK / NACK, etc.).
  • the eNB 200 may notify the UE 100 of setting information for setting both the first bearer for unicast transmission (EPS bearer) and the second bearer for SC-PTM transmission (MBMS bearer). Good.
  • the setting information may be notified by an RRC message.
  • Or eNB200 may acquire the information regarding both bearers of the 1st bearer (EPS bearer) and the 2nd bearer (MBMS bearer) which UE100 has established from UE100.
  • EPS bearer 1st bearer
  • MBMS bearer 2nd bearer
  • the first embodiment and the second embodiment described above may be implemented independently or in combination with each other.
  • the LTE system is exemplified as the mobile communication system
  • the LTE communication is exemplified as the WAN communication.
  • the present invention is not limited to LTE systems. The present invention may be applied to a mobile communication system other than the LTE system.
  • the present invention is useful in the communication field.

Abstract

 一つの実施形態に係る基地局は、MBMSゲートウェイと自基地局との間のMBMSベアラに対応付けられたQCIをMCEから取得する制御部を備える。前記制御部は、前記QCIに基づいて、SC-PTM伝送によりマルチキャストサービスを提供する。

Description

ネットワーク装置、ユーザ端末、及び基地局
 本発明は、移動通信システムにおけるネットワーク装置、ユーザ端末、及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)において、マルチキャスト/ブロードキャストサービスを提供するために、MBMS(Multimedia Broadcast Multicast Service)が仕様化されている。
 現行のMBMSにおいては、複数のセルからなるMBSFN(Multicast-Broadcast Single-Frequency Network)エリア単位で、PMCH(Physical Multicast Channel)を介して、マルチキャスト/ブロードキャストデータが送信される(MBSFN伝送)。
 一方で、効率的なマルチキャストサービスを提供するために、SC-PTM(Single Cell Point to Multi-point)伝送が検討されている。SC-PTM伝送においては、セル単位で、PDSCH(Physical Downlink Shared Channel)を介して、マルチキャストデータが送信される。
3GPP寄書「RP-142205」
 一つの実施形態に係る基地局は、MBMSゲートウェイと自基地局との間のMBMSベアラに対応付けられたQCIをMCEから取得する制御部を備える。前記制御部は、前記QCIに基づいて、SC-PTM伝送によりマルチキャストサービスを提供する。
 一つの実施形態に係るネットワーク装置は、SC-PTM伝送によりマルチキャストサービスを提供するネットワークに設けられる。前記ネットワーク装置は、セル内のユーザ端末から通知される情報又は前記ネットワークにおけるMBMSの設定状況に基づいて、前記セルにおいて前記SC-PTM伝送を行うか否かについて判断する制御部を備える。
 一つの実施形態に係るユーザ端末は、SC-PTM伝送によりマルチキャストサービスがネットワークから提供される。前記ユーザ端末は、前記SC-PTM伝送が開始されている場合において、前記ネットワークに測定報告を送信する処理を行う制御部を備える。前記測定報告は、前記SC-PTM伝送に適用されている変調・符号化方式が十分であるか否かを示す情報を含む。
 一つの実施形態に係るユーザ端末は、SC-PTM伝送によりマルチキャストサービスがネットワークから提供される、前記ユーザ端末は、前記ネットワークからのMBMSカウンティング要求に応じて、前記ネットワークにMBMSカウンティング応答を送信する処理を行う制御部を備える。前記MBMSカウンティング応答は、前記ユーザ端末の地理的な位置を示す情報又は前記ユーザ端末が検知した隣接セルに関する情報を含む。
 一つの実施形態に係る基地局は、SC-PTM伝送によりマルチキャストサービスを提供する。前記基地局は、ユニキャスト伝送用の第1のベアラ及びSC-PTM伝送用の第2のベアラを有するユーザ端末にデータを送信する処理を行う制御部を備える。前記制御部は、コアネットワークから受信するデータを前記第1のベアラ及び前記第2のベアラの何れか一方にルーティングすることにより、前記ユニキャスト伝送と前記SC-PTM伝送との間の切り替えを行う。
LTEシステムの構成を示す図である。 MBMS/eMBMSに係るネットワーク構成を示す図である。 LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 LTEシステムにおける下りリンクのチャネル構成を示す図である。 LTEシステムで使用される無線フレームの構成図である。 実施形態に係るUE100(ユーザ端末)のブロック図である。 実施形態に係るeNB200(基地局)のブロック図である。 実施形態に係るSC-PTM伝送の概要を説明するための図である。 第1実施形態の動作パターン1を示すシーケンス図である。 第1実施形態の動作パターン2を示すシーケンス図である。 第1実施形態の動作パターン3を示すフロー図である。 第1実施形態の動作パターン5を示すシーケンス図である。 第2実施形態の動作パターン1を説明するための図である。 第2実施形態の動作パターン2を説明するための図である。
 [実施形態の概要]
 SC-PTM伝送が導入された場合、下りリンクのデータ(ユーザデータ)の伝送方式の選択肢として、ユニキャスト伝送及びMBSFN伝送にSC-PTM伝送が追加されることになる。しかしながら、SC-PTM伝送が導入された場合、SC-PTM伝送を行うか否かをどのようにして決定又は切り替えるのかが不明確である。
 以下の実施形態において、SC-PTM伝送に関する決定又は切り替えを適切に行うことが可能なネットワーク装置、ユーザ端末、及び基地局が開示される。
 第1実施形態に係るネットワーク装置は、SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスを提供するネットワークに設けられる。前記ネットワーク装置は、セル内のユーザ端末から通知される情報又は前記ネットワークにおけるMBMS(Multimedia Broadcast Multicast Service)の設定状況に基づいて、前記セルにおいて前記SC-PTM伝送を行うか否かについて判断する制御部を備える。
 第1実施形態に係るユーザ端末は、SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスがネットワークから提供される。前記ユーザ端末は、前記SC-PTM伝送が開始されている場合において、前記ネットワークに測定報告を送信する処理を行う制御部を備える。前記測定報告は、前記SC-PTM伝送に適用されている変調・符号化方式が十分であるか否かを示す情報を含む。
 第1実施形態に係るユーザ端末は、SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスがネットワークから提供される、前記ユーザ端末は、前記ネットワークからのMBMS(Multimedia Broadcast Multicast Service)カウンティング要求に応じて、前記ネットワークにMBMSカウンティング応答を送信する処理を行う制御部を備える。前記MBMSカウンティング応答は、前記ユーザ端末の地理的な位置を示す情報又は前記ユーザ端末が検知した隣接セルに関する情報を含む。
 第2実施形態に係る基地局は、SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスを提供する。前記基地局は、ユニキャスト伝送用の第1のベアラ及びSC-PTM伝送用の第2のベアラを有するユーザ端末にデータを送信する処理を行う制御部を備える。前記制御部は、コアネットワークから受信するデータを前記第1のベアラ及び前記第2のベアラの何れか一方にルーティングすることにより、前記ユニキャスト伝送と前記SC-PTM伝送との間の切り替えを行う。
 [移動通信システムの概要]
 以下において、実施形態に係る移動通信システムであるLTEシステムの概要について説明する。
 (システム構成)
 図1は、実施形態に係るLTEシステムの構成を示す図である。図2は、実施形態に係るMBMS/eMBMSに係るネットワーク構成を示す図である。
 図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
 また、E-UTRAN10は、MCE(Multi-Cell/Multicast Coordinating Entity)11を含む。MCE11は、M2インターフェイスを介してeNB200と接続され、M3インターフェイスを介してMME300と接続される(図2参照)。MCE11は、MBSFN無線リソース管理・割当等を行う。
 EPC20は、MBMS GW(Multimedia Broadcast Multicast Service Gateway)21を含む。MBMS GW21は、M1インターフェイスを介してeNB200と接続され、Smインターフェイスを介してMME300と接続され、SG-mb及びSGi-mbインターフェイスを介してBM-SC22と接続される(図2参照)。MBMS GW21は、eNB200に対してIPマルチキャストのデータ伝送やセッション制御を行う。
 また、EPC20は、BM-SC(Broadcast Multicast Service Center)22を含む。BM-SC22は、SG-mb及びSGi-mbインターフェイスを介してMBMS GW21と接続され、SGiインターフェイスを介してP-GW23と接続される(図2参照)。BM-SC22は、主にTMGI(Temporary Mobile Group Identity)の管理・割当等を行う。
 さらに、EPC20の外部のネットワーク(すなわち、インターネット)には、GCS AS(Group Communication Service Application Server)31が設けられる。GCS AS31は、グループ通信用のアプリケーションサーバである。GCS AS31は、MB2-U及びMB2-Cインターフェイスを介してBM-SC22と接続され、SGiインターフェイスを介してP-GW23と接続される。GCS AS31は、グループ通信におけるグループの管理やデータ配信(MBMS(マルチキャスト)ベアラを使うか、ユニキャストベアラを使うかの判断も含む)等を行う。
 (無線プロトコルの構成)
 図3は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図3に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、HARQ(Hybrid ARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードであり、そうでない場合、UE100はRRCアイドルモードである。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。
 (下りリンクのチャネル構成)
 図4は、LTEシステムにおける下りリンクのチャネル構成を示す図である。
 図4(a)は、論理チャネル(Downlink Logical Channel)とトランポートチャネル(Downlink Transport Channel)との間のマッピングを示す。
 図4(a)に示すように、PCCH(Paging Control Channel)は、ページング情報、及びシステム情報変更を通知するための論理チャネルである。PCCHは、トランスポートチャネルであるPCH(Paging Channel)にマッピングされる。
 BCCH(Broadcast Control Channel)は、ブロードキャスト・システム情報のための論理チャネルである。BCCHは、トランスポートチャネルであるBCH(Broadcast Control Channel)又はDL-SCH(Downlink Shared Channel)にマッピングされる。
 CCCH(Common Control Channel)は、UE100とeNB200との間の送信制御情報のための論理チャネルである。CCCHは、UE100がネットワークとの間でRRC接続を有していない場合に用いられる。CCCHは、DL-SCHにマッピングされる。
 DCCH(Dedicated Control Channel)は、UE100とネットワークとの間の個別制御情報を送信するための論理チャネルである。DCCHは、UE100がRRC接続を有する場合に用いられる。DCCHは、DL-SCHにマッピングされる。
 DTCH(Dedicated Traffic Channel)は、データの送信のための個別論理チャネルである。DTCHは、DL-SCHにマッピングされる。
 MCCH(Multicast Control Channel)は、1対多(マルチキャスト/ブロードキャスト)伝送のための論理チャネルである。MCCHは、ネットワークからUE100へのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、トランスポートチャネルであるMCH(Multicast Channel)にマッピングされる。
 MTCH(Multicast Traffic Channel)は、ネットワークからUE100への1対多(マルチキャスト/ブロードキャスト)のデータ伝送のための論理チャネルである。MTCHは、MCHにマッピングされる。
 図4(b)は、トランポートチャネル(Downlink Transport Channel)と物理チャネル(Downlink Physical Channel)との間のマッピングを示す。
 図4(b)に示すように、BCHは、PBCH(Physical Broadcast channel)にマッピングされる。
 MCHは、PMCH(Physical Multicast Channel)にマッピングされる。MCHは、複数のセルによるMBSFN伝送をサポートする。
 PCH及びDL-SCHは、PDSCH(Physical Downlink Shared Channel)にマッピングされる。DL-SCHは、HARQ、リンクアダプテーション、及び動的リソース割当をサポートする。
 PDCCHは、PDSCH(DL-SCH、PCH)のリソース割り当て情報及びDL-SCHに関するHARQ情報等を運搬する。また、PDCCHは、上りリンクのスケジューリンググラントを運ぶ。
 (無線フレームの構成)
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムにおいて、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するためのPDCCHとして使用される領域である。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するためのPDSCHとして使用できる領域である。また、下りリンクにおいて、MBSFN伝送用のサブフレームであるMBSFNサブフレームが設定され得る。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するためのPUCCHとして使用される領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するためのPUSCHとして使用できる領域である。
 (ユーザ端末の構成)
 図6は、実施形態に係るUE100(ユーザ端末)のブロック図である。
 図6に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、上述した各種の通信プロトコル及び後述する各種の処理を実行する。
 (基地局の構成)
 図7は、実施形態に係るeNB200(基地局)のブロック図である。
 図7に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、上述した各種の通信プロトコル及び後述する各種の処理を実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。
 (SC-PTM伝送の概要)
 図8は、第1実施形態に係るSC-PTM伝送の概要を説明するための図である。ここでは、eNB200における処理について主として説明する。第1実施形態に係るeNB200は、SC-PTM伝送によりマルチキャストサービスを提供する。
 図8に示すように、SC-PTM伝送が適用されるMBMSベアラは、マルチキャストサービス(MBMSサービス)を示すTMGI(Temporary Mobile Group Identity)と対応付けられている。ここで、MBMSベアラは、UE100とBM-SC22との間に確立される、ブロードキャスト/マルチキャスト用のベアラである。例えば、あるMBMSサービスに対して、MBMS GW21とeNB200との間にはIPマルチキャストベアラが確立され、eNB200とUE100との間にはMBMS PTM radio bearerが確立される。
 SC-PTM伝送が適用されるMBMSベアラは、RLC層においてセグメンテーションが施された後、論理チャネルであるMTCHにマッピングされる。なお、SC-PTM伝送には、RLC層においてUM(Unacknowledged Mode)が適用され、ARQ処理が施されなくてもよい。MTCHは、TMGIごとに存在する。すなわち、TMGIは、論理チャネルの識別子であるLCIDと対応付けられる。
 ユニキャスト伝送が適用されるEPS(Evolved Packet System)ベアラは、PDCP層においてROHC処理及びSecurity処理が施され、かつRLC層においてセグメンテーション及びARQ処理が施された後、論理チャネルであるDTCHにマッピングされる。ここで、EPSベアラは、UE100とP-GW23との間に確立される、ユニキャスト用のベアラである。
 eNB200の制御部230(MAC層)は、MTCH、DTCH、CCCH、BCCH、PCCHの各論理チャネルについて、ユニキャスト/SC-PTMスケジューリング及び優先制御(Priority Handling)を行う。また、eNB200の制御部230(MAC層)は、MTCH及びDTCHを多重化(Multiplexing)し、HARQ処理を施した後、各コンポーネントキャリア(CC)のDL-SCHにマッピングする。
 さらに、eNB200は、MBMSベアラにMBSFN伝送を適用し、MBSFN伝送によりブロードキャスト/マルチキャストサービスを提供してもよい。eNB200の制御部230(MAC層)は、MCCH及びMTCHについて、MCE11から受信したMBMSスケジューリング情報を参照してMBMSスケジューリングを行った後、多重化(Multiplexing)し、MCHにマッピングする。
 [第1実施形態]
 以下において、第1実施形態について説明する。
 第1実施形態に係るネットワーク装置は、SC-PTM伝送によりマルチキャストサービスを提供するネットワークに設けられる。以下において、ネットワーク装置がeNB200である場合を主として想定する。しかしながら、ネットワーク装置はMCE11等であってもよい。ネットワーク装置は、セル内のUE100から通知される情報又はネットワークにおけるMBMSの設定状況に基づいて、当該セルにおいてSC-PTM伝送を行うか否かについての判断を含む制御(SC-PTM制御)を行う。
 (動作パターン1)
 図9は、第1実施形態の動作パターン1を示すシーケンス図である。なお、図9及び図10において、マルチキャストグループに属するUE100を1つのみ図示しているが、実際にはマルチキャストグループに複数のUE100が属している。マルチキャストグループに属するUE100には、例えばeNB200等からG-RNTI(Group-Radio Network Temporary Identity)が割り当てられる。
 図9に示すように、ステップS111において、eNB200は、自セルにおいてSC-PTM伝送を開始する。具体的には、マルチキャストグループに属するUE100に対してSC-PTM伝送によりマルチキャストデータを送信する。当該マルチキャストデータの送信には、G-RNTIが適用される。SC-PTM伝送によりマルチキャストデータを受信するUE100は、eNB200のセルにおいてRRCコネクティッド状態であってもよいし、RRCアイドル状態であってもよい。以下においては、SC-PTM伝送を受信するUE100がRRCコネクティッド状態である場合を主として想定する。
 ステップS112において、eNB200は、個別RRCメッセージにより測定設定(Measurement Config)をUE100に送信する。但し、ステップS112は、ステップS111よりも前に行われてもよい。
 「Measurement Config」は、報告設定情報(ReportConfig)、測定対象(MeasObject)、及び測定識別子(MeasId)を含んでもよい。「ReportConfig」は、UE100からeNB200に対して「Measurement Report」を送信する条件を設定するものである。例えば、Event-A3で規定される条件によれば、周辺セルに対する測定結果が、現在のサービングセルに対する測定結果よりもオフセット値以上良くなった場合に、「Measurement Report」が送信される。また、「Periodical」で規定される条件によれば、「Measurement Report」によって、所定の報告周期で「Measurement Report」が送信される。オフセット値、所定閾値、所定の報告周期、報告回数、報告条件の種類等が、「ReportConfig」により設定される。「MeasObject」は、UE100が測定対象とすべき周波数及び/又はRAT(Radio Access Technology)を設定するものである。「MeasId」は、1つの「ReportConfig」と1つの「MeasObject」とを対応付けるために用いられる。UE100は、「MeasId」に対応する「MeasObject」によって指定されている測定対象について測定を行い、「MeasId」によって「MeasObject」に対応する「ReportConfig」によって指定されている条件が満たされている場合、eNB200に対して「Measurement Report」を送信する。
 「Measurement Config」は、後述するMCS情報の対象とするMBMSサービス(マルチキャストサービス)を示す識別情報を含んでもよい。識別情報は、当該MBMSサービス(マルチキャストグループ)に対応するG-RNTIである。或いは、識別情報は、当該MBMSサービスに対応するTMGI(Temporary Mobile Group Identity)であってもよい。
 また、「Measurement Config」は、後述するMCS情報を「Measurement Report」に含めるよう要求するための情報を含んでもよい。「Measurement Config」は、後述する位置情報及び/又は隣接セル情報を「Measurement Report」に含めるよう要求するための情報を含んでもよい。「Measurement Config」は、SC-PTM伝送の受信状態に基づく報告条件を設定するための情報を含んでもよい。例えば、SC-PTM伝送の受信品質(例えばエラーレート)が所定閾値を下回った場合に、「Measurement Report」を送信するという報告条件を設定してもよい。
 UE100は、セルごとの下りリンク参照信号(CRS:Cell-specific Reference Signal)に対する測定を行い、測定結果を得る。測定結果とは、参照信号受信電力(RSRP)及び/又は参照信号受信品質(RSRQ)等である。また、UE100は、SC-PTM伝送の受信品質を測定し、SC-PTM伝送に適用されている変調・符号化方式(MCS)が十分であるか否かを判断する。
 ステップS113において、UE100は、「Measurement Config」に基づいて、RRCメッセージの一種である「Measurement Report」をeNB200に送信する。eNB200は、「Measurement Report」を受信する。
 「Measurement Report」は、セル測定結果(RSRP/RSRQ)だけではなく、SC-PTM伝送に適用されているMCSが十分であるか否かを示す情報(MCS情報)を含む。MCS情報は、SC-PTM伝送に適用されているMCSが十分であるか否かを示す1ビットの情報(例えば、OK/NG)である。或いは、MCS情報は、MCSの増減(UP/DOWN)を要求する情報である。或いは、MCS情報は、UE100が期待するMCSを示すインデックス値である。
 また、「Measurement Report」は、UE100の地理的な位置を示す情報(位置情報)及び/又はUE100が検知した隣接セルに関する情報(隣接セル情報)を含んでもよい。位置情報は、例えばGNSS(Global Navigation Satellite System)位置情報である。隣接セル情報は、隣接セル測定結果を含む。隣接セル測定結果は、隣接セルのセルIDを含む。隣接セル情報は、隣接セルが(UE100が興味を持つ)MBMSサービスを提供しているか否かを示す情報を含んでもよい。
 ステップS114において、eNB200は、「Measurement Report」に含まれる情報に基づいて、SC-PTM伝送を制御する。
 例えば、eNB200は、マルチキャストグループに属する各UE100から得られたMCS情報に基づいて、SC-PTM伝送に適用されるMCSを増減してもよい。また、MCSの増減によっても所要の受信品質を満たせないUE100が存在する場合、当該UE100について、SC-PTM伝送からユニキャスト伝送に切り替えると判断してもよい。或いは、MCSの増減によっても所要の受信品質を満たせないUE100が所定の割合以上存在する場合、eNB200は、当該マルチキャストグループに対するSC-PTM伝送を中止し、ユニキャスト伝送に切り替えると判断してもよい。或いは、eNB200は、SC-PTM伝送からMBSFN伝送に切り替えると判断し、その旨をMCE11に通知してもよい。
 eNB200は、マルチキャストグループに属する各UE100から得られた位置情報/隣接セル情報に基づいて、SC-PTM伝送からMBSFN伝送に切り替える判断を行ってもよい。例えば、eNB200は、自セルのセルエッジ付近にマルチキャストグループが位置する場合に、隣接セルとの干渉を避けるために、自セル及び隣接セルを含むMBSFNエリアによるMBSFN伝送に切り替えと判断してもよい。
 eNB200は、「Measurement Report」に含まれる情報に基づいて、UE100のグルーピングを行ってもよい。例えば、eNB200は、同じマルチキャストデータ(MBMSサービス)を受信する複数のUE100のうち、MBSFN伝送の受信品質(すなわち、期待するMCS)が似通ったUE100からなるマルチキャストグループを設定してもよい。或いは、eNB200は、相互に近接するUE100からなるマルチキャストグループを設定してもよい。
 (動作パターン2)
 図10は、第1実施形態の動作パターン2を示すシーケンス図である。
 図10に示すように、ステップS201において、MCE11は、MBMSカウンティング要求(MBMS Counting Request)をeNB200に送信する。また、ステップS202において、eNB200は、MCE11からの要求に応じて、MBMSカウンティング要求(MBMS Counting Request)をUE100に送信する。「MBMS Counting Request」は、カウント対象のTMGI(MBMSサービス)のリストであるTMGIリストを含む。
 ステップS203において、UE100は、「MBMS Counting Request」の受信に応じて、MBMSカウンティング応答(MBMS Counting Response)をeNB200に送信する。
 「MBMS Counting Response」は、TMGIリスト中の各TMGIについてUE100が興味を持つか否かを示す情報を含む。「MBMS Counting Response」は、UE100の地理的な位置を示す情報(位置情報)及び/又はUE100が検知した隣接セルに関する情報(隣接セル情報)を含む。
 ステップS204において、eNB200は、UE100から受信した「MBMS Counting Response」をMCE11に転送する。その際、自身のセルIDを含めてもよい。
 ステップS205において、MCE11は、「MBMS Counting Response」に含まれる情報に基づいて、SC-PTM伝送を開始するか否かを判断する。例えば、MCE11は、同じTMGI(MBMSサービス)に興味を持つ複数のUE100が近接しているような場合に、当該複数のUE100に対するSC-PTM伝送を開始すると判断してもよい。或いは、MCE11は、同じTMGI(MBMSサービス)に興味を持つ複数のUE100がeNB200のセルのセルエッジ付近に位置する場合に、隣接セルとの干渉を避けるために、当該セル及び隣接セルを含むMBSFNエリアを設定し、MBSFN伝送を開始すると判断してよい。
 MCE11は、SC-PTM伝送を開始すると判断した場合に、SC-PTM伝送の開始指示をeNB200に送信してもよい(ステップS206)。
 (動作パターン3)
 図11は、第1実施形態の動作パターン3を示すフロー図である。
 図11に示すように、eNB200は、MBMS GW21とのMBMSベアラ(IPマルチキャストベアラ)が確立されていない場合(ステップS311:NO)、ユニキャスト伝送を行うと判断する(ステップS312)。
 eNB200は、MBMS GW21とのMBMSベアラが確立されており(ステップS311:YES)、かつ、当該MBMSベアラに対応するMBSFN(MBSFNエリア)が自セルに設定されている場合(ステップS313:YES)、当該MBMSベアラを介して受信するデータをMBSFN伝送により送信すると判断する。
 eNB200は、MBMS GW21とのMBMSベアラが確立されており(ステップS311:YES)、かつ、当該MBMSベアラに対応するMBSFN(MBSFNエリア)が自セルに設定されていない場合(ステップS313:NO)、当該MBMSベアラを介して受信するデータをSC-PTM伝送により送信すると判断する。なお、EPSベアラを確立することによりユニキャスト伝送を行うと判断してもよい。
 (動作パターン4)
 eNB200は、他のネットワーク装置(例えばMCE11等)からの指示に応じてSC-PTM伝送を行う場合であっても、SC-PTM伝送の中止を自律的に判断する。
 例えば、上述した動作パターン1において、eNB200は、他のネットワーク装置(例えばMCE11等)からの指示に応じてSC-PTM伝送を行う場合であっても、UE100からの「Measurement Report」に基づいて、SC-PTM伝送を中止すると判断してもよい。或いは、eNB200は、UE100からのCQI(Channel Quality Indicator)又はHARQ ACK/NACKに基づいて、SC-PTM伝送を中止すると判断してもよい。
 eNB200は、複数のUE100からなるマルチキャストグループに対してSC-PTM伝送を中止すると判断した場合、当該複数のUE100のそれぞれに対するユニキャスト伝送に切り替えてもよい。例えば、eNB200は、当該複数のUE100におけるSC-PTM伝送の受信品質(すなわち、期待するMCS)又は位置に大きなバラツキがある場合に、SC-PTM伝送を中止して、マルチキャスト伝送に切り替えてもよい。或いは、eNB200は、自セルにおける無線リソースの空きが大きくなった場合に、SC-PTM伝送を中止して、マルチキャスト伝送に切り替えてもよい。
 なお、eNB200は、他のネットワーク装置(例えばMCE11等)からの指示に応じてSC-PTM伝送を行う場合において、SC-PTM伝送を中止すると判断した際に、SC-PTM伝送を中止する旨を当該他のネットワーク装置に通知してもよい。
 (動作パターン5)
 図12は、第1実施形態の動作パターン5を示すシーケンス図である。
 図12に示すように、ステップS501において、eNB200は、MBMS GW21とのMBMSベアラ(IPマルチキャストベアラ)が確立される場合において、当該MBMSベアラに対応付けられたQCI(QoS Class Identifier)情報をMCE11から取得する。ステップS501に先立ち、eNB200は、QCI情報を送信するようMCE11に要求してもよい。
 ステップS502において、eNB200は、QCI情報に基づいて、当該MBMSベアラに対応するSC-PTM伝送におけるスケジューリングを行う。例えば、eNB200は、QCI情報に基づいて、要求されるQoSが満たされるように、SC-PTM伝送に適用するMCS及び/又はリソースブロック数を決定する。
 [第2実施形態]
 第2実施形態について、第1実施形態との相違点を主として説明する。
 第2実施形態に係るeNB200は、SC-PTM伝送によりマルチキャストサービスを提供する。eNB200は、ユニキャスト伝送用の第1のベアラ及びSC-PTM伝送用の第2のベアラを有するUE100にデータを送信する処理を行う。eNB200は、コアネットワークから受信するデータを第1のベアラ及び第2のベアラの何れか一方にルーティングすることにより、ユニキャスト伝送とSC-PTM伝送との間の切り替えを(動的に)行う。
 (動作パターン1)
 図13は、第2実施形態の動作パターン1を説明するための図である。
 図13に示すように、ユニキャスト伝送用の第1のベアラは、eNB200を介してUE100とP-GW23との間に確立されるEPSベアラである。SC-PTM伝送用の第2のベアラは、eNB200を介してUE100とMBMS GW21との間に確立されるMBMSベアラである。
 例えば、eNB200は、EPSベアラを介してP-GW23から受信するデータをMBMSベアラにルーティングすることにより、ユニキャスト伝送からSC-PTM伝送への切り替えを行う。或いは、eNB200は、MBMSベアラを介してMBMS GW21から受信するデータをEPSベアラにルーティングすることにより、SC-PTM伝送からユニキャスト伝送かへの切り替えを行う。
 eNB200は、UE100からのフィードバック情報(CQI、HARQ ACK/NACK等)に基づいて、ユニキャスト伝送とSC-PTM伝送との間の切り替えを動的に行ってもよい。
 また、eNB200は、ユニキャスト伝送用の第1のベアラ(EPSベアラ)及びSC-PTM伝送用の第2のベアラ(MBMSベアラ)の両ベアラを設定するための設定情報をUE100に通知してもよい。この場合、例えばRRCメッセージにより当該設定情報を通知してもよい。
 或いは、eNB200は、UE100が確立している第1のベアラ(EPSベアラ)及び第2のベアラ(MBMSベアラ)の両ベアラに関する情報をUE100から取得してもよい。
 (動作パターン2)
 図14は、第2実施形態の動作パターン2を説明するための図である。
 図14に示すように、動作パターン2において、ユニキャスト伝送用の第1のベアラは、UE100とeNB200との間に確立される第1の無線ベアラである。SC-PTM伝送用の第2のベアラは、UE100とeNB200との間に確立される第2の無線ベアラである。なお、第3の無線ベアラとして、MBMS PTMベアラ(MBSFN伝送用の無線ベアラ)を確立してもよい。
 例えば、eNB200は、EPSベアラ(図13参照)を介してP-GW23から受信するデータを第2の無線ベアラにルーティングすることにより、ユニキャスト伝送からSC-PTM伝送への切り替えを行う。或いは、eNB200は、MBMSベアラ(図13参照)を介してMBMS GW21から受信するデータを第1の無線ベアラにルーティングすることにより、SC-PTM伝送からユニキャスト伝送への切り替えを行う。
 動作パターン2において、第1の無線ベアラは、C-RNTI(Cell-Radio Network Temporary Identifier)と対応付けられる。第2の無線ベアラは、G-RNTI(Group-Radio Network Temporary Identifier)と対応付けられる。UE100は、C-RNTIにより第1の無線ベアラを識別し、G-RNTIにより第2の無線ベアラを識別する。
 また、動作パターン2において、第1の無線ベアラ及び第2の無線ベアラは、1つの論理チャネルID(LCID)に対応付けられてもよい。UE100において、第1の無線ベアラのデータ及び第2の無線ベアラのデータは、同じ論理チャネルにマッピングされる。なお、動作パターン1においても、EPSベアラ及びMBMSベアラを1つのLCIDに対応付ける方法を採用してもよい。
 eNB200は、UE100からのフィードバック情報(CQI、HARQ ACK/NACK等)に基づいて、ユニキャスト伝送とSC-PTM伝送との間の切り替えを動的に行ってもよい。
 また、eNB200は、ユニキャスト伝送用の第1のベアラ(EPSベアラ)及びSC-PTM伝送用の第2のベアラ(MBMSベアラ)の両ベアラを設定するための設定情報をUE100に通知してもよい。この場合、例えばRRCメッセージにより当該設定情報を通知してもよい。
 或いは、eNB200は、UE100が確立している第1のベアラ(EPSベアラ)及び第2のベアラ(MBMSベアラ)の両ベアラに関する情報をUE100から取得してもよい。
 [その他の実施形態]
 上述した第1実施形態及び第2実施形態は、別個独立して実施してもよいし、相互に組み合わせて実施してもよい。
 上述した各実施形態において、移動通信システムとしてLTEシステムを例示し、WAN通信としてLTE通信を例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外の移動通信システムに本発明を適用してもよい。
 [相互参照]
 米国仮出願第62/145908号(2015年4月10日)の全内容が参照により本願明細書に組み込まれている。
 本発明は、通信分野において有用である。

Claims (25)

  1.  MBMS(Multimedia Broadcast and Multicast Service)ゲートウェイと自基地局との間のMBMSベアラに対応付けられたQCI(QoS Class Identifier)をMCE(Multi-cell/multicast Coordination Entity)から取得する制御部を備え、
     前記制御部は、前記QCIに基づいて、SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスを提供する基地局。
  2.  前記制御部は、前記QCI情報に基づいて、前記MBMSベアラに対応する前記SC-PTM伝送におけるスケジューリングを行う請求項1に記載の基地局。
  3.  SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスを提供する基地局を有するシステムにおいて用いられるMCE(Multi-cell/multicast Coordination Entity)であって、
     MBMS(Multimedia Broadcast and Multicast Service)ゲートウェイと前記基地局との間のMBMSベアラに対応付けられたQCI(QoS Class Identifier)を前記基地局に送信する制御部を備えるMCE。
  4.  SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスを提供するネットワークに設けられるネットワーク装置であって、
     セル内のユーザ端末から通知される情報又は前記ネットワークにおけるMBMS(Multimedia Broadcast Multicast Service)の設定状況に基づいて、前記セルにおいて前記SC-PTM伝送を行うか否かについて判断する制御部を備えることを特徴とするネットワーク装置。
  5.  前記SC-PTM伝送が開始されている場合において、前記制御部は、前記ユーザ端末から測定報告を取得し、
     前記測定報告は、前記SC-PTM伝送に適用されている変調・符号化方式が十分であるか否かを示す情報を含み、
     前記制御部は、前記測定報告に含まれる情報に基づいて、前記SC-PTM伝送を中止するか否かを判断することを特徴とする請求項4に記載のネットワーク装置。
  6.  前記測定報告は、前記ユーザ端末の地理的な位置を示す情報又は前記ユーザ端末が検知した隣接セルに関する情報を含むことを特徴とする請求項5に記載のネットワーク装置。
  7.  前記SC-PTM伝送を中止すると判断した場合、前記制御部は、前記SC-PTM伝送からMBSFN(Multicast Broadcast Single Frequency Network)伝送又はユニキャスト伝送に切り替えることを特徴とする請求項4に記載のネットワーク装置。
  8.  前記SC-PTM伝送が開始されていない場合において、前記制御部は、前記ユーザ端末からMBMSカウンティング応答を取得し、
     前記MBMSカウンティング応答は、前記ユーザ端末の地理的な位置を示す情報又は前記ユーザ端末が検知した隣接セルに関する情報を含み、
     前記制御部は、前記MBMSカウンティング応答に含まれる情報に基づいて、前記SC-PTM伝送を開始するか否かを判断することを特徴とする請求項4に記載のネットワーク装置。
  9.  前記ネットワーク装置は、前記セルを管理する基地局であることを特徴とする請求項4に記載のネットワーク装置。
  10.  MBMSゲートウェイとのMBMSベアラが確立されており、かつ前記MBMSベアラに対応するMBSFNが前記セルに設定されていない場合において、前記制御部は、前記MBMSベアラを介して受信するデータを前記SC-PTM伝送により送信すると判断することを特徴とする請求項9に記載のネットワーク装置。
  11.  前記制御部は、他のネットワーク装置からの指示に応じて前記SC-PTM伝送を行う場合であっても、前記SC-PTM伝送の中止を自律的に判断することを特徴とする請求項9に記載のネットワーク装置。
  12.  前記制御部は、複数のユーザ端末からなるマルチキャストグループに対して前記SC-PTM伝送を中止すると判断した場合、前記複数のユーザ端末のそれぞれに対するユニキャスト伝送に切り替えることを特徴とする請求項11に記載のネットワーク装置。
  13.  MBMSゲートウェイとのMBMSベアラが確立される場合において、前記制御部は、前記MBMSベアラに対応付けられたQCI(QoS Class Identifier)情報をMCE(Multi-cell/multicast Coordination Entity)から取得することを特徴とする請求項9に記載のネットワーク装置。
  14.  前記制御部は、前記QCI情報に基づいて、前記MBMSベアラに対応する前記SC-PTM伝送におけるスケジューリングを行うことを特徴とする請求項13に記載のネットワーク装置。
  15.  SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスがネットワークから提供されるユーザ端末であって、
     前記SC-PTM伝送が開始されている場合において、前記ネットワークに測定報告を送信する処理を行う制御部を備え、
     前記測定報告は、前記SC-PTM伝送に適用されている変調・符号化方式が十分であるか否かを示す情報を含むことを特徴とするユーザ端末。
  16.  前記測定報告は、前記ユーザ端末の地理的な位置を示す情報又は前記ユーザ端末が検知した隣接セルに関する情報を含むことを特徴とする請求項15に記載のユーザ端末。
  17.  SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスがネットワークから提供されるユーザ端末であって、
     前記ネットワークからのMBMS(Multimedia Broadcast Multicast Service)カウンティング要求に応じて、前記ネットワークにMBMSカウンティング応答を送信する処理を行う制御部を備え、
     前記MBMSカウンティング応答は、前記ユーザ端末の地理的な位置を示す情報又は前記ユーザ端末が検知した隣接セルに関する情報を含むことを特徴とするユーザ端末。
  18.  SC-PTM(Single Cell Point to Multi-point)伝送によりマルチキャストサービスを提供する基地局であって、
     ユニキャスト伝送用の第1のベアラ及びSC-PTM伝送用の第2のベアラを有するユーザ端末にデータを送信する処理を行う制御部を備え、
     前記制御部は、コアネットワークから受信するデータを前記第1のベアラ及び前記第2のベアラの何れか一方にルーティングすることにより、前記ユニキャスト伝送と前記SC-PTM伝送との間の切り替えを行うことを特徴とする基地局。
  19.  前記第1のベアラは、前記基地局を介して前記ユーザ端末とP-GW(PDN Gateway)との間に確立されるEPS(Evolved Packet System)ベアラであり、
     前記第2のベアラは、前記基地局を介して前記ユーザ端末とMBMS GW(MBMS Gateway)との間に確立されるMBMSベアラであることを特徴とする請求項18に記載の基地局。
  20.  前記第1のベアラは、前記ユーザ端末と前記基地局との間に確立される第1の無線ベアラであり、
     前記第2のベアラは、前記ユーザ端末と前記基地局との間に確立される第2の無線ベアラであることを特徴とする請求項18に記載の基地局。
  21.  前記第1のベアラは、C-RNTI(Cell-Radio Network Temporary Identifier)と対応付けられ、
     前記第2のベアラは、G-RNTI(Group-Radio Network Temporary Identifier)と対応付けられることを特徴とする請求項20に記載の基地局。
  22.  前記第1のベアラ及び前記第2のベアラは、1つの論理チャネルIDに対応付けられることを特徴とする請求項18に記載の基地局。
  23.  前記制御部は、前記ユーザ端末からのフィードバック情報に基づいて、前記ユニキャスト伝送と前記SC-PTM伝送との間の切り替えを行うことを特徴とする請求項18に記載の基地局。
  24.  前記制御部は、前記第1のベアラ及び前記第2のベアラの両ベアラを設定するための設定情報を前記ユーザ端末に通知することを特徴とする請求項18に記載の基地局。
  25.  前記制御部は、前記第1のベアラ及び前記第2のベアラの両ベアラに関する情報を前記ユーザ端末から取得することを特徴とする請求項18に記載の基地局。
PCT/JP2016/061620 2015-04-10 2016-04-08 ネットワーク装置、ユーザ端末、及び基地局 WO2016163549A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16776715.1A EP3270623A4 (en) 2015-04-10 2016-04-08 Network device, user terminal, and base station
JP2017511113A JP6273071B2 (ja) 2015-04-10 2016-04-08 移動通信システム、基地局、mce及びプロセッサ
US15/726,625 US20180035405A1 (en) 2015-04-10 2017-10-06 Network apparatus, user terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562145908P 2015-04-10 2015-04-10
US62/145,908 2015-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/726,625 Continuation US20180035405A1 (en) 2015-04-10 2017-10-06 Network apparatus, user terminal, and base station

Publications (1)

Publication Number Publication Date
WO2016163549A1 true WO2016163549A1 (ja) 2016-10-13

Family

ID=57072406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061620 WO2016163549A1 (ja) 2015-04-10 2016-04-08 ネットワーク装置、ユーザ端末、及び基地局

Country Status (4)

Country Link
US (1) US20180035405A1 (ja)
EP (1) EP3270623A4 (ja)
JP (2) JP6273071B2 (ja)
WO (1) WO2016163549A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018142794A (ja) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 通信制御装置およびQoS制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162565B (zh) * 2015-04-09 2021-06-01 北京三星通信技术研究有限公司 传输组通信业务数据的方法、系统及装置
WO2018012811A1 (ko) * 2016-07-10 2018-01-18 엘지전자 주식회사 단말이 mbms 서비스를 수신하는 방법 및 이를 지원하는 장치
WO2019223005A1 (en) * 2018-05-25 2019-11-28 Qualcomm Incorporated Mixed mode multicast architecture
EP4021127A4 (en) * 2019-09-20 2023-08-30 KT Corporation MBS DATA SWITCHING METHOD AND DEVICE
CN113498147B (zh) * 2020-04-03 2022-09-20 维沃移动通信有限公司 业务发送方法、业务发送模式配置方法及相关设备
GB2606842A (en) * 2021-03-24 2022-11-23 Samsung Electronics Co Ltd Improvements in and relating to Multicast Broadcast Services in a telecommunication network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312750A (ja) * 2003-04-09 2004-11-04 Samsung Electronics Co Ltd Mbms(マルチメディアブロードキャストマルチキャストサービス)を支援する移動通信システムで使用者端末のセル再選択方法
JP2010530166A (ja) * 2007-06-19 2010-09-02 アルカテル−ルーセント ブロードキャストまたはマルチキャスト・サービスを提供する複数の動作モード間の選択方法
WO2011030601A1 (ja) * 2009-09-11 2011-03-17 シャープ株式会社 無線通信システム、基地局装置、移動局装置および通信方法
JP2015015521A (ja) * 2013-07-03 2015-01-22 ソニー株式会社 通信制御装置、通信制御方法及び端末装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320292B2 (en) * 2009-11-18 2012-11-27 Motorola Mobility Llc Method to control a multimedia broadcast multicast service(MBMS) mode of a MBMS session in a communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312750A (ja) * 2003-04-09 2004-11-04 Samsung Electronics Co Ltd Mbms(マルチメディアブロードキャストマルチキャストサービス)を支援する移動通信システムで使用者端末のセル再選択方法
JP2010530166A (ja) * 2007-06-19 2010-09-02 アルカテル−ルーセント ブロードキャストまたはマルチキャスト・サービスを提供する複数の動作モード間の選択方法
WO2011030601A1 (ja) * 2009-09-11 2011-03-17 シャープ株式会社 無線通信システム、基地局装置、移動局装置および通信方法
JP2011061591A (ja) * 2009-09-11 2011-03-24 Sharp Corp 無線通信システム、基地局装置、移動局装置および通信方法
JP2015015521A (ja) * 2013-07-03 2015-01-22 ソニー株式会社 通信制御装置、通信制御方法及び端末装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT: "Discussion on E-MBMS deployment scenarios", 3GPP TSG-RAN WG2#57BIS R2-071467, 30 March 2007 (2007-03-30), XP050134402, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_57bis/Documents/R2-071467.zip> *
ALCATEL -LUCENT: "MBMS transmission mode depending on used resources", 3GPP TSG-RAN WG2#59BIS R2-074180, 13 October 2007 (2007-10-13), XP050136804, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_59bis/Docs/R2-074180.zip> *
ERICSSON: "Considerations MBR larger than GBR in eMBMS", 3GPP TSG-RAN WG3#69 R3-102207, 27 August 2010 (2010-08-27), XP050453083, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_69/Docs/R3-102207.zip> *
HUAWEI ET AL.: "Consideration on SC-PTM transmission", 3GPP TSG-RAN WG3#87BIS R3-150554, 10 April 2015 (2015-04-10), XP050937172, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_87bis/Docs/R3-150554.zip> *
NOKIA NETWORKS ET AL.: "Discussion and Working Assumptions for Single-cell PTM", 3GPP TSG-RAN WG2#89 R2-150513, 13 February 2015 (2015-02-13), XP050935759, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_89/Docs/R2-150513.zip> *
SAMSUNG: "QCI for MBMS E-RAB selection", 3GPP TSG-RAN WG3#85 R3-141756, 22 August 2014 (2014-08-22), XP050796142, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_85/Docs/R3-141756.zip> *
See also references of EP3270623A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018142794A (ja) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 通信制御装置およびQoS制御方法

Also Published As

Publication number Publication date
EP3270623A4 (en) 2018-04-11
EP3270623A1 (en) 2018-01-17
JP6273071B2 (ja) 2018-01-31
US20180035405A1 (en) 2018-02-01
JP2018085743A (ja) 2018-05-31
JPWO2016163549A1 (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6273071B2 (ja) 移動通信システム、基地局、mce及びプロセッサ
TWI692268B (zh) 用於車輛到車輛通訊的基於位置和先聽後排程的資源配置
US20180035340A1 (en) Base station and user terminal in mobile communication system
US10779129B2 (en) Communication apparatus, base station, and network apparatus
US10448363B2 (en) Base station, user terminal, and communication control method
JP6480641B2 (ja) ネットワーク装置
US20170325076A1 (en) Base station, user terminal and apparatus
JP6749914B2 (ja) 無線端末
US10476694B2 (en) Base station and user terminal, for transmitting and receiving multicast data using semi-persistent scheduling
WO2015125901A1 (ja) Mbms制御方法、ユーザ端末及び基地局
US10382988B2 (en) Communication device
US20160278042A1 (en) Method and apparatus for determining multimedia broadcast multicast service interest in wireless communication system
US11259148B2 (en) Method for receiving MBMS service by terminal and device supporting same
US10588041B2 (en) Mobile station, measurement control method, processor, and base station
US10505650B2 (en) Radio terminal and network apparatus
WO2022024945A1 (ja) 通信制御方法
WO2022085644A1 (ja) 通信制御方法
WO2022211127A1 (ja) 通信制御方法及び基地局
JP2015159380A (ja) 移動通信システム及びネットワーク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE