WO2016162955A1 - Vacuum insulation material, and refrigerator - Google Patents

Vacuum insulation material, and refrigerator Download PDF

Info

Publication number
WO2016162955A1
WO2016162955A1 PCT/JP2015/060865 JP2015060865W WO2016162955A1 WO 2016162955 A1 WO2016162955 A1 WO 2016162955A1 JP 2015060865 W JP2015060865 W JP 2015060865W WO 2016162955 A1 WO2016162955 A1 WO 2016162955A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
refrigerator
foam
Prior art date
Application number
PCT/JP2015/060865
Other languages
French (fr)
Japanese (ja)
Inventor
努 小高
祥 花岡
章弘 難波
俊 齋藤
浩明 高井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/060865 priority Critical patent/WO2016162955A1/en
Priority to PCT/JP2016/059568 priority patent/WO2016163250A1/en
Priority to TW105110471A priority patent/TWI606220B/en
Priority to CN201620284204.7U priority patent/CN205641738U/en
Priority to CN201610213536.0A priority patent/CN106052251B/en
Publication of WO2016162955A1 publication Critical patent/WO2016162955A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/064Walls defining a cabinet formed by moulding, e.g. moulding in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details

Definitions

  • the present invention relates to a vacuum heat insulating material and a refrigerator incorporating the vacuum heat insulating material.
  • Patent Document 1 Japanese Patent No. 3478780
  • the vacuum heat insulating material proposed in Patent Document 1 includes a core material obtained by molding a fiber material and an outer cover material that covers the core material and depressurizes the inside.
  • the vacuum heat insulating material of patent document 1 is provided with the groove
  • the vacuum heat insulating material is installed in a space where the urethane foam stock solution is foamed, so that the space in which the urethane foam stock solution is foamed and flows is narrowed by the vacuum heat insulating material. For this reason, in order to fill the urethane foam without filling, it is necessary to limit the thickness of the vacuum heat insulating material.
  • a vacuum heat insulating material having a thickness of 10 to 30 mm is generally used. If the vacuum heat insulating material having such a thickness is arranged inside the heat insulating wall of the refrigerator main body, there may be a case where a necessary corresponding gap cannot be secured when the raw material mixture of urethane foam is injected. In such a case, the injected liquid adheres to the wall surface and foams, and then blocks the flow path of the fluid foam filled in the heat insulating wall. As a result, the urethane foam needs to be filled in an excessive amount, or in some cases, the unfilled voids remain, thereby deteriorating the heat insulation performance or the appearance design. It will come. Moreover, the backflow from the injection port occurs due to the deterioration of the fluidity in the vicinity of the injection port of the urethane foam, which causes problems such as a decrease in mass productivity.
  • the present invention has been made to solve the above-described problems, and provides a vacuum heat insulating material that does not increase the number of manufacturing steps and costs while ensuring the original heat insulating performance. Objective.
  • the vacuum heat insulating material according to the present invention includes a core material and an outer packaging material that covers the core material in a decompressed state.
  • foam is formed on one surface side of the plate shape. The first groove portion used as a flow path when filling the heat insulating material is provided.
  • the vacuum heat insulating material According to the vacuum heat insulating material according to the present invention, it is not necessary to divide and arrange the vacuum heat insulating material as in the prior art by providing the vacuum heat insulating material with a groove for flowing foam heat insulating material (for example, urethane foam). There is no restriction on the position of the vacuum heat insulating material. Moreover, even if the thickness of the vacuum heat insulating material in the heat insulating wall is increased in order to improve the heat insulating performance and the flow path of the foam heat insulating material (urethane foam) is narrowed as a whole, the foam heat insulating material (urethane foam) can be filled. . For this reason, the vacuum heat insulating material which does not cause the increase in a manufacturing man-hour and cost can be provided.
  • foam heat insulating material for example, urethane foam
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is a perspective view from the back side of the refrigerator of FIG.
  • FIG. 2 is a cross-sectional view taken along the line CC of FIG. It is an enlarged view of the A section of FIG.
  • FIG. 7 is a DD cross-sectional view of FIG. 6. It is explanatory drawing of the shape of a vacuum heat insulating material, (a) is a front view, (b) is a top view, (c) is a side view.
  • FIG. 12 is a cross-sectional view taken along line EE in FIG. 11.
  • FIG. 1 is an inclined view of the refrigerator according to the first embodiment of the present invention as viewed obliquely from the front.
  • the refrigerator 1 includes a front opening that is open on the front side, and stores a refrigerator main body 30 that stores a refrigerated (10 ° C. or lower) or frozen ( ⁇ 12 ° C. or lower) storage such as food, and a front opening of the refrigerator main body 30. And a plurality of doors 7 to 12 for opening and closing the door.
  • the refrigerator main body 30 has the refrigerator compartment 2, the ice making room 3, the 1st freezer compartment 4, the 2nd freezer compartment 5, and the vegetable compartment from the top inside. Doors 7, 8, 9, 10, 11, and 12 are provided in front opening portions of the refrigerator compartment 2, the ice making chamber 3, the first freezer compartment 4, the second freezer compartment 5, and the vegetable compartment 6, respectively. .
  • Refrigerating room doors 7 and 8 are open / close doors for opening and closing the refrigerating room 2 and are composed of two doors of a double door type.
  • the freezer compartment doors 9, 10, and 11 are doors for opening and closing the ice making chamber 3, the first freezer compartment 4, and the second freezer compartment 5, respectively, and three independent drawer doors, that is, the ice making compartment door 9, It consists of a first freezer compartment door 10 and a second freezer compartment door 11.
  • the lowermost vegetable compartment door 12 is a door that opens and closes the vegetable compartment 6, and is composed of a drawer-type door.
  • the drawer-type door is a door that is pulled out together with a storage case in which stored items are stored.
  • FIG. 2 is a cross-sectional view taken along the line BB in FIG.
  • the refrigerator 1 includes a cooler 17, a compressor 18, a condenser (not shown), and a capillary tube (not shown).
  • a refrigeration cycle is configured by the cooler 17, the compressor 18, the condenser, and the capillary tube.
  • the cooler 17 and the compressor 18 are disposed on the back side of the refrigerator main body 30.
  • the refrigerator main body 30 is composed of a heat insulating box and has an outer box 21 and an inner box 31.
  • a vacuum heat insulating material 15 and a vacuum heat insulating material 23 are attached to the inner wall of the outer box 21, and a space formed between the outer box 21 and the inner box 31 is filled with the foam heat insulating material 19. Yes.
  • a heat radiating pipe 22 (see FIG. 4) through which the refrigerant compressed by the compressor 18 flows is used. Details of the heat radiating pipe 22 will be described later.
  • Isobutane (R600a) is used as the refrigerant circulating in the refrigeration cycle.
  • Other refrigerants may be used as the refrigerant, but isobutane has advantages such as not destroying the ozone layer when discarded and having a low global warming potential.
  • the cold air cooled by the cooler 17 of the refrigeration cycle is forcibly circulated to the refrigerator compartment 2, the ice making compartment 3, the first freezer compartment 4, the second freezer compartment 5, and the vegetable compartment 6 by the blower 16.
  • the amount of cool air to each storage chamber is controlled by an electric open / close damper (not shown) provided in each air passage.
  • Various controls such as the internal temperature of the refrigerator 1 and the rotation speed of the compressor 18 are controlled by a control board (control device) 14 provided on the upper rear side of the refrigerator body 30.
  • FIG. 3 is a perspective view from the back side of the refrigerator 1 in FIG. 1.
  • the outer box 21 of the refrigerator main body 30 includes a back plate 20, a side plate 32, a floor plate 35, and a top plate 35a.
  • the urethane foam stock solution is injected into the interior of the refrigerator body 30, that is, the space between the outer box 21 and the inner box 31 (see FIG. 4)
  • the back plate of the refrigerator body 30 The refrigerator main body 30 is set in a foaming apparatus (illustrated) so that 20 is positioned above.
  • stock solution is inject
  • the injected urethane foam undiluted solution wraps around the entire front edge side between the outer box 21 and the inner box 31 of the refrigerator main body 30, and then starts foaming toward the back plate 20. It fills so that the space of the refrigerator main body 30 comprised by may be filled. That is, the refrigerator main body 30 is configured by foaming and filling the space between the inner box 31 and the outer box 21 configured by partitioning each storage chamber.
  • the vacuum heat insulating materials 15 and 23 to be described later are temporarily fixed to the inner wall of the outer box 21 (the back plate 20 and the side plate 32) in advance by hot melt, a sealing material, etc. It is fixed inside the outer box 21 of the refrigerator main body 30 (foam insulation 19 side).
  • the outer box 21 includes a back plate 20 and a side plate 32.
  • the back plate 20 and the side plate 32 are made of iron plates with a thickness of about 0.4 to 0.5 mm.
  • a heat radiating pipe 22 that plays the role of a condenser of the refrigeration cycle is fixed with an aluminum tape or the like at an interval (pitch) of W1 (however, the cross section of FIG. 4). In the position, the state where the heat radiating pipe 22 is fixed to the back plate 20 is not shown).
  • the diameter of the heat radiating pipe 22 is about 4.0 to 5.0 mm.
  • the heat radiating pipe 22 is attached to the inner wall of the back plate 20 or the side plate 32 constituting the outer box 21 of the refrigerator main body 30 and radiates heat.
  • the vacuum heat insulating materials 15 and 23 are, for example, concave portions (depth 5 mm) larger than the diameter of the heat radiating pipe 22 so as not to contact the six continuous heat radiating pipes 22 and press the heat radiating pipe 22 against the back plate 20 and the side plate 32. 29). And the vacuum heat insulating materials 15 and 23 attach the heat radiating pipe 22 attached to the back plate 20 and the side plate 32 at a certain interval (pitch) in the width direction or the front-rear direction of the refrigerator 1 in the groove portion 29 having a concave cross section. In the housed state, it is affixed to the side plate 32 and the back plate 20 using hot melt or adhesive tape.
  • the foam heat insulating material 19 is filled in a space formed between the outer box 21 and the inner box 31 after the heat radiating pipe 22 and the vacuum heat insulating materials 15 and 23 are attached to the back plate 20 or the side plate 32. Therefore, attachment of the vacuum heat insulating materials 15 and 23 to the back plate 20 and the side plate 32 is performed by the foam heat insulating material 19 between the back plate 20 and the vacuum heat insulating material 15 and between the side plate 32 and the vacuum heat insulating material 23. It is necessary to fix so as not to enter.
  • an R-bending portion 21 a (inner box locking portion) of the locking portion that locks the inner box 31 to the outer box 21 is provided on the front opening side of the refrigerator body 30.
  • a box 21 is formed.
  • the R bent portion 21a of the outer box 21 is elastically deformed and sandwiched with the locked portion 31a of the inner box 31, whereby the outer box 21 and the inner box 31 are engaged, and both are coupled.
  • FIG. 6 is a view showing a state in which the heat radiating pipe 22 and the vacuum heat insulating material 23 are attached to the side plate 32 of the refrigerator 1 of FIG. 1, and the heat radiating pipe 22 and the vacuum heat insulating material 23 attached to the side plate 32 are connected to the refrigerator 1.
  • It is the front view seen from the outside. 7 is a cross-sectional view taken along the line DD of FIG.
  • the vacuum heat insulating material 23 has the groove part 29 for accommodating the thermal radiation pipe 22 made, for example with the copper pipe of diameter 4.0mm etc. as mentioned above.
  • the groove portion 29 will be described in more detail.
  • the groove portion 29 is formed in a plurality of rows in the vertical direction of the vacuum heat insulating material 23 and with a center line interval of W1.
  • the groove 29 has a concave shape (concave shape in cross section) having wall portions on both the left and right sides covering the heat radiating pipe 22, and the depth D1 is about 5 mm and the width L1 is 40 to 70 mm.
  • the width dimension L1 of the groove portion 29 takes into account the assembly tolerance generated in the refrigerator manufacturing process. That is, the width dimension L1 of the groove portion 29 is a manufacturing error in forming the groove portion 29, an attachment error in attaching the vacuum heat insulating material 23 to the side plate 32, and the heat radiation pipe 22 is slightly bent on the plane of the side plate 32. In addition, even if an attachment error of the heat radiating pipe 22 to the side plate 32 occurs, the heat radiating pipe 22 can be accommodated.
  • the depth dimension D1 of the groove part 29 is pressed outward in the order of the vacuum heat insulating material 23, the heat radiating pipe 22, and the side plate 32 by foaming of urethane foam.
  • the outer packaging material 25 is designed to have a diameter equal to or greater than the diameter of the heat radiating pipe 22, for example, about 5.0 mm so as not to be damaged. If the depth dimension D1 of the groove 29 is less than the diameter of the heat radiating pipe 22, pressure is applied in the order of the vacuum heat insulating material 23, the heat radiating pipe 22, and the side plate 32 due to foaming of urethane foam. Since the shape of the heat radiating pipe 22 emerges, the appearance is poor.
  • the heat radiating pipe 22 is arranged on the inner wall of the side plate 32 and the vacuum heat insulating material 23 is attached.
  • the heat radiating pipe 22 is arranged on the inner wall of the back plate 20 and the vacuum heat insulating material 15 is attached. In the case of attachment, the same configuration is obtained.
  • FIG. 8 is an explanatory view of the shape of the vacuum heat insulating material 23, (a) is a front view, (b) is a plan view, and (c) is a side view.
  • FIG. 8 is an explanatory diagram focusing on the groove 36 provided on the opposite surface of the groove 29.
  • the groove portion 29 is provided on the outer box 21 side of the vacuum heat insulating material 23, but in the present embodiment, the groove portion 36 is also provided on the inner box 31 side of the vacuum heat insulating material 23.
  • the groove 36 is provided in order to expand the flow path when the foam heat insulating material 19 is filled.
  • the vacuum heat insulating material 23 (15) to which the groove portion 36 is to be attached is assumed to be all disposed in the refrigerator main body 30.
  • FIGS. 9A to 9D are cross-sectional views showing the manufacturing process including the process of housing the core material 26 of the vacuum heat insulating material 23 in the outer packaging material 25 over time.
  • FIGS. 9A to 9D are cross-sectional views showing the manufacturing process including the process of housing the core material 26 of the vacuum heat insulating material 23 in the outer packaging material 25 over time.
  • the laminate 24 is composed of three laminates 24a, 24b, and 24c (FIG. 9A).
  • the laminated bodies 24a, 24b and 24c are generally made of natural fibers such as glass wool, glass fibers, alumina fibers, silica alumina fibers, and cotton.
  • the number of stacked bodies 24a, 24b, and 24c is not limited to the above number.
  • the core material 26 made of the laminate 24 is covered in a state where the pressure is reduced by the outer packaging material 25 made of a metal-deposited laminate film having a plastic layer for heat welding (FIG. 9B).
  • a groove 29 is formed in the vacuum heat insulating material by compressing the vacuum heat insulating material in a state where the core material 26 is covered with the outer packaging material 25 with a press die 27 having a convex portion and a press die 27b. (FIG. 9 (c)).
  • the groove portion 36 is also formed in the same manner as the groove portion 29. However, in the case of the groove portion 36, the shape (interval, depth, etc.) of the groove portion 29 is different from that of the groove portion 29. It is necessary to prepare the mold 27b separately.
  • the convex-shaped part for the groove part 29 and the convex-shaped part for the groove part 36 are provided in the press die 27 and the press die 27b. And the groove 29 and the groove 36 may be formed at the same time.
  • the plate-like (panel-like) vacuum heat insulating material 23 shown in FIG. 9D is obtained.
  • the depth of the groove parts 29 and 36 shall be 1/2 or less of the thickness of the vacuum heat insulating material 23 in order to maintain heat insulation performance also about a groove-shaped location.
  • the cross-sectional shape of the grooves 29 and 36 is not limited to a quadrangle, and may be a polygon such as an ellipse or a triangle.
  • the vacuum heat insulating material 15 is also manufactured in the same manner as the vacuum heat insulating material 23.
  • FIGS. 10 (a) and 10 (b) are cross-sectional views showing modified examples of the groove portions 29 and 36 described above.
  • the groove 29b (36b) in FIG. 10A has a triangular cross section.
  • the groove 29c (36c) in FIG. 10B has a semi-elliptical cross section.
  • FIG. 11 is an explanatory view showing the positional relationship between the foam injection head and the vacuum heat insulating material when filling the urethane foam in the refrigerator
  • FIG. 12 is a cross-sectional view taken along the line EE of FIG. Note that FIG. 11 is illustrated with the refrigerator body 30 omitted.
  • the groove 36 of the vacuum heat insulating material 23 is disposed directly below the foam heat insulating material inlet 33 (see FIG. 3), and the urethane foam stock solution is supplied from the foam material injecting head 34 to the foam heat insulating material inlet 33. Is injected and filled into the refrigerator main body 30 through the groove 36 of the vacuum heat insulating material 23.
  • the groove portion 36 enlarges the flow path of the foam heat insulating material.
  • the vacuum heat insulating material 23 (15) according to the present embodiment includes the core core material 26 and the outer packaging material 25 that covers the core material 26 in a decompressed state, and is formed into a plate shape.
  • a groove portion 36 (first groove portion of the present invention) used as a flow path when filling the foam heat insulating material 19 is provided. For this reason, it becomes possible to expand the flow path width of the foam heat insulating material 19 by locally spreading between the inner box 31 and the vacuum heat insulating material 23.
  • the foam heat insulating material 19 By expanding the flow path width of the foam heat insulating material 19, it is not necessary to reduce the division and thickness of the vacuum heat insulating material for securing the flow path of the foam heat insulating material 19, and the heat insulating performance can be improved. Further, as an example, since the foam insulation 19 poured from the injection port 33 can easily flow by attaching the groove 36 directly below the foam insulation material injection port 33, the foam insulation 19 from the foam insulation material injection port 33. The occurrence of backflow is suppressed. Moreover, there is no need to divide and arrange the vacuum heat insulating material as in the prior art, and there is no restriction on the position of the vacuum heat insulating material.
  • the vacuum heat insulating material 23 (15) in the heat insulating wall is increased to improve the heat insulating performance and the flow path of the foam heat insulating material 19 (urethane foam) is narrowed as a whole, the foamed heat insulating material 19 (urethane foam) Can be filled. For this reason, the vacuum heat insulating material which does not cause the increase in a manufacturing man-hour and cost can be provided.
  • the groove 36 has a cross-sectional shape of a quadrangle, a circular arc, or a polygon, and can take various forms as necessary, so that the degree of freedom in design is increased.
  • the vacuum heat insulating material 23 (15) was provided with the groove part 29 (2nd groove part of this invention) utilized as an escape groove
  • the groove part 29 (2nd groove part of this invention) utilized as an escape groove
  • the refrigerator 1 includes a front opening that is open on the front side, and includes a refrigerator main body 30 that is a heat insulating box, and doors 7 to 12 that cover the front opening of the refrigerator main body 30 so that the front opening can be opened and closed.
  • the refrigerator main body 30 includes an outer box 21 and an inner box 31, a vacuum heat insulating material 23 is attached to the inner wall of the outer box 21, and is a space formed by the outer box 21 and the inner box 31.
  • the space excluding the heat insulating material 23 (15) is filled with the foam heat insulating material 19, and the vacuum heat insulating material 23 (15) having the above-described form is used.
  • the heat insulation thickness of the refrigerator tends to be thin, while the interest in energy saving performance is increasing.
  • the thickness of the insulation of the refrigerator is reduced, but the thickness of the vacuum insulation is not changed, and the thickness of the foam insulation can be reduced. Is possible.

Abstract

Provided is a vacuum insulation material which does not increase costs and the number of production steps, while ensuring original insulation performance. A vacuum insulation material according to the present invention is provided with: a core material (26); and an outer packaging material (25) which covers the core material (26) in a reduced pressure state. The vacuum insulation material (23), which is formed into a plate shape, has, provided in one surface side (the side of an inner box (31)) of the plate shape, grooves (36) which are used as flow paths when loading a foam insulation material (19).

Description

真空断熱材及び冷蔵庫Vacuum insulation and refrigerator
 本発明は、真空断熱材及びその真空断熱材を内蔵した冷蔵庫に関するものである。 The present invention relates to a vacuum heat insulating material and a refrigerator incorporating the vacuum heat insulating material.
 従来、真空断熱材(パネル)として、例えば特許第3478780号公報(特許文献1)に提案されているものがある。特許文献1に提案されている真空断熱材は、繊維材料を成形した芯材と、前記芯材を覆い内部を減圧した外被材とを備えている。特許文献1の真空断熱材は、当該真空断熱材を曲げるための溝が設けられているが、発泡断熱材(ウレタンフォーム)の充填に対する記述が無い。冷蔵庫の断熱性能の確保のために、真空断熱材がウレタンフォーム原液が発泡する空間に設置されるため、ウレタンフォーム原液が発泡して流動する空間が真空断熱材によって狭くなる。このため、未充填なくウレタンフォームを充填させるためには、真空断熱材の厚みを制限する必要がある。 Conventionally, as a vacuum heat insulating material (panel), for example, there is one proposed in Japanese Patent No. 3478780 (Patent Document 1). The vacuum heat insulating material proposed in Patent Document 1 includes a core material obtained by molding a fiber material and an outer cover material that covers the core material and depressurizes the inside. Although the vacuum heat insulating material of patent document 1 is provided with the groove | channel for bending the said vacuum heat insulating material, there is no description with respect to filling of a foam heat insulating material (urethane foam). In order to ensure the heat insulating performance of the refrigerator, the vacuum heat insulating material is installed in a space where the urethane foam stock solution is foamed, so that the space in which the urethane foam stock solution is foamed and flows is narrowed by the vacuum heat insulating material. For this reason, in order to fill the urethane foam without filling, it is necessary to limit the thickness of the vacuum heat insulating material.
 ところで、真空断熱材は、厚さが10~30mmのものが一般的に用いられている。このような厚さの真空断熱材を冷蔵庫本体の断熱壁の内部に配置すると、ウレタンフォームの原料混合液を注入する際に、必要な相応の空隙が確保できなくなる場合がある。そのような場合には、注入した液が壁面に付着して発泡し、その後、断熱壁の内部に充填される流動性のある泡の進路を塞ぐことになる。その結果、ウレタンフォームの充填量が過度に必要になったり、場合によっては未充填となった空隙が残存することになって、断熱性能を損なったり、或いは外観の意匠性を損なう、といった問題を来すことにもなる。また、ウレタンフォームの注入口付近の流動性悪化によって注入口からの逆流が発生し、量産性低下などの問題も発生する。 By the way, a vacuum heat insulating material having a thickness of 10 to 30 mm is generally used. If the vacuum heat insulating material having such a thickness is arranged inside the heat insulating wall of the refrigerator main body, there may be a case where a necessary corresponding gap cannot be secured when the raw material mixture of urethane foam is injected. In such a case, the injected liquid adheres to the wall surface and foams, and then blocks the flow path of the fluid foam filled in the heat insulating wall. As a result, the urethane foam needs to be filled in an excessive amount, or in some cases, the unfilled voids remain, thereby deteriorating the heat insulation performance or the appearance design. It will come. Moreover, the backflow from the injection port occurs due to the deterioration of the fluidity in the vicinity of the injection port of the urethane foam, which causes problems such as a decrease in mass productivity.
 このような問題に対処するためには、ウレタンフォームの注入位置及び方向と、真空断熱材(パネル)の配設位置とが干渉することが無いようにしたり、本来の注入に伴う液溜りの位置にウレタンフォームの原料混合液の注入口を設けるなどの対処をすることが必要である。例えば、特開昭64-14584号公報(特許文献2)及び特開平5-288461号公報(特許文献3)においては、冷蔵庫本体(断熱箱体)の背面に設けた注入口から吐出するウレタンフォームなどの発泡断熱材と干渉しない位置に真空断熱材を配設したものが提案されている。また、特開平8-61837号公報(特許文献4)では、注入口から吐出した発泡断熱材の原料混合液が真空断熱材と干渉しないように、所望する発泡ウレタンの原料混合液の液溜まりの位置に注入口を設けて流路を分岐したものが提案されている。 In order to cope with such problems, it is necessary to prevent the injection position and direction of the urethane foam from interfering with the arrangement position of the vacuum heat insulating material (panel), or the position of the liquid pool accompanying the original injection. It is necessary to take measures such as providing an inlet for the raw material mixture of urethane foam. For example, in Japanese Patent Application Laid-Open No. 64-14584 (Patent Document 2) and Japanese Patent Application Laid-Open No. 5-288461 (Patent Document 3), urethane foam discharged from an inlet provided on the back of a refrigerator main body (heat insulating box) is disclosed. The thing which arrange | positioned the vacuum heat insulating material in the position which does not interfere with foam heat insulating materials, such as, is proposed. In JP-A-8-61837 (Patent Document 4), a liquid reservoir of a desired foamed urethane raw material mixture is prevented so that the foamed thermal insulation material mixture discharged from the inlet does not interfere with the vacuum heat insulating material. There has been proposed one in which an inlet is provided at a position and the flow path is branched.
特許第3478780号公報Japanese Patent No. 3478780 特開昭64-14584号公報Japanese Patent Laid-Open No. 64-14584 特開平5-288461号公報Japanese Patent Application Laid-Open No. 5-288461 特開平8-61837号公報JP-A-8-61837
 しかし、特許文献2~特許文献4に提案されている真空断熱材によれば、真空断熱材の配設位置を分割したり排除するなどの措置が必要である。このため、真空断熱材の配設面積が狭くなることに起因して、本来の断熱性能の確保が困難となったり、分割に伴って本来の配設枚数以上の真空断熱材が必要になり、製造工数及びコストの増加を来すなどの問題点を生じる。 However, according to the vacuum heat insulating materials proposed in Patent Documents 2 to 4, it is necessary to take measures such as dividing or eliminating the position of the vacuum heat insulating material. For this reason, due to the reduced arrangement area of the vacuum heat insulating material, it becomes difficult to ensure the original heat insulating performance, or more vacuum heat insulating materials than the original number of arrangements are required along with the division, This causes problems such as an increase in manufacturing man-hours and costs.
 本発明は、上記のような問題点を解決するためになされたものであり、本来の断熱性能を確保しつつ、製造工数及びコストの増加を来すことのない真空断熱材を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a vacuum heat insulating material that does not increase the number of manufacturing steps and costs while ensuring the original heat insulating performance. Objective.
 本発明に係る真空断熱材は、芯材と、前記芯材を減圧した状態で覆う外包材と、を備え、板状に形成された真空断熱材において、板状の一方の面側に、発泡断熱材を充填する際の流路として利用される第1の溝部を備えたものである。 The vacuum heat insulating material according to the present invention includes a core material and an outer packaging material that covers the core material in a decompressed state. In the vacuum heat insulating material formed in a plate shape, foam is formed on one surface side of the plate shape. The first groove portion used as a flow path when filling the heat insulating material is provided.
 本発明に係る真空断熱材によれば、真空断熱材に発泡断熱材(例えばウレタンフォーム)を流すための溝部を設けたことによって、従来のように真空断熱材を分割して配置する必要が無く、真空断熱材の配設位置についても制約が発生しない。また、断熱性能を高めるために断熱壁内の真空断熱材の厚みを増やし、全体的に発泡断熱材(ウレタンフォーム)の流路を狭めても発泡断熱材(ウレタンフォーム)を充填させることができる。このため、製造工数及びコストの増加を来すことのない真空断熱材を提供することができる。 According to the vacuum heat insulating material according to the present invention, it is not necessary to divide and arrange the vacuum heat insulating material as in the prior art by providing the vacuum heat insulating material with a groove for flowing foam heat insulating material (for example, urethane foam). There is no restriction on the position of the vacuum heat insulating material. Moreover, even if the thickness of the vacuum heat insulating material in the heat insulating wall is increased in order to improve the heat insulating performance and the flow path of the foam heat insulating material (urethane foam) is narrowed as a whole, the foam heat insulating material (urethane foam) can be filled. . For this reason, the vacuum heat insulating material which does not cause the increase in a manufacturing man-hour and cost can be provided.
本発明の実施の形態1に係る冷蔵庫を斜め前方から見た斜視図である。It is the perspective view which looked at the refrigerator which concerns on Embodiment 1 of this invention from diagonally forward. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 図1の冷蔵庫の背面側からの斜視図である。It is a perspective view from the back side of the refrigerator of FIG. 図1のC-C断面図である。FIG. 2 is a cross-sectional view taken along the line CC of FIG. 図4のA部の拡大図である。It is an enlarged view of the A section of FIG. 図1の冷蔵庫の側面板に放熱パイプ及び真空断熱材を取り付けた状態の説明図である。It is explanatory drawing of the state which attached the heat radiating pipe and the vacuum heat insulating material to the side plate of the refrigerator of FIG. 図6のD-D断面図である。FIG. 7 is a DD cross-sectional view of FIG. 6. 真空断熱材の形状の説明図であり、(a)は正面図、(b)は平面図、(c)は側面図である。It is explanatory drawing of the shape of a vacuum heat insulating material, (a) is a front view, (b) is a top view, (c) is a side view. 図8の真空断熱材の製造工程の説明図であり、(a)は積層体の説明図、(b)は外包材の説明図、(c)はプレス加工の説明図、(d)はプレス加工後の真空断熱材の形状の説明図である。It is explanatory drawing of the manufacturing process of the vacuum heat insulating material of FIG. 8, (a) is explanatory drawing of a laminated body, (b) is explanatory drawing of an outer packaging material, (c) is explanatory drawing of press work, (d) is press It is explanatory drawing of the shape of the vacuum heat insulating material after a process. (a)(b)はそれぞれ溝部の変形例を示した図である。(A) and (b) are the figures which showed the modification of the groove part, respectively. ウレタンフォームを冷蔵庫に充填する際の発泡材注入ヘッドと真空断熱材との位置関係を示した説明図である。It is explanatory drawing which showed the positional relationship of the foaming material injection | pouring head at the time of filling a urethane foam in a refrigerator, and a vacuum heat insulating material. 図11のE-E断面図である。FIG. 12 is a cross-sectional view taken along line EE in FIG. 11.
実施の形態1.
 図1は、本発明に係る実施の形態1の冷蔵庫を斜め前方から見た傾斜図である。冷蔵庫1は、前面側が開口した前面開口部を備え、食品等の貯蔵物を冷蔵(10℃以下)又は冷凍(-12℃以下)して収容する冷蔵庫本体30と、冷蔵庫本体30の前面開口部を開閉する複数の扉7~12とを備えている。冷蔵庫本体30は、内部に上から冷蔵室2、製氷室3、第一冷凍室4、第二冷凍室5及び野菜室を有している。これらの冷蔵室2、製氷室3、第一冷凍室4、第二冷凍室5及び野菜室6の前面開口部には、扉7、8、9、10、11、12がそれぞれ設けられている。
Embodiment 1 FIG.
FIG. 1 is an inclined view of the refrigerator according to the first embodiment of the present invention as viewed obliquely from the front. The refrigerator 1 includes a front opening that is open on the front side, and stores a refrigerator main body 30 that stores a refrigerated (10 ° C. or lower) or frozen (−12 ° C. or lower) storage such as food, and a front opening of the refrigerator main body 30. And a plurality of doors 7 to 12 for opening and closing the door. The refrigerator main body 30 has the refrigerator compartment 2, the ice making room 3, the 1st freezer compartment 4, the 2nd freezer compartment 5, and the vegetable compartment from the top inside. Doors 7, 8, 9, 10, 11, and 12 are provided in front opening portions of the refrigerator compartment 2, the ice making chamber 3, the first freezer compartment 4, the second freezer compartment 5, and the vegetable compartment 6, respectively. .
 冷蔵室扉7、8は、冷蔵室2を開閉する開閉扉であり、観音開き式の左右二枚の扉から構成されている。冷凍室扉9、10、11は、製氷室3、第一冷凍室4及び第二冷凍室5をそれぞれ開閉する扉であり、引き出し式の独立した三枚の扉、すなわち、製氷室扉9、第一冷凍室扉10、第二冷凍室扉11から構成されている。最下段の野菜室扉12は、野菜室6を開閉する扉であり、引き出し式の扉から構成されている。なお、引き出し式の扉は、貯蔵物が収容される収容ケースとともに引き出される扉である。 Refrigerating room doors 7 and 8 are open / close doors for opening and closing the refrigerating room 2 and are composed of two doors of a double door type. The freezer compartment doors 9, 10, and 11 are doors for opening and closing the ice making chamber 3, the first freezer compartment 4, and the second freezer compartment 5, respectively, and three independent drawer doors, that is, the ice making compartment door 9, It consists of a first freezer compartment door 10 and a second freezer compartment door 11. The lowermost vegetable compartment door 12 is a door that opens and closes the vegetable compartment 6, and is composed of a drawer-type door. The drawer-type door is a door that is pulled out together with a storage case in which stored items are stored.
 図2は、図1のB-B断面図である。冷蔵庫1は、冷却器17、圧縮機18、凝縮器(図示せず)、キャピラリチューブ(図示せず)を備えている。冷却器17、圧縮機18、凝縮器及びキャピラリチューブによって、冷凍サイクルが構成されている。冷却器17及び圧縮機18は、冷蔵庫本体30の背面側に配置されている。冷蔵庫本体30は、断熱箱体から構成されており、外箱21及び内箱31を有する。外箱21の内壁には、真空断熱材15及び真空断熱材23(図4参照)が取り付けられ、外箱21と内箱31との間に形成される空間に発泡断熱材19が充填されている。凝縮器としては、圧縮機18によって圧縮された冷媒が通流する放熱パイプ22(図4参照)が用いられる。なお、放熱パイプ22の詳細は後述する。冷凍サイクルを循環する冷媒としては、イソブタン(R600a)が用いられる。冷媒としては、他の冷媒を用いても良いが、イソブタンは、廃棄した場合にオゾン層を破壊しない、温暖化係数が低い、などの利点がある。 FIG. 2 is a cross-sectional view taken along the line BB in FIG. The refrigerator 1 includes a cooler 17, a compressor 18, a condenser (not shown), and a capillary tube (not shown). A refrigeration cycle is configured by the cooler 17, the compressor 18, the condenser, and the capillary tube. The cooler 17 and the compressor 18 are disposed on the back side of the refrigerator main body 30. The refrigerator main body 30 is composed of a heat insulating box and has an outer box 21 and an inner box 31. A vacuum heat insulating material 15 and a vacuum heat insulating material 23 (see FIG. 4) are attached to the inner wall of the outer box 21, and a space formed between the outer box 21 and the inner box 31 is filled with the foam heat insulating material 19. Yes. As the condenser, a heat radiating pipe 22 (see FIG. 4) through which the refrigerant compressed by the compressor 18 flows is used. Details of the heat radiating pipe 22 will be described later. Isobutane (R600a) is used as the refrigerant circulating in the refrigeration cycle. Other refrigerants may be used as the refrigerant, but isobutane has advantages such as not destroying the ozone layer when discarded and having a low global warming potential.
 冷凍サイクルの冷却器17によって冷却された冷気は、送風機16によって、冷蔵室2、製氷室3、第一冷凍室4、第二冷凍室5及び野菜室6に強制循環される。そして、各貯蔵室への冷気量は、各風路に設けた電動式の開閉ダンパ(図示せず)によって制御される。冷蔵庫1の庫内温度、圧縮機18の回転数などの各種制御は、冷蔵庫本体30の上部後方に設けられた制御基板(制御装置)14によって制御される。 The cold air cooled by the cooler 17 of the refrigeration cycle is forcibly circulated to the refrigerator compartment 2, the ice making compartment 3, the first freezer compartment 4, the second freezer compartment 5, and the vegetable compartment 6 by the blower 16. The amount of cool air to each storage chamber is controlled by an electric open / close damper (not shown) provided in each air passage. Various controls such as the internal temperature of the refrigerator 1 and the rotation speed of the compressor 18 are controlled by a control board (control device) 14 provided on the upper rear side of the refrigerator body 30.
 次に、図1の冷蔵庫本体30内への発泡断熱材19(例えばウレタンフォーム)の発泡方法について、図3を用いて説明する。
 図3は、図1の冷蔵庫1の背面側からの斜視図である。冷蔵庫本体30の外箱21は、背面板20、側面板32、床面板35及び天面板35aを備えている。図3に示されるように、冷蔵庫本体30の内部、すなわち、外箱21と内箱31(図4参照)と間の空間に、ウレタンフォーム原液を注入する場合には、冷蔵庫本体30の背面板20が上に位置するようにして冷蔵庫本体30を発泡装置(図示)内にセットする。そして、背面板20に設けられた複数の発泡断熱材注入口33(33a、33b)からウレタンフォーム原液を注入する。注入されたウレタンフォーム原液は、冷蔵庫本体30の外箱21と内箱31との間の間口縁側全体に回り込み、その後、背面板20に向けて発泡を開始し、内箱31と外箱21とで構成される冷蔵庫本体30の空間を埋めるように充填される。つまり、冷蔵庫本体30は、各貯蔵室を区画して構成する内箱31と外箱21との間の空間に、発泡断熱材19が発泡し、充填されて構成されている。なお、後述する真空断熱材15、23は、外箱21(背面板20、側面板32)の内壁にホットメルト、シール材等によって予め仮固定されており、発泡断熱材19の発泡充填によって、冷蔵庫本体30の外箱21の内側(発泡断熱材19側)に固着される。
Next, the foaming method of the foam heat insulating material 19 (for example, urethane foam) in the refrigerator main body 30 of FIG. 1 is demonstrated using FIG.
FIG. 3 is a perspective view from the back side of the refrigerator 1 in FIG. 1. The outer box 21 of the refrigerator main body 30 includes a back plate 20, a side plate 32, a floor plate 35, and a top plate 35a. As shown in FIG. 3, when the urethane foam stock solution is injected into the interior of the refrigerator body 30, that is, the space between the outer box 21 and the inner box 31 (see FIG. 4), the back plate of the refrigerator body 30 The refrigerator main body 30 is set in a foaming apparatus (illustrated) so that 20 is positioned above. And the urethane foam undiluted | stock solution is inject | poured from the several foam heat insulating material injection port 33 (33a, 33b) provided in the backplate 20. FIG. The injected urethane foam undiluted solution wraps around the entire front edge side between the outer box 21 and the inner box 31 of the refrigerator main body 30, and then starts foaming toward the back plate 20. It fills so that the space of the refrigerator main body 30 comprised by may be filled. That is, the refrigerator main body 30 is configured by foaming and filling the space between the inner box 31 and the outer box 21 configured by partitioning each storage chamber. In addition, the vacuum heat insulating materials 15 and 23 to be described later are temporarily fixed to the inner wall of the outer box 21 (the back plate 20 and the side plate 32) in advance by hot melt, a sealing material, etc. It is fixed inside the outer box 21 of the refrigerator main body 30 (foam insulation 19 side).
 次に、冷蔵庫本体30について更に詳細に説明する。
 図4は、図1のC-C断面図であり、図5は、図4のA部の拡大図である。図4に示されるように、外箱21は、背面板20及び側面板32を備えている。そして、背面板20及び側面板32は、0.4~0.5mm程度の板厚が鉄板で構成されている。背面板20及び側面板32には、冷凍サイクルの凝縮器の役割を果たしている放熱パイプ22が、W1の間隔(ピッチ)で、アルムニウム製のテープ等で固定されている(但し、図4の断面位置では背面板20に放熱パイプ22が固定されている状態は図示されていない。)。放熱パイプ22の直径は4.0~5.0mm程度である。放熱パイプ22は、冷蔵庫本体30の外箱21を構成する背面板20又は側面板32の内壁に取り付けられ、放熱する。
Next, the refrigerator main body 30 will be described in more detail.
4 is a cross-sectional view taken along the line CC in FIG. 1, and FIG. 5 is an enlarged view of a portion A in FIG. As shown in FIG. 4, the outer box 21 includes a back plate 20 and a side plate 32. The back plate 20 and the side plate 32 are made of iron plates with a thickness of about 0.4 to 0.5 mm. On the back plate 20 and the side plate 32, a heat radiating pipe 22 that plays the role of a condenser of the refrigeration cycle is fixed with an aluminum tape or the like at an interval (pitch) of W1 (however, the cross section of FIG. 4). In the position, the state where the heat radiating pipe 22 is fixed to the back plate 20 is not shown). The diameter of the heat radiating pipe 22 is about 4.0 to 5.0 mm. The heat radiating pipe 22 is attached to the inner wall of the back plate 20 or the side plate 32 constituting the outer box 21 of the refrigerator main body 30 and radiates heat.
 真空断熱材15、23は、例えば連続する6本の放熱パイプ22と接触して放熱パイプ22を背面板20及び側面板32に押し付けないように、放熱パイプ22の直径以上の凹部(深さ5mm以上)29を有している。そして、真空断熱材15、23は、背面板20及び側面板32に冷蔵庫1の幅方向又は前後方向に或る間隔(ピッチ)をもって取り付けられた放熱パイプ22を、断面凹部形状の溝部29内に収納した状態で、ホットメルト又は粘着テープ等を用いて側面板32及び背面板20に貼り付けられている。 The vacuum heat insulating materials 15 and 23 are, for example, concave portions (depth 5 mm) larger than the diameter of the heat radiating pipe 22 so as not to contact the six continuous heat radiating pipes 22 and press the heat radiating pipe 22 against the back plate 20 and the side plate 32. 29). And the vacuum heat insulating materials 15 and 23 attach the heat radiating pipe 22 attached to the back plate 20 and the side plate 32 at a certain interval (pitch) in the width direction or the front-rear direction of the refrigerator 1 in the groove portion 29 having a concave cross section. In the housed state, it is affixed to the side plate 32 and the back plate 20 using hot melt or adhesive tape.
 発泡断熱材19は、背面板20又は側面板32へ放熱パイプ22及び真空断熱材15、23が取り付けられた後に、外箱21と内箱31との間に形成される空間に充填される。そのため、背面板20、側面板32への真空断熱材15、23の取り付けは、発泡断熱材19が、背面板20と真空断熱材15との間及び側面板32と真空断熱材23との間に侵入しないように固定する必要がある。 The foam heat insulating material 19 is filled in a space formed between the outer box 21 and the inner box 31 after the heat radiating pipe 22 and the vacuum heat insulating materials 15 and 23 are attached to the back plate 20 or the side plate 32. Therefore, attachment of the vacuum heat insulating materials 15 and 23 to the back plate 20 and the side plate 32 is performed by the foam heat insulating material 19 between the back plate 20 and the vacuum heat insulating material 15 and between the side plate 32 and the vacuum heat insulating material 23. It is necessary to fix so as not to enter.
 また、図5に示されるように、冷蔵庫本体30の前面側開口部側には、内箱31を外箱21に係止する係止部のR曲げ部21a(内箱係止部)が外箱21に形成されている。外箱21のR曲げ部21aが、内箱31の被係止部31aと、弾性変形して挟着することによって外箱21と内箱31とが係合し、両者が結合している。 Further, as shown in FIG. 5, an R-bending portion 21 a (inner box locking portion) of the locking portion that locks the inner box 31 to the outer box 21 is provided on the front opening side of the refrigerator body 30. A box 21 is formed. The R bent portion 21a of the outer box 21 is elastically deformed and sandwiched with the locked portion 31a of the inner box 31, whereby the outer box 21 and the inner box 31 are engaged, and both are coupled.
 図6は、図1の冷蔵庫1の側面板32に放熱パイプ22及び真空断熱材23を取り付けた状態を示す図であり、側面板32に貼り付けた放熱パイプ22及び真空断熱材23を冷蔵庫1の外側から見た正面図である。図7は、図6のD―D断面図である。真空断熱材23は、上記のように、例えば直径4.0mmの銅パイプ等で作られている放熱パイプ22を収納するための溝部29を有している。溝部29について更に詳細に説明すると、溝部29は、真空断熱材23の縦方向に複数列、中心線の間隔がW1寸法をもって形成されている。溝部29は、放熱パイプ22を覆う左右両側に壁部を有する凹んだ形状(断面凹形状)を有しており、その深さは寸法D1は約5mm、幅寸法L1は40~70mmである。 FIG. 6 is a view showing a state in which the heat radiating pipe 22 and the vacuum heat insulating material 23 are attached to the side plate 32 of the refrigerator 1 of FIG. 1, and the heat radiating pipe 22 and the vacuum heat insulating material 23 attached to the side plate 32 are connected to the refrigerator 1. It is the front view seen from the outside. 7 is a cross-sectional view taken along the line DD of FIG. The vacuum heat insulating material 23 has the groove part 29 for accommodating the thermal radiation pipe 22 made, for example with the copper pipe of diameter 4.0mm etc. as mentioned above. The groove portion 29 will be described in more detail. The groove portion 29 is formed in a plurality of rows in the vertical direction of the vacuum heat insulating material 23 and with a center line interval of W1. The groove 29 has a concave shape (concave shape in cross section) having wall portions on both the left and right sides covering the heat radiating pipe 22, and the depth D1 is about 5 mm and the width L1 is 40 to 70 mm.
 また、溝部29の幅寸法L1については、冷蔵庫製造工程で発生する組付け公差を考慮したものとなっている。すなわち、溝部29の幅寸法L1は、溝部29を形成する上での製造誤差、真空断熱材23を側面板32に取り付ける際の取り付け誤差、放熱パイプ22が側面板32の平面上で多少曲がっていたり、放熱パイプ22の側面板32への取り付け誤差等が発生しても、放熱パイプ22を収納できる大きさとしている。 Further, the width dimension L1 of the groove portion 29 takes into account the assembly tolerance generated in the refrigerator manufacturing process. That is, the width dimension L1 of the groove portion 29 is a manufacturing error in forming the groove portion 29, an attachment error in attaching the vacuum heat insulating material 23 to the side plate 32, and the heat radiation pipe 22 is slightly bent on the plane of the side plate 32. In addition, even if an attachment error of the heat radiating pipe 22 to the side plate 32 occurs, the heat radiating pipe 22 can be accommodated.
 また、溝部29の深さ寸法D1は、ウレタンフォームの発泡により真空断熱材23、放熱パイプ22、側面板32の順に外側に押し付けられ、側面板32に押し圧痕が生じたり、真空断熱材23の外包材25に損傷が生じたりしないように、放熱パイプ22の直径以上、例えば5.0mm程度に設計されている。仮に、溝部29の深さ寸法D1が放熱パイプ22の直径に満たない場合には、ウレタンフォームの発泡により真空断熱材23、放熱パイプ22、側面板32の順に圧力が加わり、冷蔵庫1の外観に放熱パイプ22の形状が浮かび上がってくるため、外観不良となる。 Moreover, the depth dimension D1 of the groove part 29 is pressed outward in the order of the vacuum heat insulating material 23, the heat radiating pipe 22, and the side plate 32 by foaming of urethane foam. The outer packaging material 25 is designed to have a diameter equal to or greater than the diameter of the heat radiating pipe 22, for example, about 5.0 mm so as not to be damaged. If the depth dimension D1 of the groove 29 is less than the diameter of the heat radiating pipe 22, pressure is applied in the order of the vacuum heat insulating material 23, the heat radiating pipe 22, and the side plate 32 due to foaming of urethane foam. Since the shape of the heat radiating pipe 22 emerges, the appearance is poor.
 なお、上記の説明は、側面板32の内壁に放熱パイプ22を配置し、真空断熱材23を取り付ける例について説明したが、背面板20の内壁に放熱パイプ22を配置し、真空断熱材15を取り付ける場合においても同様の構成となる。 In the above description, the heat radiating pipe 22 is arranged on the inner wall of the side plate 32 and the vacuum heat insulating material 23 is attached. However, the heat radiating pipe 22 is arranged on the inner wall of the back plate 20 and the vacuum heat insulating material 15 is attached. In the case of attachment, the same configuration is obtained.
 図8は、真空断熱材23の形状の説明図であり、(a)は正面図、(b)は平面図、(c)は側面図である。なお、図8は、上記の溝部29の反対側の面に設けられた溝部36に着目した説明図である。上記の溝部29は、真空断熱材23の外箱21側に設けられたものであるが、本実施の形態においては、真空断熱材23の内箱31側にも溝部36が設けられている。この溝部36は、発泡断熱材19を充填する際にその流路を拡大するために設けられている。溝部36を付ける対象の真空断熱材23(15)は冷蔵庫本体30に配設される全てのものとする。 FIG. 8 is an explanatory view of the shape of the vacuum heat insulating material 23, (a) is a front view, (b) is a plan view, and (c) is a side view. FIG. 8 is an explanatory diagram focusing on the groove 36 provided on the opposite surface of the groove 29. The groove portion 29 is provided on the outer box 21 side of the vacuum heat insulating material 23, but in the present embodiment, the groove portion 36 is also provided on the inner box 31 side of the vacuum heat insulating material 23. The groove 36 is provided in order to expand the flow path when the foam heat insulating material 19 is filled. The vacuum heat insulating material 23 (15) to which the groove portion 36 is to be attached is assumed to be all disposed in the refrigerator main body 30.
 <真空断熱材の製造方法>
 次に、真空断熱材23の製造方法について、図9を用いて説明する。
 図9(a)~(d)は、真空断熱材23の芯材26を外包材25に収納する工程を含む製造工程を経時的に示す断面図である。以下、図9(a)~(d)に従って時系列に説明する。
 (a)積層体24は、3枚の積層体24a、24b、24cから構成されている(図9(a))。積層体24a、24b、24cは、一般にグラスウール、グラスファイバ、アルミナ繊維、シリカアルミナ繊維、木綿等の天然繊維が用いられている。なお、本発明では、積層体24a、24b、24cの枚数は、上記の枚数に限定されない。
 (b)積層体24からなる芯材26を、熱溶着用のプラスチック層を有する金属蒸着ラミレートフィルム等からなる外包材25で減圧した状態で覆う(図9(b))。
<Manufacturing method of vacuum heat insulating material>
Next, the manufacturing method of the vacuum heat insulating material 23 is demonstrated using FIG.
FIGS. 9A to 9D are cross-sectional views showing the manufacturing process including the process of housing the core material 26 of the vacuum heat insulating material 23 in the outer packaging material 25 over time. Hereinafter, a description will be given in time series according to FIGS. 9A to 9D.
(A) The laminate 24 is composed of three laminates 24a, 24b, and 24c (FIG. 9A). The laminated bodies 24a, 24b and 24c are generally made of natural fibers such as glass wool, glass fibers, alumina fibers, silica alumina fibers, and cotton. In the present invention, the number of stacked bodies 24a, 24b, and 24c is not limited to the above number.
(B) The core material 26 made of the laminate 24 is covered in a state where the pressure is reduced by the outer packaging material 25 made of a metal-deposited laminate film having a plastic layer for heat welding (FIG. 9B).
 (c)芯材26が外包材25で覆われた状態の真空断熱材を、凸形状部を備えたプレス型27と、プレス型27bとで圧縮することによって真空断熱材に溝部29を形成する(図9(c))。なお、溝部36においても、溝部29と同様にして形成されるが、溝部36の場合には、その形状(間隔、深さ等)が溝部29の形状が相違するので、プレス型27と、プレス型27bを別途用意する必要がある。なお、ここでは、溝部29と、溝部36と別々に加工される例について説明しているが、プレス型27とプレス型27bとに、溝部29用の凸形状部と溝部36用の凸形状部とを設けておいて、溝部29と溝部36とを同時に形成するようにしてもよい。
 (d)上記のようにして、図9(d)に示される板状(パネル状)の真空断熱材23が得られる。なお、溝部29、36の深さは、溝形状箇所についても断熱性能を保つために真空断熱材23の厚みの1/2以下の深さとする。また、溝部29、36の断面形状については、四角形に限定されず、楕円形、三角形等の多角形でもよい。なお、上記の真空断熱材15も真空断熱材23と同様にして製造される。
(C) A groove 29 is formed in the vacuum heat insulating material by compressing the vacuum heat insulating material in a state where the core material 26 is covered with the outer packaging material 25 with a press die 27 having a convex portion and a press die 27b. (FIG. 9 (c)). The groove portion 36 is also formed in the same manner as the groove portion 29. However, in the case of the groove portion 36, the shape (interval, depth, etc.) of the groove portion 29 is different from that of the groove portion 29. It is necessary to prepare the mold 27b separately. In addition, although the example processed separately with the groove part 29 and the groove part 36 is demonstrated here, the convex-shaped part for the groove part 29 and the convex-shaped part for the groove part 36 are provided in the press die 27 and the press die 27b. And the groove 29 and the groove 36 may be formed at the same time.
(D) As described above, the plate-like (panel-like) vacuum heat insulating material 23 shown in FIG. 9D is obtained. In addition, the depth of the groove parts 29 and 36 shall be 1/2 or less of the thickness of the vacuum heat insulating material 23 in order to maintain heat insulation performance also about a groove-shaped location. Further, the cross-sectional shape of the grooves 29 and 36 is not limited to a quadrangle, and may be a polygon such as an ellipse or a triangle. The vacuum heat insulating material 15 is also manufactured in the same manner as the vacuum heat insulating material 23.
 図10(a)(b)は、上記の溝部29、36の変形例を示した断面図である。図10(a)の溝部29b(36b)は、断面三角形である。図10(b)の溝部29c(36c)は断面半楕円形である。これらの溝部29b(29c)、36b(36c)についても、上記の例と同様の効果を発揮する。 10 (a) and 10 (b) are cross-sectional views showing modified examples of the groove portions 29 and 36 described above. The groove 29b (36b) in FIG. 10A has a triangular cross section. The groove 29c (36c) in FIG. 10B has a semi-elliptical cross section. These grooves 29b (29c) and 36b (36c) also exhibit the same effects as in the above example.
 次に、発泡断熱材19としてウレタンフォームを冷蔵庫に充填するときの処理を説明する。図11は、ウレタンフォームを冷蔵庫に充填する際の発泡材注入ヘッドと真空断熱材との位置関係を示した説明図であり、図12は、図11のE-E断面図である。なお、図11は冷蔵庫本体30を省略した状態で図示されている。図11に示されるように、真空断熱材23の溝部36は、発泡断熱材注入口33(図3参照)の真下に配置され、発泡材注入ヘッド34から発泡断熱材注入口33にウレタンフォーム原液が注入され、真空断熱材23の溝部36を介して冷蔵庫本体30の内部に充填される。その充填の際には、溝部36が発泡断熱材の流路を拡大することになる。 Next, a process when filling the refrigerator with urethane foam as the foam insulation 19 will be described. FIG. 11 is an explanatory view showing the positional relationship between the foam injection head and the vacuum heat insulating material when filling the urethane foam in the refrigerator, and FIG. 12 is a cross-sectional view taken along the line EE of FIG. Note that FIG. 11 is illustrated with the refrigerator body 30 omitted. As shown in FIG. 11, the groove 36 of the vacuum heat insulating material 23 is disposed directly below the foam heat insulating material inlet 33 (see FIG. 3), and the urethane foam stock solution is supplied from the foam material injecting head 34 to the foam heat insulating material inlet 33. Is injected and filled into the refrigerator main body 30 through the groove 36 of the vacuum heat insulating material 23. At the time of filling, the groove portion 36 enlarges the flow path of the foam heat insulating material.
 以上のように、本実施の形態に係る真空断熱材23(15)は、 芯材26と、芯材26を減圧した状態で覆う外包材25とを備え、板状に形成され、板状の一方の面側(内箱31側)に、発泡断熱材19を充填する際の流路として利用される溝部36(本発明の第1の溝部)を備えている。このため、局所的に内箱31と真空断熱材23との間が広がることで、発泡断熱材19の流路幅を拡大することが可能となる。発泡断熱材19の流路幅が拡大することで、発泡断熱材19の流路の確保のための真空断熱材の分割及び厚みを薄くする必要がなくなり、断熱性能の改善が可能となる。また、その一例として、発泡断熱材注入口33の真下に溝部36をつけることで注入口33から注がれる発泡断熱材19が流れやすくなるため、発泡断熱材注入口33からの発泡断熱材19の逆流の発生が抑制される。また、従来のように真空断熱材を分割して配置する必要が無く、真空断熱材の配設位置についても制約が発生しない。また、断熱性能を高めるために断熱壁内の真空断熱材23(15)の厚みを増やし、全体的に発泡断熱材19(ウレタンフォーム)の流路を狭めても発泡断熱材19(ウレタンフォーム)を充填させることができる。このため、製造工数及びコストの増加を来すことのない真空断熱材を提供することができる。 As described above, the vacuum heat insulating material 23 (15) according to the present embodiment includes the core core material 26 and the outer packaging material 25 that covers the core material 26 in a decompressed state, and is formed into a plate shape. On one surface side (inner box 31 side), a groove portion 36 (first groove portion of the present invention) used as a flow path when filling the foam heat insulating material 19 is provided. For this reason, it becomes possible to expand the flow path width of the foam heat insulating material 19 by locally spreading between the inner box 31 and the vacuum heat insulating material 23. By expanding the flow path width of the foam heat insulating material 19, it is not necessary to reduce the division and thickness of the vacuum heat insulating material for securing the flow path of the foam heat insulating material 19, and the heat insulating performance can be improved. Further, as an example, since the foam insulation 19 poured from the injection port 33 can easily flow by attaching the groove 36 directly below the foam insulation material injection port 33, the foam insulation 19 from the foam insulation material injection port 33. The occurrence of backflow is suppressed. Moreover, there is no need to divide and arrange the vacuum heat insulating material as in the prior art, and there is no restriction on the position of the vacuum heat insulating material. Further, even if the thickness of the vacuum heat insulating material 23 (15) in the heat insulating wall is increased to improve the heat insulating performance and the flow path of the foam heat insulating material 19 (urethane foam) is narrowed as a whole, the foamed heat insulating material 19 (urethane foam) Can be filled. For this reason, the vacuum heat insulating material which does not cause the increase in a manufacturing man-hour and cost can be provided.
 また、溝部36は、断面形状が四角形、円弧、又は多角形からなり、必要に応じて種々の形態を取ることができるので、設計の自由度が高くなる。 Further, the groove 36 has a cross-sectional shape of a quadrangle, a circular arc, or a polygon, and can take various forms as necessary, so that the degree of freedom in design is increased.
 また、真空断熱材23(15)は、板状の他方の面側(外箱21側)に、放熱パイプ22の逃がし溝として利用される溝部29(本発明の第2の溝部)を備えたことにより、真空断熱材23と外箱21との間に無用な空間が形成されるのを避けることができる。このため、断熱性能の低下が避けられる。 Moreover, the vacuum heat insulating material 23 (15) was provided with the groove part 29 (2nd groove part of this invention) utilized as an escape groove | channel of the thermal radiation pipe 22 in the plate-like other surface side (outer box 21 side). Thus, it is possible to avoid forming a useless space between the vacuum heat insulating material 23 and the outer box 21. For this reason, a decrease in heat insulation performance can be avoided.
 また、本実施の形態に係る冷蔵庫1は、前面側が開口した前面開口部を備え、断熱箱体からなる冷蔵庫本体30と、冷蔵庫本体30の前面開口部を開閉自在に覆う扉7~12とを備え、冷蔵庫本体30は、外箱21と内箱31とを備え、外箱21の内壁に真空断熱材23が取り付けられ、外箱21と内箱31とによって形成される空間であって、真空断熱材23(15)を除いた空間に、発泡断熱材19が充填され、真空断熱材23(15)として上記の形態のものが用いられている。これにより、近年の冷蔵庫市場においては、モジュールを変えずに庫内容量の拡大が望まれるため、冷蔵庫の断熱厚みが薄くなる傾向があり、一方で、省エネルギー性能についても関心が高まる中で、それらの要望に応えるために、冷蔵庫の断熱厚みは薄くなりながらも、真空断熱材の厚みは変えず、発泡断熱材の厚みを薄くすることができ、庫内容量と省エネルギー性能を兼ね備えた冷蔵庫の製造が可能である。 In addition, the refrigerator 1 according to the present embodiment includes a front opening that is open on the front side, and includes a refrigerator main body 30 that is a heat insulating box, and doors 7 to 12 that cover the front opening of the refrigerator main body 30 so that the front opening can be opened and closed. The refrigerator main body 30 includes an outer box 21 and an inner box 31, a vacuum heat insulating material 23 is attached to the inner wall of the outer box 21, and is a space formed by the outer box 21 and the inner box 31. The space excluding the heat insulating material 23 (15) is filled with the foam heat insulating material 19, and the vacuum heat insulating material 23 (15) having the above-described form is used. As a result, in the recent refrigerator market, it is desired to expand the internal capacity without changing the module, so the heat insulation thickness of the refrigerator tends to be thin, while the interest in energy saving performance is increasing. In order to meet the needs of the refrigerator, the thickness of the insulation of the refrigerator is reduced, but the thickness of the vacuum insulation is not changed, and the thickness of the foam insulation can be reduced. Is possible.
 1 冷蔵庫、2 冷蔵室、3 製氷室、4 第一冷凍室、5 第二冷凍室、6 野菜室、7、8 冷蔵室扉、9 製氷室扉、10 第一冷凍室扉、11 第二冷凍室扉、12 野菜室扉、14 制御基板、15、23 真空断熱材、16 送風機、17 冷却器、18 圧縮機、19 発泡断熱材、20 背面板、21 外箱、21a R曲げ部、22 放熱パイプ、24、24a~24c 積層体、25 外包材、26 芯材、27、27b プレス型、29、29b、29c 溝部、30 冷蔵庫本体、31 内箱、31a 被係止部、32 側面板、33、33a、33b 発泡断熱材注入口、34 発泡材注入ヘッド、35 床面板、35a 天面板、36、36b、36c 溝部。 1 Refrigerator, 2 Refrigeration room, 3 Ice making room, 4 First freezing room, 5 Second freezing room, 6 Vegetable room, 7, 8 Cold room door, 9 Ice making room door, 10 First freezing room door, 11 Second freezing Room door, 12 Vegetable room door, 14 Control board, 15, 23 Vacuum insulation, 16 Blower, 17 Cooler, 18 Compressor, 19 Foam insulation, 20 Back plate, 21 Outer box, 21a R-bend, 22 Heat dissipation Pipe, 24, 24a-24c laminate, 25 outer packaging material, 26 core material, 27, 27b press mold, 29, 29b, 29c groove, 30 refrigerator main body, 31 inner box, 31a locked portion, 32 side plate, 33 33a, 33b Foam insulation inlet, 34 Foam injection head, 35 Floor plate, 35a Top plate, 36, 36b, 36c Groove.

Claims (4)

  1.  芯材と、前記芯材を減圧した状態で覆う外包材と、を備え、板状に形成された真空断熱材において、
     前記板状の一方の面側に、発泡断熱材を充填する際の流路として利用される第1の溝部を備えた、真空断熱材。
    In the vacuum heat insulating material provided with a core material and an outer packaging material that covers the core material in a decompressed state,
    The vacuum heat insulating material provided with the 1st groove part utilized as a flow path at the time of filling the foam heat insulating material in the one surface side of the said plate shape.
  2.  前記第1の溝部は、断面形状が、四角形、円弧、又は多角形からなる、請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the first groove portion has a cross-sectional shape of a quadrangle, an arc, or a polygon.
  3.  前記板状の他方の面側に、放熱パイプの逃がし溝として利用される第2の溝部を備えた、請求項1又は2記載の真空断熱材。 The vacuum heat insulating material according to claim 1 or 2, further comprising a second groove portion used as an escape groove of the heat radiating pipe on the other surface side of the plate shape.
  4.  前面側が開口した前面開口部を備え、断熱箱体からなる冷蔵庫本体と、
     前記冷蔵庫本体の前面開口部を開閉自在に覆う扉と、
    を備え、
     前記冷蔵庫本体は、
     外箱と内箱とを備え、
     前記外箱の内壁に真空断熱材が取り付けられ、
     前記外箱と前記内箱とによって形成される空間であって、前記真空断熱材を除いた空間に、発泡断熱材が充填され、
     前記真空断熱材として、請求項1~3の何れか一項に記載の真空断熱材が用いられる、冷蔵庫。
    A refrigerator main body comprising a front opening having an opening on the front side and comprising a heat insulating box,
    A door that covers the front opening of the refrigerator main body so as to be freely opened and closed;
    With
    The refrigerator body is
    An outer box and an inner box,
    A vacuum heat insulating material is attached to the inner wall of the outer box,
    A space formed by the outer box and the inner box, the space excluding the vacuum heat insulating material is filled with foam heat insulating material,
    A refrigerator in which the vacuum heat insulating material according to any one of claims 1 to 3 is used as the vacuum heat insulating material.
PCT/JP2015/060865 2015-04-07 2015-04-07 Vacuum insulation material, and refrigerator WO2016162955A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/060865 WO2016162955A1 (en) 2015-04-07 2015-04-07 Vacuum insulation material, and refrigerator
PCT/JP2016/059568 WO2016163250A1 (en) 2015-04-07 2016-03-25 Refrigerator, and refrigerator production method
TW105110471A TWI606220B (en) 2015-04-07 2016-04-01 Refrigerator and refrigerator manufacturing method
CN201620284204.7U CN205641738U (en) 2015-04-07 2016-04-07 Refrigerator
CN201610213536.0A CN106052251B (en) 2015-04-07 2016-04-07 The manufacturing method of refrigerator and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060865 WO2016162955A1 (en) 2015-04-07 2015-04-07 Vacuum insulation material, and refrigerator

Publications (1)

Publication Number Publication Date
WO2016162955A1 true WO2016162955A1 (en) 2016-10-13

Family

ID=57072476

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/060865 WO2016162955A1 (en) 2015-04-07 2015-04-07 Vacuum insulation material, and refrigerator
PCT/JP2016/059568 WO2016163250A1 (en) 2015-04-07 2016-03-25 Refrigerator, and refrigerator production method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059568 WO2016163250A1 (en) 2015-04-07 2016-03-25 Refrigerator, and refrigerator production method

Country Status (3)

Country Link
CN (1) CN106052251B (en)
TW (1) TWI606220B (en)
WO (2) WO2016162955A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287643B2 (en) * 2018-12-27 2023-06-06 アクア株式会社 Refrigerator and manufacturing method thereof
JP7261459B2 (en) * 2019-03-05 2023-04-20 アクア株式会社 Refrigerator and manufacturing method thereof
JP7407588B2 (en) * 2019-12-20 2024-01-04 東芝ライフスタイル株式会社 Method of manufacturing insulation material and method of manufacturing refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator
JP2012062904A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2012082954A (en) * 2010-09-14 2012-04-26 Hitachi Appliances Inc Vacuum heat insulation material and refrigerator using the same
JP2015040634A (en) * 2013-08-20 2015-03-02 日立アプライアンス株式会社 Vacuum heat insulation material and refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200303B2 (en) * 2003-09-16 2008-12-24 パナソニック株式会社 refrigerator
JP4545126B2 (en) * 2006-09-04 2010-09-15 シャープ株式会社 Vacuum insulation panel and refrigerator using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator
JP2012062904A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2012082954A (en) * 2010-09-14 2012-04-26 Hitachi Appliances Inc Vacuum heat insulation material and refrigerator using the same
JP2015040634A (en) * 2013-08-20 2015-03-02 日立アプライアンス株式会社 Vacuum heat insulation material and refrigerator

Also Published As

Publication number Publication date
CN106052251A (en) 2016-10-26
CN106052251B (en) 2019-04-16
TW201708778A (en) 2017-03-01
WO2016163250A1 (en) 2016-10-13
TWI606220B (en) 2017-11-21

Similar Documents

Publication Publication Date Title
JP5578266B1 (en) refrigerator
JP2012021665A (en) Refrigerator
JP2012063038A (en) Refrigerator
WO2016162955A1 (en) Vacuum insulation material, and refrigerator
JP5503478B2 (en) refrigerator
JP6964810B2 (en) refrigerator
JP5548076B2 (en) Refrigerator and vacuum insulation
JP5620764B2 (en) refrigerator
JP6558874B2 (en) Manufacturing method of vacuum insulation
JP6392144B2 (en) refrigerator
JP2015064134A (en) Refrigerator
WO2014112010A1 (en) Refrigerator
JP2016166693A (en) Refrigerator
JP7456958B2 (en) refrigerator
JP7394803B2 (en) refrigerator
WO2022172494A1 (en) Refrigerator
JP7449009B2 (en) refrigerator
CN205641738U (en) Refrigerator
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2022124121A (en) refrigerator
JP2016186379A (en) refrigerator
JP2022124119A (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP