WO2016161676A1 - 一种资源调配系统、基站、设备及方法 - Google Patents

一种资源调配系统、基站、设备及方法 Download PDF

Info

Publication number
WO2016161676A1
WO2016161676A1 PCT/CN2015/077749 CN2015077749W WO2016161676A1 WO 2016161676 A1 WO2016161676 A1 WO 2016161676A1 CN 2015077749 W CN2015077749 W CN 2015077749W WO 2016161676 A1 WO2016161676 A1 WO 2016161676A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer device
resources
network
control layer
service request
Prior art date
Application number
PCT/CN2015/077749
Other languages
English (en)
French (fr)
Inventor
郑侃
侯璐
孟涵琳
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2016161676A1 publication Critical patent/WO2016161676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of Internet of Things technologies, and in particular, to a resource allocation system, a base station, a device, and a method.
  • Mobile devices in the access network can be considered as resource units, enabling the construction of a huge mobile cloud computing network.
  • Each mobile device in a mobile cloud computing network can use "unlimited" resources in the cloud by uploading computing and storage tasks to the cloud.
  • the communication resource is a frequency resource, a time domain resource, an airspace resource, and the like required for communication between the mobile device and the base station and the mobile device;
  • the computing resource is a processor resource required for performing a complex operation;
  • the storage resource is a space required for data storage.
  • the V2I system is primarily intended to support convenient applications, including personal communications, mobile office, telematics, location-based information, automotive-related mobile services, live video, and Internet access V2I systems primarily to support convenient applications. These include personal communications, mobile office, telematics, location-based information, car-related mobile services, live video, and Internet access.
  • the V2I system is primarily intended to support convenient applications, including personal communications, mobile office, telematics, location-based information, automotive-related mobile services, live video, and Internet access.
  • the embodiment of the present application provides a resource allocation system for implementing flexible deployment of resources in a heterogeneous wireless network.
  • the embodiment of the present application provides a base station for implementing flexible deployment of resources in a heterogeneous wireless network.
  • the embodiment of the present application provides a resource deployment device for implementing flexible deployment of resources in a heterogeneous wireless network.
  • the embodiment of the present application provides a resource allocation method for implementing flexible allocation of resources in a heterogeneous wireless network.
  • a resource allocation system which is applied to a wireless communication network, and includes a software-defined control layer device and a software-defined application layer device, where: the application layer device is configured to use a virtual resource pool when a resource allocation trigger event occurs. Determining whether the control layer device needs to be notified to allocate resources in the infrastructure layer; and when the determination result is yes, notifying the control layer device to allocate resources in the infrastructure layer;
  • the virtual resource pool is generated by using a virtualization technology according to the information about the resources of the infrastructure layer; the control layer device is configured to perform resources in the infrastructure layer according to the notification of the application layer device. Provisioning.
  • a base station is applied to a wireless communication network, including the above resource allocation system.
  • a resource provisioning device for use in a wireless communication network includes a processor on which the system runs.
  • a resource allocation method which is applied to a wireless communication network, includes: a software-defined application layer device determines, according to a virtual resource pool, whether to notify the control layer device to resources in an infrastructure layer when a resource allocation trigger event occurs. Performing provisioning; wherein the virtual resource pool is generated by using virtualization technology according to related information of resources of the infrastructure layer;
  • the software-defined control layer device is notified to allocate resources in the infrastructure layer.
  • Virtualization technology is used to virtualize information about resources in the infrastructure layer into virtual resource pools, and software-defined application layer devices are used for resource allocation decisions.
  • Software-defined control layer devices are used to allocate resources in the infrastructure layer. Therefore, the separation of the data plane and the control plane is realized, and the resources of the infrastructure layer are made flexible and controllable.
  • FIG. 1-1 is a schematic structural diagram of a resource allocation system according to Embodiment 1 of the present application.
  • 1-2 is a schematic diagram of a logical structure of a software-defined heterogeneous wireless network according to Embodiment 1 of the present application;
  • FIG. 1-3 are schematic diagrams of a southbound interface and a northbound interface provided by Embodiment 1 of the present application;
  • 1-4 are schematic diagrams of relationship between a primary controller, a secondary controller, and a Layer 3 cloud architecture of a software-defined heterogeneous wireless network in a software-defined heterogeneous wireless network according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a three-layer structure of an implementation scheme of a virtual base station in a software-defined heterogeneous wireless network according to Embodiment 2 of the present application;
  • FIG. 3 is a schematic flowchart of a method for determining a communication mode of a vehicle network according to Embodiment 4 of the present application;
  • 4-1 is a schematic diagram of a method for implementing a car networking service in a parking lot according to Embodiment 5 of the present application;
  • 4-2 is a schematic flowchart of a specific implementation process of a method for implementing a car networking service in a parking lot according to Embodiment 5 of the present application;
  • 5-1 is a schematic diagram of a network access scheduling method according to Embodiment 6 of the present application.
  • FIG. 5 is a schematic diagram of a network access scheduling method according to Embodiment 6 of the present application.
  • the first embodiment of the present application first provides a resource allocation system applied to a wireless communication network.
  • the specific structure of the system is shown in Figure 1-1, and includes a software-defined control layer device 11 . (referred to as control layer device 11), software-defined application layer device 12 (referred to as application layer device 12).
  • control layer device 11 software-defined control layer device 11
  • application layer device 12 software-defined application layer device 12
  • the application layer device 12 is configured to: when the resource allocation triggering event occurs, determine, according to the virtual resource pool, whether the control layer device needs to be notified to allocate resources in the infrastructure layer; and when the determination result is yes, notify the control layer device 11 Provision resources in the infrastructure layer.
  • the virtual resource pool is generated by using virtualization technology according to information about resources of the infrastructure layer.
  • the virtualization technology referred to herein may specifically refer to a technology for virtualizing an entity resource (including at least one of a network resource, a computing resource, and a storage resource). Since the technology can be implemented by using the prior art, the specific implementation manner will not be described in detail in this specification.
  • the control layer device 11 is configured to allocate resources in the infrastructure layer according to the notification of the application layer device 12.
  • the foregoing system may be run in a resource deployment device.
  • the device may be a base station, and more specifically, the device may be a processor of the base station.
  • the infrastructure layer, the control layer, and the application layer may be a three-layer logical structure defined by software.
  • the three-layer logical structure is set up based on Software Defined Network (SDN).
  • SDN Software Defined Network
  • the three-layer logical structure is applied to the mobile network, and the mobile node in the mobile network is a mobile device as an example, and the characteristics of each layer in the three-layer logical architecture are introduced.
  • Software-defined heterogeneous wireless networks are highly heterogeneous communication networks and heterogeneous cloud networks. From a communication point of view, it consists of a variety of base stations with specific radio access technologies (LTE or DSRC). The coverage and service capabilities of different types of base stations are also very different. For example, a macro cell base station can support thousands of users with a coverage of several square kilometers, while for micro cells, including femtocells, picocells, and DSRC cells, the coverage is much smaller than that of a macro cell. A micro cell supports no more than ten users. It mainly provides capacity support for macro cells. From a cloud network perspective, diverse processing and storage capabilities make the computing infrastructure heterogeneous. At the same time, the diversity of user devices, such as smart phones, iPads, and even smart cars, has also increased the heterogeneity of the network.
  • LTE or DSRC radio access technologies
  • the software-defined heterogeneous wireless network consists of a baseband processing cloud and a Radio Radio Head (RRH).
  • RRH is used for photoelectric conversion or analog-to-digital conversion of signals, including transmission and reception, for software-defined direct communication between heterogeneous wireless networks and mobile devices.
  • the baseband processing cloud is responsible for completing all Radio Access Network (RAN) functions.
  • the RRH is connected to the baseband processing cloud through an optical fiber.
  • RAN Radio Access Network
  • the network uses a three-tier cloud architecture—micro cloud, local cloud, and remote cloud.
  • the multi-layer baseband processing cloud architecture is specifically described below:
  • Micro-cloud Due to the rapid development of mobile computing and mobile communication technologies, mobile nodes such as smart devices can already be used as entities of cloud services. Software-defined heterogeneous wireless networks The bottom layer is called the micro cloud. Under the coordination of the controller, the micro cloud provides only authorized users with services such as computing, sensing, communication and storage. Thus, unlike traditional clouds that use dedicated hardware, software-defined micro-clouds of heterogeneous wireless networks are made up of available resources built into mobile devices.
  • SA Service area
  • the range of SAs covers one or a cluster of macro cells.
  • a cloud composed of resources within an SA is called a local cloud.
  • Each SA has its own local cloud and management entity that is used to control local communications and computing facilities.
  • local cloud resources are typically deployed at a fixed location of the macro cell base station site within the SA.
  • Cloud-based mobile services are essentially interactive. A slow interactive response will result in a decrease in efficiency and a decrease in user experience, so there should be a virtual service entity in the local cloud to ensure real-time business.
  • Some cloud services may involve more than one layer of cloud resources.
  • the local cloud can act as a data cache or a service proxy device.
  • the local cloud can bring together different layers of cloud resources, and it plays an important role in the three-tier cloud architecture.
  • Remote cloud For a mobile device located in the determined SA, the resource pools of other SAs may be referred to as remote clouds, which are located at the top of the cloud architecture.
  • the remote cloud includes many core network cloud infrastructures, which makes it very powerful for computing and storage.
  • the terminal In order to access the remote cloud, the terminal needs an additional wired link in addition to the wireless link, which may result in a decrease in the exchange rate between the terminal and the server.
  • QoS quality of service
  • the software-defined heterogeneous wireless network can be logically divided into three layers, that is, a network infrastructure layer (infrastructure layer), a control layer, and an application layer, as shown in FIG. 1-2.
  • the control layer is the most important layer because it determines the behavior and performance of the network.
  • Programmable control Controllers network managers can easily configure new network devices and quickly deploy new applications. Specifically, the detailed description of each layer is as follows:
  • Network infrastructure layer The network infrastructure layer is located at the bottom of the software-defined heterogeneous wireless network. This layer consists of the actual underlying physical devices that make up the physical resources of the software-defined heterogeneous wireless network, including communication resources, computing resources, and storage resources.
  • the communication resources are mainly composed of a Baseband Unit (BBU), a Remote Radio Head (RRH), and a backhaul link in the cloud.
  • BBU Baseband Unit
  • RRH Remote Radio Head
  • the backhaul link provides a path for the connection between the BS and the BS and between the BS and the core network. It is responsible for providing high-speed connection support for all resources.
  • Computing resources and storage resources are provided by a three-tier cloud in a software-defined heterogeneous wireless network.
  • Control layer is the middle layer of the network architecture. It is used to provide relevant information for the application layer, process application requests, etc., and complete the corresponding control behavior on the physical resources of the infrastructure layer.
  • the control layer consists of controllers.
  • the controller is composed of two main parts: the control module and the virtual resource pool.
  • the software-defined heterogeneous wireless network adopts a hierarchical controller architecture, which enables it to guarantee the QoS of the software-defined heterogeneous wireless network, so that it can respond to any condition of the mobile device to send Request and process.
  • the hierarchical control layer in the software-defined heterogeneous wireless network is divided into two levels: a primary controller (PCon) and a secondary controller (Secondary Controller, SCon).
  • PCon primary controller
  • SCon Secondary Controller
  • PCon is located on top of the software-defined heterogeneous wireless network control layer. It is used to control software-defined heterogeneous wireless network global networks. In general, Pcon is used to perform some wide-area or non-real-time control functions, such as inter-SA handover, wide-area cloud resource allocation, and so on. The information of the global network is also concentrated on PCon, such as control layer topology, SA state and resource state, so that PCon can make global optimal decisions and control the implementation of the underlying network. In order to connect with the application layer, SCon and the underlying network, and the controller's east-west expansion, PCon has four interfaces, North-Bound Interface (NBI), and South-Bound Interface-SCon. , SBI-S), eastbound interface (East-Bound Interface, EBI) and West-Bound Interface (WBI). Figure 1-2 shows the northbound interface.
  • NBI North-Bound Interface
  • SBI-S South-Bound Interface
  • EBI eastbound interface
  • WBI West-
  • SCon is logically located under PCon, which is a regional control entity, and each SCon controls an SA.
  • An important feature of SCon is to ensure that QoS requirements for low latency security-related applications are met.
  • each SCon manages a virtual resource pool for controlling resources in the SA, including resource allocation, recycling, and cross-domain resource requests.
  • SCon has four interfaces: North-Bound Interface (NBI), North-to-Bound Interface (North-Bound Interface- PCon, NBI-P), South-Bound Interface (SBI), East-Bound Interface (EBI) and West-Bound Interface (WBI).
  • NBI North-Bound Interface
  • SBI North-to-Bound Interface
  • SBI South-Bound Interface
  • EBI East-Bound Interface
  • WBI West-Bound Interface
  • FIG. 1 a schematic diagram of a relationship between a primary controller, a secondary controller, and a software-defined three-layer cloud of a heterogeneous wireless network is shown in FIG.
  • Application layer is located at the top of the software-defined heterogeneous wireless network. Network managers can control and tune the network by designing different applications. There are some typical applications in the application layer, such as access control, mobility management, dynamic resource allocation and resource offloading. Some application examples are as follows:
  • SCon When the access manager is running, SCon will detect the network load and the status of the radio link. Once SCon detects that the load on a network exceeds a certain threshold, SCon will adjust the new vehicle access request to other SCons, which can achieve traffic flow load balancing and meet the QoS of the mobile devices that have been accessed.
  • each mobile device is considered a small resource unit.
  • SCon collects all the information of different resources into the virtual resource pool. All resources in the network can be optimally distributed through the dynamic resource allocation application. Once a new service request arrives, the application looks for a way to allocate resources for the service request based on the current network state. After SCon interacts with the application through the NBI, it will allocate available resources to the user under the guidance of the application.
  • the resource allocation triggering event may include: the system as shown in FIG. 1-1.
  • the system receives the request, which may be that the application layer device 12 receives the service request forwarded by the control layer device 11, or may refer to the control layer device 11 receiving the request.
  • the application layer device 12 may determine, according to the virtual resource pool, whether the service request needs to be scheduled.
  • the control layer device 11 is notified to schedule the service request to be determined.
  • the target device that processes the service request for example, it is allocated to a virtual base station (vBS) that can adapt to the mobile node Qos.
  • vBS virtual base station
  • the control layer device 11 may schedule the service request to the determined service request for processing the service request according to the notification of the application layer device. Target device.
  • the resource allocation triggering event may include a node scheduling triggering event.
  • the application layer device 12 can be configured to: according to the virtual resource pool, determine whether the control layer device needs to be notified to schedule the mobile node into a specific communication network.
  • the node scheduling trigger event mentioned herein may include:
  • the system shown in Figure 1 receives a service request sent by a mobile node; or the system completes detection of the status of the communication network.
  • the system shown in FIG. 1 may receive the request, and may refer to the service layer device 12 receiving the service request forwarded by the control layer device 11, or the control layer device 11 receiving the request.
  • the system completes the detection of the status of the communication network, and may refer to the detection of the status of the communication network by the application layer device 12, or the detection of the status of the communication network by the control layer device 11.
  • the application layer device 12 may be configured to: according to the virtual resource pool, determine whether the mobile node needs to be scheduled into a specific communication network; When it is determined that the mobile node needs to be scheduled to be in a specific communication network, the notification control layer device 11 schedules the mobile node to the specific communication network; the control layer device 11 can be used to schedule the mobile node according to the notification of the application layer device 12. To a specific communication network.
  • resource allocation triggering event refers to any event that can trigger the application layer device 12 to determine whether it is necessary to notify the control layer device 11 to allocate resources in the infrastructure layer.
  • a service request or a specific access request sent by a mobile node that receives the infrastructure layer may be regarded as a resource allocation trigger event; for example, the status of the communication network where the resources in the infrastructure layer are located (eg, The detection of network load conditions, etc., may also be regarded as a resource allocation trigger event; for example, the detection of the status of various resources (generally including communication resources, computing resources, and storage resources) in the infrastructure layer may also be considered. Triggering events for resource allocation; and so on.
  • the application layer device 12 can use the information in the virtual resource pool as a basis for determining whether to notify the control layer device 11 to allocate resources in the infrastructure layer.
  • the resource allocation triggering event mentioned herein may include, for example, the control layer device 11 receiving the service request sent by the mobile node; or the control layer device 11 completing the detection of the state of the communication network.
  • the scheduling information is sent to the control layer device 11; and the control layer device 11 can be configured according to the scheduling information sent by the application layer device 12.
  • the communication mode of the mobile node is scheduled.
  • the primary controller may be configured to: notify the pair when the application layer device 11 sends the notification to the control layer device
  • the global optimal allocation decision of the resource is determined, and the resource is allocated according to the decision
  • the secondary controller can be used to indicate the resource in the SA in the infrastructure layer at the notification.
  • the virtualization information is used to virtualize related information of resources in the infrastructure layer into a virtualized resource pool, and the software-defined application layer device is used for resource allocation decision, and the software definition is adopted.
  • the control layer device performs resource allocation in the infrastructure layer, thereby realizing the separation of the data plane and the control plane, and making the resources of the infrastructure layer flexible and controllable.
  • Embodiment 2 of the present application provides an implementation scheme of a virtual base station in a software-defined heterogeneous wireless network.
  • Embodiment 2 provides high-quality services for mobile devices through software-defined virtual base station (vBS) technology.
  • vBS virtual base station
  • the basic feature of the software-defined heterogeneous wireless network architecture is the separation of the control plane from the data plane.
  • the control plane is composed of different control functions
  • the data plane is composed of a large number of physical resources.
  • the controller abstracts all the physical resources into virtual resources and concentrates them in the virtual resource pool for distribution users.
  • the virtual resources are set to be scheduled by using a virtual machine (VM) as a basic unit.
  • VM virtual machine
  • a vBS Similar to a base station in a cellular network, a vBS is used for access requests and service requests of mobile devices in a certain area. The difference is that the vBS is a software-defined way to logically merge some applications, control functions, resources, etc. from SCon, and form a virtual base station for certain service scenarios or with certain coverage requirements.
  • the vBS Similar to the three-layer architecture of the software-defined heterogeneous wireless network, the vBS also has a three-layer structure. As shown in Figure 2, the vBS also implements the separation of the control plane from the data plane.
  • a data plane is a virtual resource whose physical entity is located in the local cloud. As the physical resource of the vBS, it is abstracted, processed and scheduled by the control function of the control plane, and becomes a virtual resource that the vBS can schedule.
  • the control plane is divided into different types of control functions. Usually, SCon and PCon are provided to vBS. All necessary functions to solve problems such as physical resource allocation and data plane/user plane implementation.
  • the vBS application layer can deploy multiple applications to ensure that the software-defined heterogeneous wireless network can work properly and keep the vBS in an optimal state. For example, in a high-density deployment area, neighboring vBSs need to interfere with cooperative applications to avoid inter-cell interference.
  • the vBS can be divided into a macro cell MvBS (Macro-cell vBS, MvBS) and a micro cell vBS (Small-cell vBS, SvBS) according to its coverage.
  • MvBS Micro-cell vBS
  • SvBS Small-cell vBS
  • the specific type is determined by PCon according to network conditions and the like.
  • An MvBS is used to cover users with one or more SA ranges, while high data rate or low latency services need to be provided through SvBS.
  • MvBS and SvBS achieve great differences in complexity and communication capabilities, MvBS focuses on improving network coverage and large-scale resource scheduling. Therefore, in software-defined heterogeneous wireless networks, usually more cloud resources should be allocated to MvBS instead of SvBS.
  • the above MvBS and SvBS concepts are located at the logical level and are implemented by software. They share the same hardware entity and are only logically independent.
  • Embodiment 3 provides a resource provisioning method applied in a wireless communication network for implementing flexible control over resources.
  • the method includes the following steps 1 to 2.
  • Step 1 The software-defined application layer device determines, according to the virtual resource pool, whether to notify the software-defined control layer device to allocate resources in the infrastructure layer according to the virtual resource pool; when the judgment result is yes, execute Step two.
  • the virtual resource pool is generated by using virtualization technology according to information about resources of the infrastructure layer.
  • Step 2 The software-defined application layer device notifies the software-defined control layer device to allocate resources in the infrastructure layer.
  • Embodiment 4 provides a method for determining a vehicle network communication mode, so that network resources in the vehicle network can be flexibly used. It is assumed that the execution subject is a base station. A schematic diagram of the specific process of the method is shown in FIG. 3, and includes the following steps:
  • Step 41 establishing a connection with the onboard unit.
  • establishing a connection with the onboard unit may include, but is not limited to, establishing a connection with the onboard unit through a dedicated short-range communication technology or a long-term evolution technology.
  • DSRC dedicated short-range communication technology
  • DSRC can realize two-way communication between vehicles and vehicles (hereinafter referred to as V2V) to complete real-time transmission of image, voice and data information
  • V2V vehicles and vehicles
  • LTE Long Term Evolution
  • V2I is a wireless communication technology capable of providing large system capacity and wide coverage.
  • V2I "car and base station” (hereinafter referred to as V2I) is connected to transmit data information.
  • V2R Vehicle-to-Road Side Unit
  • the base station may include, but is not limited to, DSRC and LTE.
  • OBU onboard unit of the vehicle
  • an authorization mechanism may be added to the base station to achieve the effect of filtering the illegal user. For example, you can filter invalid users by verifying that the user name and user password are valid.
  • Step 42 When a scheduling judgment trigger event occurs, determine whether it is necessary to schedule the onboard unit to a communication network adopting a specific communication method.
  • the method may include, but is not limited to, receiving the service request sent by the onboard unit, or detecting the network status of the communication network.
  • the service request may include: a security-type service request and a non-security-type service request.
  • the security business refers to the business to avoid traffic accidents and ensure traffic safety, to reduce casualties, such as overtaking warning between V2V, adaptive cruise warning, etc.; electronic signal lights between V2R, electronic road signs, etc.;
  • the security service refers to a service that satisfies the needs of multimedia information, and is used to enrich life information and driving pleasure, such as multimedia transmission between V2I or V2R, life information push, avoidance of accidents, congestion path planning, etc., and may also include clouds.
  • Service such as personal ID (Identity, Data information sharing in the identification number).
  • step 42 when receiving the service request sent by the onboard unit, determining whether it is necessary to schedule the onboard unit to the communication network adopting the specific communication method may be implemented in the following three manners:
  • the OBU According to the received service type, it is judged whether the OBU needs to be scheduled to the communication network adopting the specific communication mode. It is assumed that the OBU first establishes a connection with the base station through LTE before receiving the service request. For example, if the user requests an accident warning in the security service through the OBU, the base station controls the OBU to establish a connection with other OBUs in the vicinity through the DSRC network in a V2V manner; for example, the user requests the traffic regulations in the security service through the OBU.
  • the base station controls the OBU to establish a connection with a nearby roadside unit (hereinafter referred to as RSU) through the DSRC network in a V2R manner; for example, if the user requests path planning in the non-secure service through the OBU, the base station can Controlling the OBU to maintain a connection with the base station through the LTE network in a V2I manner, and combining real-time local road network data (traffic data, accident data, etc.) or road network data of the remote server to perform path planning calculation, and then provide the calculation result to the The OBU.
  • RSU roadside unit
  • the virtual resource required for the service request is searched; and according to the channel quality of the network where the required physical resource is located, it is determined whether the OBU needs to be scheduled to the communication network adopting the specific communication mode.
  • the virtual resource pool refers to virtualizing the physical resources and storing the virtualized resources in the virtual resource pool for use by devices or programs such as OBUs, base stations, servers, and applications.
  • the channel quality of the network where the required physical resource is located may refer to the channel quality of the network where the user requests the OBU, such as computing resources, storage resources, and the like.
  • the required physical resources may be stored in any of the base station, other OBUs, RSUs, and remote servers. The required physical resources are transmitted to the OBU that sends the service request through the LTE network or the DSRC network.
  • the channel quality of the network where the physical resource required by the service request is located may be determined first; the channel quality is best obtained from the network of all required physical resources, and the OBU and the channel quality are the most coordinated.
  • the required physical resources in a good network establish a connection (V2V, V2I or V2R, etc.).
  • an OBU has established a connection with a base station through LTE; the base station receives a service request sent by the OBU to search for a movie, and the base station finds from the virtual resource pool that the movie exists in the remote server and in the RSU near the OBU. And detecting that the channel quality of the RSU near the OBU is stronger than the base station, so the OBU is scheduled to be connected to the RSU near the OBU through the DSRC.
  • the resource required for the service request is searched; according to the location of the required entity resource corresponding to the virtual resource searched from the virtual resource pool, it is determined whether the on-board unit needs to be scheduled to adopt a specific communication method.
  • the communication network In the communication network.
  • the location of the required physical resource corresponding to the virtual resource searched from the virtual resource pool it may refer to the required physical resource determined according to the location of the required physical resource corresponding to the virtual resource searched from the virtual resource pool.
  • the distance from the OBU may refer to the required physical resource determined according to the location of the required physical resource corresponding to the virtual resource searched from the virtual resource pool.
  • the required physical resources can be stored in any of the base stations, other OBUs, RSUs, and remote servers.
  • the location information can be used to determine the distance between the required physical resources and the OBU.
  • the nearest OBU is found from the location where all the required physical resources are stored, and the OBU is controlled to establish a connection with the required physical resource (V2V, V2I or V2R, etc.).
  • the OBU since the OBU is mostly mobile, the distance between the OBU and the required physical resources may also change at any time. In order to ensure the stability of the required physical resource transmission, it may be set to first select the required physical resource that is less than the distance threshold (ie, closer to the OBU) than the OBU.
  • the OBU When there is only one required physical resource that satisfies the condition, the OBU is scheduled to access the network where the physical resource is located; when there are at least two required physical resources that meet the condition, the The channel quality of the network where the physical resource is located, and determining whether the OBU needs to be scheduled into the communication network where one of the at least two required physical resources that meet the condition is located.
  • the third method that is, comprehensively judging whether it is necessary to schedule the OBU to a communication network adopting a specific communication method by using distance and channel quality is more reasonable.
  • the service request sent by A is searched for a song b (abbreviated as b), and the base station finds b from the virtual resource pool and stores it in the remote server.
  • the OBU B abbreviated as B
  • the OBU C abbreviated as C
  • the channel quality of the network is the strongest channel quality of C, so schedule A is connected to the DSRC network where C is connected.
  • the communication network employing the specific communication method may include, but is not limited to, a communication network employing a dedicated short-range communication technology; or a communication network employing long-term evolution technology.
  • it may be a V2V and V2R communication network using DSRC, or a V2I communication network using LTE.
  • the virtual base station in order to achieve the purpose of improving the resource utilization efficiency of each base station in a local area according to the specific characteristics of the specific area, can be defined by software to implement the third embodiment of the present application. The above method is provided.
  • a base station (including all resources in a base station) may be defined as a virtual base station, and all resources of the virtual base station are regulated by using a specific network software system.
  • OBU density change in vehicle density
  • OBU speed change in average vehicle speed of all vehicles
  • OBU service request at the time of congestion and when there is no congestion
  • Dynamically adjust the resources of the base station For the OBU, try to ensure that each OBU can enjoy high-quality services. For the base station, it can ensure on-demand allocation and reduce resource waste.
  • the frequency of updating the road network information is increased, and a computing unit is separately allocated to provide path planning services for different OBUs.
  • the frequency of updating the road network information is reduced, and a computing unit is separately allocated for providing multimedia services for different OBUs.
  • Embodiment 5 provides a method for implementing a car networking service in a parking lot to provide a plurality of services for the in-vehicle unit.
  • the implementation of the method is an RSU with DSRC and LTE transceiver modules and controllers; the application scenario is a parking lot, and there are 5 vehicles in the parking lot (referred to as A, B, and C respectively). , D, E);
  • A, B, and C there are 5 vehicles in the parking lot
  • D, E In order to cooperate with the RSU to provide multiple services for the user, it is assumed that there is still an LTE base station, and the signal of the LTE base station can cover the five vehicles.
  • Step 51 Whenever any one of A, B, C, D, E is detected to enter the coverage of the RSU, an access invitation is sent to the entered OBU of the vehicle.
  • step 52 connection instructions from A, B, C, D, and E are respectively received, so that connections are established with A, B, C, D, and E through DSRC, respectively.
  • Step 53 Receive service requests sent by A, B, C, D, and E respectively.
  • A sends a vehicle security detection service request; B sends a multimedia service request; C sends a route planning service request; D sends a mail transmission and reception service request; and E sends a life service request.
  • Step 54 In response to the received service request, perform a corresponding operation.
  • the RSU may obtain information such as vehicle identification information, mileage data, tire pressure data, and the like in the OBU in A in response to the vehicle safety detection service request sent by A; further, using vehicle safety software, acquired data, and The maintenance record of the vehicle obtained from the 4S shop maintenance database is carried out, and the vehicle safety assessment is performed, and the evaluation result is obtained: it is recommended that the vehicle be serviced once again after 500 km travel; thus, the maintenance reservation call of the 4S shop is sent to A.
  • information such as vehicle identification information, mileage data, tire pressure data, and the like in the OBU in A in response to the vehicle safety detection service request sent by A; further, using vehicle safety software, acquired data, and The maintenance record of the vehicle obtained from the 4S shop maintenance database is carried out, and the vehicle safety assessment is performed, and the evaluation result is obtained: it is recommended that the vehicle be serviced once again after 500 km travel; thus, the maintenance reservation call of the 4S shop is sent to A.
  • the RSU finds the data in the database and transmits the data to the OBU of B.
  • the OBU of the RSU scheduling C is connected to the LTE base station, and the path planning service request is forwarded to the LTE.
  • Base station After receiving the request, the LTE base station calculates the path planning result by connecting with the remote server, and sends the calculation result to C.
  • the RSU responds to the request, and the OBU of the dispatch D connects to the LTE base station, and controls the OBU to connect with the remote server of the email so that the D can send and receive mail.
  • the RSU searches for the bank within a radius of 500 m based on the offline map saved in the RSU, centering on the location of the parking lot, and The searched result is sent to E.
  • the scheduling decision made according to the scheduling judgment is realized, so that the network resources in the vehicle network can be flexible.
  • the use can also make the communication mode of each onboard unit more reasonable, and at the same time, can reasonably allocate communication resources, computing resources and storage resources, and reduce waste of hardware resources.
  • Embodiment 6 provides a network access scheduling method for balancing the network load of each base station.
  • the application scenario is the main road of the late peak.
  • the execution entity is the base station 1 and the base station 2 with the LTE transceiver module and the controller.
  • a schematic flowchart of the method is shown in Figure 5-2, and includes the following steps:
  • step 61 the controller 1 in the base station 1 detects the network load state of the base station 1, and the detection result is overload.
  • step 62 the controller 1 controls the base station 1 to reject the access request of the new vehicle.
  • Step 63 the controller 1 sends an allocation OBU request to the controller 2 in the base station 2,
  • Step 64 as shown in FIG. 5-3, the controller 2 accepts the request, connects several vehicles establishing a connection with the base station 1 to the base station 2, and controls the plurality of vehicles to disconnect from the base station 1.
  • the communication mode of the vehicle-mounted unit is adjusted, so that the scheduling decision made according to the scheduling judgment can be made, the network resources in the vehicle network can be flexibly used, and the communication modes of the vehicle-mounted units can be more reasonable, and the communication resources can be allocated reasonably. , computing resources and storage resources, reducing the waste of hardware resources.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源调配系统,用于无线通信网络中,用以实现对于资源的灵活控制。系统包括软件定义的控制层设备、软件定义的应用层设备,其中:所述应用层设备,用于在资源调配触发事件发生时,根据虚拟资源池,判断是否需要通知所述控制层设备对基础设施层中的资源进行调配;并在判断结果为是时,通知所述控制层设备对所述基础设施层中的资源进行调配;其中,所述虚拟资源池是根据所述基础设施层的资源的相关信息,采用虚拟化技术生成的;所述控制层设备,用于根据所述应用层设备的通知,对所述基础设施层中的资源进行调配。本申请还公开了一种基站、一种资源调配设备以及一种资源调配方法。

Description

一种资源调配系统、基站、设备及方法 技术领域
本申请涉及物联网技术领域,尤其涉及一种资源调配系统、基站、设备及方法。
背景技术
随着移动互联网的发展,移动云计算作为新兴的技术,已经吸引了研究人员大量的关注。接入网络中的移动设备均可视为资源单元,从而可以构建巨大的移动云计算网络。移动云计算网络中的每个移动设备都可以通过将计算、存储任务上载到云端进行来使用云中的“无限”的资源。移动云计算网络中的资源分为三种:通信资源,计算资源和存储资源。通信资源即移动设备与基站、移动设备之间通信所需要的频率资源、时域资源、空域资源等;计算资源即进行复杂运算所需的处理器资源;存储资源即数据存储所需的空间。通过建立巨大的移动云计算网络,可以进一步发挥云计算技术的巨大优势,为移动设备提供优质的云服务。
现今,随着移动设备的增加以及通信技术的发展,具有不同接入方式的移动设备,甚至新型的智能汽车,均可以作为网络节点设备接入移动云计算网络中,从而为移动云计算网络带来极大的异构性,使得移动云计算网络成为一种异构无线网络。目前,现有技术还没有提出有效实现对上述异构无线网络中的资源进行灵活调配的方案。V2I系统主要是为了支持方便的应用,包括个人通信,移动办公,远程信息处理,基于位置的信息,与汽车相关的移动服务,视频直播,和互联网接入V2I系统主要是为了支持方便的应用,包括个人通信,移动办公,远程信息处理,基于位置的信息,与汽车相关的移动服务,视频直播,和互联网接入。V2I系统主要是为了支持方便的应用,包括个人通信,移动办公,远程信息处理,基于位置的信息,与汽车相关的移动服务,视频直播,和互联网接入。
发明内容
本申请实施例提供一种资源调配系统,用以实现对于异构无线网络中的资源的灵活调配。
本申请实施例提供一种基站,用以实现对于异构无线网络中的资源的灵活调配。
本申请实施例提供一种资源调配设备,用以实现对于异构无线网络中的资源的灵活调配。
本申请实施例提供一种资源调配方法,用以实现对于异构无线网络中的资源的灵活调配。
本申请实施例采用下述技术方案:
一种资源调配系统,应用于无线通信网络中,包括软件定义的控制层设备、软件定义的应用层设备,其中:所述应用层设备,用于在资源调配触发事件发生时,根据虚拟资源池,判断是否需要通知所述控制层设备对基础设施层中的资源进行调配;并在判断结果为是时,通知所述控制层设备对所述基础设施层中的资源进行调配;其中,所述虚拟资源池是根据所述基础设施层的资源的相关信息,采用虚拟化技术生成的;所述控制层设备,用于根据所述应用层设备的通知,对所述基础设施层中的资源进行调配。
一种基站,应用于无线通信网络中,包括上述资源调配系统。
一种资源调配设备,应用于无线通信网络中,包括处理器,所述处理器上运行有所述系统。
一种资源调配方法,应用于无线通信网络中,包括:软件定义的应用层设备在资源调配触发事件发生时,根据虚拟资源池,判断是否需要通知所述控制层设备对基础设施层中的资源进行调配;其中,所述虚拟资源池是根据所述基础设施层的资源的相关信息,采用虚拟化技术生成的;
在判断结果为是时,通知软件定义的控制层设备对所述基础设施层中的资源进行调配。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
由于采用虚拟化技术,将基础设施层中资源的相关信息虚拟化为虚拟资源池,并采用软件定义的应用层设备进行资源调配决策,采用软件定义的控制层设备进行基础设施层中资源的调配,从而实现了数据面与控制面的分离,使得基础设施层的资源变得灵活可控。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1-1为本申请实施例1提供的一种资源调配系统的具体结构示意图;
图1-2为本申请实施例1提供的软件定义异构无线网络的逻辑结构示意图;
图1-3为本申请实施例1提供的南向接口和北向接口示意图;
图1-4为本申请实施例1提供的软件定义异构无线网络中的主控制器、次级控制器与软件定义异构无线网络的三层云架构的关系示意图;
图2为本申请实施例2提供的软件定义异构无线网络中一种虚拟基站的实现方案的三层结构示意图;
图3为本申请实施例4提供的一种车辆网通信方式的确定方法的具体流程示意图;
图4-1为本申请实施例5提供的一种停车场中车联网业务的实现方法的示意图;
图4-2为本申请实施例5提供的一种停车场中车联网业务的实现方法的具体实现流程示意图;
图5-1为本申请实施例6提供的一种网络接入调度方法的示意图;
图5-2为本申请实施例6提供的一种网络接入调度方法的具体实现流程示意图;
图5-3为本申请实施例6提供的一种网络接入调度方法的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
实施例1
为了实现对于资源的灵活调配,本申请实施例1首先提供一种应用于无线通信网络中的资源调配系统,该系统的具体结构示意图如图1-1所示,包括软件定义的控制层设备11(简称控制层设备11)、软件定义的应用层设备12(简称应用层设备12)。各设备的具体功能如下:
应用层设备12,用于在资源调配触发事件发生时,根据虚拟资源池,判断是否需要通知控制层设备对基础设施层中的资源进行调配;并在判断结果为是时,通知控制层设备11对基础设施层中的资源进行调配。其中,虚拟资源池是根据基础设施层的资源的相关信息,采用虚拟化技术生成的。此处所说的虚拟化技术,具体可以指将实体资源(包括网络资源、计算资源和存储资源中的至少一种)进行虚拟化的技术。由于该技术已能够采用现有技术手段实现,因此本说明书中不再赘述其具体实现方式。
控制层设备11,用于根据应用层设备12的通知,对基础设施层中的资源进行调配。
本申请实施例中,上述系统可以运行在资源调配设备中。具体地,该设备可以是基站,更具体地,该设备可以是基站的处理器。
为了让读者了解上述系统的实现原理,以下先介绍本申请实施例中基础设 施层、控制层设备11所在的控制层,以及应用层设备所在的应用层之间的关系。
本申请实施例中,基础设施层、控制层和应用层可以是由软件定义的三层逻辑结构。这三层逻辑结构的设置方式以软件定义网络(Software Defined Network,SDN)为原型,架构的主要特点是控制平面与数据平面的分离,以及控制功能的集中化。
为便于理解,后文以该三层逻辑结构应用于移动网络中,且移动网络中的移动节点为移动设备为例,介绍该三层逻辑架构中各层的特点。
软件定义异构无线网络是一个高度异构的通信网络,同时也是异构的云网络。以通信的角度来看,它由多种带有特定的无线接入技术(LTE或DSRC)的基站组成。不同类型的基站的覆盖范围和服务能力也非常不同。例如,宏小区基站能够支持数千用户,覆盖范围达到数个平方公里,而对于微小区,包括femtocells,picocells和DSRC cells,覆盖范围比宏小区小很多。一个微小区所支持的用户数通常不超过十个,它主要为宏小区提供了容量的支撑;以云网络角度来看,多样的处理和存储能力使得计算基础设施也是异构的。同时,用户设备的多样性,例如智能手机,iPad,甚至智能汽车等,也增加了网络的异构性。
从物理层面上看,软件定义异构无线网络由基带处理云和射频拉远头(Remote Radio Head,RRH)组成。RRH用于信号的光电转换或模数转换,包括发送与接收,用于软件定义异构无线网络与移动设备间的直接通信。基带处理云负责完成所有的无线接入网(Radio Access Network,RAN)功能。RRH与基带处理云之间通过光纤连接。由于软件定义异构无线网络具有高度异构性,为了在异构网络中提供低成本、高可靠、低时延的服务,该网络采用了三层云架构——微云、本地云和远端云。以下具体介绍该多层基带处理云架构:
1)微云:由于移动计算与移动通信技术的快速发展,如智能设备等移动节点已经可以作为云服务的实体。这些智能设备组成了软件定义异构无线网络 的最下层,称作微云。微云在控制器的协调下,仅为授权用户提供计算、感知、通信和存储等服务。这样,与使用专用硬件的传统云不同,软件定义异构无线网络的微云使用构建于移动设备中的可用资源组成。
2)本地云:在软件定义异构无线网络中,我们使用服务区域(SA)作为基本的地理单元。SA的范围覆盖一个或一簇宏小区。一个SA内部的资源构成的云称为本地云。每个SA都拥有自己的本地云及管理实体,管理实体用于控制本地的通信和计算设施。为了简化,本地云资源一般部署于SA内的宏小区基站站址这一固定位置。当移动设备进入SA的覆盖范围时,它会第一时间通过无线通信方式接入本地云中并享受云服务,从而使移动设备获得非常好的用户体验。
基于云的移动服务本质上是交互的。缓慢的交互响应将导致效率的下降以及用户的体验度的降低,因而在本地云中应当存在虚拟服务实体来保证业务实时性。一些云服务可能涉及不止一层的云资源。这种情况下本地云可以作为一个数据缓存或是服务代理设备。本地云可以将不同层的云资源联合在一起,它在三层云架构中扮演着重要角色。
3)远端云:对于一个位于确定SA的移动设备,其他SA的资源池可以称为远端云,它们位于云架构的顶层。远端云包括许多核心网的云基础设施,这使得它有很强大的计算和存储能力。为了接入远端云,终端除了无线链路外,还需要额外的有线链路,这可能导致终端与服务器之间交互速率的降低。然而,当本地云的服务能力不足以满足移动设备的服务质量(Quality of Service,QoS)需求时,本地云将不得不向远端云发出服务请求,移动设备将牺牲时延的代价获得更强大的计算与存储能力。
以下介绍软件定义异构无线网络的逻辑结构。
本申请实施例中,软件定义异构无线网络逻辑上可以分为三层,即,网络基础设施层(基础设施层),控制层和应用层,如图1-2所示。在这三层中,控制层是最重要的一个层,因为它决定了网络的行为和性能。通过可编程的控 制器,网络管理者可以轻易地配置新的网络设备以及快速部署新的应用。具体地,各层的详细说明如下:
1)网络基础设施层:网络基础设施层位于软件定义异构无线网络的最底层。该层由实际的底层物理设备组成,它们构成了软件定义异构无线网络的物理资源,包括通信资源,计算资源和存储资源。通信资源主要由云中的基带处理单元(Baseband Unit,BBU)、射频拉远头(Remote Radio Head,RRH)和回程链路组成。通过RRH,无线信号可以在基站(Base Station,BS)和移动设备之间传输。BBU用于基带信号的处理,回程链路为BS与BS之间、BS与核心网之间的连接提供通路,它负责为所有资源提供高速率的连接支持。计算资源与存储资源由软件定义异构无线网络中的三层云提供。
2)控制层:控制层是网络架构的中间层,它向上用于为应用层提供相关信息,处理应用请求等,向下在基础设施层的物理资源上完成相应的控制行为。控制层由控制器组成。控制器又由两主要部分组成:控制模块和虚拟资源池。
由于传统的集中式SDN控制层所具有的局限性,软件定义异构无线网络采取了一种分级控制器架构,使得其能够保障软件定义异构无线网络的QoS,从而可以响应任意状况移动设备发送的请求并处理。
具体而言,软件定义异构无线网络中的分级控制层分为主控制器(Primary Controller,PCon)和次级控制器(Secondary Controller,SCon)两级,以下详述这两级控制器各自的功能:
主控制器:PCon位于软件定义异构无线网络控制层的顶层。它用于控制软件定义异构无线网络全局网络。通常,Pcon用于完成一些广域的或非实时性的控制功能,例如SA间切换,广域云资源分配等等。全局网络的各项信息也集中于PCon,例如控制层拓扑,SA状态和资源状态等,以便于PCon做出全局最优决策并控制下层网络实施。为了与应用层、SCon和下层网络连接,以及控制器东西向的扩展,PCon设有四种接口,北向接口(North-Bound Interface,NBI),南向辅助控制器接口(South-Bound Interface-SCon,SBI-S),东向接口 (East-Bound Interface,EBI)和西向接口(West-Bound Interface,WBI)。其中,北向接口示意图如图1-2所示。
次级控制器:SCon逻辑上位于PCon之下,它是区域性的控制实体,每个SCon控制一个SA。SCon的一个重要的功能是确保低时延安全相关应用的QoS要求得到满足。同时,每个SCon管理着一个虚拟资源池,用于控制SA内的资源,包括资源分配、回收,以及跨域资源请求等。同样,为了与应用层,PCon和下层网络连接,以及控制器东西向的扩展,SCon设有四种接口:北向接口(North-Bound Interface,NBI),北向主控制器接口(North-Bound Interface-PCon,NBI-P),南向接口(South-Bound Interface,SBI),东向接口(East-Bound Interface,EBI)和西向接口(West-Bound Interface,WBI)。北向接口和南向接口示意图如图1-3所示。
本申请实施例中,主控制器、次级控制器与软件定义异构无线网络的三层云的关系示意图如图1-4所示。
3)应用层:应用层位于软件定义异构无线网络的顶层。网络管理者可以通过设计编写不同的应用来控制和调整该网络。应用层中存在一些典型的应用例如接入控制,移动性管理,动态资源分配和资源卸载等,部分应用实例如下:
接入管理:当接入管理程序运行时,SCon将检测网络负载和射频链路状态。一旦SCon检测到某个网络的负载超过某一阈值,SCon将调整新的车辆接入请求转向其他的SCon,这样可以实现业务流负载平衡并满足已经接入的移动设备的QoS。
动态资源分配:在软件定义异构无线网络中,每一个移动设备都被视为一个小型资源单元。SCon将不同中资源的所有信息全部收集到虚拟资源池中。网络中的所有资源可以通过动态资源分配应用进行最优化分配。一旦有新的服务请求到达,这一应用即依据当前网络状态来寻找一种方法为服务请求分配资源。SCon通过NBI与应用交互后,将在应用的引导下为用户分配可用的资源。
在一种实施方式中,资源调配触发事件可以包括:如图1-1所示的该系统 接收到移动节点发送的业务请求。具体地,系统接收到该请求,可以是指应用层设备12接收到控制层设备11转发的该业务请求,也可以是指控制层设备11接收到该请求。在该事件发生后,应用层设备12可以根据虚拟资源池,判断是否需要调度该业务请求;在判断出需要调度该业务请求时,通知控制层设备11将该业务请求调度至确定出的、用于处理该业务请求的目标设备中,比如调配至能适应该移动节点Qos的虚拟基站(virtual Base Station,vBS)中。后文将对vBS进行详细介绍,此处不再赘述。
控制层设备11,在接收到应用层设备12在判断出需要调度该业务请求后发出的通知后,可以根据该应用层设备的通知,将业务请求调度至确定出的、用于处理业务请求的目标设备。
在一种实施方式中,资源调配触发事件可以包括节点调度触发事件。基于该事件,应用层设备12可以用于:根据虚拟资源池,判断是否需要通知控制层设备将移动节点调度至特定通信网络中。其中,这里所说的节点调度触发事件可以包括:
图1所示的系统接收到移动节点发送的业务请求;或该系统完成对通信网络的状态的检测。
图1所示的系统接收到该请求,可以是指应用层设备12接收到控制层设备11转发的该业务请求,也可以是指控制层设备11接收到该请求。该系统完成对通信网络的状态的检测,可以是指应用层设备12完成对通信网络的状态的检测,也可以是指控制层设备11完成对通信网络的状态的检测。
在一种实施方式中,当节点调度触发事件包括系统接收到移动节点发送的业务请求时,应用层设备12可以用于:根据虚拟资源池,判断是否需要将移动节点调度至特定通信网络中;在判断出需要调度移动节点至特定通信网络中时,通知控制层设备11将移动节点调度至特定通信网络;控制层设备11,则可以用于根据应用层设备12的通知,将该移动节点调度至特定通信网络。
基于上述介绍,以下进一步对实施例1提供的系统的功能细节进行具体说 明。
针对前文所述的“资源调配触发事件”而言,是指可以触发应用层设备12判断是否需要通知控制层设备11对基础设施层中的资源进行调配的任何事件。比如,接收到基础设施层的移动节点发送的业务请求或特定的接入请求等,可以视为发生了资源调配触发事件;又比如,完成对基础设施层中资源所在的通信网络的状态(如网络负载情况等)的检测,也可以视为发生了资源调配触发事件;再比如,完成对基础设施层中各种资源(一般包括通信资源、计算资源和存储资源)状态的检测,也可以视为发生了资源调配触发事件;等等。
在资源调配触发事件发生时,应用层设备12可以以虚拟资源池中的信息作为判断依据,从而判断是否需要通知控制层设备11对基础设施层中的资源进行调配。其中,这里所说的资源调配触发事件比如可以包括:控制层设备11接收到移动节点发送的业务请求;或控制层设备11完成对通信网络的状态的检测。
进一步地,若应用层设备12判断出需要将移动节点调度至特定通信网络中时,则向控制层设备11发送调度信息;而控制层设备11,则可以根据应用层设备12发送的调度信息,对移动节点的通信方式进行调度。
在一种实施方式中,当控制层设备11包括前文所述的主控制器和次级控制器时,主控制器可以用于:当应用层设备11发送给控制层设备的通知用于指示对资源进行全局调配时,确定资源的全局最优调配决策,并根据该决策对资源进行调配;而次级控制器,则可以用于在该通知用于指示对基础设施层中的SA中的资源进行调配时,对SA中的资源进行调配。
采用本申请实施例提供的上述系统,由于采用虚拟化技术,将基础设施层中的资源的相关信息虚拟化为虚拟化资源池,并采用软件定义的应用层设备进行资源调配决策,采用软件定义的控制层设备进行基础设施层中资源的调配,从而实现了数据面与控制面的分离,使得基础设施层的资源变得灵活可控。
实施例2
实施例1中已经提到,实施例1提供的系统可以运行于基站中。针对这一思想,本申请实施例2提供软件定义异构无线网络中一种虚拟基站的实现方案。
仍然以车联网为例,在实施例1中介绍的软件定义异构无线网络的架构基础上,实施例2通过软件定义虚拟基站(virtual Base Station,vBS)技术为移动设备提供高质量服务。
由实施例1的描述已知,软件定义异构无线网络架构的基本特点是控制面与数据面的分离。控制面由不同的控制功能构成,而数据面由大量的实体资源构成,同时,控制器抽象化了所有实体资源为虚拟资源,并集中于虚拟资源池中供分配用户使用。
基于上述特点,实施例2中,设置虚拟资源以虚拟机(Virtual Machine,VM)为基本单元被调度。
由于软件定义异构无线网络具有高度异构性和广泛的业务类型,不同的应用需要不同的控制功能和不同的资源完成。另外对于不同区域,移动设备密度与资源请求规模可能大不相同,同一区域内不同时段也会有较大波动。为了更好地进行资源管理,最大限度地满足移动设备的业务需求,我们在SCon中通过软件定义的方式构建了大量的vBS。不同的vBS包含一定的应用模块、控制功能和虚拟资源,如图2所示。
类似于蜂窝网中的基站,vBS用于一定区域内移动设备的接入请求与业务请求。不同的是,vBS是以软件定义的方式,在逻辑上从SCon中融合部分应用、控制功能、资源等,独立成一个用于某些业务场景或有某些覆盖范围要求的虚拟的基站。
与软件定义异构无线网络的三层架构一致,vBS也为三层结构,如图2所示,vBS也实现了控制平面与数据平面的分离。
数据平面即虚拟资源,它的物理实体位于本地云中。它作为vBS的物理资源,由控制平面的控制功能完成抽象,处理和调度,成为vBS可以调度的虚拟资源。控制平面则分为不同类型的控制功能。通常,SCon与PCon提供给vBS 所有必要的功能,用以解决物理资源分配和数据平面/用户平面的实现等问题。vBS应用层可以部署多种应用来保证软件定义异构无线网络能够正常工作,并可以保持vBS处于最优状态。例如,在高密度部署区,相邻vBS需要干扰协作应用来避免小区间干扰。
vBS依据其覆盖范围,可以分为宏小区MvBS(Macro-cell vBS,MvBS)和微小区vBS(Small-cell vBS,SvBS),具体类型由PCon根据网络状况等信息决定。一个MvBS用于覆盖一个或超过一个SA范围的用户,而高数据速率或低时延服务需要通过SvBS提供。由于MvBS和SvBS实现复杂度和通信能力差异很大,MvBS重点在于提高网络覆盖率以及大规模的资源调度,因而在软件定义异构无线网络中,通常更多的云资源应分配给MvBS而不是SvBS。以上MvBS和SvBS概念均位于逻辑层面,通过软件的方式实现,他们共用同样的硬件实体,仅在逻辑上独立。
实施例3
实施例3提供一种应用于无线通信网络中的资源调配方法,用以实现对于资源的灵活控制。该方法包括下述步骤一~步骤二。
步骤一:软件定义的应用层设备在资源调配触发事件发生时,根据虚拟资源池,判断是否需要通知软件定义的控制层设备对基础设施层中的资源进行调配;在判断结果为是时,执行步骤二。其中,虚拟资源池是根据基础设施层的资源的相关信息,采用虚拟化技术生成的。
步骤二:软件定义的应用层设备通知软件定义的控制层设备对基础设施层中的资源进行调配。
实施例4
实施例4提供了一种车联网通信方式的确定方法,使得车联网中的网络资源能够灵活使用。假设执行主体为基站。该方法的具体流程示意图如图3所示,包括下述步骤:
步骤41,与车载单元建立连接。
针对步骤41而言,与车载单元建立连接,可以但不限于包括:通过专用短距离通信技术或长期演进技术与车载单元建立连接。
具体而言,专用短距离通信技术(下文简称DSRC)是一种高效的无线通信技术,它可以实现在特定区域内(通常为半径数十米的区域)对高速运动下的移动目标的识别和双向通信。例如,利用DSRC可以实现“车与车”双向通信(下文简称V2V),从而完成实时传输图像、语音和数据信息;长期演进技术(下文简称LTE)是能够提供系统容量大和覆盖广的无线通信技术,例如“车与基站”(下文简称V2I)连接,传输数据信息。又例如,可以利用DSRC或LTE实现“车与路(Vehicle-to-Road Side Unit,V2R)”的双向通信。基站可以但不限于包括带有DSRC和LTE,当有检测到有车辆进入基站的覆盖范围时,可以向车辆的车载单元(下文简称OBU)发出连接邀请,待用户同意邀请后,此OBU就与基站建立连接。
在一种实施方式中,为了确保基站的安全,可以在基站中加入授权机制,来达到过滤非法用户的效果。比如,可以通过验证用户名称和用户密码是否有效的方式,过滤无效用户。
步骤42,在发生调度判断触发事件时,判断是否需要将车载单元调度至采用特定通信方式的通信网络中。
针对步骤42而言,发生调度判断触发事件时,可以但不限于包括:接收到车载单元发送的业务请求时;或检测通信网络的网络状态后。
在一种实施方式中,业务请求可以包括:安全类业务请求和非安全类业务请求。其中,安全类业务是指为避免交通事故和保证行车安全的业务,用于减少人员伤亡,如V2V之间的超车预警,自适应巡航预警等;V2R之间的电子信号灯,电子路标等;非安全类业务是指满足多媒体信息需求的业务,用于丰富生活信息和驾驶乐趣等,如V2I或V2R之间的多媒体传输,生活类信息推送,躲避事故、拥堵的路径规划等,还可以包括云服务,如个人ID(Identity, 身份标识号码)中的数据信息共享等。
针对步骤42具体而言,在接收到车载单元发送的业务请求时,判断是否需要将车载单元调度至采用特定通信方式的通信网络中,可以有以下三种方式实现:
第一种方式:
根据接收到的业务类型,判断是否需要将OBU调度至采用特定通信方式的通信网络中。假设在接收业务请求之前,OBU先通过LTE与基站建立连接。比如,用户通过OBU请求安全类服务中的事故预警,那么基站就会控制该OBU以V2V的方式通过DSRC网络与附近的其它OBU建立连接;又如,用户通过OBU请求安全类服务中的交通法规预警,那么基站就会控制该OBU以V2R的方式通过DSRC网络与附近的路边单元(下文简称RSU)建立连接;还如,用户通过OBU请求非安全类服务中的路径规划,那么基站就可以控制该OBU以V2I的方式通过LTE网络与基站保持连接,并结合实时本地路网数据(流量数据、事故数据等)或远端服务器的路网数据,进行路径规划计算,再将计算结果提供给该OBU。
第二种方式:
根据业务请求,在虚拟资源池中,搜索业务请求所需的虚拟资源;根据所需实体资源所在网络的信道质量,判断是否需要将OBU调度至采用特定通信方式的通信网络中。
其中,虚拟资源池,是指将实体资源虚拟化,将虚拟化后的资源保存在虚拟资源池中,以便分配给OBU、基站、服务器、应用程序等设备或程序使用。
具体地,可以认为所需实体资源所在网络的信道质量越好,就越能够为用户提供更好的服务体验。所需实体资源所在网络的信道质量,可以是指用户通过OBU请求的诸如计算资源、存储资源等所在的网络的信道质量。所需实体资源可以存储在基站、其它OBU、RSU、远端服务器中的任一位置,这些所需实体资源会通过LTE网络或DSRC网络传输到发送业务请求的OBU中。
为了实现根据信道质量对OBU进行调度,可以先确定业务请求所需实体资源所在网络的信道质量;从所有所需实体资源的所在网络的中找到信道质量最好的,调度OBU与该信道质量最好的网络中的所需实体资源建立连接(V2V、V2I或V2R等)。
比如,某一OBU已经与基站通过LTE建立连接;基站接收到该OBU发出的业务请求为搜索一部电影,基站从虚拟资源池中找到该电影存在于远端服务器中和该OBU附近的RSU中,并检测到OBU附近的RSU的信道质量强于本基站,所以调度该OBU通过DSRC连接到该OBU附近的RSU中。
第三种方式:
根据业务请求,在虚拟资源池中,搜索业务请求所需的资源;根据从虚拟资源池中搜索到的虚拟资源对应的所需实体资源的位置,判断是否需要将车载单元调度至采用特定通信方式的通信网络中。
根据从虚拟资源池中搜索到的虚拟资源对应的所需实体资源的位置,可以是指根据基于从虚拟资源池中搜索到的虚拟资源对应的所需实体资源的位置确定出的所需实体资源与OBU之间的距离。
具体地,可以认为所需实体资源的位置与OBU之间的距离越近,就越能够为用户提供更好的服务体验。所需实体资源可以存储在基站、其它OBU、RSU、远端服务器中的任一位置。通过定位信息就可以确定出所需实体资源与OBU之间的距离。
进一步,再从所有所需实体资源存储的位置中,找到距离OBU最近的,控制OBU与所需实体资源建立连接(V2V、V2I或V2R等)。
在实际应用中,由于OBU大多是移动的,所以OBU与所需实体资源的距离也可能是随时变化的。为了保证所需实体资源传输的稳定性,可以设定,先选出与OBU之间的距离小于距离阈值(即离OBU比较近)的所需实体资源。当只存在一个满足该条件的所需实体资源时,调度OBU接入该实体资源所在网络;当存在至少两个满足该条件的所需实体资源时,可以进一步根据各所需 实体资源所在网络的信道质量,判断是否需要将OBU调度至所述至少两个满足该条件的所需实体资源中一个所需实体资源所在的通信网络中。
相比前两种方式而言,第三种方式,即通过距离和信道质量两种途径综合判断是否需要将OBU调度至采用特定通信方式的通信网络中会更加合理。
比如,基站通过LTE网络与OBU A(简称A)建立连接后,接收到A发出的业务请求为搜索一首歌曲b(简称b),基站从虚拟资源池中找到b分别存储在远端服务器中、A附近的RSU中、相距A20m的OBU B(简称B)中和相距A40m的OBU C(简称C)中;通过检测b所在网络(分别为LTE网络、B所在的DSRC网络和C所在的DSRC网络)的信道质量,得到C的信道质量最强,所以调度A与连接到C所在的DSRC网络中。
针对步骤42进一步而言,采用特定通信方式的通信网络,可以但不限于包括:采用专用短距离通信技术的通信网络;或采用长期演进技术的通信网络。
具体的,可以是采用DSRC的V2V和V2R通信网络,或采用LTE的V2I通信网络。
在一种实施方式中,为了根据具体区域的具体特性,更加灵活的分配和利用实体资源,达到提高局部地区各个基站的资源利用效率的目的,可以通过软件定义虚拟基站来实现本申请实施例3提供的上述方法。
比如,可以将基站(包括基站内的所有资源)定义为虚拟基站,利用特定的网络软件系统调控虚拟基站的所有资源。具体地,可以根据某一区域覆盖范围内OBU密度的变化(车辆密度的变化)、OBU速度的变化(所有车辆平均车速的变化)、OBU业务请求的变化(拥堵时和不拥堵时)等,动态的调节基站的资源,对于OBU来讲,尽量保证了每个OBU能够享受高质量的服务;对于基站来讲,能够保证按需分配,减少资源浪费。比如,对于同一基站而言,在拥堵时段,提高更新路网信息的频率,单独分配一个计算单元,用于为不同的OBU提供路径规划服务。在非拥堵时段,降低更新路网信息的频率,单独分配一个计算单元,用于为不同的OBU提供多媒体服务。
实施例5
基于相同的发明构思,实施例5提供了一种停车场中车联网业务的实现方法,以便为车载单元提供多种服务。如图4-1所示,假设:方法的执行主体为具有DSRC和LTE收发模块以及控制器的RSU;应用场景为一停车场,停车场中有5辆车(分别简称为A、B、C、D、E);为配合RSU为用户提供多种服务,假设还存在一座LTE基站,该LTE基站的信号可以覆盖这5辆车。
该方法的具体流程示意图如图4-2所示,包括下述步骤:
步骤51,每当检测到A、B、C、D、E中的任意一辆进入RSU的覆盖范围内,则向进入的该辆的OBU发送接入邀请。
这里假设这5辆车先后进入RSU的覆盖范围,从而RSU分别向每个OBU发送接入邀请。
步骤52,分别接收到来自A、B、C、D、E的连接指令,从而通过DSRC分别与A、B、C、D、E建立连接。
步骤53,分别接收A、B、C、D、E发送的业务请求。
这里假设A发送车辆安全检测业务请求;B发送多媒体业务请求;C发送路线规划业务请求;D发送邮件收发业务请求;E发送生活类业务请求。
步骤54,响应于接收到的业务请求,执行相应的操作。
具体而言,RSU响应于A发送的车辆安全检测业务请求,可以获取A中OBU中的车辆识别信息、里程数据、胎压数据等信息;进一步地,利用车辆安全软件、获取到的数据,以及从4S店维修保养数据库中获取的该车辆的保养记录,进行车辆安全评估,得到评估结果:建议车辆再行驶500km后进行一次保养;从而将4S店的保养预约电话发送给A。
针对B发送的多媒体业务请求而言,若该请求对应的业务为观看一部电视剧中某一集,则RSU在数据库中查找到该数据,将该数据传输给B的OBU中。
针对C发送的路径规划业务请求而言,由于RSU中没有路网信息,所以RSU调度C的OBU连接到LTE基站中,并将路径规划业务请求转发给LTE 基站。LTE基站在接收到该请求后,通过与远端服务器连接,计算出路径规划结果,将计算结果发送给C。
针对D发送的邮件收发业务请求,RSU响应于该请求,调度D的OBU连接到LTE基站,并控制OBU与电子邮件的远端服务器连接,以便D能够收发邮件。
针对E发送的生活类业务请求而言,若该请求对应的业务为查找周边的银行,则RSU根据RSU中保存的离线地图,以停车场的位置为中心,搜索半径500m内的银行,并将搜索到的结果发送给E。
采用实施例4提供的该方法,由于可以在发生调度判断时,判断是否需要对车载单元的通信方式进行调整,从而实现了根据调度判断做出的调度决定,使得车联网中的网络资源能够灵活使用,也可以使各车载单元的通信方式更加合理,同时能够合理的分配通信资源、计算资源和存储资源,减少硬件资源的浪费。
实施例6
基于相同的发明构思,实施例6提供了一种网络接入调度方法,为平衡各基站的网络负载。如图5-1所示,假设应用场景为晚高峰的主路上,执行主体为具有LTE收发模块以及控制器的基站1和基站2。该方法的具体流程示意图如图5-2所示,包括下述步骤:
步骤61,基站1内的控制器1检测基站1的网络负载状态,检测结果为超负荷。
步骤62,控制器1控制基站1拒绝新车辆的接入请求。
步骤63,控制器1向基站2内的控制器2发送分配OBU请求,
步骤64,如图5-3所示,控制器2接受请求,将与基站1建立连接的若干车辆连接到基站2中,并控制该若干车辆与基站1断开连接。
采用实施例6提供的该方法,由于可以在发生调度判断时,判断是否需要 对车载单元的通信方式进行调整,从而可以根据调度判断做出的调度决定,使得车联网中的网络资源能够灵活使用,也可以使各车载单元的通信方式更加合理,同时能够合理的分配通信资源、计算资源和存储资源,减少硬件资源的浪费。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的 任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种资源调配系统,其特征在于,应用于无线通信网络中,包括软件定义的控制层设备、软件定义的应用层设备,其中:
    所述应用层设备,用于在资源调配触发事件发生时,根据虚拟资源池,判断是否需要通知所述控制层设备对基础设施层中的资源进行调配;并在判断结果为是时,通知所述控制层设备对所述基础设施层中的资源进行调配;其中,所述虚拟资源池是根据所述基础设施层的资源的相关信息,采用虚拟化技术生成的;
    所述控制层设备,用于根据所述应用层设备的通知,对所述基础设施层中的资源进行调配。
  2. 如权利要求1所述的系统,其特征在于,所述资源调配触发事件包括:所述系统接收到移动节点发送的业务请求;则
    所述应用层设备,用于根据虚拟资源池,判断是否需要调度所述业务请求;在判断出需要调度所述业务请求时,通知所述控制层设备将所述业务请求调度至确定出的、用于处理所述业务请求的目标设备;
    所述控制层设备,用于根据所述应用层设备的通知,将所述业务请求调度至确定出的、用于处理所述业务请求的目标设备。
  3. 如权利要求1所述的系统,其特征在于,所述资源调配触发事件包括节点调度触发事件;
    所述应用层设备,用于:根据虚拟资源池,判断是否需要通知控制层设备将移动节点调度至特定通信网络中。
  4. 如权利要求3所述的系统,其特征在于,所述节点调度触发事件包括:
    所述系统接收到移动节点发送的业务请求;或
    所述系统完成对通信网络的状态的检测。
  5. 如权利要求4所述的系统,其特征在于,当所述节点调度触发事件包括所述系统接收到所述移动节点发送的所述业务请求时,所述应用层设备,用 于:
    根据虚拟资源池,判断是否需要将所述移动节点调度至特定通信网络中;在判断出需要调度所述移动节点至特定通信网络中时,通知所述控制层设备将所述移动节点调度至所述特定通信网络;
    所述控制层设备,用于根据所述应用层设备的通知,将所述移动节点调度至所述特定通信网络。
  6. 如权利要求1所述的系统,其特征在于,所述控制层设备包括主控制器和次级控制器;
    所述主控制器,用于当所述通知用于指示对所述资源进行全局调配时,确定所述资源的全局最优调配决策,并根据所述决策对所述资源进行调配;
    所述次级控制器,用于在所述通知用于指示对所述基础设施层中的服务区域SA中的资源进行调配时,对SA中的资源进行调配。
  7. 一种基站,其特征在于,应用于无线通信网络中,包括如权利要求1~6任一权项所述的资源调配系统。
  8. 一种资源调配设备,其特征在于,应用于无线通信网络中,包括处理器;所述处理器上运行有所述权利要求1~6任一权项所述的资源调配系统。
  9. 一种资源调配方法,其特征在于,应用于无线通信网络中,所述方法包括:
    软件定义的应用层设备在资源调配触发事件发生时,根据虚拟资源池,判断是否需要通知所述控制层设备对基础设施层中的资源进行调配;其中,所述虚拟资源池是根据所述基础设施层的资源的相关信息,采用虚拟化技术生成的;
    在判断结果为是时,通知软件定义的控制层设备对所述基础设施层中的资源进行调配。
  10. 如权利要求9所述的方法,其特征在于,所述无线通信网络包括车联网。
PCT/CN2015/077749 2015-04-07 2015-04-29 一种资源调配系统、基站、设备及方法 WO2016161676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510162099.XA CN104869654B (zh) 2015-04-07 2015-04-07 一种资源调配系统、基站、设备及方法
CN201510162099.X 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016161676A1 true WO2016161676A1 (zh) 2016-10-13

Family

ID=53915066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077749 WO2016161676A1 (zh) 2015-04-07 2015-04-29 一种资源调配系统、基站、设备及方法

Country Status (2)

Country Link
CN (1) CN104869654B (zh)
WO (1) WO2016161676A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932902A (zh) * 2019-11-29 2020-03-27 中国人民解放军国防科技大学 一种跨域交换资源动态分配方法
CN112204482A (zh) * 2018-05-31 2021-01-08 西门子股份公司 冗余热备控制系统、方法、控制设备及计算机可读存储介质
CN116056240A (zh) * 2023-04-03 2023-05-02 阿里巴巴(中国)有限公司 资源配置系统、方法及设备

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488387B (zh) * 2015-08-31 2019-11-29 电信科学技术研究院 一种开启传输功能的方法和设备
CN107925890B (zh) * 2015-09-04 2022-03-25 索尼公司 无线通信系统
CN106507449B (zh) * 2015-09-07 2021-01-26 中兴通讯股份有限公司 车联网通信的控制方法及装置
CN106507500B (zh) * 2015-09-07 2020-11-03 中兴通讯股份有限公司 车联网的通信方法及装置
CN106559877B (zh) * 2015-09-24 2019-02-26 中兴通讯股份有限公司 车联网业务的发送方法及装置、资源配置方法及装置
CN106559849B (zh) * 2015-09-25 2019-04-23 中兴通讯股份有限公司 目标区域的选择方法、装置及系统、obu、rsu
CN106658351B (zh) * 2015-11-02 2019-07-23 中兴通讯股份有限公司 车联网v2x业务的转发方法及装置
CN105517176B (zh) * 2015-12-03 2018-11-30 中国科学院计算技术研究所 动态调度虚拟化基站资源的方法
CN106937355B (zh) * 2015-12-29 2020-01-17 普天信息技术有限公司 一种车辆通信控制方法及基站
CN105554821B (zh) * 2016-01-25 2020-02-21 天津大学 面向智能移动终端协议的移动流量管理系统
CN105554806B (zh) * 2016-01-25 2019-03-08 天津大学 面向智能移动终端协议架构的移动性管理方法
CN107295466A (zh) * 2016-03-31 2017-10-24 北京信威通信技术股份有限公司 通信处理方法及装置
US10200921B2 (en) 2016-04-01 2019-02-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for resource configuration in handover
CN107371137A (zh) * 2016-05-12 2017-11-21 财团法人工业技术研究院 车联网系统、基站及其动态资源管理方法
CN106131891B (zh) * 2016-08-30 2019-06-04 重庆邮电大学 一种基于sdwn的资源映射装置和方法
DE102017204326A1 (de) * 2016-10-21 2018-04-26 Volkswagen Aktiengesellschaft Verfahren zur Überwachung der Qualität einer Datenverbindung sowie Teilnehmerstation und Netzverwaltungseinheit zur Verwendung bei dem Verfahren
CN106658634B (zh) * 2016-12-27 2020-04-21 中山大学 一种软件定义车载网络系统
CN107241223B (zh) * 2017-06-07 2019-06-14 重庆电子工程职业学院 一种基于sdr和虚拟化技术资源弹性协作映射方法及装置
CN107819496B (zh) * 2017-10-30 2020-10-13 重庆大学 一种sdn化的5g网络系统及其协作控制方法
TWI641951B (zh) 2017-11-20 2018-11-21 宏碁股份有限公司 動態分派工作及提供資源的方法、裝置及其系統
CN108845885B (zh) * 2018-07-04 2021-05-18 浪潮集团有限公司 一种面向自动驾驶的边缘计算资源管理方法
US11032370B2 (en) * 2018-11-14 2021-06-08 Toyota Jidosha Kabushiki Kaisha Wireless communications in a vehicular macro cloud
US11928959B2 (en) * 2019-01-11 2024-03-12 Toyota Jidosha Kabushiki Kaisha On-demand formation of stationary vehicular micro clouds
CN110381605B (zh) * 2019-07-08 2021-02-02 中国联合网络通信集团有限公司 一种基站以及终端接入基站的方法
CN110827555B (zh) * 2019-10-24 2020-08-21 浩鲸云计算科技股份有限公司 基于软件定义的交通信号控制系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378186A (zh) * 2011-11-21 2012-03-14 中兴通讯股份有限公司 一种基站资源共享系统及方法
CN102857548A (zh) * 2012-04-25 2013-01-02 梁宏斌 一种移动云计算资源优化配置方法
CN103124436A (zh) * 2011-11-18 2013-05-29 华为技术有限公司 一种无线通讯系统、云虚拟基站和资源调度方法
CN103338163A (zh) * 2013-07-16 2013-10-02 清华大学 支持动态弹性资源调度的软件定义网络控制器
WO2015007331A1 (en) * 2013-07-19 2015-01-22 Nokia Solutions And Networks Oy Network element and method of running applications in a cloud computing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124436A (zh) * 2011-11-18 2013-05-29 华为技术有限公司 一种无线通讯系统、云虚拟基站和资源调度方法
CN102378186A (zh) * 2011-11-21 2012-03-14 中兴通讯股份有限公司 一种基站资源共享系统及方法
CN102857548A (zh) * 2012-04-25 2013-01-02 梁宏斌 一种移动云计算资源优化配置方法
CN103338163A (zh) * 2013-07-16 2013-10-02 清华大学 支持动态弹性资源调度的软件定义网络控制器
WO2015007331A1 (en) * 2013-07-19 2015-01-22 Nokia Solutions And Networks Oy Network element and method of running applications in a cloud computing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204482A (zh) * 2018-05-31 2021-01-08 西门子股份公司 冗余热备控制系统、方法、控制设备及计算机可读存储介质
CN110932902A (zh) * 2019-11-29 2020-03-27 中国人民解放军国防科技大学 一种跨域交换资源动态分配方法
CN116056240A (zh) * 2023-04-03 2023-05-02 阿里巴巴(中国)有限公司 资源配置系统、方法及设备

Also Published As

Publication number Publication date
CN104869654A (zh) 2015-08-26
CN104869654B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2016161676A1 (zh) 一种资源调配系统、基站、设备及方法
Mekki et al. Vehicular cloud networks: Challenges, architectures, and future directions
Raza et al. A survey on vehicular edge computing: architecture, applications, technical issues, and future directions
Ang et al. Deployment of IoV for smart cities: Applications, architecture, and challenges
Yang et al. Emerging technologies for 5G-enabled vehicular networks
Stojmenovic Fog computing: A cloud to the ground support for smart things and machine-to-machine networks
US11219041B2 (en) Resource allocation method and road side unit
US10728892B2 (en) Method and device for scheduling resources in internet of vehicles system
Soua et al. Multi-level SDN with vehicles as fog computing infrastructures: A new integrated architecture for 5G-VANETs
LiWang et al. A computation offloading incentive mechanism with delay and cost constraints under 5G satellite-ground IoV architecture
CN113965568A (zh) 一种面向城市道路c-v2x网络的边缘计算系统
US9554328B2 (en) Vehicle-based small cell base stations
Li et al. Resource management in fog-enhanced radio access network to support real-time vehicular services
Chen et al. Vehicle as a service (VaaS): Leverage vehicles to build service networks and capabilities for smart cities
CN110213716B (zh) 一种基于雾无线接入网络的车联组网方法
EP3912408B1 (en) Service information for v2x service coordination in other frequency spectrum
Keshari et al. A survey on Vehicular Fog Computing: Current state-of-the-art and future directions
CN116547648A (zh) 用于在多址边缘计算平台架构中支持应用移动性的方法和装置
Behravan et al. A comprehensive survey on using fog computing in vehicular networks
Mekki et al. A survey on vehicular fog computing: Motivation, architectures, taxonomy, and issues
Chebaane et al. Time‐Critical Fog Computing for Vehicular Networks
Mekki et al. Towards multi-access edge based vehicular fog computing architecture
Mukhopadhyay et al. A smart parking-lot occupancy model in 5g v2v and v2i wireless communication
Azzaoui et al. On the Communication Strategies in Heterogeneous Internet of Vehicles
Abdel-Halim et al. Toward efficient vehicular-based virtual network infrastructure for smart cities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 07/02/2018 )

122 Ep: pct application non-entry in european phase

Ref document number: 15888231

Country of ref document: EP

Kind code of ref document: A1