WO2016159545A1 - 전기 탈이온 장치를 구비한 연료전지 시스템 - Google Patents

전기 탈이온 장치를 구비한 연료전지 시스템 Download PDF

Info

Publication number
WO2016159545A1
WO2016159545A1 PCT/KR2016/002640 KR2016002640W WO2016159545A1 WO 2016159545 A1 WO2016159545 A1 WO 2016159545A1 KR 2016002640 W KR2016002640 W KR 2016002640W WO 2016159545 A1 WO2016159545 A1 WO 2016159545A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
pure water
water
voltage
reformer
Prior art date
Application number
PCT/KR2016/002640
Other languages
English (en)
French (fr)
Inventor
김호석
유도환
홍병선
신미남
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to CN201680018836.1A priority Critical patent/CN107431218B/zh
Priority to EP16773326.0A priority patent/EP3276726B1/en
Publication of WO2016159545A1 publication Critical patent/WO2016159545A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0681Reactant purification by the use of electrochemical cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system, and more particularly, to a fuel cell system having an electric deionization device for purifying water supplied to a reformer and a fuel cell stack.
  • Fuel cell systems using biogas or hydrocarbon fuels have recently been in the spotlight as distributed power sources.
  • the fuel cell system has attracted attention as a high-efficiency energy production device because it exhibits power generation efficiency of 35% or more, thermal efficiency of 50% or more, and overall efficiency of 85% or more.
  • the fuel cell system includes a reformer that replaces a hydrocarbon fuel with hydrogen.
  • the reformer is a steam reforming reactor that reforms methane in fuel gas into hydrogen by reacting with oxygen in a high temperature atmosphere.
  • the reformer is supplied with quantitative water required for the steam reforming reaction.
  • a filter type water treatment method using an ion exchange resin material is mainly used.
  • the filter replacement cycle may vary from region to region. Therefore, in the filter type water treatment method, it is difficult to collectively maintain the fuel cell system.
  • the scale of impurities is generated inside the reformer, thereby degrading the performance of the fuel cell system and reducing the lifetime.
  • the present invention provides a fuel cell system capable of preventing deterioration of performance and reduction of life due to impurities contained in the quantitative water by monitoring the water quality of the quantitative water in real time while simultaneously treating the quantitative water supplied to the reformer for steam reforming reaction. To provide.
  • a fuel cell system includes a reformer for converting fuel gas into hydrogen-rich reformed gas, a fuel cell stack for generating electricity using the reformed gas, and pure water from which impurity ions are removed from the feed water.
  • An electric deionizer for discharging, a detector for measuring the electrical conductivity of pure water, a water supply for supplying pure water to the reformer and the fuel cell stack, and a controller for controlling the operation of the fuel cell stack according to the measurement signal of the detector. do.
  • the electric deionizer may include a cell filled with an ion exchange resin between the cation exchange membrane and the anion exchange membrane, and a positive electrode and a negative electrode disposed on both sides of the cell with a first space therebetween.
  • the positive electrode and the negative electrode may be applied with a fixed DC voltage from the power supply unit, the first space may be adjusted so that the electrical conductivity of pure water is 5 ⁇ S / cm to 10 ⁇ S / cm.
  • the positive electrode and the negative electrode can be applied with a DC voltage that is variable by the transformer from the power supply, the DC voltage can be controlled so that the electrical conductivity of pure water is 5 ⁇ S / cm to 10 ⁇ S / cm.
  • the positive electrode and the negative electrode may be applied with a DC voltage
  • the sensing unit may include a sensing circuit unit that measures the amount of current flowing through the positive electrode and the negative electrode with resistance, converts the voltage into voltage, and then amplifies the voltage.
  • the sensing unit may include a sensing cell having two electrodes in contact with the pure water and receiving a DC voltage, and a sensing circuit unit measuring the amount of current flowing through the two electrodes with resistance, converting the voltage into voltage, and then amplifying the voltage.
  • the fuel cell system may further include a fuel supply unit supplying fuel gas to the reformer and an air supply unit supplying air to the reformer and the fuel cell stack.
  • the controller may stop the operation of the fuel supply, the water supply and the air supply when the measurement signal of the detector is above a pre-stored danger value.
  • the fuel cell system may further include a pretreatment filter.
  • the pretreatment filter is connected in series with the electric deionizer at the front of the electric deionizer, and may first remove impurities contained in the feed water.
  • the fuel cell system can monitor the quality of the pure water discharged from the electric deionizer in real time. In addition, if the water quality of the pure water exceeds a predetermined risk value, the operation of the fuel cell stack may be automatically stopped to prevent scale from occurring inside the reformer and the fuel cell stack. Therefore, it is possible to prevent the deterioration of the performance of the fuel cell system and the reduction of life due to the impurity scale.
  • FIG. 1 is a configuration diagram of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of an electric deionization device of the fuel cell system shown in FIG. 1.
  • FIG. 3 is a configuration diagram illustrating a sensing unit of the fuel cell system illustrated in FIG. 1.
  • FIG. 4 is a configuration diagram of a fuel cell system according to a second embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a fuel cell system according to a first embodiment of the present invention.
  • the fuel cell system of the first embodiment includes a reformer 100 for converting a biogas or a hydrocarbon-based fuel gas into a hydrogen-rich reformed gas, and a fuel cell stack 200 for generating electricity using the reformed gas. ).
  • the reformer 100 is a steam reforming reactor, and reforms hydrogen into hydrogen by reacting methane in fuel gas with oxygen in a high temperature atmosphere.
  • the reformer 100 includes a burner (not shown). The burner generates combustion heat by mixing and burning burner fuel and air, and supplies the combustion heat to the reformer 100 so that the reformer 100 maintains the high temperature necessary for steam reforming.
  • the fuel cell stack 200 chemically reacts hydrogen in the reformed gas with oxygen in the air to produce electricity and heat.
  • Fuel cells are a high efficiency energy source that can be used permanently as long as hydrogen is continuously supplied without pollution and noise emission.
  • the fuel cell stack 200 is connected to the inverter 210.
  • the inverter 210 converts the DC power of the fuel cell stack 200 into AC power.
  • the fuel cell stack 200 may be connected to the heat storage tank 300.
  • the heat storage tank 300 receives and stores heat generated from the fuel cell stack 200 using a waste heat recovery device (not shown).
  • the fuel cell system may supply hot water or heating water to a user using heat of the heat storage tank 300.
  • the fuel cell system includes a fuel supply unit 400, a water supply unit 500, an air supply unit 600, and a controller 700.
  • the fuel supply unit 400 includes a fuel flow meter, a fuel boosting pump, and the like, and supplies fuel gas to the reformer 100.
  • the water supply unit 500 includes a water pump, a heat exchanger, and the like, supplies the fixed water required for the steam reforming reaction to the reformer 100, and supplies the cooling water to the fuel cell stack 200.
  • the air supply unit 600 includes an air flow meter, an air pump, and the like, and supplies air to the burner and the fuel cell stack 200.
  • the controller 700 is electrically connected to the fuel supply unit 400, the water supply unit 500, the air supply unit 600, and the inverter 210 to control their operation.
  • the fuel cell system includes an electric deionization apparatus 800 for discharging pure water from which impurities are removed by purifying feed water.
  • the water supply unit 500 supplies the pure water discharged from the electric deionizer 800 to the reformer 100 and the fuel cell stack 200.
  • FIG. 2 is a configuration diagram of an electric deionization device of the fuel cell system shown in FIG. 1.
  • the electric deionizer 800 includes a cell 810 composed of an ion exchange resin, a cation exchange membrane, and an anion exchange membrane, a positive electrode 820 disposed outside the cell 810 at a predetermined distance, and A negative electrode 830 is included.
  • the space between the positive electrode 820 and the cell 810 and the space between the negative electrode 830 and the cell 810 are called a first space S10.
  • the cell 810 has a configuration in which an ion exchange resin 811 is filled between the cation exchange membrane 812 and the anion exchange membrane 813.
  • the ion exchange resin 811 is composed of a mixture of a cation exchange resin and an anion exchange resin.
  • the polarity of the cation exchange membrane 812 is (-), and selectively transmits cations.
  • the polarity of the anion exchange membrane 813 is (+) and selectively permeates the anion.
  • the anion exchange membrane 813 faces the positive electrode 820, and the cation exchange membrane 812 faces the negative electrode 830.
  • the positive electrode 820 and the negative electrode 830 are connected to a power supply unit (not shown) to receive a DC power supply therefrom.
  • the DC power source may be 24V or 48V, but is not limited to this example.
  • the external supply water is supplied to the ion exchange resin 811 between the cation exchange membrane 812 and the anion exchange membrane 813, and the cationic impurities and anions contained in the feed water by the electrical attraction and the ion exchange membranes 812 and 813. Impurities pass through the cation exchange membrane 812 and the anion exchange membrane 813, respectively. Therefore, the flow of feed water is separated into a production water (pure) stream and a concentrated water stream flowing through the first space S10.
  • the electric deionizer 800 includes a circulation pump for feeding the external supply water and the concentrated water discharged through the first space S10 back into the first space S10.
  • the pure water discharged through the ion exchange resin 811 is supplied to the reformer 100 as quantitative water and supplied to the fuel cell stack 200 as cooling water.
  • the impurity content of pure water can be predicted.
  • the electrical conductivity of pure water depends on the impurity content.
  • the above-described electrical deionization apparatus 800 is configured such that the electrical conductivity of the discharged pure water satisfies the condition of 5 ⁇ S / cm to 10 ⁇ S / cm. In units of electrical conductivity S stands for Siemens.
  • the electric deionization apparatus 800 may adjust the electrical conductivity of the pure water discharged by adjusting the width of the first space S10 in a state where the DC power is fixed to a specific value within the above numerical range.
  • the electrical conductivity of the pure water discharged in consideration of the physical characteristics of the materials constituting the cell 810 and the voltage value of the DC power in the process of manufacturing the electrical deionization device 800 to satisfy the above range.
  • the width of the first space S10 may be designed and adjusted.
  • the electric deionizer 800 may adjust the voltage value applied to the power supply unit to adjust the electrical conductivity of the pure water discharged to the above numerical range. As the voltage value applied to the power supply unit increases, the electrical attractive force increases, so that the transmittance of ionic impurities increases, so that the electrical conductivity of pure water can be lowered.
  • the electric deionization apparatus 800 may include a transformer (not shown) connected to the power supply unit.
  • the fuel cell system includes a detector 850 for measuring in real time the electrical conductivity of pure water discharged from the electric deionization apparatus 800.
  • the controller 700 is electrically connected to the detector 850 to control the operation of the fuel cell stack 200 according to the output signal of the detector 850.
  • FIG. 3 is a configuration diagram illustrating a sensing unit of the fuel cell system illustrated in FIG. 1.
  • the sensing unit shown in FIG. 3 is only one example, and the configuration of the sensing unit is not limited to the illustrated example.
  • the sensing unit 850 measures a sensing cell 860 having two electrodes 861 and 862 in contact with pure water, and measures an amount of current flowing through the electrodes 861 and 862 as a resistance and converts it into a voltage. And may include a sensing circuitry 870 that amplifies.
  • the detector 850 may be installed at a pure water outlet of the electric deionizer 800, and pure water flows between the two electrodes 861 and 862.
  • the sensing circuit unit 870 is configured to measure the amount of current flowing through the electrodes 861 and 862 with a resistance, convert the measured current value into a voltage value, and then amplify the signal, and transmit an output signal to the controller 700.
  • the electrode (861, 862) and the electrode area (861, 862) between the cell constant (distance / surface area, cm - 1), defined as a function of distance may be 0.1, in this case 0.5 ⁇ S / cm to about 200 ⁇ S / cm range
  • the electrical conductivity of can be measured.
  • the sensing unit 850 having the above-described configuration has an advantage of allowing precise measurement of a solution having a very small electric conductivity value such as ultrapure water.
  • the sensing unit 850 may be directly connected to the positive electrode 820 and the negative electrode 830 of the electric deionization apparatus 800 without a separate sensing cell. That is, the sensing circuit unit 870 is connected to the positive electrode 820 and the negative electrode 830 of the electric deionizer 800, and measures the amount of current flowing through the positive electrode 820 and the negative electrode 830 with a resistance and converts it into a voltage. The output signal can be amplified and exported.
  • Table 1 shows the measurement results of the theoretical value and the experimental value for detecting the electrical conductivity according to the impurity content of pure water.
  • the water quality of the pure water discharged from the electric deionizer 800 is monitored in real time.
  • the controller 700 may stop the operation of the fuel supply unit 400, the water supply unit 500, and the air supply unit 600 when the output signal of the detector 850 is greater than or equal to a preset danger value. Can automatically shut down the operation.
  • the controller 700 determines that a predetermined amount or more of impurities are contained in the pure water discharged from the electric deionizer 800, the reformer 100 and the fuel cell stack 200 are automatically stopped by automatically stopping the operation of the fuel cell stack 200. It is possible to prevent scale generation due to impurities inside. Therefore, it is possible to prevent the deterioration of the performance and the reduction of the life of the fuel cell system due to the impurity scale.
  • FIG. 4 is a configuration diagram of a fuel cell system according to a second embodiment of the present invention.
  • the fuel cell system of the second embodiment includes a pretreatment filter 900 connected in series with the electrical deionizer 800 at the front end of the electrical deionizer 800.
  • the pretreatment filter 900 may be composed of an ion exchange resin filter or a reverse osmosis membrane filter, and first removes impurities contained in the feed water.
  • Ion-exchange resin filters function to soften hard water (water with a high calcium or magnesium content and hardness of more than 100 mg / L).
  • the reverse osmosis filter removes contaminants such as organic matter, inorganic matter, particulate matter, turbidity components, bacteria, and bacteria dissolved in water by using reverse osmosis.
  • the rest of the configuration except for the pretreatment filter 900 is the same as that of the first embodiment.
  • the pretreatment filter 900 requires periodic replacement. As the detector 850 and the controller 700 measure and monitor the water quality of the pure water discharged from the electric deionizer 800 in real time, the pretreatment filter 900 Can accurately predict the exchange cycle
  • the pretreatment filter 900 by allowing the pretreatment filter 900 to be replaced according to the predicted replacement cycle, it is possible to effectively prevent a decrease in performance and a decrease in life that may occur due to water quality problems of the feed water.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

연료전지 시스템은 연료가스를 수소가 풍부한 개질가스로 전환하는 개질기와, 개질가스를 이용하여 전기를 생산하는 연료전지 스택과, 공급수로부터 불순물 이온이 제거된 순수를 배출하는 전기 탈이온 장치와, 순수의 전기 전도도를 측정하는 감지부와, 개질기와 연료전지 스택으로 순수를 공급하는 물 공급부와, 감지부의 측정 신호에 따라 연료전지 스택의 작동을 제어하는 제어기를 포함한다.

Description

전기 탈이온 장치를 구비한 연료전지 시스템
본 발명은 연료전지 시스템에 관한 것으로서, 보다 상세하게는 개질기와 연료전지 스택으로 공급되는 물을 정수 처리하는 전기 탈이온 장치를 구비한 연료전지 시스템에 관한 것이다.
바이오가스나 탄화수소계 연료를 사용하는 연료전지 시스템은 최근 분산전원으로 각광을 받고 있다. 또한, 연료전지 시스템은 35% 이상의 발전효율과, 50% 이상의 열효율과, 85% 이상의 종합효율을 나타내므로, 고효율 에너지 생산기기로 주목을 받고 있다.
연료전지 시스템은 탄화수소계 연료를 수소로 치환하는 개질기를 포함한다. 개질기는 수증기 개질 반응기로서 연료가스 중의 메탄을 고온 분위기에서 산소와 반응시켜 수소로 개질한다. 개질기에는 수증기 개질 반응에 필요한 정량수가 공급되는데, 종래에는 이온교환수지 물질을 사용하는 필터식 수처리 방법이 주로 사용되고 있다.
그런데 각 지역마다 공급수의 조성(불순물의 종류와 함량)이 일정하지 않으므로 필터의 교환주기가 지역마다 달라질 수 있다. 따라서 필터식 수처리 방법에서는 연료전지 시스템의 일괄적인 유지보수에 어려움이 있다. 또한, 정수되지 않은 물이 개질기로 공급되는 경우 개질기 내부에 불순물의 스케일이 발생하므로, 연료전지 시스템의 성능이 저하되고 수명이 감소된다.
본 발명은 수증기 개질 반응을 위해 개질기로 공급되는 정량수를 정수 처리함과 동시에 정량수의 수질을 실시간으로 모니터링함으로써 정량수에 포함된 불순물에 의한 성능 저하와 수명 감소를 예방할 수 있는 연료전지 시스템을 제공하고자 한다.
본 발명의 일 실시예에 따른 연료전지 시스템은 연료가스를 수소가 풍부한 개질가스로 전환하는 개질기와, 개질가스를 이용하여 전기를 생산하는 연료전지 스택과, 공급수로부터 불순물 이온이 제거된 순수를 배출하는 전기 탈이온 장치와, 순수의 전기 전도도를 측정하는 감지부와, 개질기와 연료전지 스택으로 순수를 공급하는 물 공급부와, 감지부의 측정 신호에 따라 연료전지 스택의 작동을 제어하는 제어기를 포함한다.
전기 탈이온 장치는 양이온 교환막과 음이온 교환막 사이에 이온교환수지가 충진된 셀과, 제1 공간을 사이에 두고 셀의 양측에 배치된 양전극 및 음전극을 포함할 수 있다.
양전극과 음전극은 전원부로부터 고정된 직류전압을 인가받을 수 있으며, 제1 공간은 순수의 전기 전도도가 5μS/cm 내지 10μS/cm이 되도록 조절될 수 있다. 다른 한편으로, 양전극과 음전극은 전원부로부터 변압기에 의해 가변되는 직류전압을 인가받을 수 있으며, 직류전압은 순수의 전기 전도도가 5μS/cm 내지 10μS/cm이 되도록 제어될 수 있다.
양전극과 음전극을 직류전압을 인가받을 수 있고, 감지부는 양전극과 음전극에 흐르는 전류량을 저항으로 측정하고 전압으로 환산한 다음 증폭하는 감지 회로부를 포함할 수 있다. 다른 한편으로, 감지부는 순수와 접하며 직류전압을 인가받는 두 개의 전극을 구비한 감지셀과, 두 전극에 흐르는 전류량을 저항으로 측정하고 전압으로 환산한 다음 증폭하는 감지 회로부를 포함할 수 있다.
연료전지 시스템은 개질기로 연료가스를 공급하는 연료 공급부와, 개질기와 연료전지 스택으로 공기를 공급하는 공기 공급부를 더 포함할 수 있다. 제어기는 감지부의 측정 신호가 미리 저장된 위험치 이상일 때 연료 공급부와 물 공급부 및 공기 공급부의 작동을 중지시킬 수 있다.
연료전지 시스템은 전처리 필터를 더 포함할 수 있다. 전처리 필터는 전기 탈이온 장치의 전단에서 전기 탈이온 장치와 직렬로 연결되며, 공급수에 포함된 불순물을 먼저 제거할 수 있다.
연료전지 시스템은 전기 탈이온 장치에서 배출되는 순수의 수질을 실시간으로 모니터링할 수 있다. 또한, 순수의 수질이 미리 설정된 위험치를 초과하면 연료전지 스택의 동작을 자동 정지시킴으로써 개질기와 연료전지 스택 내부에 스케일이 발생하는 것을 방지할 수 있다. 따라서 불순물 스케일에 의한 연료전지 시스템의 성능 저하와 수명 감소를 예방할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 연료전지 시스템의 구성도이다.
도 2는 도 1에 도시한 연료전지 시스템 중 전기 탈이온 장치의 구성도이다.
도 3은 도 1에 도시한 연료전지 시스템 중 감지부를 나타낸 구성도이다.
도 4는 본 발명의 제2 실시예에 따른 연료전지 시스템의 구성도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
명세서 전체에서 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때 이는 다른 부분의 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 그리고 "~위에"라 함은 대상 부분의 위 또는 아래에 위치하는 것을 의미하며, 반드시 중력 방향을 기준으로 상측에 위치하는 것을 의미하지 않는다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 도면에 나타난 각 구성의 크기 및 두께 등은 설명의 편의를 위해 임의로 나타낸 것이므로, 본 발명은 도시한 바로 한정되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 연료전지 시스템의 구성도이다.
도 1을 참고하면, 제1 실시예의 연료전지 시스템은 바이오가스나 탄화수소계 연료가스를 수소가 풍부한 개질가스로 전환하는 개질기(100)와, 개질가스를 이용하여 전기를 생산하는 연료전지 스택(200)을 포함한다.
개질기(100)는 수증기 개질(steam reforming) 반응기이며, 연료가스 중의 메탄을 고온 분위기에서 산소와 반응시켜 수소로 개질한다. 개질기(100)는 버너(도시하지 않음)를 포함한다. 버너는 버너연료와 공기를 혼합 연소시켜 연소열을 발생시키고, 개질기(100)로 연소열을 공급하여 개질기(100)가 수증기 개질에 필요한 고온을 유지하도록 한다.
연료전지 스택(200)은 개질가스 중의 수소를 공기 중의 산소와 화학반응시켜 전기와 열을 생산한다. 연료전지는 공해물질의 배출과 소음이 없고, 수소를 지속적으로 공급하는 한 영구적으로 사용할 수 있는 고효율 에너지원이다. 연료전지 스택(200)은 인버터(210)와 연결된다. 인버터(210)는 연료전지 스택(200)의 직류 전력을 교류 전력으로 변환한다.
연료전지 스택(200)은 축열조(300)와 연결될 수 있다. 축열조(300)는 폐열 회수장치(도시하지 않음)를 이용하여 연료전지 스택(200)에서 발생된 열을 제공받아 저장한다. 연료전지 시스템은 전기를 생산하는 것과 더불어 축열조(300)의 열을 이용하여 온수 또는 난방수 등을 사용자에게 공급할 수 있다.
연료전지 시스템은 연료 공급부(400), 물 공급부(500), 공기 공급부(600), 및 제어기(700)를 포함한다.
연료 공급부(400)는 연료 유량계와 연료 승압펌프 등을 포함하며, 개질기(100)로 연료가스를 공급한다. 물 공급부(500)는 물 펌프와 열교환기 등을 포함하며, 개질기(100)로 수증기 개질 반응에 필요한 정량수를 공급하고, 연료전지 스택(200)으로 냉각수를 공급한다.
공기 공급부(600)는 공기 유량계와 공기 펌프 등을 포함하며, 버너와 연료전지 스택(200)으로 공기를 공급한다. 제어기(700)는 연료 공급부(400), 물 공급부(500), 공기 공급부(600), 및 인버터(210)와 전기적으로 연결되어 이들의 작동을 제어한다.
물 공급부(500)가 정수되지 않은 물을 개질기(100)와 연료전지 스택(200)으로 공급하면, 개질기(100)와 연료전지 스택(200) 내부에 불순물에 의한 스케일이 발생한다. 이는 연료전지 시스템의 성능 저하와 수명 감소를 유발한다.
따라서 연료전지 시스템은 공급수를 정수 처리하여 불순물을 제거한 순수를 배출하는 전기 탈이온 장치(800)를 포함한다. 물 공급부(500)는 전기 탈이온 장치(800)에서 배출된 순수를 개질기(100)와 연료전지 스택(200)으로 공급한다.
도 2는 도 1에 도시한 연료전지 시스템 중 전기 탈이온 장치의 구성도이다.
도 2를 참고하면, 전기 탈이온 장치(800)는 이온교환수지와 양이온 교환막 및 음이온 교환막으로 구성된 셀(810)과, 소정의 거리를 두고 셀(810)의 외측에 배치된 양전극(820) 및 음전극(830)을 포함한다. 양전극(820)과 셀(810) 사이의 공간 및 음전극(830)과 셀(810) 사이의 공간을 제1 공간(S10)이라 한다.
셀(810)은 양이온 교환막(812)과 음이온 교환막(813) 사이에 이온교환수지(811)를 충진한 구성으로 이루어진다. 이온교환수지(811)는 양이온 교환수지와 음이온 교환수지의 혼합물로 이루어진다. 양이온 교환막(812)의 극성은 (-)이며, 양이온을 선택적으로 투과시킨다. 음이온 교환막(813)의 극성은 (+)이고, 음이온을 선택적으로 투과시킨다.
음이온 교환막(813)은 양전극(820)과 마주하며, 양이온 교환막(812)은 음전극(830)과 마주한다. 양전극(820)과 음전극(830)은 전원부(도시하지 않음)와 연결되어 이로부터 직류전원을 공급받는다. 직류전원은 24V 또는 48V일 수 있으나, 이러한 예시로 한정되지 않는다.
외부의 공급수는 양이온 교환막(812)과 음이온 교환막(813) 사이의 이온교환수지(811)로 공급되고, 전기적인 인력과 이온 교환막(812, 813)에 의해 공급수에 포함된 양이온 불순물과 음이온 불순물은 각각 양이온 교환막(812)과 음이온 교환막(813)을 투과한다. 따라서 공급수의 흐름은 생산수(순수) 흐름과 제1 공간(S10)을 흐르는 농축수 흐름으로 분리된다.
도시는 생략하였으나, 전기 탈이온 장치(800)는 외부의 공급수와 제1 공간(S10)을 거쳐 배출된 농축수를 다시 제1 공간(S10)으로 투입하는 순환 펌프를 포함한다. 이온교환수지(811)를 거쳐 배출된 순수는 정량수로서 개질기(100)에 공급되고, 냉각수로서 연료전지 스택(200)에 공급된다.
순수의 전기 전도도를 측정하면 순수의 불순물 함유량을 예측할 수 있다. 즉 순수의 전기 전도도는 불순물 함유량에 의존한다. 전술한 전기 탈이온 장치(800)는 배출되는 순수의 전기 전도도가 5μS/cm 내지 10μS/cm의 조건을 만족하도록 구성된다. 전기 전도도의 단위에서 S는 Siemens를 나타낸다.
예를 들어, 전기 탈이온 장치(800)는 직류전원이 특정 값으로 고정된 상태에서 제1 공간(S10)의 폭을 조절하여 배출되는 순수의 전기 전도도를 위의 수치 범위로 맞출 수 있다. 제1 공간(S10)의 폭이 작아질수록 전기적 인력이 커져 이온 불순물의 투과율이 높아지므로, 순수의 전기 전도도를 낮출 수 있다.
구체적으로, 전기 탈이온 장치(800)를 제작하는 과정에서 셀(810)을 구성하는 물질들의 물리적인 특성 및 직류전원의 전압값 등을 고려하여 배출되는 순수의 전기 전도도가 위의 범위를 만족하도록 제1 공간(S10)의 폭을 설계 및 조절할 수 있다.
다른 한편으로, 전기 탈이온 장치(800)는 전원부에 인가되는 전압값을 조절하여 배출되는 순수의 전기 전도도를 위의 수치 범위로 맞출 수 있다. 전원부에 인가되는 전압값이 커질수록 전기적 인력이 커져 이온 불순물의 투과율이 높아지므로, 순수의 전기 전도도를 낮출 수 있다. 이 경우 전기 탈이온 장치(800)는 전원부와 연결된 변압기(도시하지 않음)를 포함할 수 있다.
다시 도 1을 참고하면, 연료전지 시스템은 전기 탈이온 장치(800)에서 배출되는 순수의 전기 전도도를 실시간으로 측정하는 감지부(850)를 포함한다. 그리고 제어기(700)는 감지부(850)와 전기적으로 연결되어 감지부(850)의 출력 신호에 따라 연료전지 스택(200)의 작동을 제어한다.
도 3은 도 1에 도시한 연료전지 시스템 중 감지부를 나타낸 구성도이다. 도 3에 도시한 감지부는 하나의 예시일 뿐이며, 감지부의 구성은 도시한 예로 한정되지 않는다.
도 3을 참고하면, 감지부(850)는 순수와 접하는 두 개의 전극(861, 862)을 구비한 감지셀(860)과, 전극(861, 862)에 흐르는 전류량을 저항으로 측정하고 전압으로 환산한 다음 증폭하는 감지 회로부(870)를 포함할 수 있다. 감지부(850)는 전기 탈이온 장치(800)의 순수 배출구에 설치될 수 있으며, 두 개의 전극(861, 862) 사이로 순수가 흐른다.
감지셀(860)의 두 전극(861, 862)에 직류전압을 공급하면 순수를 통해 흐르는 전류는 전기적인 저항에 역비례하고, 전기 전도도에 직접적으로 비례한다. 감지 회로부(870)는 전극(861, 862)에 흐르는 전류량을 저항으로 측정하고 측정된 전류값을 전압값으로 환산한 다음 증폭하는 구성으로 이루어지며, 출력 신호를 제어기(700)로 전송한다.
이때 전극(861, 862) 면적과 전극(861, 862)간 거리의 함수로 정의되는 셀 상수(거리/면적, cm- 1)는 0.1일 수 있으며, 이 경우 0.5μS/cm 내지 200μS/cm 범위의 전기 전도도 측정이 가능하다. 전술한 구성의 감지부(850)는 초순수와 같이 전기 전도도 값이 매우 작은 용액도 정밀한 측정이 가능한 장점이 있다.
다른 한편으로, 감지부(850)는 별도의 감지셀 없이 전기 탈이온 장치(800)의 양전극(820) 및 음전극(830)에 바로 연결될 수 있다. 즉 감지 회로부(870)는 전기 탈이온 장치(800)의 양전극(820) 및 음전극(830)에 연결되며, 양전극(820) 및 음전극(830)에 흐르는 전류량을 저항으로 측정하고 전압으로 환산한 다음 증폭하여 출력 신호를 내보낼 수 있다.
하기 표 1에 순수의 불순물 함유량에 따라 전기 전도도를 감지하는 이론값과 실험값의 측정 결과를 나타내었다.
NO. 기준값 측정값 감지 회로부환산
전기 전도도(μS/cm) 이론값[(센스전압-0.88)/0.00176] 전기 전도도(μS/cm) 센스전압(mV)(220Ω) 소프트웨어환산값(센스전압×3)
1 0 0.88 0 0.890 2.7
2 1 0.8817 1.15 0.890 2.7
3 2 0.8835 2 0.890 2.7
4 5 0.8888 4.93 0.898 2.73
5 10 0.8976 10 0.901 2.74
6 20 0.9152 18 0.919 2.8
7 50 0.9680 43.5 0.964 2.93
8 100 1.0560 91 1.045 3.17
9 191 1.2161 172.3 1.191 3.62
전기 탈이온 장치(800)에서 배출되는 순수의 수질을 실시간으로 모니터링한다. 또한, 제어기(700)는 감지부(850)의 출력 신호가 미리 설정된 위험치 이상일 때 연료 공급부(400)와 물 공급부(500) 및 공기 공급부(600)의 작동을 중지시켜 연료전지 스택(200)의 동작을 자동 정지(auto shut down)시킬 수 있다.
즉 제어기(700)는 전기 탈이온 장치(800)에서 배출되는 순수에 일정량 이상의 불순물이 포함되었다고 판단한 경우, 연료전지 스택(200)의 동작을 자동 정지시킴으로써 개질기(100)와 연료전지 스택(200) 내부에 불순물에 의한 스케일 발생을 방지할 수 있다. 따라서 불순물 스케일에 의한 연료전지 시스템의 성능 저하와 수명 감소를 예방할 수 있다.
도 4는 본 발명의 제2 실시예에 따른 연료전지 시스템의 구성도이다.
도 4를 참고하면, 제2 실시예의 연료전지 시스템은 전기 탈이온 장치(800)의 전단에서 전기 탈이온 장치(800)와 직렬로 연결된 전처리 필터(900)를 포함한다. 전처리 필터(900)는 이온교환수지 필터 또는 역삼투막 필터 등으로 구성될 수 있으며, 공급수에 포함된 불순물을 먼저 제거한다.
이온교환수지 필터는 주로 센물(칼슘이나 마그네슘 함량이 많고 경도가 100mg/L 이상인 물)을 연수화시키는 기능을 한다. 역삼투압 필터는 역삼투 현상을 이용하여 물 속에 녹아있는 유기물, 무기물, 입자상 물질, 탁도 성분, 세균, 및 박테리아 등의 오염 물질을 제거하는 기능을 한다.
제2 실시예의 연료전지 시스템에서 전처리 필터(900)를 제외한 나머지 구성은 전술한 제1 실시예와 동일하다. 전처리 필터(900)는 주기적인 교환이 요구되는데, 감지부(850)와 제어기(700)가 전기 탈이온 장치(800)에서 배출되는 순수의 수질을 실시간으로 측정 및 모니터링함에 따라, 전처리 필터(900)의 교환주기를 정확하게 예측할 수 있다.
따라서 제2 실시예의 연료전지 시스템에서는 예측된 교환주기에 따라 전처리 필터(900)의 교환을 가능하게 함으로써 공급수의 수질 문제로 인해 발생할 수 있는 성능 저하와 수명 감소를 효과적으로 방지할 수 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (8)

  1. 연료가스를 수소가 풍부한 개질가스로 전환하는 개질기;
    상기 개질가스를 이용하여 전기를 생산하는 연료전지 스택;
    공급수로부터 불순물 이온이 제거된 순수를 배출하는 전기 탈이온 장치;
    상기 순수의 전기 전도도를 측정하는 감지부;
    상기 개질기와 상기 연료전지 스택으로 상기 순수를 공급하는 물 공급부; 및
    상기 감지부의 측정 신호에 따라 상기 연료전지 스택의 작동을 제어하는 제어기
    를 포함하는 연료전지 시스템.
  2. 제1항에 있어서,
    상기 전기 탈이온 장치는,
    양이온 교환막과 음이온 교환막 사이에 이온교환수지가 충진된 셀; 및
    제1 공간을 사이에 두고 상기 셀의 양측에 배치된 양전극 및 음전극
    을 포함하는 연료전지 시스템.
  3. 제2항에 있어서,
    상기 양전극과 상기 음전극은 전원부로부터 고정된 직류전압을 인가받으며,
    상기 제1 공간은 상기 순수의 전기 전도도가 5μS/cm 내지 10μS/cm이 되도록 조절되는 연료전지 시스템.
  4. 제2항에 있어서,
    상기 양전극과 상기 음전극은 전원부로부터 변압기에 의해 가변되는 직류전압을 인가받으며,
    상기 직류전압은 상기 순수의 전기 전도도가 5μS/cm 내지 10μS/cm이 되도록 제어되는 연료전지 시스템.
  5. 제2항에 있어서,
    상기 양전극과 상기 음전극은 직류전압을 인가받으며,
    상기 감지부는 상기 양전극과 상기 음전극에 흐르는 전류량을 저항으로 측정하고 전압으로 환산한 다음 증폭하는 감지 회로부를 포함하는 연료전지 시스템.
  6. 제1항에 있어서,
    상기 감지부는,
    상기 순수와 접하며 직류전압을 인가받는 두 개의 전극을 구비한 감지셀; 및
    상기 두 전극에 흐르는 전류량을 저항으로 측정하고 전압으로 환산한 다음 증폭하는 감지 회로부
    를 포함하는 연료전지 시스템.
  7. 제1항에 있어서,
    상기 개질기로 상기 연료가스를 공급하는 연료 공급부; 및
    상기 개질기와 상기 연료전지 스택으로 공기를 공급하는 공기 공급부를 더 포함하며,
    상기 제어기는 상기 감지부의 측정 신호가 미리 저장된 위험치 이상일 때 상기 연료 공급부와 상기 물 공급부 및 상기 공기 공급부의 작동을 중지시키는 연료전지 시스템.
  8. 제1항에 있어서,
    상기 전기 탈이온 장치의 전단에서 상기 전기 탈이온 장치와 직렬로 연결되며, 상기 공급수에 포함된 불순물을 먼저 제거하는 전처리 필터를 더 포함하는 연료전지 시스템.
PCT/KR2016/002640 2015-03-27 2016-03-16 전기 탈이온 장치를 구비한 연료전지 시스템 WO2016159545A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680018836.1A CN107431218B (zh) 2015-03-27 2016-03-16 设置有电去离子装置的燃料电池系统
EP16773326.0A EP3276726B1 (en) 2015-03-27 2016-03-16 Fuel cell system provided with electric deionization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150043123A KR101677670B1 (ko) 2015-03-27 2015-03-27 전기 탈이온 장치를 구비한 연료전지 시스템
KR10-2015-0043123 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016159545A1 true WO2016159545A1 (ko) 2016-10-06

Family

ID=57005196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002640 WO2016159545A1 (ko) 2015-03-27 2016-03-16 전기 탈이온 장치를 구비한 연료전지 시스템

Country Status (4)

Country Link
EP (1) EP3276726B1 (ko)
KR (1) KR101677670B1 (ko)
CN (1) CN107431218B (ko)
WO (1) WO2016159545A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930598B1 (ko) * 2016-12-30 2018-12-18 주식회사 두산 연료전지 장치
KR102609121B1 (ko) 2023-09-11 2023-12-07 아크로랩스 주식회사 전기 탈이온 장치를 구비한 연료전지 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129237A (ja) * 2003-10-21 2005-05-19 Matsushita Electric Ind Co Ltd 燃料電池システムの水処理装置
JP2007175647A (ja) * 2005-12-28 2007-07-12 Japan Organo Co Ltd 電気式脱イオン水製造装置及び脱イオン水製造方法
KR20090094161A (ko) * 2006-12-27 2009-09-03 쿠리타 고교 가부시키가이샤 순수 제조 방법 및 장치
KR20130037513A (ko) * 2011-10-06 2013-04-16 지에스칼텍스 주식회사 연료전지용 순수 분리 공급 장치 및 방법
KR20140083248A (ko) * 2012-12-26 2014-07-04 포스코에너지 주식회사 일반 저장 탱크를 사용하는 연료전지의 수처리 장치 및 수처리 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109642A (ja) * 2001-09-27 2003-04-11 Kurita Water Ind Ltd 水処理装置
KR100542200B1 (ko) * 2004-01-30 2006-01-10 삼성에스디아이 주식회사 연료 전지 시스템
JP2006114413A (ja) * 2004-10-18 2006-04-27 Fuji Electric Holdings Co Ltd 燃料電池発電装置の水質管理方法
JP4954926B2 (ja) * 2008-03-18 2012-06-20 富士電機株式会社 水処理装置及び燃料電池発電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129237A (ja) * 2003-10-21 2005-05-19 Matsushita Electric Ind Co Ltd 燃料電池システムの水処理装置
JP2007175647A (ja) * 2005-12-28 2007-07-12 Japan Organo Co Ltd 電気式脱イオン水製造装置及び脱イオン水製造方法
KR20090094161A (ko) * 2006-12-27 2009-09-03 쿠리타 고교 가부시키가이샤 순수 제조 방법 및 장치
KR20130037513A (ko) * 2011-10-06 2013-04-16 지에스칼텍스 주식회사 연료전지용 순수 분리 공급 장치 및 방법
KR20140083248A (ko) * 2012-12-26 2014-07-04 포스코에너지 주식회사 일반 저장 탱크를 사용하는 연료전지의 수처리 장치 및 수처리 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276726A4 *

Also Published As

Publication number Publication date
CN107431218B (zh) 2020-09-11
CN107431218A (zh) 2017-12-01
EP3276726A4 (en) 2018-08-29
EP3276726B1 (en) 2019-12-11
KR20160115436A (ko) 2016-10-06
KR101677670B1 (ko) 2016-11-29
EP3276726A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
US20200321636A1 (en) Coolant purification
US11697607B2 (en) Method and system for providing ultrapure water with flexible lamp configuration
JP2004526280A (ja) 燃料電池用冷却材を脱イオン化するための方法および装置
EP1243671B1 (en) Water electrolyzing device
WO2015199358A1 (ko) 선박평형수 처리시스템
WO2016159545A1 (ko) 전기 탈이온 장치를 구비한 연료전지 시스템
JP2014207061A (ja) 燃料電池システム及びその制御方法
CN103403940A (zh) 能量系统
WO2024195950A1 (en) Hydrogen gas processing module using hydrogen separation membrane and hydrogen gas supply system using hydrogen separation membrane
US3607427A (en) Electrically coupled fuel cell and hydrogen generator
JP2010277760A (ja) 燃料電池装置
JPH11508725A (ja) 高温燃料電池設備及びその運転方法
KR102609121B1 (ko) 전기 탈이온 장치를 구비한 연료전지 시스템
WO2021029477A1 (ko) 휴대형 수소수 제조 장치
JP2010198896A (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JPH11171504A (ja) 電解式オゾン発生器及び水素処理装置
JP2023016252A (ja) 光化学反応システム及び光化学反応方法
KR20110124829A (ko) 살균 기능을 갖는 정수장치 및 이를 구비한 냉온수기
WO2004076722A1 (fr) Procede et appareil d'electrolyse destines a produire de l'hydrogene et de l'oxygene par l'electrolyse d'une solution acqueuse d'electrolyte
CN106277230A (zh) 一种集束管阴极与隔离阳极的电化学硬水软化装置
KR20110047710A (ko) 전기흡착식 수처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE