WO2016159409A1 - Method for inspecting for coolant leakage - Google Patents

Method for inspecting for coolant leakage Download PDF

Info

Publication number
WO2016159409A1
WO2016159409A1 PCT/KR2015/003221 KR2015003221W WO2016159409A1 WO 2016159409 A1 WO2016159409 A1 WO 2016159409A1 KR 2015003221 W KR2015003221 W KR 2015003221W WO 2016159409 A1 WO2016159409 A1 WO 2016159409A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
leakage
temperature
compressed air
coolant
Prior art date
Application number
PCT/KR2015/003221
Other languages
French (fr)
Korean (ko)
Inventor
오창복
권혁환
배지원
Original Assignee
태원물산 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 태원물산 주식회사 filed Critical 태원물산 주식회사
Publication of WO2016159409A1 publication Critical patent/WO2016159409A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the present invention relates to a cooling water leak inspection method, and more particularly to a cooling water leakage inspection method for inspecting the leakage amount of the cooling water based on the air leakage amount of the test object.
  • sealing in parts using working fluid is an important factor in terms of preventing aging and failure of component parts.
  • a leak occurs in a finished vehicle to which an automotive part using working fluid is applied, The problem arises that the operation itself becomes impossible. Therefore, a leak test is performed on the production process line of the automotive parts in which the working fluid is used.
  • problems such as rust may occur before the engine is mounted.
  • air is used for leak testing.
  • the standards for air leakage allowances have recently been strengthened, for example, in the case of water pumps, the standards that were 8 cc / min or less at 1.5 bar of air pressurization were strengthened to 1 cc / min or less at the same air pressurization. There is a trend.
  • the air leakage test for automobile parts uses a flow rate or a differential pressure type, but the differential pressure air leakage test is used because it is difficult to install a flowmeter because the sealing area is wide and the leakable area is many places. do.
  • Differential pressure leak tests currently used for automotive parts typically press the final product tightly onto the leak test jig and then pressurize the test product formed between the final product and the jig at a pressure of typically 1.5 bar through a compressed air inlet. Is done by injecting the air.
  • the differential pressure from the initial pressure was confirmed after a predetermined time had elapsed through the leak detection unit, and the control unit of the air leakage tester was converted into a constant value from the differential pressure value. Convert air leakage through the equation.
  • This converted air leakage amount value is compared with a reference value, and it is judged that it is bad if this reference value is abnormal.
  • the compressed air is introduced into the inspection area inside the sealed jig by using a compressor, the compressed air rises above the initial temperature during the compression process, in particular the detection time While the temperature of the compressed air inside the jig changes depending on the external environment such as seasonal factors, this causes serious problems in detection accuracy and detection reliability.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a cooling water leakage inspection method for inspecting the leakage of cooling water based on the air leakage of the inspected object.
  • Another object of the present invention is to provide a cooling water leakage test method to improve the reliability of the leak test results, and to determine whether or not to accurately leak the test object.
  • Cooling water leakage test method comprises the steps of injecting compressed air into the inspection region of the inspected object to determine whether the air leaks from the inspected object by the change in the pressure value and temperature value of the compressed air; If it is determined that the air leaks from the inspected object, measuring the amount of air leaked from the inspected object; And converting the measured air leakage into cooling water leakage.
  • the step of determining whether the air leaks from the test subject comprises the steps of storing compressed air such that the air pressure inside the air cylinder has a first pressure value; Adjusting the temperature of the compressed air stored in the air cylinder to satisfy a first temperature value; Injecting the compressed air stored in the air cylinder into an inspection region formed between a jig and a test object; And detecting the leakage of the inspected object by detecting a change in the pressure value and the temperature value of the compressed air in the inspection region.
  • the step of determining whether the test object is leaking comprises the steps of measuring the pressure value and the temperature value of the compressed air in the inspection area; Measuring a change in pressure and temperature of the compressed air inside an inspection area; Calculating an air leakage amount of the inspected object by using a change in pressure and temperature of the compressed air in the inspection region; And determining that leakage occurs in the inspected object when the calculated air leakage amount is greater than or equal to a set value.
  • the present invention can estimate the leakage portion and the leakage amount of the cooling water based on the air leakage amount of the test subject.
  • the present invention can minimize the inspection area and minimize the temperature change of the compressed air during the inspection time, thereby reducing the air leakage deviation, it is possible to improve the detection reliability and detection accuracy.
  • the present invention by reducing the customer leakage of defective parts and errors that determine the regular goods as defective goods, it has the effect of minimizing the quality cost and reducing the cost.
  • FIG. 1 is a block diagram showing a cooling water leak auditing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a coolant leakage test apparatus according to another exemplary embodiment of the present invention.
  • FIG. 3 is a flow chart showing a cooling water leak inspection method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a coolant leakage test apparatus according to an embodiment of the present invention.
  • the compressed air used is set as an ideal gas in the inspection region, and therefore, the compressed air in the inspection region satisfies the following ideal gas state equation (Equation 1).
  • Equation 2 P is the pressure of the gas
  • V is the volume of the gas
  • m is the mass of the gas
  • R is the gas constant
  • T is the absolute temperature. Therefore, the mass m of the gas may be expressed as in Equation 2 below.
  • Equation 3 the volume in the inspection area is constant with respect to the change in time, and can be expressed as in Equation 3 below.
  • the volume in the inspection area is V 1
  • the temperature in the inspection initial jig is T 1
  • the pressure in the inspection initial jig is P 1
  • the temperature in the jig after the time t is elapsed.
  • T 2 the pressure in the jig is P 2
  • the amount of change in pressure when t time elapses is P and the amount of change in temperature is T
  • the leakage amount per unit time is as follows.
  • V1 is the volume in the test area
  • T 1 is the temperature of the compressed air in the test area at the start of the test
  • T 2 is the temperature of the compressed air in the test area at the end of the test
  • P 1 is the test start.
  • P 2 is the pressure of the compressed air in the inspection region at the end of inspection
  • t is the inspection time.
  • Table 1 below shows the calculation result in the conversion equation considering the temperature change of the compressed air when the allowable air leakage is 1 cc / min using the above equation.
  • the allowable air leakage amount is 1 cc / min or less
  • the test compressed air rises 5 times in the jig during the detection time compared to the case where the temperature is the same in the jig (Case 3)
  • the indicated air leakage amount is about 1 cc / min was reduced (Case 4)
  • the temperature dropped 5 the indicated air leakage increased by about 1 cc / min (Case 5).
  • the coolant leak test apparatus may include a compressor 11, a regulator 12, a compressed air injection unit 10, an air cylinder 31, and a first temperature sensor 33.
  • Compressed air temperature control unit 37 including the first pressure sensor 35, a jig 21 for fixing the inspected object 22, and a pressure sensor 41 measuring pressure in the jig 21.
  • the compressed air inlet is composed of a compressor 11 and a regulator 12.
  • the compressor 11 pressurizes the gas to generate compressed air
  • the regulator 12 adjusts the compressed air to the air pressure necessary for the leak test and delivers it to the air cylinder 31.
  • the compressed air passing through the regulator 12 is injected into the air cylinder 31, and the compressed air is injected until the pressure inside the air cylinder 31 reaches the air pressure required for the leak test.
  • the air cylinder 31 temporarily stores compressed air therein, and has a temperature control device to adjust the temperature of the stored compressed air to satisfy a predetermined temperature range.
  • At least one cooling fin 32 is formed on the outer surface of the air cylinder 31 shown in FIG.
  • the cooling fin 32 improves the heat conduction efficiency between the air cylinder 31 and the outside air and, by natural convection, rapidly changes the temperature of the compressed air inside the air cylinder 31 within a predetermined range, for example, within 0.1 range of the outside air temperature. Act to regulate them. Therefore, in the cooling water leak inspection apparatus according to an embodiment of the present invention, by leaving the compressed air stored in the air cylinder 31 for a predetermined time, the temperature of the compressed air can be adjusted to have a value substantially equal to the outside temperature. There is no need for a separate complicated temperature control device to control the temperature of the compressed air. Therefore, manufacturing cost, the management cost of an inspection apparatus, etc. can be reduced.
  • the air cylinder 31 is the first pressure sensor 35 to measure the pressure inside the air cylinder 31 and the first temperature sensor 33 that can measure the temperature inside the air cylinder 31. It is provided.
  • the coolant leak test apparatus includes a second temperature sensor 51 capable of measuring the outside temperature, so that the measured value of the first temperature sensor 33 and the second temperature sensor ( In contrast to the measured value by 51), it is possible to determine whether or not the temperature inside the air cylinder 31 is within a predetermined range of the outside air temperature, for example, 0.1 range of the outside air temperature.
  • the coolant leakage inspection apparatus includes a jig 21 for fixing the inspected object 22, which is a product to be inspected, and forming an inspection region 23 therein.
  • the inspection region 23 refers to a closed space formed between the jig 21 and the inspected object 22 when the inspected object 22 is fixed to the jig 21, and compressed air is discharged from the air cylinder 31. It is the space to be injected.
  • the jig 21 may be provided with a separate sealing device (not shown) or a clamping device (not shown) to fix the subject 22 to the jig 21.
  • the jig 21 is a second pressure sensor 41 for measuring the pressure of the inspection region 23 inside the jig 21 and a third temperature sensor 24 for measuring the temperature of the inspection region 23. Equipped with.
  • the third temperature sensor 24 may be composed of a plurality of temperature sensors, and preferably, the plurality of temperature sensors may be disposed in a direction facing each other diagonally on the wall of the jig 21. In this case, by comparing the measured values of the plurality of temperature sensors, it is possible to determine whether or not the temperature distribution of the inspection region 23 inside the jig 21 is constant.
  • Opening and closing of the pipeline connecting the jig 21 and the air cylinder 31 of the coolant leakage inspection apparatus is controlled by the valve 34.
  • the valve 34 remains closed until the temperature inside the air cylinder 31 satisfies a predetermined range, but opens when the temperature inside the air cylinder 31 satisfies a predetermined range, for example, within 0.1 range of the outside air temperature. Compressed air can be transferred from the air cylinder 31 to the inspection region 23 of the jig 21.
  • the valve 34 is closed to prevent the compressed air from being transferred from the air cylinder 31 into the inspection region 21. do.
  • the inspection area 23 inside the jig 21 includes a pipeline connecting the valve 34 and the jig 21, in order to reduce the loss of compressed air, the inspection area can be minimized.
  • the valve is preferably arranged as close to the jig 21 as possible.
  • whether the air to be inspected is leaked by measuring a change in pressure and temperature in the test area 23 inside the jig 21 during the test time t. Determine. Specifically, the initial temperature T1 and the initial pressure P 1 inside the jig 21 at the start of the air leakage test are measured, and the temperature (in the jig 21 after the predetermined test time t has elapsed) T 2 ) and the pressure P 2 are measured and the air leakage amount is calculated through the above-described equation (6) in the controller 42 using the value.
  • the air leak rate measurement unit 60 collects air leaking from the leaked portion of the inspected object and measures the leak of air leaked from the inspected object.
  • the time for collecting the air may be employed a variety of times to check the leakage site and to confirm the leakage amount.
  • a water submersion test may be employed, in this case, the air leakage measurement unit 60 is used to detect the air bubbles leaking from the test subject Can be captured through
  • various devices for collecting air leaking from the inspected object may be all adopted.
  • the conversion unit 50 converts the air leakage measured by the air leakage measurement unit 60 into the cooling water leakage.
  • the coolant leakage amount may be calculated through Equation 7 below.
  • Q l is the coolant leakage amount
  • Q a is the air leakage amount collected by the air leakage measurement unit 60
  • a is the air viscosity
  • l is the coolant viscosity
  • (P i ) l is the coolant test pressure
  • (P i ) a is the air test pressure.
  • FIG. 2 is a block diagram illustrating a coolant leakage test apparatus according to another exemplary embodiment of the present invention.
  • the coolant leak inspection apparatus according to another embodiment of the present invention is the same as the coolant leak leakage apparatus shown in FIG. 2 except for the configuration of the air cylinder 31.
  • the air cylinder 31 of the coolant leak inspection apparatus unlike the air cylinder 31 shown in the first embodiment, does not include the cooling fins 32 on the outer surface thereof, An element 36 is provided.
  • the thermoelectric element 36 In a closed circuit connected with two different types of metals, the thermoelectric element 36 generates a voltage difference between both ends of a conductor when heat is applied to one of the junctions. On the contrary, when a DC current is applied to both ends, the thermoelectric element 36 is absorbed at the junction according to the current direction. It uses the thermoelectric phenomenon which generates heat difference by heating.
  • the thermoelectric element 36 may be operated by applying a predetermined power according to an external control switch. In this case, the thermoelectric element 36 is provided with a heat sink 37 having a sufficient size.
  • the thermoelectric element 36 has a configuration in which a drive fan 38 is fixed to the heat sink 37.
  • the inside of the air cylinder 31 when the temperature inside the air cylinder 31 rises above a predetermined temperature according to the surrounding environment, the inside of the air cylinder 31 by using the cooling function of the thermoelectric element 36 to correspond thereto.
  • the temperature can be adjusted to an appropriate level. This enables accurate temperature control within a short time.
  • the drive fan 38 is operated to bring the air flow inside the air cylinder 31 into contact with the heat sink 37, thereby providing the compressed air inside the air cylinder 31.
  • the temperature can be adjusted to a temperature range suitable for differential pressure air leakage testing.
  • FIG. 3 is a flow chart showing a cooling water leak inspection method according to an embodiment of the present invention.
  • the air is compressed using the compressor 11 (S10).
  • the temperature of the air is higher than the initial temperature in the process of compressing the air using the compressor (11).
  • the compressed air passed through the regulator 12 is injected into the air cylinder 31 (S30).
  • the inside of the air cylinder 31 is then filled by the compressed air that has passed through the regulator 12. Therefore, as the compressed air is injected, the pressure inside the air cylinder 31 increases, and the pressure inside the air cylinder 31 is measured through the pressure sensor 35 to determine the pressure inside the air cylinder 31. It is determined whether the pressure is satisfied, that is, the pressure value required for the air leakage test (S40).
  • the pressure inside the air cylinder 31 satisfies a predetermined pressure value, here, the pressure value required for the air leakage test
  • a predetermined pressure value here, the pressure value required for the air leakage test
  • the injection of compressed air into the air cylinder 31 is stopped, and the air cylinder 31 is stopped.
  • the temperature inside is measured by the 1st temperature sensor 33, and it is determined whether the temperature inside the air cylinder 31 satisfies the range of predetermined temperature value, for example, the range of 0.1 of the outside temperature value (S50).
  • the temperature of the compressed air inside the air cylinder 31 is adjusted using the compressed air temperature controller (S60). do.
  • the compressed air inside the air cylinder 31 is predetermined from the temperature of the outside air By standing until it reaches within the range, it can be made to adjust the temperature of the compressed air in the air cylinder 31 within a predetermined range. In this case, the temperature of compressed air can be adjusted simply without using a complicated temperature control apparatus.
  • a plurality of cooling fins 32 are formed on the outer surface of the air cylinder 31 of the differential pressure type air leak device according to the present invention shown in FIG. 1, and the outside of the air cylinder 31 is caused by natural convection. The heat transfer is made easy.
  • thermoelectric element 36 installed inside the air cylinder 31
  • the function of the thermoelectric element 36 installed inside the air cylinder 31 may be made of a step of adjusting the temperature of the compressed air.
  • the thermoelectric element 36 is provided with a heat sink 37 on one surface thereof, and further provided with a drive fan 38 that can be driven toward the heat sink 37, the air cylinder
  • the compressed air inside the 31 can be made directly to the heat sink 37, so that the cooling efficiency can be further increased.
  • thermoelectric element 36 when used, it is possible to precisely control the temperature within a short time as compared to the case where the temperature inside the air cylinder 31 is satisfied until the predetermined temperature range is satisfied. Has the advantage.
  • the valve 34 When it is determined that the temperature inside the air cylinder 31 satisfies the range of the predetermined temperature value, the valve 34 is opened to compress the compressed air stored in the air cylinder 31 to the jig 21 and the inspected object. Compressed air is injected into the inspection region 23 formed between the ends 22 (S70).
  • the pressure inside the inspection region 23 is measured through the pressure sensor 41, so that the pressure inside the inspection region 23 is necessary for leak inspection, for example. It is determined whether or not the first pressure value has been reached (S80). If it is determined that the pressure inside the inspection region 23 has not reached the pressure value required for the leakage inspection, injection of compressed air (S70) is continued into the inspection region 23.
  • the leakage inspection is started to jig 21 to change the temperature change and the pressure variation inside the inspection region 23 for a predetermined time t.
  • Measurement (S90) is performed using the third temperature sensor 24 and the pressure sensor 41 installed in the).
  • the control section 42 determines whether the air leakage amount calculated as a result of conversion by the conversion formula is equal to or greater than the set value (S110). In step 22, it is determined that leakage has occurred (S120).
  • control unit 42 controls the air leakage measuring unit 60 to measure the air leakage amount leaking from the leaked portion of the object under test (S130).
  • control unit 42 converts the air leakage amount to the coolant conversion amount using the above equation (6) (S140).
  • the controller 42 determines whether the total amount of coolant leaked by the preset amount is within the set time (S150).
  • the set amount and the set time are previously set values as the basis values which can be judged that the coolant leakage is serious when the set amount is leaked for the set time.
  • the set amount may be set to 1 cc, and the set time may be set to 30 minutes.
  • the dynamic viscosity of 25 air is 1.85X10 -5 Ns / m 2
  • the amount of cooling water converted to 0.046 cc / min is substituted by Equation 6 above.
  • the controller 42 determines that there is a coolant leakage when the total amount of leaked coolant water generated by the preset amount is within the set time (S160).
  • the present embodiment can estimate the leaked portion of the inspected object and the leaked amount of the coolant based on the leaked air of the inspected object.
  • the present embodiment can minimize the inspection area and minimize the temperature change of the compressed air during the inspection time, thereby reducing the air leakage deviation, thereby improving detection reliability and detection accuracy.
  • the present embodiment can minimize the inspection area and minimize the temperature change of the compressed air during the inspection time, thereby reducing the air leakage deviation, thereby improving detection reliability and detection accuracy.
  • the customer leakage of defective parts and errors that determine the regular goods as defective goods it has the effect of minimizing the quality cost and reducing the cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

The present invention comprises the steps of: injecting compressed air into an inspection area of a body being inspected, and determining whether air is leaking therefrom by changes in the pressure and temperature values of the compressed gas; if air is determined to be leaking from the body being inspected, then measuring the amount of air being leaked therefrom; and converting the measured air leakage amount to a coolant leakage amount.

Description

냉각수 누설 검사 방법How to test for coolant leak
본 발명은 냉각수 누설 검사 방법에 관한 것으로서, 보다 상세하게는 피검사체의 공기 누설량을 토대로 냉각수의 누설량을 검사하는 냉각수 누설 검사 방법에 관한 것이다.The present invention relates to a cooling water leak inspection method, and more particularly to a cooling water leakage inspection method for inspecting the leakage amount of the cooling water based on the air leakage amount of the test object.
종래부터, 누설 방지가 필요한 제품 또는 부품을 생산함에 있어서는, 그 생산 공정 라인 상에서 누설 여부를 판정하여, 제품의 불량 여부를 판정하고 있다.Background Art Conventionally, in producing a product or a part that requires leakage prevention, it is determined whether or not there is a leak on the production process line to determine whether the product is defective.
특히, 작동 유체를 사용하고 있는 부품에서의 실링은 구성 부품의 노화 방지나 고장 방지의 측면에서 매우 중요한 요소이며, 예컨대 작동 유체를 사용하고 있는 자동차 부품이 적용된 완성차에 있어서 누설이 발생한 경우에는 차량의 운행 자체가 불가능하게 되는 문제가 발생한다. 따라서, 자동차 부품 중 작동유체가 사용되는 부품에 대해서는, 그 생산 공정 라인 상에서 누설 시험을 실기하게 되는데, 물과 같은 액체를 사용하는 경우, 엔진 등에 장착되기 전에 녹이 발생하는 등의 문제가 발생할 수 있으므로, 통상 공기를 사용하여 누설 시험을 진행한다. 특히, 최근 공기 누설 허용량에 대한 기준이 강화됨에 따라, 예컨대 워터 펌프의 경우 1.5 bar의 공기 가압상태에서 8cc/min 이하였던 기준이, 동일 공기 가압 상태에 서 1cc/min 이하로 그 기준이 강화되고 있는 추세이다.In particular, sealing in parts using working fluid is an important factor in terms of preventing aging and failure of component parts. For example, when a leak occurs in a finished vehicle to which an automotive part using working fluid is applied, The problem arises that the operation itself becomes impossible. Therefore, a leak test is performed on the production process line of the automotive parts in which the working fluid is used. However, when a liquid such as water is used, problems such as rust may occur before the engine is mounted. Normally, air is used for leak testing. In particular, as the standards for air leakage allowances have recently been strengthened, for example, in the case of water pumps, the standards that were 8 cc / min or less at 1.5 bar of air pressurization were strengthened to 1 cc / min or less at the same air pressurization. There is a trend.
한편, 자동차 부품에 대한 공기 누설 시험은 유량식 또는 차압식을 많이 사용하는데, 밀봉 영역이 넓고, 누설가능 영역이 여러 곳이어서, 유량계를 설치하기 곤란한 경우가 대부분이므로, 차압식 공기 누설 시험을 사용한다. On the other hand, the air leakage test for automobile parts uses a flow rate or a differential pressure type, but the differential pressure air leakage test is used because it is difficult to install a flowmeter because the sealing area is wide and the leakable area is many places. do.
자동차 부품에 대해 현재 사용되고 있는 차압식 누설 시험은, 통상적으로 누설 검사 지그 위에 최종 제품을 밀착시킨 뒤, 최종 제품과 지그 사이에 형성되는 검사 영역에, 압축 공기 주입부를 통해 통상 1.5bar의 압력으로 가압된 공기를 주입하여 이루어진다. 검사 시작 시에 검사 영역 내의 압축 공기를 소정의 압력으로 유지시킨 상태에서, 누설 검지부를 통해 일정 시간이 경과 된 후에 초기 압력으로부터의 차압을 확인하고, 이 차압값으로부터 공기 누설 시험기의 제어부에서 일정한 환산식을 통해 공기 누설량을 환산한다.Differential pressure leak tests currently used for automotive parts typically press the final product tightly onto the leak test jig and then pressurize the test product formed between the final product and the jig at a pressure of typically 1.5 bar through a compressed air inlet. Is done by injecting the air. In the state where the compressed air in the inspection region was maintained at the predetermined pressure at the start of the inspection, the differential pressure from the initial pressure was confirmed after a predetermined time had elapsed through the leak detection unit, and the control unit of the air leakage tester was converted into a constant value from the differential pressure value. Convert air leakage through the equation.
이 환산된 공기 누설량 값을 기준값과 비교하여 이 기준값을 이상이면 불량이라고 판정하고 있다. 한편, 종래 차압식 공기 누설 시험에서 사용되는 공기의 경우, 압축기를 이용하여 압축 공기를 밀폐된 지그 내부의 검사 영역으로 유입시키게 되는데, 압축 공기는 압축 과정에서 초기 온도보다 상승하게 되며, 특히 검출시간 동안 계절적 요인과 같은 외부 환경에 따라 지그 내부의 압축 공기의 온도가 변화하게 되고, 이 경우, 검출 정밀도와 검출 신뢰도에 심각한 문제를 발생시킨다. 또한, 경우에 따라서는 불량품이 유출되어 품질 비용을 상승시키는 요인이 되거나, 정상품이 불량품으로 오인되어 손실 비용을 상승시키게 되는 문제점이 있다.This converted air leakage amount value is compared with a reference value, and it is judged that it is bad if this reference value is abnormal. On the other hand, in the case of the air used in the conventional differential pressure air leakage test, the compressed air is introduced into the inspection area inside the sealed jig by using a compressor, the compressed air rises above the initial temperature during the compression process, in particular the detection time While the temperature of the compressed air inside the jig changes depending on the external environment such as seasonal factors, this causes serious problems in detection accuracy and detection reliability. In addition, in some cases, there is a problem that the defective product is leaked out to become a factor to increase the quality cost, or the regular product is mistaken as a defective product to increase the loss cost.
더욱이, 종래의 차압식 누설 시험으로는, 단순히 공기 누설량으로만 판단하므로, 냉각수가 실제로 누설될 수 있는 양을 판단하기에는 미흡하였다. Moreover, in the conventional differential pressure leakage test, since it is judged only by the amount of air leakage, it was insufficient to judge the amount by which the coolant can actually leak.
본 발명의 배경기술은 대한민국 공개특허공보 제2012-0013526호(2012.02.15, 누설 검사 장치 및 방법)에 개시되어 있다.Background art of the present invention is disclosed in Korean Patent Laid-Open No. 2012-0013526 (2012.02.15, leak inspection apparatus and method).
본 발명은 전술한 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 피검사체의 공기 누설량을 토대로 냉각수의 누설량을 검사하는 냉각수 누설 검사 방법을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a cooling water leakage inspection method for inspecting the leakage of cooling water based on the air leakage of the inspected object.
본 발명의 다른 목적은 누설 검사 결과에 대한 신뢰도가 향상될 수 있도록 하고, 검사 대상물에 대한 정확한 누설 여부 판단이 이루어질 수 있도록 한 냉각수 누설 검사 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a cooling water leakage test method to improve the reliability of the leak test results, and to determine whether or not to accurately leak the test object.
본 발명의 일 측면에 따른 냉각수 누설 검사 방법은 피검사체의 검사 영역으로 압축 공기를 주입하여 압축 공기의 압력값과 온도값의 변화로 피검사체에서 공기가 누설되는지 여부를 판단하는 단계; 피검사체에서 공기가 누설되는 것으로 판단되면, 피검사체에서 누설되는 공기 누설량을 측정하는 단계; 및 측정된 상기 공기 누설량을 냉각수 누설량으로 변환하는 단계를 포함하는 것을 특징으로 한다. Cooling water leakage test method according to an aspect of the present invention comprises the steps of injecting compressed air into the inspection region of the inspected object to determine whether the air leaks from the inspected object by the change in the pressure value and temperature value of the compressed air; If it is determined that the air leaks from the inspected object, measuring the amount of air leaked from the inspected object; And converting the measured air leakage into cooling water leakage.
본 발명에서, 상기 피검사체에서 공기가 누설되는지 여부를 판단하는 단계는 에어 봄베 내부의 공기 압력이 제1 압력값을 갖도록 압축 공기를 저장하는 단계; 상기 에어 봄베 내부에 저장된 상기 압축 공기의 온도가 제1 온도값을 만족하도록 조절하는 단계; 상기 에어 봄베 내부에 저장된 상기 압축 공기를 지그와 피검사체 사이에 형성된 검사 영역 내부로 주입하는 단계; 및 상기 검사 영역 내부의 압축 공기의 압력값과 온도값의 변화를 검지하여 피검사체의 누설 여부를 판단하는 단계를 포함하는 것을 특징으로 한다. In the present invention, the step of determining whether the air leaks from the test subject comprises the steps of storing compressed air such that the air pressure inside the air cylinder has a first pressure value; Adjusting the temperature of the compressed air stored in the air cylinder to satisfy a first temperature value; Injecting the compressed air stored in the air cylinder into an inspection region formed between a jig and a test object; And detecting the leakage of the inspected object by detecting a change in the pressure value and the temperature value of the compressed air in the inspection region.
본 발명에서, 상기 피검사체의 누설 여부를 판단하는 단계는 상기 검사 영역 내부의 압축 공기의 압력값과 온도값을 측정하는 단계; 검사 영역 내부의 상기 압축공기의 압력 및 온도 변화를 측정하는 단계; 상기 검사 영역 내부의 상기 압축 공기의 압력 및 온도 변화값을 이용하여 상기 피검사체의 공기 누설량을 산출하는 단계; 및 상기 산출된 공기 누설량이 설정값 이상이면 상기 피검사체에 누설이 발생한 것으로 판정하는 단계를 포함하는 것을 특징으로 한다. In the present invention, the step of determining whether the test object is leaking comprises the steps of measuring the pressure value and the temperature value of the compressed air in the inspection area; Measuring a change in pressure and temperature of the compressed air inside an inspection area; Calculating an air leakage amount of the inspected object by using a change in pressure and temperature of the compressed air in the inspection region; And determining that leakage occurs in the inspected object when the calculated air leakage amount is greater than or equal to a set value.
본 발명에서, 상기 냉각수 누설량을 바탕으로 냉각수 누설을 최종 판단하는 단계를 더 포함하는 것을 특징으로 한다. In the present invention, further comprising the step of finally determining the coolant leakage based on the coolant leakage amount.
본 발명에서, 상기 냉각수 누설량을 바탕으로 냉각수 누설을 최종 판단하는 단계는, 상기 냉각수 누설량으로 누설될 경우 냉각수의 총 냉각수량이 기 설정된 설정량 만큼 발생하는 시간이 기 설정된 설정시간 이내이면 냉각수 누설로 판정하는 것을 특징으로 한다. In the present invention, the final step of determining the coolant leakage based on the coolant leakage amount, the leakage of the coolant leakage if the time when the total amount of coolant of the coolant occurs by a predetermined set amount within the predetermined set time when leaked by the coolant leakage amount It is characterized by determining.
본 발명은 피검사체의 공기 누설량을 토대로 냉각수의 누설부위와 누설량을 추정할 수 있다. The present invention can estimate the leakage portion and the leakage amount of the cooling water based on the air leakage amount of the test subject.
또한 본 발명은 검사 영역을 최소화하고, 검사 시간 동안 압축 공기의 온도변화를 최소화함으로써, 공기 누설 편차를 감소시켜, 검출 신뢰성 및 검출 정밀도를 향상시킬 수 있다. 또한, 불량 부품의 고객 유출 및 정상품을 불량품으로 판단하게 되는 오류를 감소시켜 품질 비용을 최소화하고, 원가를 절감할 수 있는 효과를 가진다.In addition, the present invention can minimize the inspection area and minimize the temperature change of the compressed air during the inspection time, thereby reducing the air leakage deviation, it is possible to improve the detection reliability and detection accuracy. In addition, by reducing the customer leakage of defective parts and errors that determine the regular goods as defective goods, it has the effect of minimizing the quality cost and reducing the cost.
도 1 은 본 발명의 일 실시예에 따른 냉각수 누설 감사 장치를 나타내는 블록도이다.1 is a block diagram showing a cooling water leak auditing apparatus according to an embodiment of the present invention.
도 2 는 본 발명의 다른 실시예에 따른 냉각수 누설 검사 장치를 나타내는 블록도이다.2 is a block diagram illustrating a coolant leakage test apparatus according to another exemplary embodiment of the present invention.
도 3 은 본 발명의 일 실시예에 따른 냉각수 누설 검사 방법을 나타내는 순서도이다.3 is a flow chart showing a cooling water leak inspection method according to an embodiment of the present invention.
이하에서는 본 발명의 일 실시예에 따른 냉각수 누설 검사 방법을 첨부된 도면들을 참조하여 상세하게 설명한다. 이러한 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 이용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야할 것이다.Hereinafter, a coolant leakage inspection method according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this process, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention or convention of a user or an operator. Therefore, the definitions of these terms should be made based on the contents throughout the specification.
도 1 은 본 발명의 일 실시예에 따른 냉각수 누설 검사 장치를 나타내는 블록도이다. 1 is a block diagram showing a coolant leakage test apparatus according to an embodiment of the present invention.
먼저, 본 발명의 일 실시예에 따른 냉각수 누설 검사 방법에 사용되는 환산식의 도출과정을 설명한다. 본 실시예에서, 사용되는 압축 공기는 검사 영역 내에서 이상 기체로서 설정되고, 따라서, 검사 영역 내의 압축 공기는 다음과 같은 이상 기체 상태 방정식(수학식1)을 만족한다.First, the derivation process of the conversion equation used in the cooling water leakage test method according to an embodiment of the present invention will be described. In this embodiment, the compressed air used is set as an ideal gas in the inspection region, and therefore, the compressed air in the inspection region satisfies the following ideal gas state equation (Equation 1).
수학식 1
Figure PCTKR2015003221-appb-M000001
Equation 1
Figure PCTKR2015003221-appb-M000001
여기서, P는 기체의 압력, V는 기체의 부피, m은 기체의 질량, R은 기체상수, T는 절대온도이다. 따라서, 기체의 질량 m은 다음의 수학식2와 같이 표시될 수 있다.Where P is the pressure of the gas, V is the volume of the gas, m is the mass of the gas, R is the gas constant, and T is the absolute temperature. Therefore, the mass m of the gas may be expressed as in Equation 2 below.
수학식 2
Figure PCTKR2015003221-appb-M000002
Equation 2
Figure PCTKR2015003221-appb-M000002
여기서 양변을 시간에 대해서 미분하는 경우에, 검사 영역 내의 체적은 시간의 변화에 대하여 일정한바, 다음의 수학식3과 같이 표시될 수 있다.Here, when both sides are differentiated with respect to time, the volume in the inspection area is constant with respect to the change in time, and can be expressed as in Equation 3 below.
수학식 3
Figure PCTKR2015003221-appb-M000003
Equation 3
Figure PCTKR2015003221-appb-M000003
수학식3의 양 변을 시간에 대하여 적분하는 경우에, 검사 영역 내의 체적을 V1, 검사 초기 지그 내의 온도를 T1, 검사 초기 지그 내의 압력을 P1, 시간 t의 경과 후 지그 내의 온도를 T2, 지그 내의 압력을 P2로 하고, t 시간이 경과할 때의 압력의 변화량을 P, 온도의 변화량을 T라 하면 다음의 수학식 4와 같이 표시될 수 있다. In the case of integrating both sides of the equation (3) with respect to time, the volume in the inspection area is V 1 , the temperature in the inspection initial jig is T 1 , the pressure in the inspection initial jig is P 1 , and the temperature in the jig after the time t is elapsed. If T 2 , the pressure in the jig is P 2 , and the amount of change in pressure when t time elapses is P and the amount of change in temperature is T, the following equation (4) can be expressed.
수학식 4
Figure PCTKR2015003221-appb-M000004
Equation 4
Figure PCTKR2015003221-appb-M000004
따라서, 단위 시간당 누설량은 다음의 수학식 5 및 6과 같다.Therefore, the leakage amount per unit time is as follows.
수학식 5
Figure PCTKR2015003221-appb-M000005
Equation 5
Figure PCTKR2015003221-appb-M000005
수학식 6
Figure PCTKR2015003221-appb-M000006
Equation 6
Figure PCTKR2015003221-appb-M000006
여기서, V1은 검사 영역 내 체적, 는 압축 공기의 밀도, T1은 검사 시작 시의 검사 영역 내 압축 공기의 온도, T2는 검사 종료 시의 검사 영역 내의 압축 공기의 온도, P1은 검사 시작 시의 검사 영역 내 압축 공기의 압력, P2는 검사 종료 시의 검사 영역 내 압축 공기의 압력, t는 검사 시간이다.Where V1 is the volume in the test area, is the density of compressed air, T 1 is the temperature of the compressed air in the test area at the start of the test, T 2 is the temperature of the compressed air in the test area at the end of the test, and P 1 is the test start. The pressure of the compressed air in the inspection region at the time of test, P 2 is the pressure of the compressed air in the inspection region at the end of inspection, t is the inspection time.
아래의 표 1은 상기의 식을 이용하여 허용 공기 누설량이 1cc/min일 때, 압축 공기의 온도변화를 고려한 환산식에서의 계산 결과를 나타낸 것이다. 표 1에서 알 수 있는 바와 같이, 허용공기 누설량이 1cc/min 이하일 경우, 검출시간 동안 시험용 압축 공기가 지그 내에서 온도가 동일한 경우(Case 3)에 비하여 5 상승하였을 때, 지시되는 공기 누설량이 약 1 cc/min 이 감소하였으며(Case 4), 또한 온도가 5 하강할 때에는 지시되는 공기 누설량이 약 1 cc/min가 증가한다(Case 5).Table 1 below shows the calculation result in the conversion equation considering the temperature change of the compressed air when the allowable air leakage is 1 cc / min using the above equation. As can be seen from Table 1, when the allowable air leakage amount is 1 cc / min or less, when the test compressed air rises 5 times in the jig during the detection time compared to the case where the temperature is the same in the jig (Case 3), the indicated air leakage amount is about 1 cc / min was reduced (Case 4), and when the temperature dropped 5, the indicated air leakage increased by about 1 cc / min (Case 5).
표 1
시험조건 case1 case2 case3 case4 case5
허용누설량 8cc/min 1cc/min 1cc/min 1cc/min 1cc/min
검사체적(V1) 200cc 200cc 200cc 200cc 200cc
시험압력(P1) 1.5bar 1.5bar 1.5bar 1.5bar 1.5bar
초기온도(T1) 298K 298K 298K 298K 298K
검출시간(t) 5sec 5sec 5sec 5sec 5sec
(검출시간 완료후)압력 1.3bar 1.475bar 1.495bar 1.495bar 1.495bar
(검출시간 완료후)온도 298K 298K 298K 303K 293K
누설량 7.77cc/min 0.971cc/min 0.194cc/min -0.767cc/min 1.188cc/min
Table 1
Exam conditions case1 case2 case3 case4 case5
Allowable leakage 8cc / min 1 cc / min 1 cc / min 1 cc / min 1 cc / min
Inspection volume (V1) 200 cc 200 cc 200 cc 200 cc 200 cc
Test pressure (P1) 1.5bar 1.5bar 1.5bar 1.5bar 1.5bar
Initial temperature (T1) 298K 298K 298K 298K 298K
Detection time (t) 5sec 5sec 5sec 5sec 5sec
Pressure (after completion of detection time) 1.3 bar 1.475 bar 1.495 bar 1.495 bar 1.495 bar
Temperature after completion of detection time 298K 298K 298K 303K 293K
Leakage 7.77 cc / min 0.971 cc / min 0.194cc / min -0.767 cc / min 1.188cc / min
따라서, 검출 정밀도를 향상시키기 위해서는, 검출 시간 동안 지그 내 검사 영역의 온도를 일정하게 유지시킬 필요가 있다. 이하에서는 검출 시간 동안 지그 내 검사 영역의 온도를 일정하게 유지시킬 수 있도록 하는 본 실시예에 따른 냉각수 누설 검사 장치에 대해서 설명한다.Therefore, in order to improve the detection accuracy, it is necessary to keep the temperature of the inspection region in the jig constant during the detection time. Hereinafter, the coolant leakage inspection apparatus according to the present embodiment for maintaining a constant temperature of the inspection region in the jig during the detection time will be described.
도 1 을 참조하면, 본 발명의 일 실시예에 따른 냉각수 누설 검사 장치는 콤프레셔(11), 레귤레이터(12)로 이루어지는 압축 공기 주입부(10), 에어 봄베(31), 제1 온도 센서(33) 및 제1 압력 센서(35)를 포함하는 압축 공기 온도 조절부(37), 피검사체(22)를 고정하기 위한 지그(21), 지그(21) 내부에 압력을 측정하는 압력 센서(41), 제어부(42), 변환부(50) 및 공기 누설량 측정부(60)를 포함한다.Referring to FIG. 1, the coolant leak test apparatus according to an exemplary embodiment of the present invention may include a compressor 11, a regulator 12, a compressed air injection unit 10, an air cylinder 31, and a first temperature sensor 33. Compressed air temperature control unit 37 including the first pressure sensor 35, a jig 21 for fixing the inspected object 22, and a pressure sensor 41 measuring pressure in the jig 21. , A control unit 42, a conversion unit 50, and an air leakage measurement unit 60.
압축 공기 주입부는 콤프레셔(11)와 레귤레이터(12)로 이루어진다. 콤프레셔(11)는 기체에 압력을 주어 압축 공기를 생성하고, 레귤레이터(12)는 압축 공기를 누설 시험에 필요한 공기 압력으로 조절하여 이를 에어 봄베(31)로 전달한다.The compressed air inlet is composed of a compressor 11 and a regulator 12. The compressor 11 pressurizes the gas to generate compressed air, and the regulator 12 adjusts the compressed air to the air pressure necessary for the leak test and delivers it to the air cylinder 31.
작업 라인에서 사용되는 대형 콤프레셔의 경우, 과도한 공기 압축으로 인하여 압축 공기의 온도 변화가 커질 것이 우려되는 경우에는, 별도의 소형 컴프레셔를 사용하는 것이 바람직하다.In the case of large compressors used in work lines, it is preferable to use a separate small compressor if there is a concern that the temperature change of the compressed air will be large due to excessive air compression.
레귤레이터(12)를 통과한 압축 공기는 에어 봄베(31) 내부로 주입되고, 에어 봄베(31) 내부의 압력이 누설 시험에 필요한 공기 압력에 도달할 때까지 압축 공기의 주입이 진행된다. 에어 봄베(31)는 그 내부에 압축 공기를 일시적으로 저장하는 한편, 온도 조절 장치를 구비하여 저장된 압축 공기의 온도가 소정 온도 범위를 만족하도록 조절하는 역할을 수행한다.The compressed air passing through the regulator 12 is injected into the air cylinder 31, and the compressed air is injected until the pressure inside the air cylinder 31 reaches the air pressure required for the leak test. The air cylinder 31 temporarily stores compressed air therein, and has a temperature control device to adjust the temperature of the stored compressed air to satisfy a predetermined temperature range.
한편, 도 1 에서 도시된 에어 봄베(31)의 외표면 상에는 적어도 하나 이상의 냉각 핀(32)이 형성되어 있다. 냉각핀(32)은 에어 봄베(31)와 외기와의 열전도 효율을 높여 자연 대류에 의해, 에어 봄베(31) 내부의 압축 공기의 온도를 빠른 시간 내에, 소정 범위, 예컨대 외기 온도의 0.1 범위 내에 있도록 조절하는 역할을 수행한다. 따라서, 본 발명의 일 실시예에 따른 냉각수 누설 검사 장치에서는, 에어 봄베(31) 내부에 저장된 압축 공기를 소정 시간 동안 방치하는 것에 의해, 압축 공기의 온도가 외기 온도와 대략 동일한 값을 갖도록 조절할 수 있어, 압축 공기의 온도를 조절하기 위하여 별도의 복잡한 온도 조절 장치를 필요로 하지 않는다. 따라서, 제조 비용 및 검사 장치의 관리 비용 등을 절감할 수 있다.On the other hand, at least one cooling fin 32 is formed on the outer surface of the air cylinder 31 shown in FIG. The cooling fin 32 improves the heat conduction efficiency between the air cylinder 31 and the outside air and, by natural convection, rapidly changes the temperature of the compressed air inside the air cylinder 31 within a predetermined range, for example, within 0.1 range of the outside air temperature. Act to regulate them. Therefore, in the cooling water leak inspection apparatus according to an embodiment of the present invention, by leaving the compressed air stored in the air cylinder 31 for a predetermined time, the temperature of the compressed air can be adjusted to have a value substantially equal to the outside temperature. There is no need for a separate complicated temperature control device to control the temperature of the compressed air. Therefore, manufacturing cost, the management cost of an inspection apparatus, etc. can be reduced.
한편, 에어 봄베(31)는 에어 봄베(31) 내부의 압력을 측정할 수 있도록 하는 제1 압력 센서(35) 및 에어 봄베(31) 내부의 온도를 측정할 수 있는 제1 온도 센서(33)를 구비한다. 또한, 본 발명의 일 실시예에 따른 냉각수 누설 검사 장치는 외기 온도를 측정할 수 있는 제2 온도 센서(51)를 구비하여, 제1 온도 센서(33)에 의한 측정값과 제2 온도센서(51)에 의한 측정값을 대비하여, 에어 봄베(31) 내부의 온도가 외기 온도의 소정 범위, 예컨대 외기 온도의 0.1 범위 내에 있는지 여부를 판단할 수 있도록 한다.On the other hand, the air cylinder 31 is the first pressure sensor 35 to measure the pressure inside the air cylinder 31 and the first temperature sensor 33 that can measure the temperature inside the air cylinder 31. It is provided. In addition, the coolant leak test apparatus according to an embodiment of the present invention includes a second temperature sensor 51 capable of measuring the outside temperature, so that the measured value of the first temperature sensor 33 and the second temperature sensor ( In contrast to the measured value by 51), it is possible to determine whether or not the temperature inside the air cylinder 31 is within a predetermined range of the outside air temperature, for example, 0.1 range of the outside air temperature.
또한, 본 발명의 일 실시예에 따른 냉각수 누설 검사 장치는 검사 대상 제품인 피검사체(22)를 고정하고 그 내부에 검사 영역(23)을 형성하기 위한 지그(21)를 구비한다. 검사 영역(23)은 피검사체(22)를 지그(21)에 고정할 때, 지그(21)와 피검사체(22) 사이에 형성되는 폐공간을 의미하며, 에어 봄베(31)로부터 압축 공기가 주입되는 공간이다. 지그(21)는 피검사체(22)를 지그(21)에 고정시키기 위하여 별도의 실링 장치(도시 되지 않음) 또는 클램핑 장치(도시되지 않음)를 구비할 수 있다. 또한, 지그(21)는 지그(21) 내부의 검사 영역(23)의 압력을 측정하기 위한 제2 압력 센서(41)와 검사 영역(23)의 온도를 측정하기 위한 제3 온도 센서(24)를 구비하고 있다.In addition, the coolant leakage inspection apparatus according to an embodiment of the present invention includes a jig 21 for fixing the inspected object 22, which is a product to be inspected, and forming an inspection region 23 therein. The inspection region 23 refers to a closed space formed between the jig 21 and the inspected object 22 when the inspected object 22 is fixed to the jig 21, and compressed air is discharged from the air cylinder 31. It is the space to be injected. The jig 21 may be provided with a separate sealing device (not shown) or a clamping device (not shown) to fix the subject 22 to the jig 21. In addition, the jig 21 is a second pressure sensor 41 for measuring the pressure of the inspection region 23 inside the jig 21 and a third temperature sensor 24 for measuring the temperature of the inspection region 23. Equipped with.
제3 온도 센서(24)는 복수 개의 온도 센서로 이루어질 수 있으며, 바람직하게는, 복수 개의 온도 센서는 지그(21)의 벽부 상에서 대각선으로 서로 바라보는 방향으로 배치될 수 있다. 이 경우, 복수 개의 온도 센서의 측정값을 대비함으로써, 지그(21) 내부의 검사 영역(23)의 온도 분포가 일정한지 여부를 판단할 수 있다.The third temperature sensor 24 may be composed of a plurality of temperature sensors, and preferably, the plurality of temperature sensors may be disposed in a direction facing each other diagonally on the wall of the jig 21. In this case, by comparing the measured values of the plurality of temperature sensors, it is possible to determine whether or not the temperature distribution of the inspection region 23 inside the jig 21 is constant.
본 발명의 일 실시예에 따른 냉각수 누설 검사 장치의 지그(21)와 에어 봄베(31) 사이를 연결하는 파이프 라인은 밸브(34)에 의해 개폐가 조절된다. 밸브(34)는 에어 봄베(31) 내부의 온도가 소정 범위를 만족할 때까지는 닫혀 있는 상태로 유지되나, 에어 봄베(31) 내부의 온도가 소정 범위, 예컨대 외기 온도의 0.1 범위 내를 만족할 때에는 개방되어 에어 봄베(31)로부터 지그(21)의 검사 영역(23) 내부로 압축 공기가 전달될 수 있도록 한다. 한편, 지그(21)의 검사 영역(23) 내부의 압력이 누설 검사에 필요한 압력에 도달하게 되면, 밸브(34)를 닫아 에어 봄베(31)로부터 검사 영역(21) 내로 압축 공기가 전달되지 않도록 한다.Opening and closing of the pipeline connecting the jig 21 and the air cylinder 31 of the coolant leakage inspection apparatus according to the exemplary embodiment of the present invention is controlled by the valve 34. The valve 34 remains closed until the temperature inside the air cylinder 31 satisfies a predetermined range, but opens when the temperature inside the air cylinder 31 satisfies a predetermined range, for example, within 0.1 range of the outside air temperature. Compressed air can be transferred from the air cylinder 31 to the inspection region 23 of the jig 21. On the other hand, when the pressure inside the inspection region 23 of the jig 21 reaches the pressure necessary for the leakage inspection, the valve 34 is closed to prevent the compressed air from being transferred from the air cylinder 31 into the inspection region 21. do.
한편, 지그(21)와 에어 봄베(31) 사이를 연결하는 파이프 라인의 경우, 그 길이가 길어지면, 압축 공기의 주입과정에서 외기의 영향을 받아 온도 변화가 증가할 우려가 있는바 그 길이를 최소화할 필요가 있다. 또한, 지그(21) 내부의 검사 영역(23)은 밸브(34)와 지그(21) 사이를 연결하는 파이프 라인까지 포함하게 되는바, 압축 공기의 손실을 감소시키기 위해서, 검사 영역을 최소화할 수 있도록 밸브는 지그(21)와 최대한 가깝게 배치하는 것이 바람직하다.On the other hand, in the case of the pipeline connecting between the jig 21 and the air cylinder 31, if the length is longer, there is a possibility that the temperature change may increase due to the influence of the outside air during the injection of compressed air bar length It needs to be minimized. In addition, since the inspection area 23 inside the jig 21 includes a pipeline connecting the valve 34 and the jig 21, in order to reduce the loss of compressed air, the inspection area can be minimized. The valve is preferably arranged as close to the jig 21 as possible.
본 발명의 일 실시예에 따른 냉각수 누설 검사 장치에서는, 검사 시간(t) 동안 지그(21) 내부의 검사 영역(23)에서의 압력 및 온도의 변화를 측정하여 피검사체(22)의 공기 누설 여부를 판정한다. 구체적으로는 공기 누설 검사 시작 시의 지그(21) 내부의 초기 온도(T1) 및 초기 압력(P1)을 측정하고, 소정의 검사 시간(t)이 경과된 후의 지그(21) 내부의 온도(T2) 및 압력(P2)을 측정하고 그 값을 이용하여 제어부(42)에서 전술한 환산식 수학식 6을 통해 공기 누설량을 산출한다.In the coolant leak test apparatus according to an exemplary embodiment of the present invention, whether the air to be inspected is leaked by measuring a change in pressure and temperature in the test area 23 inside the jig 21 during the test time t. Determine. Specifically, the initial temperature T1 and the initial pressure P 1 inside the jig 21 at the start of the air leakage test are measured, and the temperature (in the jig 21 after the predetermined test time t has elapsed) T 2 ) and the pressure P 2 are measured and the air leakage amount is calculated through the above-described equation (6) in the controller 42 using the value.
공기 누설량 측정부(60)는 피검사체의 누설 부위로부터 누설되는 공기를 포집하여 피검사체로부터 누설된 공기 누설량을 측정한다. 여기서, 공기를 포집하는 시간은 누설 부위를 확인하고 누설량을 확인할 수 있는 다양한 시간이 채용될 수 있다. 일 예로, 공기 누설량 측정부(60)를 통해 누설 부위로부터의 공기 누설량을 측정할 경우, 수몰시험이 채용될 수 있는 바, 이 경우 공기 누설량 측정부(60)는 피검사체로부터 누설되는 공기 방울을 통해 포집할 수 있다. 참고로, 공기 누설량 측정부(60)로는 피검사체로부터 누설되는 공기를 포집하는 다양한 장치가 모두 채용될 수 있다. The air leak rate measurement unit 60 collects air leaking from the leaked portion of the inspected object and measures the leak of air leaked from the inspected object. Here, the time for collecting the air may be employed a variety of times to check the leakage site and to confirm the leakage amount. For example, when measuring the air leakage amount from the leaked portion through the air leakage measurement unit 60, a water submersion test may be employed, in this case, the air leakage measurement unit 60 is used to detect the air bubbles leaking from the test subject Can be captured through For reference, as the air leakage measuring unit 60, various devices for collecting air leaking from the inspected object may be all adopted.
변환부(50)는 공기 누설량 측정부(60)에 의해 측정된 공기 누설량을 냉각수 누설량으로 변환한다. The conversion unit 50 converts the air leakage measured by the air leakage measurement unit 60 into the cooling water leakage.
냉각수 누설량은 하기의 수학식 7을 통해 산출될 수 있다. The coolant leakage amount may be calculated through Equation 7 below.
수학식 7
Figure PCTKR2015003221-appb-M000007
Equation 7
Figure PCTKR2015003221-appb-M000007
여기서, Ql은 냉각수 누설량이고, Qa는 공기 누설량 측정부(60)에 의해 포집된 공기 누설량이며, a는 공기 점도이며, l는 냉각수 점도이며, (Pi)l은 냉각수 테스트압이고, (Pi)a는 공기 테스트압이다. Here, Q l is the coolant leakage amount, Q a is the air leakage amount collected by the air leakage measurement unit 60, a is the air viscosity, l is the coolant viscosity, (P i ) l is the coolant test pressure, (P i ) a is the air test pressure.
도 2 는 본 발명의 다른 실시예에 따른 냉각수 누설 검사 장치를 나타내는 블록도이다. 2 is a block diagram illustrating a coolant leakage test apparatus according to another exemplary embodiment of the present invention.
도 2 를 참보하면, 본 발명의 다른 실시예에 따른 냉각수 누설 검사 장치는 에어 봄베(31)의 구성을 제외하고는 도 2 에 도시된 냉각수 누설 누설 장치의 구성과 동일하다.Referring to FIG. 2, the coolant leak inspection apparatus according to another embodiment of the present invention is the same as the coolant leak leakage apparatus shown in FIG. 2 except for the configuration of the air cylinder 31.
본 발명의 제2 실시예에 따른 냉각수 누설 검사 장치의 에어 봄베(31)는 상기한 제1 실시예에서 도시된 에어 봄베(31)와 달리 외표면에 냉각핀(32)을 구비하지 않고, 열전 소자(36)를 구비하고 있다. 열전 소자(36)는 서로 다른 두 종류의 금속으로 연결된 폐회로에서 한쪽 접합부에 열을 가하여 온도차를 유발시키면 도체의 양단에 전압이 발생하고, 역으로 양단에 DC전류를 가하면 전류 방향에 따라 접합부에서 흡/발열하여 온도차를 발생하는 열전 현상 원리를 이용한 것이다. 열전 소자(36)는 외부의 제어 스위치에 따라 소정의 전원이 인가되어 작동될 수 있으며, 이때, 열전 소자(36)에는 충분한 크기를 갖는 방열판(37)이 구비된다. 또한, 열전 소자(36)에는 방열판(37)을 향해 위치 고정되는 구동 팬(38)이 설치되는 구성을 갖는다.The air cylinder 31 of the coolant leak inspection apparatus according to the second embodiment of the present invention, unlike the air cylinder 31 shown in the first embodiment, does not include the cooling fins 32 on the outer surface thereof, An element 36 is provided. In a closed circuit connected with two different types of metals, the thermoelectric element 36 generates a voltage difference between both ends of a conductor when heat is applied to one of the junctions. On the contrary, when a DC current is applied to both ends, the thermoelectric element 36 is absorbed at the junction according to the current direction. It uses the thermoelectric phenomenon which generates heat difference by heating. The thermoelectric element 36 may be operated by applying a predetermined power according to an external control switch. In this case, the thermoelectric element 36 is provided with a heat sink 37 having a sufficient size. In addition, the thermoelectric element 36 has a configuration in which a drive fan 38 is fixed to the heat sink 37.
상기의 구성에 따르면, 주위 환경에 따라, 에어 봄베(31) 내부의 온도가 소정의 온도 이상으로 상승하는 경우, 이에 대응하도록 열전 소자(36)의 냉각 기능을 이용하여 에어 봄베(31)의 내부 온도를 적정 수준으로 조절할 수 있다. 이를 통해, 단시간 내에 정확한 온도 조절이 가능하게 된다.According to the above configuration, when the temperature inside the air cylinder 31 rises above a predetermined temperature according to the surrounding environment, the inside of the air cylinder 31 by using the cooling function of the thermoelectric element 36 to correspond thereto. The temperature can be adjusted to an appropriate level. This enables accurate temperature control within a short time.
즉, 열전 소자(36)의 기능을 이용하고, 구동 팬(38)이 가동하여, 에어 봄베(31) 내부의 기류를 방열판(37)과 접촉하도록 함으로써, 에어 봄베(31) 내부의 압축 공기의 온도를 차압식 공기 누설 시험에 적합한 온도 범위로 조절할 수 있다.In other words, by utilizing the function of the thermoelectric element 36, the drive fan 38 is operated to bring the air flow inside the air cylinder 31 into contact with the heat sink 37, thereby providing the compressed air inside the air cylinder 31. The temperature can be adjusted to a temperature range suitable for differential pressure air leakage testing.
이하에서는 본 발명의 일 실시예에 따른 냉각수 누설 검사 방법을 도 3 을 참조하여 상세하게 설명한다. Hereinafter, a coolant leakage inspection method according to an exemplary embodiment of the present invention will be described in detail with reference to FIG. 3.
도 3 은 본 발명의 일 실시예에 따른 냉각수 누설 검사 방법을 나타내는 순서도이다.3 is a flow chart showing a cooling water leak inspection method according to an embodiment of the present invention.
도 3 을 참조하면, 먼저 콤프레셔(11)를 이용하여 공기를 압축한다(S10). 이때, 콤프레셔(11)를 이용한 공기의 압축 과정에서 공기의 온도가 초기 온도보다 상승하게 된다.Referring to FIG. 3, first, the air is compressed using the compressor 11 (S10). At this time, the temperature of the air is higher than the initial temperature in the process of compressing the air using the compressor (11).
다음으로, 레귤레이터(12)를 이용하여 콤프레셔(11)에 의해 압축된 공기의 압력을 공기 누설 시험에 필요한 압력으로 조절한다(S20).Next, the pressure of the air compressed by the compressor 11 using the regulator 12 is adjusted to the pressure necessary for the air leakage test (S20).
그런 다음, 레귤레이터(12)를 통과한 압축 공기를 에어 봄베(31) 내부로 주입한다(S30). 그러면 에어 봄베(31) 내부가 레귤레이터(12)를 통과한 압축 공기에 의해 채워진다. 따라서, 압축 공기의 주입에 따라 에어 봄베(31) 내부의 압력이 증가하게 되는바, 에어 봄베(31) 내부의 압력을 압력 센서(35)를 통해 측정하여 에어 봄베(31) 내부의 압력이 소정의 압력, 즉 공기 누설 시험에 필요한 압력값을 만족하는 지 여부를 판정한다(S40). 상기 판정 결과, 에어 봄베(31) 내부의 압력이 소정의 압력값을 만족하지 못한 것으로 판단되면, 에어 봄베(31) 내부에 압축 공기의 주입을 지속하면서(S30), 에어 봄베(31) 내부의 공기 압력을 다시 측정하여, 소정의 압력값을 만족하는지 여부를 판정하는 과정(S40)이 재수행된다.Then, the compressed air passed through the regulator 12 is injected into the air cylinder 31 (S30). The inside of the air cylinder 31 is then filled by the compressed air that has passed through the regulator 12. Therefore, as the compressed air is injected, the pressure inside the air cylinder 31 increases, and the pressure inside the air cylinder 31 is measured through the pressure sensor 35 to determine the pressure inside the air cylinder 31. It is determined whether the pressure is satisfied, that is, the pressure value required for the air leakage test (S40). As a result of the determination, if it is determined that the pressure inside the air cylinder 31 does not satisfy the predetermined pressure value, while the injection of compressed air into the air cylinder 31 is continued (S30), the inside of the air cylinder 31 The air pressure is measured again to determine whether or not the predetermined pressure value is satisfied (S40).
에어 봄베(31) 내부의 압력이 소정의 압력값, 여기서는 공기 누설 시험에 필요한 압력값을 만족하는 것을 판정되면, 에어 봄베(31) 내부로의 압축 공기의 주입을 정지하고, 에어 봄베(31) 내부의 온도를 제1 온도 센서(33)로 측정하여, 에어 봄베(31) 내부의 온도가 소정의 온도값의 범위, 예컨대 외기 온도값의 0.1의 범위를 만족하는지 여부를 판정(S50)한다.When it is determined that the pressure inside the air cylinder 31 satisfies a predetermined pressure value, here, the pressure value required for the air leakage test, the injection of compressed air into the air cylinder 31 is stopped, and the air cylinder 31 is stopped. The temperature inside is measured by the 1st temperature sensor 33, and it is determined whether the temperature inside the air cylinder 31 satisfies the range of predetermined temperature value, for example, the range of 0.1 of the outside temperature value (S50).
판정 결과 에어 봄베(31) 내부의 온도가 소정 온도값의 범위를 만족하지 못하는 것으로 판단되는 경우에는, 압축 공기 온도 조절부를 이용하여, 에어 봄베(31) 내부의 압축 공기의 온도를 조절(S60)한다. If it is determined that the temperature inside the air cylinder 31 does not satisfy the range of the predetermined temperature value, the temperature of the compressed air inside the air cylinder 31 is adjusted using the compressed air temperature controller (S60). do.
에어 봄베(31) 내부의 압축 공기의 온도를 조절하는 단계(S60)는, 도 1 에서 도시된 본 발명의 일 실시예에 따르면, 에어 봄베(31) 내부의 압축 공기가 외기 공기의 온도로부터 소정 범위 이내에 도달할 때까지 방치하는 것에 의하여, 에어 봄베(31) 내부의 압축 공기의 온도를 소정 범위 내로 조절하도록 이루어질 수 있다. 이 경우, 복잡한 온도 조절 장치에 의하지 않고, 간이하게 압축 공기의 온도 조절이 가능하다. 한편, 도 1 에 도시된 본 발명에 따른 차압식 공기 누설 장치의 에어 봄베(31)의 외표면에는 다수의 냉각 핀(32)이 형성되어, 자연 대류에 의해, 에어 봄베(31) 내부로부터 외부로 열전달이 쉽게 이루어지도록 하고 있다.Adjusting the temperature of the compressed air inside the air cylinder 31 (S60), according to an embodiment of the present invention shown in Figure 1, the compressed air inside the air cylinder 31 is predetermined from the temperature of the outside air By standing until it reaches within the range, it can be made to adjust the temperature of the compressed air in the air cylinder 31 within a predetermined range. In this case, the temperature of compressed air can be adjusted simply without using a complicated temperature control apparatus. On the other hand, a plurality of cooling fins 32 are formed on the outer surface of the air cylinder 31 of the differential pressure type air leak device according to the present invention shown in FIG. 1, and the outside of the air cylinder 31 is caused by natural convection. The heat transfer is made easy.
또한, 에어 봄베(31) 내부의 압축 공기의 온도를 조절하는 단계(S60)는 도 2에서 도시된 본 발명의 실시예에 따르면, 에어 봄베(31) 내부에 설치된 열전 소자(36)의 기능을 이용하여 에어 봄베(31) 내부의 압축 공기의 온도를 조절하는 단계로 이루어 질 수 있다. 한편, 본 발명의 바람직한 실시예에 따르면, 열전 소자(36)는 그 일면에 방열판(37)을 구비하고, 방열판(37)을 향해 구동될 수 있는 구동 팬(38)을 더 구비하여, 에어봄베(31) 내부의 압축 공기가 방열판(37)과 직접 될 수 있도록 하여, 냉각 효율을 더욱 상승시킬 수 있다. In addition, adjusting the temperature of the compressed air inside the air cylinder 31 (S60) according to the embodiment of the present invention shown in Figure 2, the function of the thermoelectric element 36 installed inside the air cylinder 31 By using the air cylinder 31 may be made of a step of adjusting the temperature of the compressed air. On the other hand, according to a preferred embodiment of the present invention, the thermoelectric element 36 is provided with a heat sink 37 on one surface thereof, and further provided with a drive fan 38 that can be driven toward the heat sink 37, the air cylinder The compressed air inside the 31 can be made directly to the heat sink 37, so that the cooling efficiency can be further increased.
본 발명의 실시예와 같이, 열전 소자(36)를 사용하는 경우에는, 에어 봄베(31) 내부의 온도가 소정 온도 범위를 만족할 때까지 방치하는 경우와 대비하여, 단시간 내에 정확한 온도 제어가 가능하도록 하는 장점을 갖는다.As in the embodiment of the present invention, when the thermoelectric element 36 is used, it is possible to precisely control the temperature within a short time as compared to the case where the temperature inside the air cylinder 31 is satisfied until the predetermined temperature range is satisfied. Has the advantage.
판정 결과 에어 봄베(31) 내부의 온도가 소정 온도값의 범위를 만족하는 것으로 판단되는 경우에는, 밸브(34)를 개방하여 에어 봄베(31) 내부에 저장된 압축 공기를 지그(21)와 피검사체(22) 사이에 형성되는 검사 영역(23) 내부로 압축 공기를 주입(S70) 한다.When it is determined that the temperature inside the air cylinder 31 satisfies the range of the predetermined temperature value, the valve 34 is opened to compress the compressed air stored in the air cylinder 31 to the jig 21 and the inspected object. Compressed air is injected into the inspection region 23 formed between the ends 22 (S70).
검사 영역(23) 내부로 압축 공기를 주입하는 경우에, 검사 영역(23) 내부의 압력을 압력 센서(41)를 통해 측정하여, 검사 영역(23) 내부의 압력이 누설 검사에 필요한 압력, 예컨대 제1 압력값에 도달하였는지 여부를 판정(S80)한다. 판정 결과 검사 영역(23) 내부의 압력이 누설 검사에 필요한 압력값에 도달하지 못한 것으로 판단되면, 검사 영역(23) 내부로 압축 공기의 주입(S70)을 계속한다.When compressed air is injected into the inspection region 23, the pressure inside the inspection region 23 is measured through the pressure sensor 41, so that the pressure inside the inspection region 23 is necessary for leak inspection, for example. It is determined whether or not the first pressure value has been reached (S80). If it is determined that the pressure inside the inspection region 23 has not reached the pressure value required for the leakage inspection, injection of compressed air (S70) is continued into the inspection region 23.
검사 영역(23) 내부의 압력이 누설 검사에 필요한 압력값에 도달한 것으로 판단되면, 누설 검사를 개시하여, 소정 시간(t) 동안 검사 영역(23) 내부의 온도 변화 및 압력 변화를 지그(21)에 설치된 제3 온도 센서(24) 및 압력 센서(41)를 이용하여 측정(S90)한다.When it is determined that the pressure inside the inspection region 23 reaches the pressure value required for the leakage inspection, the leakage inspection is started to jig 21 to change the temperature change and the pressure variation inside the inspection region 23 for a predetermined time t. Measurement (S90) is performed using the third temperature sensor 24 and the pressure sensor 41 installed in the).
다음으로는, 측정된 누설 검사 개시시의 온도값(T1) 및 압력값(P1)과 누설 검사 종료 시의 온도값(T2) 및 압력값(P2)을 상기한 수학식 6에 대입하여, 제어부(42)에서 피검사체(22)의 공기 누설량을 산출(S100)한다.Next, the measured temperature value (T 1 ) and pressure value (P 1 ) at the start of the leak test and the temperature value (T 2 ) and pressure value (P 2 ) at the end of the leak test are expressed in the above equation (6). Substituting the controller 42 calculates an air leakage amount of the inspected object 22 (S100).
제어부(42)에서는, 환산식에 의한 환산 결과 산출된 공기 누설량이 설정값 이상인지 여부를 판정(S110)하고, 판정 결과 누설량이 설정값 이상으로 판단되는 경우에는 상기 제어부(42)는 피검사체(22)에서 누설이 발생하고 있는 것으로 판정(S120)한다. The control section 42 determines whether the air leakage amount calculated as a result of conversion by the conversion formula is equal to or greater than the set value (S110). In step 22, it is determined that leakage has occurred (S120).
이어, 제어부(42)는 공기 누설량 측정부(60)를 제어하여 피검사체의 누설 부위로부터 누설되는 공기 누설량을 측정한다(S130). Subsequently, the control unit 42 controls the air leakage measuring unit 60 to measure the air leakage amount leaking from the leaked portion of the object under test (S130).
공기 누설량 측정부(60)를 제어하여 공기 누설량을 측정하면, 제어부(42)는 이 공기 누설량을 상기한 수학식 6을 이용하여 냉각수 변환량으로 변환한다(S140). When the air leakage amount is measured by controlling the air leakage amount measurement unit 60, the control unit 42 converts the air leakage amount to the coolant conversion amount using the above equation (6) (S140).
이어 제어부(42)는 냉각수 변환량으로 누설될 경우, 이 누설되는 총 냉각수량이 기 설정된 설정량 만큼 발생하는 시간이 설정시간 이내인지 여부를 판단한다(S150). 여기서, 설정량 및 설정시간은 상기한 설정량으로 설정시간 동안 누설될 경우 냉각수 누설이 심각한 것으로 판단할 수 있는 근거되는 값으로서, 사전에 설정된다. 일 예로, 설정량은 1cc로 설정되고, 설정시간은 30분으로 설정될 수 있다. Subsequently, when the controller 42 leaks the coolant conversion amount, the controller 42 determines whether the total amount of coolant leaked by the preset amount is within the set time (S150). Here, the set amount and the set time are previously set values as the basis values which can be judged that the coolant leakage is serious when the set amount is leaked for the set time. For example, the set amount may be set to 1 cc, and the set time may be set to 30 minutes.
참고로, 25 공기의 Dynamic viscosity가 1.85X10-5Ns/m2이고, 실제 냉각수가 작동하는 온도 90에서의 Dynamic viscosity가 약 10cP(=0.01Ns/m2)이며, Water pump 회전수 6000RPM에서 Water Pump 내부에 3.5bar가 발생한다고 했을 경우, 상기한 수학식 6에 대입하면 냉각수 변환량이 0.046cc/min가 된다. For reference, the dynamic viscosity of 25 air is 1.85X10 -5 Ns / m 2 , the dynamic viscosity at the operating temperature of 90 ° C is about 10 cP (= 0.01Ns / m 2 ), If 3.5 bar is generated inside the pump, the amount of cooling water converted to 0.046 cc / min is substituted by Equation 6 above.
이 경우, 냉각수가 피검사체의 특정 누설부위에 집중적으로 발생한다고 가정할 경우, 약 21.7분 동안 같은 조건으로 동작하면 1cc가 발생하는 것으로 판단할 수 있다. In this case, assuming that the coolant is concentrated in a specific leakage part of the test object, it may be determined that 1cc is generated when the coolant operates under the same conditions for about 21.7 minutes.
즉, 제어부(42)는 냉각수 변환량으로 누설될 경우, 이 누설되는 총 냉각수량이 기 설정된 설정량 만큼 발생하는 시간이 설정시간 이내이면 냉각수 누설이 있는 것으로 판정한다(S160). That is, when leaking with the coolant conversion amount, the controller 42 determines that there is a coolant leakage when the total amount of leaked coolant water generated by the preset amount is within the set time (S160).
이와 같이 본 실시예는 피검사체의 공기 누설량을 토대로 피검사체의 누설 부위와 냉각수의 누설량을 추정할 수 있다. As described above, the present embodiment can estimate the leaked portion of the inspected object and the leaked amount of the coolant based on the leaked air of the inspected object.
또한 본 실시예는 검사 영역을 최소화하고, 검사 시간 동안 압축 공기의 온도변화를 최소화함으로써, 공기 누설 편차를 감소시켜, 검출 신뢰성 및 검출 정밀도를 향상시킬 수 있다. 또한, 불량 부품의 고객 유출 및 정상품을 불량품으로 판단하게 되는 오류를 감소시켜 품질 비용을 최소화하고, 원가를 절감할 수 있는 효과를 가진다.In addition, the present embodiment can minimize the inspection area and minimize the temperature change of the compressed air during the inspection time, thereby reducing the air leakage deviation, thereby improving detection reliability and detection accuracy. In addition, by reducing the customer leakage of defective parts and errors that determine the regular goods as defective goods, it has the effect of minimizing the quality cost and reducing the cost.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의하여 정해져야할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, it is merely exemplary and various modifications and equivalent other embodiments are possible to those skilled in the art. I will understand. Therefore, the true technical protection scope of the present invention will be defined by the claims below.

Claims (5)

  1. 피검사체의 검사 영역으로 압축 공기를 주입하여 압축 공기의 압력값과 온도값의 변화로 피검사체에서 공기가 누설되는지 여부를 판단하는 단계; Injecting compressed air into a test region of the inspected object to determine whether air leaks from the inspected object by a change in pressure and temperature of the compressed air;
    피검사체에서 공기가 누설되는 것으로 판단되면, 피검사체에서 누설되는 공기 누설량을 측정하는 단계; 및 If it is determined that the air leaks from the inspected object, measuring the amount of air leaked from the inspected object; And
    측정된 상기 공기 누설량을 냉각수 누설량으로 변환하는 단계를 포함하는 냉각수 누설 검사 방법. And converting the measured air leakage into coolant leakage.
  2. 제 1 항에 있어서, 상기 피검사체에서 공기가 누설되는지 여부를 판단하는 단계는 The method of claim 1, wherein the determining of whether the air leaks from the inspected object is performed.
    에어 봄베 내부의 공기 압력이 제1 압력값을 갖도록 압축 공기를 저장하는 단계;Storing compressed air such that the air pressure inside the air cylinder has a first pressure value;
    상기 에어 봄베 내부에 저장된 상기 압축 공기의 온도가 제1 온도값을 만족하도록 조절하는 단계;Adjusting the temperature of the compressed air stored in the air cylinder to satisfy a first temperature value;
    상기 에어 봄베 내부에 저장된 상기 압축 공기를 지그와 피검사체 사이에 형성된 검사 영역 내부로 주입하는 단계; 및 Injecting the compressed air stored in the air cylinder into an inspection region formed between a jig and a test object; And
    상기 검사 영역 내부의 압축 공기의 압력값과 온도값의 변화를 검지하여 피검사체의 누설 여부를 판단하는 단계를 포함하는 것을 특징으로 하는 냉각수 누설 검사 방법. And detecting the leakage of the inspected object by detecting a change in the pressure value and the temperature value of the compressed air in the inspection area.
  3. 제 2 항에 있어서, 상기 피검사체의 누설 여부를 판단하는 단계는 The method of claim 2, wherein the determining of the leakage of the test object is performed.
    상기 검사 영역 내부의 압축 공기의 압력값과 온도값을 측정하는 단계;Measuring a pressure value and a temperature value of the compressed air in the inspection area;
    검사 영역 내부의 상기 압축공기의 압력 및 온도 변화를 측정하는 단계;Measuring a change in pressure and temperature of the compressed air inside an inspection area;
    상기 검사 영역 내부의 상기 압축 공기의 압력 및 온도 변화값을 이용하여 상기 피검사체의 공기 누설량을 산출하는 단계; 및Calculating an air leakage amount of the inspected object by using a change in pressure and temperature of the compressed air in the inspection region; And
    상기 산출된 공기 누설량이 설정값 이상이면 상기 피검사체에 누설이 발생한 것으로 판정하는 단계를 포함하는 것을 특징으로 하는 냉각수 누설 검사 방법. And determining that leakage occurs in the inspected object when the calculated air leakage amount is equal to or larger than a set value.
  4. 제 1 항에 있어서, 상기 냉각수 누설량을 바탕으로 냉각수 누설을 최종 판단하는 단계를 더 포함하는 것을 특징으로 하는 냉각수 누설 검사 방법. The method of claim 1, further comprising the step of finally determining the coolant leakage based on the coolant leakage amount.
  5. 제 4 항에 있어서, 상기 냉각수 누설량을 바탕으로 냉각수 누설을 최종 판단하는 단계는, The method of claim 4, wherein the final determination of the coolant leakage based on the coolant leakage amount,
    상기 냉각수 누설량으로 누설될 경우 냉각수의 총 냉각수량이 기 설정된 설정량 만큼 발생하는 시간이 기 설정된 설정시간 이내이면 냉각수 누설로 판정하는 것을 특징으로 하는 냉각수 누설 검사 방법. Coolant leakage test method characterized in that when the leakage of the coolant leakage amount of the coolant is determined as the leakage of the coolant if the time that the total amount of coolant occurs by a predetermined set amount is within a predetermined set time.
PCT/KR2015/003221 2015-03-31 2015-03-31 Method for inspecting for coolant leakage WO2016159409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150045302A KR20160116901A (en) 2015-03-31 2015-03-31 Coolant leak inspection method
KR10-2015-0045302 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159409A1 true WO2016159409A1 (en) 2016-10-06

Family

ID=57007339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003221 WO2016159409A1 (en) 2015-03-31 2015-03-31 Method for inspecting for coolant leakage

Country Status (2)

Country Link
KR (1) KR20160116901A (en)
WO (1) WO2016159409A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040041996A (en) * 2002-11-12 2004-05-20 한국항공우주산업 주식회사 Leakage testing apparatus for airtight container
KR100760828B1 (en) * 2005-10-05 2007-09-21 주식회사 디섹 Leak detection apparatus
KR20120013526A (en) * 2010-08-05 2012-02-15 대우기공 주식회사 Leak testing apparatus and method
JP2013015046A (en) * 2011-07-01 2013-01-24 Mitsubishi Heavy Ind Ltd Cooling device and method for detecting leakage of cooling water
KR20140124691A (en) * 2013-04-17 2014-10-27 태원물산주식회사 Leak inspection apparatus using pressure-difference and leak inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040041996A (en) * 2002-11-12 2004-05-20 한국항공우주산업 주식회사 Leakage testing apparatus for airtight container
KR100760828B1 (en) * 2005-10-05 2007-09-21 주식회사 디섹 Leak detection apparatus
KR20120013526A (en) * 2010-08-05 2012-02-15 대우기공 주식회사 Leak testing apparatus and method
JP2013015046A (en) * 2011-07-01 2013-01-24 Mitsubishi Heavy Ind Ltd Cooling device and method for detecting leakage of cooling water
KR20140124691A (en) * 2013-04-17 2014-10-27 태원물산주식회사 Leak inspection apparatus using pressure-difference and leak inspection method

Also Published As

Publication number Publication date
KR20160116901A (en) 2016-10-10

Similar Documents

Publication Publication Date Title
WO2014171571A1 (en) Differential pressure-type leakage examining device and leakage examining method
CN104101470B (en) Pipe flange test system
CN106525358B (en) Valve pressure testing system and method
KR101659589B1 (en) Leak test apparatus and method for electronic product
WO2016159410A1 (en) Method for inspecting for coolant leakage
KR20140125019A (en) Leak inspection apparatus using pressure-difference
CN115326305A (en) Battery package gas tightness detection device
US7849730B2 (en) Device for testing the performance of a sealant for SOFC stacks
WO2016159409A1 (en) Method for inspecting for coolant leakage
CN108534963B (en) Waterproof performance detection method and system
JP2009180582A (en) Device for detecting high-temperature leakage in sofc battery pack
KR101495753B1 (en) Apparatus for detecting leak of heat exchanger
CN117007252A (en) Ultrasonic water meter pipe section tightness detection method
KR20170060988A (en) Apparatus and method for testing digital inlet valve of diesel high pressuer pump
CN115656787A (en) Testing device and method for PCBA with negative pressure sensor and infrared sensor
JP3856121B2 (en) Capacitor airtightness inspection method and apparatus
CN210347466U (en) Raman probe cold and hot table and gas environment testing cavity assembly thereof
CN204085808U (en) A kind of air-tightness detection device
CN113815895A (en) Test method and device for detecting high-temperature high-pressure gas pipeline connection clamp
CN209961426U (en) Quick measuring device of muffler leakproofness
CN117760833B (en) High-pressure hydrogen environment wide Wen Yushan double-shaft compression testing device
CN219455386U (en) Manometer verification environment construction equipment and manometer verifying attachment
CN220568366U (en) Battery shell detection device based on air tightness and explosion-proof valve threshold
CN219830043U (en) Error correction and verification device of electronic water meter
CN220039595U (en) Device for detecting tightness of flowmeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887819

Country of ref document: EP

Kind code of ref document: A1