WO2016159139A1 - 経頭蓋磁気刺激装置用コイル装置 - Google Patents

経頭蓋磁気刺激装置用コイル装置 Download PDF

Info

Publication number
WO2016159139A1
WO2016159139A1 PCT/JP2016/060492 JP2016060492W WO2016159139A1 WO 2016159139 A1 WO2016159139 A1 WO 2016159139A1 JP 2016060492 W JP2016060492 W JP 2016060492W WO 2016159139 A1 WO2016159139 A1 WO 2016159139A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic stimulation
head surface
electric field
transcranial magnetic
Prior art date
Application number
PCT/JP2016/060492
Other languages
English (en)
French (fr)
Inventor
洋一 齋藤
正樹 関野
啓太 山本
Original Assignee
国立大学法人東京大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 国立大学法人大阪大学 filed Critical 国立大学法人東京大学
Priority to CA2981420A priority Critical patent/CA2981420C/en
Priority to ES16773020T priority patent/ES2940892T3/es
Priority to JP2017510138A priority patent/JP6583699B2/ja
Priority to KR1020177029768A priority patent/KR102556124B1/ko
Priority to CN201680020711.2A priority patent/CN107708611B/zh
Priority to AU2016240919A priority patent/AU2016240919B2/en
Priority to US15/563,044 priority patent/US20180369601A1/en
Priority to EP16773020.9A priority patent/EP3278764B1/en
Publication of WO2016159139A1 publication Critical patent/WO2016159139A1/ja
Priority to US16/842,124 priority patent/US11491343B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue

Definitions

  • the present invention relates to a coil device for a transcranial magnetic stimulation device, a method for manufacturing the same, a transcranial magnetic stimulation device including the coil device for a transcranial magnetic stimulation device, and a method for manufacturing the same.
  • Transcranial magnetic stimulation is a treatment method that painlessly and non-invasively stimulates neurons in the brain.
  • FIG. 1 is a perspective view showing a configuration example of a typical transcranial magnetic stimulation system according to the prior art.
  • a stimulation coil is brought into contact with an appropriate position on the surface of the head as shown in FIG. 1, and a magnetic field is instantaneously generated, so that nerve cells in the brain immediately below the coil are induced by an electric field. Stimulate by.
  • the magnetic field generated from the coil induces an electric field in the living body by electromagnetic induction and causes depolarization in nerves located in the cerebrum.
  • the transcranial magnetic stimulation method has been mainly used for mapping brain functions of the motor cortex as a means of stimulating cranial nerves in a non-invasive and painless manner. Furthermore, in recent years, clinical research with a clear therapeutic aim has been advanced for neurological diseases such as pain, Parkinson's disease, and depression, or for evaluation of spinal cord and peripheral neuropathy. In these neurological diseases, there are clinical cases in which it is difficult to obtain an effect by treatment with a drug, and it is attracting attention as a patient-friendly treatment method replacing an electrical stimulation treatment method involving craniotomy. As an example, it has been reported that in intractable neuropathic pain, there was an analgesic effect for about one day by magnetically stimulating the primary motor cortex of the cerebrum.
  • a transcranial magnetic stimulation system 1 (hereinafter “magnetic stimulation system”, “transcranial magnetic stimulation device”, “transcranial magnetic stimulation treatment system”, “transcranial”
  • the magnetic stimulation system ”) is generally configured to include a stimulation coil 2 (magnetic field generating means) and a magnetic stimulation control device 6 electrically connected to the stimulation coil 2 via a cable 4 for treatment. Treatment and / or alleviation of symptoms is performed by applying a magnetic stimulation of a predetermined intensity to nerves in the brain by the stimulation coil 2 placed on the scalp surface of the patient M seated on the chair 8 for use.
  • a coil holder 10 having a coil 2 is fixed to the tip of a holder fixture 11 (posture holding means).
  • the holder fixture 11 includes a column 11a and a base 11b, and a part of the column 11a (near the tip of the holder fixture 11) is formed of a metal flexible tube 11c. Therefore, the coil 2 can be fixed at the optimum coil position simply by moving the coil holder 10 to a predetermined position on the scalp surface of the patient M.
  • the transcranial magnetic stimulation system is not limited to the configuration shown in FIG. 1, and other modes are possible.
  • the stimulation coil 2 generates a dynamic magnetic field for applying magnetic stimulation to at least a specific part of the brain of the patient M.
  • the stimulation coil 2 various types of known magnetic coils can be used.
  • the stimulation coil 2 is a so-called eight-shaped spiral coil in which two spiral coils are arranged in the shape of the numeral “8” on the same plane. .
  • the maximum induced current density can be obtained immediately below the portion where these coils overlap by causing current to flow through the two coils in the same direction (for example, the direction indicated by the arrow).
  • This form of stimulation coil (magnetic coil) 2 is suitable for providing stimulation with a limited area on the brain skin to be stimulated.
  • the magnetic stimulation control device 6 controls the supply of current pulses to the stimulation coil 2.
  • various conventionally known forms can be used.
  • the on / off operation of the magnetic stimulation control device 6 is performed by an operator.
  • the operator can also set the intensity of the current pulse and the pulse waveform that determine the intensity and cycle of the magnetic stimulation.
  • a higher pain reduction effect can be obtained by accurately applying a local stimulus to the intracerebral nerve directly from the coil placed on the scalp surface of the patient. For this reason, in a medical institution, the optimal coil position and posture of the coil 2 which can reduce a patient's neuropathic pain most are determined using the positioning device for exclusive use at the time of a patient's initial medical examination.
  • the conventional magnetic stimulation device weighs about 70 kg and requires electrical work for installation, so it can only be used in a well-equipped medical institution.
  • the stimulation position is determined with reference to the patient's MRI (Magnetic Resonance Imaging) data, and thus treatment by a skilled medical staff is necessary.
  • transcranial magnetic stimulation therapy there are various types of stimulation coils for magnetic stimulation, such as circular coils, 8-shaped coils, four-leaf coils, Hesed coils, and many small circular coils arranged on the head surface.
  • a shape has been proposed, and currently an 8-shaped coil is mainly used.
  • An 8-shaped coil is a series of two circular coils connected in series, for example, partially overlapped at their circular ends, and by passing a current in the opposite direction to these circular coils, It is possible to stimulate locally by concentrating eddy currents.
  • a navigation system for determining the stimulation position by the hands of non-medical workers In developing magnetic stimulation used for home treatment, the development of a navigation system for determining the stimulation position by the hands of non-medical workers is also underway.
  • a navigation system for determining a magnetic stimulation position a plurality of magnetic sensors installed in eyeglasses are used to reverse the position and orientation of a magnetic stimulation coil as a magnetic field source in a three-dimensional space.
  • the positioning operation using the magnetic stimulation therapy coil navigation system that teaches the coil moving operation so that the irradiation position / orientation of the magnetic stimulation coil, which is a prescription value predetermined by the doctor, is detected by an analysis technique will be described. .
  • the patient first wears glasses equipped with a plurality of magnetic sensors in the hospital.
  • the doctor moves the magnetic stimulation coil to the vicinity of the irradiation position of the patient's brain skin and tries the magnetic stimulation to determine the optimal stimulation position (prescription position).
  • the data of the position and orientation of the magnetic stimulation coil tracked by the stereo camera at the position of, and the data detected by the magnetic sensor of the glasses for the magnitude of the magnetic field generated by the permanent magnet incorporated in the coil Record as a table.
  • the current magnetic sensor detection value is compared with the magnetic sensor value in the data table collected in advance, so that the current coil 3
  • the dimension position and orientation are specified. Since the brain MRI image and the magnetic stimulation coil image are superimposed and displayed on the monitor screen next to the patient, the patient can observe the monitor screen and the magnetic stimulation coil becomes the target prescription. It is possible to visually and intuitively know where the current position is relative to the position, and it is possible to easily move the magnetic stimulation coil to the prescription position and position the coil. Note that navigation systems other than the configuration described above are also possible.
  • the guidance error is, for example, 5 mm at the maximum from the optimum stimulation position, while in the 8-shaped coil described above, the irradiation site (optimum stimulation position) is within, for example, 5 mm. It is assumed that the target site can be stimulated therapeutically and effectively. In this case, when using a treatment device that performs magnetic stimulation with an 8-shaped coil at a stimulation position induced using a navigation system, the site to be irradiated (optimum stimulation position) may not fall within the stimulation effective range of the treatment coil. Because there is, it is difficult to accurately stimulate the treatment part.
  • a winding coil is placed on or near the surface of the head, and a current is generated by an induced electric field in a magnetic stimulation target region in the brain by electromagnetic induction.
  • a coil device for a stimulating transcranial magnetic stimulator The winding coil includes a near head surface conductor portion disposed on or near the head surface, and a far head surface conductor disposed away from the near head surface conductor portion from the head surface. With The distance between the near-surface surface conductor and the far-surface surface conductor is changed and set so that the induction electric field strength increases compared to the peripheral region of the magnetic stimulation target region.
  • the electric field strength on the head surface can be further increased as compared with the prior art.
  • a transcranial stimulation system 1 In order to generate an electric field for magnetic stimulation treatment by applying an electric current to a magnetic stimulation coil (hereinafter also referred to as “treatment coil”, “stimulation coil”, or simply “coil”), a transcranial stimulation system 1 Includes a magnetic stimulation control device 6 connected to the stimulation coil 2, and the magnetic stimulation control device 6 includes a coil drive circuit therein.
  • FIG. 2A is a circuit diagram showing a configuration example of a stimulation coil drive circuit of a transcranial magnetic stimulation device according to one embodiment of the present invention
  • FIG. 2B is a waveform showing a coil voltage waveform of the transcranial magnetic stimulation device of FIG. 2A
  • FIG. 2C is a waveform diagram showing a coil current waveform of the transcranial magnetic stimulation apparatus of FIG. 2A.
  • the coil drive circuit 20 includes a power supply device 21, a capacitor 22, a semiconductor switch 23, a stimulation coil 2, and a control circuit 26.
  • the power supply device 21 includes an AC power supply 21a, a power supply circuit 21b, and a booster circuit 21c.
  • the semiconductor switch 23 is configured by connecting a thyristor 23 a and a diode 23 b in the reverse direction in parallel, and the thyristor 23 a is turned on or off based on a control signal from the control circuit 26.
  • a capacitor 22 having a capacitance value C, a semiconductor switch 23, an inductance component 24 of the stimulation coil 2 having an inductance Lc, and a resistance component 25 of the stimulation coil 2 having a resistance value Rc are connected in series. .
  • the capacitor 22 and the inductance component 24 of the stimulation coil 2 resonate by turning on (conducting) the thyristor 23a.
  • the current i flowing through the inductance component 24 during resonance is expressed by the following differential equation when the resistance component 25 is ignored.
  • the current i is expressed by the following equation using the boosted voltage V 0 .
  • the coil voltage (both ends of the inductance component 24 of the stimulation coil 2 is turned off) by turning off (cutting off) the thyristor 23a when the time corresponding to one resonance period has elapsed. 2B) and the current waveform flowing through the stimulation coil 2 are as shown in FIGS. 2B and 2C.
  • the horizontal axis represents time
  • the vertical axis represents voltage
  • the horizontal axis in FIG. 2C represents time
  • the vertical axis represents current.
  • the voltage applied to the stimulation coil 2 is 0.4 to 3 kV, and the current flowing through the stimulation coil 2 is 4 to 20 kA.
  • the pulse width suitable for transcranial magnetic stimulation treatment is 200 ⁇ s to 300 ⁇ s, and the induced electric field strength generated in the brain is said to be about 200 V / m when the gray matter conductivity is 0.1 S / m.
  • the stimulus intensity and the reaction effect obtained thereby vary from subject to subject, and there are many empirical parts.
  • FIG. 3 is a schematic external view of an 8-shaped coil and a dome-shaped coil used in this embodiment.
  • a patent application was filed for the dome-shaped coil in order to perform a wider range of stimulation than the conventional 8-shaped coil (see, for example, Patent Document 3).
  • the dome-shaped coil first has the number of turns N, the height L, and the conductor interval d as independent parameters. Further, as parameters that depend on these independent parameters, the overall coil width W and the upper sphere radius R are set. Have. Hereinafter, these parameters are also collectively referred to as “variable parameters”.
  • the radius of the bottom surface contact portion (see FIG. 3) when the coil is viewed from above is defined as x.
  • the radius R is uniquely determined by the values of the radius x and the height L when designing based on the bottom surface contact portion.
  • the dome coil according to the present embodiment can be defined as follows. That is, the near head surface conducting wire part arranged near the head surface and the far head surface conducting part arranged away from the head surface are electrically connected to form a single turn coil.
  • a plurality of turn coils configured such that the shape of the head surface conductor portion and / or the far head surface conductor portion is the same for each turn connected or gradually different for each turn connected, This is a coil device arranged in the direction in which the centers are connected.
  • each turn of the winding coil is placed on or near the head surface so that the central axis of each turn of the winding coil is substantially parallel to the head surface, and a current is generated in the brain by electromagnetic induction to stimulate neurons.
  • It is a coil apparatus used for cranial magnetic stimulation treatment.
  • the coil height L is the maximum value of the distance between the near-surface surface conductor portion and the far-surface surface conductor portion in each turn coil constituting the dome-shaped coil.
  • the dome-shaped coil is considered.
  • the present invention is not limited to this, and the eight-character configuration includes a coil of the near-head surface conductor portion and a coil of the far-head surface conductor portion. It may be a mold coil.
  • the 8-shaped coil is placed on or near the head surface so that the central axis of each turn of the winding coil is substantially perpendicular to the head surface, and generates an electric current in the brain by electromagnetic induction.
  • This is a coil device for a transcranial magnetic stimulation device that stimulates neurons.
  • the stimulation range is set to a design target of 1.5 times the horizontal and vertical dimensions of the conventional 8-shaped coil.
  • the stimulation efficiency is reduced, it is necessary to apply more current to the coil, and as a result, continuous stimulation becomes difficult due to heating of the coil, so that the stimulation efficiency may not be reduced. It was important.
  • the design of the dome-shaped coil is changed to a method of fixing and proceeding with the examination based on the “head contact area of the coil bottom surface”, and as a result, the induction electric field given as a result is changed. It was clarified that “spread” and “strength” depended on “head contact area” and “coil height and turn number density”, respectively. As a result, the design of the dome-shaped coil can be changed in strength while keeping the spread of the generated induction electric field constant, so that it is easy to find the optimum value. The result of examination by the present inventor based on such a policy will be specifically described below.
  • SPFD method Scalar-Potential Finite Difference method
  • an object that generates an induced electric field by a dynamic magnetic field is divided into small rectangular parallelepipeds, and an induced electric field generated in each minute volume can be obtained as a solution of a differential equation of a magnetic vector potential.
  • the electric field E generated by the coil is expressed as follows using the magnetic vector potential A 0 and the scalar potential ⁇ .
  • FIG. 4 is a perspective view showing the structure of a minute hexahedron for explaining the principle of the scalar potential finite difference method used in this embodiment.
  • Sn is the conductance of each line
  • ln is the length of each line
  • ⁇ n is a scalar potential at node Pn
  • a 0 n is a directional component connecting node P0 and node Pn.
  • the induction electric field E (vector) can be obtained by solving this equation for the entire voxel.
  • FIG. 5 is a table showing each example when the height L of the dome-shaped coil is used as a parameter in the transcranial magnetic stimulation apparatus of FIG. 2A.
  • a plurality of coil models fixed to the base value were prepared, and the change of the induced electric field in the hemispherical conductor imitating the head was analyzed.
  • the dome-shaped coil is configured by connecting elements of a plurality of turns, for example, in series, and the width between the elements of two adjacent turns is defined as an element width d.
  • the upper conductor radius (R in FIG. 3) of the dome-shaped coil is changed from 60.2 mm to 56 mm in accordance with the height L because the height L is changed while the head contact area is constant.
  • the following three types of coil models were prepared.
  • the model M1 is a model group M1
  • the model M2 is a model group M2
  • the model M3 is a model group M3.
  • a current of 5.3 kA and 4 kHz was applied to the stimulation coil. Then, changes in the induced electric field strength and the spread with respect to the change in the coil height L were calculated and compared based on the scalar potential finite difference method as described below.
  • FIG. 6 is a graph showing the electric field strength generated by the coil when the height L of the dome-shaped coil is changed in the transcranial magnetic stimulation apparatus of FIG. 2A.
  • the induction electric field strength increased as the coil height increased to ⁇ 87 V / m.
  • the “in-sphere average value of the induction electric field” is a value obtained by calculating the electric field strength at each point inside the sphere for the sphere within a predetermined radius from the center point, and calculating the average value.
  • the in-sphere average of the induction electric field is 73 V / m to 118 V / m, and only the strength is increased as compared with the model group M2.
  • the spread of the induction electric field did not change.
  • the spread of the induction electric field is a value defined on the basis of the point of attenuation to 50% of the maximum value of the generated induction electric field.
  • the half width of the model group M1 is 8.7 cm ⁇ 4.2 cm, the model group M2 and The full width at half maximum of M3 was 9.7 cm ⁇ 5.3 cm.
  • the strength can be increased without increasing or decreasing the spread of the generated induction electric field. It turns out that it can be maximized. This is an important finding when aiming at a coil design in which the induction electric field does not spread more than necessary and can be stimulated efficiently.
  • the pulse width T of the current generated by the general drive circuit described above is determined as follows using the self-inductance Lc of the coil and the capacitance C of the circuit.
  • the coil strength as an extrapolated value calculated from the approximate straight line obtained from the result was 107 V / m, and the result obtained by analyzing the induction electric field from the above equations under the same experimental conditions was 103 V / m. .
  • the minimum value of the inductance is 5.63 ⁇ H, and the inductance is preferably 5 ⁇ H or more.
  • FIG. 7A is a perspective view showing an outline of the appearance of an 8-shaped coil used in the present embodiment
  • FIG. 7B is a perspective view showing an outline of the appearance of a dome-shaped coil used in the present embodiment.
  • the 8-shaped coil was formed by stacking two circular coils having an outer radius of 51 mm, an inner radius of 11 mm, and 10 turns.
  • the hemisphere model was the same as in the above study, and the current flowing through the coil was 5.3 kA and 3.4 kHz.
  • the spread range in which the stimulation intensity of the dome-shaped coil is halved is 9.8 cm ⁇ 5.4 cm, and the 8-shaped coil is 6.0 cm ⁇ 3.4 cm.
  • the average value of the induction electric field generated in a sphere having a radius of 10 mm centered on the top of the hemisphere was 83 V / m for the dome-shaped coil and 169 V / m for the 8-shaped coil.
  • FIG. 8A is a simulation result of the 8-shaped coil according to the present embodiment, and is an image showing the intensity of the induction electric field generated on the surface of the hemisphere model.
  • FIG. 8B is a simulation result of the dome-shaped coil according to the present embodiment, and is an image showing the induction electric field strength generated on the surface of the hemisphere model.
  • FIG. 9A is a simulation result of the 8-shaped coil according to the present embodiment, and is an image showing the induction electric field strength generated in the cross section of the hemisphere model.
  • FIG. 9B is a simulation result of the dome-shaped coil according to the present embodiment, and is an image showing the induction electric field strength generated in the cross section of the hemisphere model. That is, the state of the model surface of the induction electric field generated in the hemisphere model is shown in FIGS. 8A and 8B, and the state of the cross section is shown in FIGS. 9A and 9B.
  • the dome-shaped coil is inferior to the 8-shaped coil in stimulation intensity, but the stimulation range for the hemisphere model is wider. It can also be seen that the distance to the position where the stimulation depth attenuates to 50% of the maximum induction electric field is 9.8 mm for the 8-shaped coil and 15 mm for the dome-shaped coil. It is generally said that the allowable displacement of the stimulation position due to the 8-shaped coil is about 5 mm. From this result, it can be predicted that the displacement of the stimulation position due to the dome-shaped coil will increase to about 8 mm, which is about 1.5 times. It can be seen that a coil resistant to misalignment has been realized.
  • the present inventor conducted a study on a brain shape model created from an MRI image of a hemispherical subject's head based on a simulation of a displacement of a stimulus position at a 3 mm grid, 5 points ⁇ 5 points centered on a motor cortex. It was.
  • the brain shape model was extracted from the MRI image by dividing into three elements of brain white matter, gray matter, and cerebrospinal fluid by using the statistical image analysis package SPM operating on MATLAB.
  • the conductivities of white matter, gray matter, and cerebrospinal fluid were 0.07 S / m, 0.11 S / m, and 1.79 S / m, respectively.
  • the induction electric field at the stimulation planned point at the time of displacement was compared between an 8-shaped coil and a dome-shaped coil having the same design as in Example 2.
  • FIG. 10A is a photographic image showing the measurement position of the electric field strength in the MRI image of the subject's head in the simulation of the 8-shaped coil and the dome-shaped coil according to this embodiment.
  • FIG. 10B is a table showing the simulation result of the 8-shaped coil according to the present embodiment and showing the relative value of the electric field strength at the measurement position in FIG. 10A.
  • FIG. 10C is a table showing a simulation result of the dome-shaped coil according to the present embodiment and showing a relative value of the electric field intensity at the measurement position in FIG. 10A.
  • the measurement position in FIG. 10A is a coordinate determined by the coordinates of the Xa axis and the Ya axis orthogonal to each other.
  • FIG. 10A shows the brain shape obtained by MRI and the state of the stimulation points of the primary motor area corresponding thereto.
  • the intensity of the induced electric field was 264 V / m for the 8-shaped coil and 101 V / m for the dome-shaped coil, taking an average in a sphere with a radius of 10 mm at the stimulation center point.
  • FIG. 10B there was a stimulation point that attenuated by 10.8% at the maximum in the 8-shaped coil. This is consistent with a report that a therapeutic effect may not be obtained due to a positional deviation of a coil of 5 mm or more.
  • the maximum attenuation with the dome-shaped coil was 1.1%. From this, it can be said that the dome-shaped coil is designed to be resistant to misalignment in stimulating the actually complex brain. Further, the result agrees with the consideration that the allowable displacement of the stimulation position in the hemisphere model is about 8 mm.
  • the distance between the near head surface lead wire portion and the far head surface lead wire portion is compared with the peripheral region of the magnetic stimulation target region (region to be magnetically stimulated) in the brain,
  • the induction electric field intensity can be greatly increased as compared with the prior art.
  • the inductance Lc is set to be in an inductance range in which the inductance Lc is preferably 5 ⁇ H or more and 13 ⁇ H or less and the induction electric field is within a predetermined spread on the head surface.
  • the pulse width is set within a predetermined pulse width range, and the distance between the near head surface conducting wire portion and the far head surface conducting wire portion is determined by the induced electric field strength. It is preferable to set it so as to increase as compared with the peripheral region of the magnetic stimulation target region.
  • an 8-shaped coil composed of two circular coils has been described.
  • the present invention is not limited to this, and the center axis of the two circular coils is eccentric to the central portion of the coil device.
  • An eccentric 8-character coil may be used.
  • the manufacturing method of the coil apparatus has mainly described the dome-shaped coil, the present invention is not limited to this, and can be applied to an 8-shaped coil and an eccentric 8-shaped coil.
  • a winding coil is placed on or near the head surface, and an electromagnetic induction generates a current due to an induction electric field in a magnetic stimulation target region in the brain.
  • a coil device for a transcranial magnetic stimulator for stimulating neurons The winding coil includes a near head surface conductor portion disposed on or near the head surface, and a far head surface conductor disposed away from the near head surface conductor portion from the head surface. With The distance between the near-surface surface conductor and the far-surface surface conductor is changed and set so that the induction electric field strength increases compared to the peripheral region of the magnetic stimulation target region.
  • a coil device for a transcranial magnetic stimulation device is the coil device for a transcranial magnetic stimulation device according to the first aspect, wherein the coiling device for the transcranial magnetic stimulation device is between the near-surface surface conductor portion and the far-field surface conductor portion.
  • the distance is set so that the inductance of the coil device is within a predetermined inductance range and the induction electric field is within a predetermined spread on the head surface.
  • a coil device for a transcranial magnetic stimulation device is the coil device for a transcranial magnetic stimulation device according to the second aspect, wherein the inductance range is 5 ⁇ H or more and 13 ⁇ H or less. .
  • a coil device for a transcranial magnetic stimulation device is the coil device for a transcranial magnetic stimulation device according to any one of the first to third aspects, wherein the coil device is a dome shape. It is a coil, an 8-shaped coil, or an eccentric 8-shaped coil.
  • the transcranial magnetic stimulation apparatus is A coil device for a transcranial magnetic stimulation device according to any one of the first to fourth aspects;
  • a transcranial magnetic stimulation device comprising: a driving circuit that outputs a current pulse having a predetermined pulse width to the coil device;
  • the pulse width is set within a predetermined pulse width range, and the distance between the near head surface conducting wire portion and the far head surface conducting wire portion is set so that the induced electric field strength is in the peripheral region of the magnetic stimulation target region. It is characterized by being set so as to increase in comparison.
  • the transcranial magnetic stimulation apparatus is the fifth transcranial magnetic stimulation apparatus, wherein the pulse width range is 200 ⁇ s or more and 300 ⁇ s or less.
  • a method of manufacturing a coil device for a transcranial magnetic stimulation device A method of manufacturing a coil device for a transcranial magnetic stimulation device that generates and stimulates neurons,
  • the winding coil includes a near head surface conductor portion disposed on or near the head surface, and a far head surface conductor disposed away from the near head surface conductor portion from the head surface.
  • a method for manufacturing a coil device for a transcranial magnetic stimulation device is the method for manufacturing a coil device for a transcranial magnetic stimulation device according to the seventh aspect, wherein the near-surface surface lead wire portion and the far head Changing the distance to the surface conductor portion by changing the inductance of the coil device so that the inductance of the coil device is within a predetermined inductance range and the induction electric field is within a predetermined spread on the head surface. It is characterized by.
  • a method of manufacturing a transcranial magnetic stimulation device includes: A coil device for a transcranial magnetic stimulation device according to any one of the first to fourth aspects; A method of manufacturing a transcranial magnetic stimulation device comprising a drive circuit that outputs a current pulse having a predetermined pulse width to the coil device, The pulse width is set within a predetermined pulse width range, and the distance between the near head surface conducting wire portion and the far head surface conducting wire portion is set so that the induced electric field strength is in the peripheral region of the magnetic stimulation target region.
  • the method includes a step of changing and setting so as to increase in comparison.
  • the electric field strength of the head surface can be further increased, and the present invention can be used to manufacture a coil device for a transcranial magnetic stimulation device and a coil device for a transcranial magnetic stimulation device.
  • the present invention can be widely applied to a method, a transcranial magnetic stimulation device using the coil device, and a manufacturing method of the transcranial magnetic stimulation device.
  • Transcranial magnetic stimulation system 2 ... Stimulation coil, 4 ... Cable 6 ... Magnetic stimulation control device, 20 ... Coil drive circuit, 21 ... Power supply, 21a ... AC power supply, 21b ... power supply circuit, 21c ... Booster circuit, 22: Capacitor, 23. Semiconductor switch, 23a ... Thyristor, 23b ... a diode, 24: Inductance component of the stimulation coil, 25. Resistance component of the stimulation coil, 26 ... control circuit, M ... Patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Pulmonology (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

頭部表面の電場強度をさらに増大させることができる経頭蓋磁気刺激装置用コイル装置を提供するために、巻線コイルが頭部表面上又はその近傍に置かれ、電磁誘導によって脳内の磁気刺激対象領域に誘導電場による電流を発生させてニューロンを刺激する経頭蓋磁気刺激装置のためのコイル装置であって、上記巻線コイルは、上記頭部表面上又はその近傍に配置された近頭部表面導線部と、上記頭部表面から上記近頭部表面導線部よりも離れて配置された遠頭部表面導線部とを備え、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定した。

Description

経頭蓋磁気刺激装置用コイル装置
 本発明は、経頭蓋磁気刺激装置用コイル装置とその製造方法と、上記経頭蓋磁気刺激装置用コイル装置を備えた経頭蓋磁気刺激装置とその製造方法とに関する。
 経頭蓋磁気刺激法(TMS:Transcranial Magnetic Stimulation)は、無痛かつ非侵襲的に脳内のニューロンを刺激する治療方法である。
 図1は従来技術に係る典型的な経頭蓋磁気刺激システムの構成例を示す斜視図である。施術にあたっては、図1に示すように頭部の表面に刺激用のコイルを適切な位置に接触させ、磁場を瞬間的に発生させることで、コイル直下に存在する脳内の神経細胞を誘導電場により刺激する。コイルより発生した磁場は、電磁誘導により生体内に電場を誘導し、大脳に位置する神経に脱分極を生じさせる。
 経頭蓋磁気刺激法は非侵襲かつ無痛で脳神経を刺激できる手段として、運動野の脳機能マッピング等に主に利用されてきた。さらに近年では、疼痛、パーキンソン病、うつ病などの神経疾患について、または脊髄及び末梢神経障害の評価について、明確に治療を目的とした臨床研究が進められている。これらの神経疾患においては薬剤による治療では効果を得にくい臨床ケースがあり、開頭手術を伴うような電気刺激治療法に代わる、患者に優しい治療法として注目を集めている。一例として、難治性神経障害性疼痛において、大脳の一次運動野に磁気刺激を行うことで1日ほど除痛効果があったことが報告されている。
 図1に典型的な構成例の概要を示すように、経頭蓋磁気刺激システム1(以下、「磁気刺激システム」、「経頭蓋磁気刺激装置」、「経頭蓋磁気刺激治療システム」、「経頭蓋磁気刺激システム」ともいう。)は、大略、刺激用コイル2(磁場発生手段)、ケーブル4を介して電気的に刺激用コイル2と接続された磁気刺激制御装置6を備えて構成され、治療用の椅子8に着座した患者Mの頭皮表面に配置した刺激用コイル2により脳内神経に所定強度の磁気刺激を加えることにより、治療及び/又は症状の緩和を図るものである。
 図1に記載の典型的なシステム構成例においては、コイル2を有するコイルホルダ10は、ホルダ固定具11(姿勢保持手段)の先端部に固定されている。ホルダ固定具11は、柱11aとベース11bからなり、柱11aの一部(ホルダ固定具11の先端部近傍)が金属製のフレキシブルチューブ11cで形成されている。従って、コイル2は、コイルホルダ10を患者Mの頭皮表面の所定位置に移動するだけで、最適コイル位置に固定できる。なお、経頭蓋磁気刺激システムは図1に示す構成に限定されることはなく、他の態様も可能である。
 刺激用コイル2は、患者Mの少なくとも脳の特定部位に磁気刺激を加えるための動磁場を発生するものである。刺激用コイル2としては、種々のタイプの公知の磁気コイルを使用できる。図1に図示した典型的構成例システムにおいては、刺激用コイル2は、2つの渦巻き形コイルを同一平面上で数字の「8」の字型に並べた、いわゆる8の字型渦巻きコイルである。この形態のコイルは2つのコイルに同方向(例えば、矢印で示す方向)に電流を流すことで、これらのコイルが重なった部分の直下で最大の誘導電流密度を得ることができる。この形態の刺激用コイル(磁気コイル)2は、刺激する脳皮上の範囲を限局した刺激をもたらすのに好適である。
 同様に、図1の典型的なシステム構成において、磁気刺激制御装置6は、刺激用コイル2への電流パルスの供給を制御するものである。磁気刺激制御装置6としては、従来公知の種々の形態を用いることができる。磁気刺激制御装置6のオン/オフ操作は操作者によって行われる。また、磁気刺激の強度やサイクルを決定付ける電流パルスの強度やパルス波形の設定等も、操作者によって行うことができる。
 患者の頭皮表面上に配置したコイルから直下の脳内神経に正確に局所刺激を与えることにより、より高い疼痛軽減効果が得られる。このため、医療機関では、患者の初期診療時に専用の位置決め装置を用いて、患者の神経障害性疼痛が最も軽減できるコイル2の最適コイル位置及び姿勢を決定している。
 しかし、従来の磁気刺激装置は約70kgの重量があり、また設置のために電気工事が必要となるため、設備の整った医療機関でのみ利用可能となっている。また、実際の治療時には患者のMRI(Magnetic Resonance Imaging)データを参照しながら刺激位置を決定するため、熟練した医療従事者による治療が必要である。
特開2012-125546号公報 国際公開第2010/147064号公報 国際公開第2015/122506号公報
 経頭蓋磁気刺激療法では、現在、磁気刺激法の刺激用コイルとして、円形コイル、8字型コイルをはじめ、4葉コイル、Hesedコイル、小さな円形コイルを頭部表面に多数配置したコイルなど様々な形状が提案されており、現在は8字型コイルが主に利用されている。8字型コイルは、直列に接続した2つの円形コイルを、例えばその円形端部において部分的に重ねて配置したもので、それらの円形コイルに逆向きに電流を流すことで、コイル交差部直下に渦電流を集中させて局所への刺激が可能である。
 一方、治療の対象や、患者個人の症状によっては、局所的な刺激とは逆に、より広い範囲で刺激することが有効な場合がある。また、局所に刺激が集中するコイルでは、対象の部位へ正確に位置を決めることが求められ、この場合、ナビゲーションシステム等による正確な位置決めを実施する必要があった。
 在宅治療に用いる磁気刺激の開発を行ううえで、非医療従事者の手により刺激位置を決定するためのナビゲーションシステムの開発も進められている。磁気刺激位置を決定するためのナビゲーションシステムのひとつの例として、メガネに仕込まれている複数の磁気センサを用いて、3次元空間内にある磁界源としての磁気刺激用コイルの位置や向きを逆解析の手法で検出し、医師が予め決めた処方値である磁気刺激用コイルの照射位置・向きとなるようコイル移動操作の教示を行う磁気刺激治療コイルのナビゲーションシステムを用いた位置決め操作を説明する。
 患者はまず病院において複数の磁気センサが仕込まれたメガネを装着する。次に医師が磁気刺激用コイルを患者脳皮の照射位置付近へ移動し、磁気刺激を試行して最適刺激位置(処方位置)を決定すると同時に、最適刺激位置およびその周囲5cmの範囲内の複数の位置で、ステレオカメラが追跡した磁気刺激用コイルの位置・向きのデータと、コイルに内蔵された永久磁石が生成する磁界の大きさをメガネの磁気センサが検出したデータとを関連づけて、データテーブルとして記録する。
 在宅で患者が自ら磁気刺激用コイルを動かして治療を行う時は、現在の磁気センサの検出値を、予め収集されたデータテーブル内の磁気センサ値と比較対照することで、現在のコイルの3次元位置及び向きが特定される。患者の傍にあるモニターの画面には脳MRI画像と磁気刺激用コイルの画像とが重ね合わされて表示されるので、患者はモニター画面を観察することにより、磁気刺激用コイルが、目標となる処方位置に対して現在どこにあるのかを視覚的、直観的に知ることができ、処方位置まで容易に磁気刺激用コイルを移動させてコイルの位置決めを行うことができる。なお、上記に説明した構成以外のナビゲーションシステムもまた可能である。
 上記に例示をした構成を有するナビゲーションシステムにおける誘導誤差が、最適刺激位置から最大で例えば5mmとし、一方、先に説明した8の字コイルでは、例えば5mm以内に照射部位(最適刺激位置)がある場合に治療上有効に目的の部位を刺激することが可能であると仮定する。この場合、ナビゲーションシステムを用いて誘導された刺激位置において8の字コイルで磁気刺激を行う治療装置を用いると、照射すべき部位(最適刺激位置)が治療コイルの刺激有効範囲に入らない可能性があるので、正確に治療部分に刺激を行うことが難しい。そこで例えば10mm以内に照射すべき部位がある場合に治療上有効に目的の部位を刺激することができるような、より広い範囲に均等に渦電流を発生することが可能なコイルの開発が必要とされている。
 そこで、本発明者らは、ロバスト性が高い(すなわち、より広い範囲に渦電流を発生することができる)刺激用コイルを実現するため、従来は提案されていなかった構成である、ドーム型コイル装置を提案し、既に特許出願を行っている(例えば、特許文献3参照)。
 本発明の目的は、頭部表面の電場強度を従来技術に比較してさらに増大させることができる経頭蓋磁気刺激装置用コイル装置とその製造方法と、上記経頭蓋磁気刺激装置用コイル装置を備えた経頭蓋磁気刺激装置とその製造方法を提供することにある。
 本発明にかかる経頭蓋磁気刺激装置用コイル装置は、巻線コイルが頭部表面上又はその近傍に置かれ、電磁誘導によって脳内の磁気刺激対象領域に誘導電場による電流を発生させてニューロンを刺激する経頭蓋磁気刺激装置のためのコイル装置であって、
 上記巻線コイルは、上記頭部表面上又はその近傍に配置された近頭部表面導線部と、上記頭部表面から上記近頭部表面導線部よりも離れて配置された遠頭部表面導線部とを備え、
 上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定したことを特徴とする。
 従って、本発明によれば、頭部表面の電場強度を従来技術に比較してさらに増大させることができる。
従来技術に係る典型的な経頭蓋磁気刺激システムの構成例を示す斜視図である。 本発明の一実施形態にかかる経頭蓋磁気刺激装置の刺激用コイル駆動回路の構成例を示す回路図である。 図2Aの経頭蓋磁気刺激装置のコイル電圧波形を示す波形図である。 図2Aの経頭蓋磁気刺激装置のコイル電流波形を示す波形図である。 本実施形態で用いる8字型コイル及びドーム型コイルの外観概要図である。 本実施形態で用いるスカラーポテンシャル有限差分法の原理を説明するための微小6面体の構造を示す斜視図である。 図2Aの経頭蓋磁気刺激装置においてドーム型コイルの高さL等をパラメータとしたときの各実施例を示す表である。 図2Aの経頭蓋磁気刺激装置においてドーム型コイルの高さLを変化させたときのコイルが生成する電場強度を示すグラフである。 本実施形態で用いる8字型コイルの外観概要を示す斜視図である。 本実施形態で用いるドーム型コイルの外観概要を示す斜視図である。 本実施形態にかかる8字型コイルのシミュレーション結果であって、半球モデル表面に発生する誘導電場強度を示す画像である。 本実施形態にかかるドーム型コイルのシミュレーション結果であって、半球モデル表面に発生する誘導電場強度を示す画像である。 本実施形態にかかる8字型コイルのシミュレーション結果であって、半球モデル断面に発生する誘導電場強度を示す画像である。 本実施形態にかかるドーム型コイルのシミュレーション結果であって、半球モデル断面に発生する誘導電場強度を示す画像である。 本実施形態にかかる8字型コイル及びドーム型コイルのシミュレーションにおける、被験者頭部のMRI画像における電場強度の測定位置を示す写真画像である。 本実施形態にかかる8字型コイルのシミュレーション結果であって、図10Aの測定位置における電場強度の相対値を示す表である。 本実施形態にかかるドーム型コイルのシミュレーション結果であって、図10Aの測定位置における電場強度の相対値を示す表である。
 以下、本発明に係る実施形態にかかる、経頭蓋磁気刺激装置用コイル装置、経頭蓋磁気刺激装置用コイル装置の製造方法、及び経頭蓋磁気刺激装置について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
〔磁気刺激用コイル駆動回路の構成〕
 磁気刺激用コイル(以下、「治療コイル」、「刺激用コイル」、あるいは単に「コイル」ともいう)に電流を印加して磁気刺激治療のための電場を生成するために、経頭蓋刺激システム1は刺激用コイル2と接続された磁気刺激制御装置6を備えており、磁気刺激制御装置6は内部にコイル駆動回路を備えている。
 図2Aは本発明の一実施形態にかかる経頭蓋磁気刺激装置の刺激用コイル駆動回路の構成例を示す回路図であり、図2Bは図2Aの経頭蓋磁気刺激装置のコイル電圧波形を示す波形図であり、図2Cは図2Aの経頭蓋磁気刺激装置のコイル電流波形を示す波形図である。
 コイル駆動回路20は、電源装置21と、コンデンサ22と、半導体スイッチ23と、刺激用コイル2と、制御回路26とを備えて構成される。ここで、電源装置21は、交流電源21aと、電源回路21bと、昇圧回路21cとを備える。ここで、半導体スイッチ23はサイリスタ23aと、逆方向のダイオード23bとが並列に接続されて構成され、サイリスタ23aは制御回路26からの制御信号に基づいてオン又はオフされる。また、容量値Cを有するコンデンサ22と、半導体スイッチ23と、インダクタンスLcを有する刺激用コイル2のインダクタンス成分24と、抵抗値Rcを有する刺激用コイル2の抵抗成分25とが直列に接続される。
 図2Aのコイル駆動回路20において、電源装置21よりコンデンサ22に電荷を蓄積した後、サイリスタ23aをオン(導通)にすることで、コンデンサ22と刺激用コイル2のインダクタンス成分24とが共振する。ここで、共振中にインダクタンス成分24に流れる電流iは、抵抗成分25を無視すると次式の微分方程式で表される。
Figure JPOXMLDOC01-appb-M000001
          (1)
 従って、電流iは昇圧後の電圧Vを用いて次式のように表される。
Figure JPOXMLDOC01-appb-M000002
           (2)
 式(1)及び式(2)から明らかなように、共振一周期分の時間が経過した時点でサイリスタ23aをオフ(遮断)することで、コイル電圧(刺激用コイル2のインダクタンス成分24の両端の電圧)波形と、刺激用コイル2に流れる電流波形とは、図2B及び図2Cに示すようになる。なお、図2Bにおいて横軸は時間を、縦軸は電圧を表し、図2Cにおいて横軸は時間を、縦軸は電流を表している。
 典型的な経頭蓋磁気刺激システムにおいて、刺激用コイル2にかかる電圧は0.4~3kV、刺激用コイル2を流れる電流は4~20kAである。また、経頭蓋磁気刺激治療に好適なパルス幅は200μs~300μs、脳内に生じる誘導電場強度は灰白質の導電率を0.1S/mとした場合に200V/m程度といわれているが、刺激強度とそれによって得られる反応効果は被験者によりばらつきのある値であり、経験的な部分も多い。
 次に、本実施形態にかかるコイル装置に本発明者が到達した際に検討の出発点となった、ドーム型コイル装置の構成について説明する。
 図3は本実施形態で用いる8字型コイル及びドーム型コイルの外観概要図である。従来の8字型コイルより広範囲な刺激を行うためにドーム型コイルについて特許出願を行った(例えば、特許文献3参照)。当該ドーム型コイルは、まず独立のパラメータとして、ターン数N、高さL及び導線間隔dを有しており、さらにこれら独立のパラメータに依存するパラメータとして、コイル全体幅W、上部球半径Rを有している。これらのパラメータを以後、総称として「変数パラメータ」ともいう。
 また、下部接触面球半径r=100mm、平角銅線の断面2mm×6mmを、上記特許文献3における実施例では定数パラメータとして持つ。また補助的なパラメータとしてコイルを上部から見た時の底面接触部の半径(図3参照)がxとして定義される。これら定義から明らかなとおり、底面接触部を基準として設計を行うとき、半径xと高さLの値により半径Rが一意に定まる。
 なお、本実施形態にかかるドーム型コイルは、次の様に定義を行うことも可能である。すなわち、頭部表面の近くに配置された近頭部表面導線部と、頭部表面から離れて配置された遠頭部表面導線部とが電気的に接続してひとつのターンコイルをなし、近頭部表面導線部及び/又は遠頭部表面導線部の形状が連接するターンごとに同一であるか、または連接するターンごとに徐々に異なるように構成した複数の各ターンコイルを、各ターンの中心が連接する方向に配列してなしたコイル装置である。
 あるいは、巻線コイルの各ターンの中心軸が頭部表面に略並行となるよう該頭部表面上あるいはその近傍に置かれ、電磁誘導によって脳内に電流を発生させてニューロンを刺激する、経頭蓋磁気刺激治療に使用するコイル装置である。
 このように定義されたドーム型コイルにおいて、コイルの高さLとは、ドーム型コイルを構成するそれぞれのターンコイルにおける、近頭部表面導線部と遠頭部表面導線部との距離の最大値と定義することができる。
 以上の実施形態においては、ドーム型コイルについての考察を行っているが、本発明はこれに限らず、近頭部表面導線部のコイルと、遠頭部表面導線部のコイルとを有する8字型コイルであってもよい。このとき、8字型コイルは、巻線コイルの各ターンの中心軸が頭部表面に略垂直となるよう該頭部表面上あるいはその近傍に置かれ、電磁誘導によって脳内に電流を発生させてニューロンを刺激する経頭蓋磁気刺激装置のためのコイル装置である。
〔本発明者による検討の方針〕
 上記に説明した各パラメータを有するドーム型コイルを前提とし、本発明者は次のような方針と知見に基づいて、本実施形態にかかるコイル装置に至る検討を行った。
 まず、経頭蓋磁気刺激装置用コイル装置の設計にあたって、脳表において磁気刺激治療の対象となる、例えば1次運動野に隣接する感覚野などへの刺激は安全である一方で、海馬など記憶野を刺激することは避けねばならず、そのため、刺激範囲は従来の8字型コイルの縦横1.5倍程度を設計の目標とした。
 また、もしも刺激効率が下がれば、より多くの電流をコイルに印加する必要が生じ、結果としてコイルの加熱により継続的な刺激が困難になるため、刺激効率が下がらないような設計とすることも重要とした。
 本発明者らが先に行った特許出願においては、8字型コイルに比べより広い範囲を均等に刺激できるドーム型コイルを新たに提案し、高さL、コイル全体幅W、上部球半径Rを各々独立に動かし、その誘導電場に与える影響を検討した。
 しかし、これらの設計パラメータと、結果として得られる、頭部に発生する誘導電場の広がりや強度との関係が複雑であり、ドーム型コイルの最適な設計を行うことが、このように各パラメータを独立に動かす設計的なアプローチからは困難である点を見出していた。
 本実施形態においては、詳細後述するように、ドーム型コイルの設計を「コイル底面の頭部接触面積」を基準とし、固定して検討を進める方法に改めることで、結果として与えられる誘導電場の「広がり」と「強度」が、それぞれ「頭部接触面積」と「コイル高さ及び巻き数密度」に依存するものであることを明らかにした。これによりドーム型コイルの設計が、発生する誘導電場の広がりを一定に保ったまま強度を変更できるようになったため、最適値の模索という観点で容易になった。このような方針に基づく本発明者による検討の結果を、以下に具体的に説明する。
〔スカラーポテンシャル有限差分法を用いた頭部モデルに対する誘導電場の計算法〕
 本実施形態に至る、経頭蓋磁気刺激における誘導電場の計算をその過程に含んだ各検討では、本発明者はすべて、スカラーポテンシャル有限差分法(SPFD法:Scalar-Potential Finite Difference method)を用いた。SPFD法では、動磁場により誘導電場を発生させる対象物を微小直方体に分割し、各微小体積に発生する誘導電場を磁気ベクトルポテンシャルの差分方程式の解として得ることができる。まず、コイルにより発生する電場Eを磁気ベクトルポテンシャルA及びスカラーポテンシャル∇φを用いて表すと以下となる。
Figure JPOXMLDOC01-appb-M000003
           (3)
 また、電流連続の式及びオームの法則より、誘導される電流密度Jと電場E、導電率σに対して以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
           (4)
 以上の式(3)及び式(4)より次式が成立する。
Figure JPOXMLDOC01-appb-M000005
           (5)
 図4は本実施形態で用いるスカラーポテンシャル有限差分法の原理を説明するための微小6面体の構造を示す斜視図である。図4に図示するような微小六面体を仮定し、Snを各直線のコンダクタンス、lnを各直線の長さ、Φnを節点Pnにおけるスカラーポテンシャル、Anを節点P0と節点Pnを結ぶ方向成分の磁気ベクトルポテンシャルとする。ここで、式(3)、式(4)及び式(5)をそれぞれ離散化すると、これらの値に対して次式が成り立つ。
Figure JPOXMLDOC01-appb-M000006
           (6)
 この式をボクセル全体について解くことにより、誘導電場E(ベクトル)を求めることができる。
〔ドーム型コイルにおいて頭部接触部分の面積を一定とし、高さ及び導線密度を変化させた場合に発生する誘導電場の変化〕
 図5は図2Aの経頭蓋磁気刺激装置においてドーム型コイルの高さL等をパラメータとしたときの各実施例を示す表である。本発明者は、まず、各パラメータに対する刺激効果の変化を解析するため、図5のように、コイルの高さLを21mm及び39mmとして、頭部接触面の面積をx=56mmという設計値に基づく値に固定した複数のコイルモデルを用意し、頭部を模した半球の導電体における誘導電場の変化を解析した。なお、ドーム型コイルは複数のターンの各エレメントが例えば直列に接続されて構成され、互いに隣接する二つのターンのエレメント間の幅をエレメント幅dとする。
 このとき、ドーム型コイルの上側導線半径(図3におけるR)は、頭部接触面積を一定としつつ高さLを変更したため、高さLに合わせて60.2mm~56mmと変化している。他のパラメータについては以下の3種類のコイルのモデルを用意した。
(モデルM1)ターン数N=20、エレメント幅d=1mm、コイル全体幅W=59mm;
(モデルM2)ターン数N=20、エレメント幅d=2mm、コイル全体幅W=78mm;
(モデルM3)ターン数N=26、エレメント幅d=1mm、コイル全体幅W=78mm。
 なお、モデルM2とモデルM3とを比較することで、接触面積を同様としつつ導線密度を変化させた場合の誘導電場の変化を見ることができる。また、コイルの高さLを21mm及び39mmに変化させることで、モデルM1をモデル群M1とし、モデルM2をモデル群M2とし、モデルM3をモデル群M3とする。
 誘導電場を発生させる対象の導電体は、半径75mm、導電率σ=0.1S/mの半球とし、コイルモデルの10mm下に位置するよう設定した。刺激用コイルには5.3kA、4kHzの電流を印加した。その上で、コイルの高さLの変化に対する誘導電場強度及び広がりの変化を、以下に説明するように、スカラーポテンシャル有限差分法に基いて計算し比較した。
 図6は図2Aの経頭蓋磁気刺激装置においてドーム型コイルの高さLを変化させたときのコイルが生成する電場強度を示すグラフである。ドーム型コイルの高さLの変化に対しては、図6に図示のとおり、高さLを変化させた場合刺激範囲は変化せず、強度のみが高さLと比例関係にあることがわかった。すなわち、N=20かつエレメント幅d=1mmのモデル群M1については刺激点中央における半径10mmの誘導電場の球内平均が83~129V/m、N=20かつエレメント幅2mmのモデル群M2では54~87V/mと、コイル高さを高くするほど誘導電場強度が大きくなった。
 ここで、「誘導電場の球内平均値」とは、中心点から所定半径内の球体について、球体内部の各点における電場強度を計算し、その平均値として算出された値である。また、接触部分の面積を変えず導線密度を変化させた場合のモデル群M3についても誘導電場の球内平均が73V/m~118V/mとなり、モデル群M2と比較して強度のみが増加しており、誘導電場の広がりは変化しなかった。なお誘導電場の広がりとは、発生する誘導電場の最大値の50%まで減衰する点を基準として定義した値であり、モデル群M1の半値幅は8.7cm×4.2cm、モデル群M2及びM3の半値幅は9.7cm×5.3cmであった。
 これらの結果より、ドーム型コイルの設計においては、接触部分の面積を変えずにコイルの高さLを高く、巻線密度を上げることで、発生する誘導電場の広がりを増減させずに強度を最大化することができる、ということが分かった。これは、誘導電場が必要以上に広がらず、かつ効率よく刺激をできるコイル設計を目標とするにあたり、重要な知見である。
 但し、コイルの高さLをより高くする、もしくは巻線密度をより上昇させることによって、コイル本体に対する鎖交磁束が増加するため、コイルの自己インダクタンスLcが上昇する。ここで、前述の一般的な駆動回路によって発生される電流のパルス幅Tはコイルの自己インダクタンスLc、回路のキャパシタンスCを用いて、次のように決定される。
Figure JPOXMLDOC01-appb-M000007
           (7)
 一般に、効率よく神経刺激が可能な、刺激用コイル印加電流のパルス幅は200μs~300μsと言われているため、容量値C=180μFとした場合、インダクタンスは13μH程度が限界となる。これを踏まえ各コイルモデルのインダクタンスを計算すると、誘導電場の広がりが十分であるモデル群M2においてコイルの高さL=39mmのとき、インダクタンスは9.0μHとなる。これは基準となる13μHより十分に低く、治療可能なパルス幅という観点からはまだ余裕がある。
 これよりコイルの高さLを高くした上でインダクタンスを求めると、L=49mmのとき12.9μHとなり、基準の13μHを超えない最適なコイル高さとすることができる。このとき、結果から得られる近似直線から計算される外挿値としてのコイル強度は107V/mであり、同じ実験条件で上記の各式から誘導電場を解析した結果としては103V/mとなった。
 なお、刺激用コイル印加電流のパルス幅は200μsのときC=180μFとした場合、インダクタンスの最小値は5.63μHであって、インダクタンスは好ましくは5μH以上であればよい。
〔8字型コイルとドーム型コイルの半球モデルに対する誘導電場の比較〕
 次に、ドーム型コイルの位置ロバスト性を評価するため、半球モデルに対する8字型コイルとドーム型コイルによる誘導電場の広がり及び強度をそれぞれ比較する検討を行った。
 図7Aは本実施形態で用いる8字型コイルの外観概要を示す斜視図であり、図7Bは本実施形態で用いるドーム型コイルの外観概要を示す斜視図である。
 8字型コイルは図7Aに示すように外半径51mm、内半径11mm、10ターンの円形コイルを2つ重ねた形とした。ドーム型コイルはN=20、d=2、W=78mm、L=39mm、R=66mmとした。半球モデルは上記検討と同様とし、コイルに流す電流は5.3kA、3.4kHzとした。
 半球モデルに発生する誘導電場について、ドーム型コイルの刺激強度が半減する広がり範囲は9.8cm×5.4cmであり、8字型コイルは6.0cm×3.4cmであった。また、半球頂部を中心とした半径10mm球内に発生している誘導電場の平均値は、ドーム型コイルでは83V/mであり、8字型コイルでは169V/mであった。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 図8Aは本実施形態にかかる8字型コイルのシミュレーション結果であって、半球モデル表面に発生する誘導電場強度を示す画像である。図8Bは本実施形態にかかるドーム型コイルのシミュレーション結果であって、半球モデル表面に発生する誘導電場強度を示す画像である。図9Aは本実施形態にかかる8字型コイルのシミュレーション結果であって、半球モデル断面に発生する誘導電場強度を示す画像である。図9Bは本実施形態にかかるドーム型コイルのシミュレーション結果であって、半球モデル断面に発生する誘導電場強度を示す画像である。すなわち、半球モデルに発生する誘導電場のモデル表面の様子を図8A及び図8Bに、断面の様子を図9A及び図9Bに示す。
 ドーム型コイルは、刺激強度は8字型コイルに劣るものの、半球モデルに対する刺激範囲はより広くなっていることがわかる。また刺激の深さも最大誘導電場の50%まで減衰する位置までの距離が、8字型コイルが9.8mm、ドーム型コイルで15mmと十分であることがわかる。一般に8字型コイルによる許容される刺激位置ずれが5mm程度と言われていることより、この結果から、ドーム型コイルによる刺激位置ずれは約1.5倍の8mm程度まで拡大することが予測でき、位置ずれに強いコイルが実現したことがわかる。
〔MRI画像によって得られた脳形状データに対するドーム型コイルの位置ロバスト性の評価計算〕
 本発明者は、半球被験者頭部のMRI画像から作られた脳形状モデルに対し、運動野刺激点を中心とした3mm格子、5点×5点での刺激位置ずれのシミュレーションに基づく検討を行った。
 脳形状モデルはMATLAB上で動作する統計画像解析パッケージSPMを用いることで、MRI画像より脳の白質、灰白質、脳脊髄液の3要素に分けて抽出した。白質、灰白質、脳脊髄液の導電率はそれぞれ0.07S/m、0.11S/m、1.79S/mとした。位置ずれ時の刺激予定点における誘導電場を、実施例2と同様の設計の8字型コイルとドーム型コイルとで比較した。
 図10Aは本実施形態にかかる8字型コイル及びドーム型コイルのシミュレーションにおける、被験者頭部のMRI画像における電場強度の測定位置を示す写真画像である。図10Bは本実施形態にかかる8字型コイルのシミュレーション結果であって、図10Aの測定位置における電場強度の相対値を示す表である。図10Cは本実施形態にかかるドーム型コイルのシミュレーション結果であって、図10Aの測定位置における電場強度の相対値を示す表である。ここで、図10Aの測定位置は、互いに直交するXa軸とYa軸との座標で定められる座標である。
 すなわち、MRIによって得られた脳形状と、それに対する一次運動野の刺激点の様子を図10Aに示す。刺激による誘導電場をシミュレーションした結果、誘導電場の強度は、刺激中心点において半径10mmの球内平均をとると、8字型コイルで264V/m、ドーム型コイルで101V/mであった。位置ずれに対する電場強度の減衰については、図10Bのように、8字型コイルでは最大で10.8%減弱するような刺激点が存在した。これは5mm以上のコイルの位置ずれにより治療効果が得られなくなる場合がある、という報告と一致するものである。
 一方、図10Cのようにドーム型コイルでは最大に減弱する点でも1.1%であった。このことから、ドーム型コイルは実際の複雑な形状の脳に対する刺激において、位置ずれに強い設計であるということができる。また半球モデルにおいて許容される刺激位置ずれが8mm程度である、とした考察とも一致する結果である。
 以上の実施形態をまとめると、近頭部表面導線部と遠頭部表面導線部との間の距離を、脳内の磁気刺激対象領域(磁気刺激すべき領域)の周辺領域に比較して、磁気刺激対象領域の誘導電場強度が増大し、好ましくは実質的に最大になるように、変化させて設定することで、誘導電場強度を従来技術に比較して大幅に増大できる。ここで、インダクタンスLcが好ましくは5μH以上でかつ13μH以下であるインダクタンス範囲に入りかつ誘導電場が頭部表面上の所定の広がり内に入るように設定することが好ましい。また、経頭蓋磁気刺激装置においては、パルス幅を所定のパルス幅範囲内に設定し、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定することが好ましい。
[変形例]
 以上の実施形態においては、2つの円形コイルからなる8字型コイルについて説明しているが、本発明はこれに限らず、2つの円形コイルの中心軸をコイル装置の中央部に偏心させて構成された偏心8字型コイルであってもよい。また、コイル装置の製造方法については、主としてドーム型コイルについて説明しているが、本発明はこれに限らず、8字型コイル、偏心8字型コイルにも適用することができる。
[実施形態のまとめ]
 第1の態様にかかる経頭蓋磁気刺激装置用コイル装置は、巻線コイルが頭部表面上又はその近傍に置かれ、電磁誘導によって脳内の磁気刺激対象領域に誘導電場による電流を発生させてニューロンを刺激する経頭蓋磁気刺激装置のためのコイル装置であって、
 上記巻線コイルは、上記頭部表面上又はその近傍に配置された近頭部表面導線部と、上記頭部表面から上記近頭部表面導線部よりも離れて配置された遠頭部表面導線部とを備え、
 上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定したことを特徴とする。
 第2の態様にかかる経頭蓋磁気刺激装置用コイル装置は、第1の態様にかかる経頭蓋磁気刺激装置用コイル装置において、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記コイル装置のインダクタンスが所定のインダクタンス範囲に入り、かつ上記誘導電場が頭部表面上の所定の広がり内に入るように変化させて設定したことを特徴とする。
 第3の態様にかかる経頭蓋磁気刺激装置用コイル装置は、第2の態様にかかる経頭蓋磁気刺激装置用コイル装置において、上記インダクタンス範囲は、5μH以上でかつ13μH以下であることを特徴とする。
 第4の態様にかかる経頭蓋磁気刺激装置用コイル装置は、第1~第3の態様のうちのいずれか1つに記載の経頭蓋磁気刺激装置用コイル装置において、上記コイル装置は、ドーム型コイル、8字型コイル、又は偏心8字型コイルであることを特徴とする。
 第5の態様にかかる経頭蓋磁気刺激装置は、
 第1~第4の態様のうちのいずれか1つに記載の経頭蓋磁気刺激装置用コイル装置と、
 上記コイル装置に所定のパルス幅を有する電流パルスを出力する駆動回路とを備えた経頭蓋磁気刺激装置であって、
 上記パルス幅を所定のパルス幅範囲内に設定し、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定したことを特徴とする。
 第6の態様にかかる経頭蓋磁気刺激装置は、第5の経頭蓋磁気刺激装置において、上記パルス幅範囲は、200μs以上でかつ300μs以下であることを特徴とする。
 第7の態様にかかる経頭蓋磁気刺激装置用コイル装置の製造方法は、巻線コイルが頭部表面上又はその近傍に置かれ、電磁誘導によって脳内の磁気刺激対象領域に誘導電場による電流を発生させてニューロンを刺激する経頭蓋磁気刺激装置のためのコイル装置の製造方法であって、
 上記巻線コイルは、上記頭部表面上又はその近傍に配置された近頭部表面導線部と、上記頭部表面から上記近頭部表面導線部よりも離れて配置された遠頭部表面導線部とを備え、
 上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定するステップを含むことを特徴とする。
 第8の態様にかかる経頭蓋磁気刺激装置用コイル装置の製造方法は、第7の態様にかかる経頭蓋磁気刺激装置用コイル装置の製造方法において、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記コイル装置のインダクタンスが所定のインダクタンス範囲に入り、かつ上記誘導電場が頭部表面上の所定の広がり内に入るように変化させて設定するステップを含むことを特徴とする。
 第9の態様にかかる経頭蓋磁気刺激装置の製造方法は、
 第1~第4の態様のうちのいずれか1つに記載の経頭蓋磁気刺激装置用コイル装置と、
 上記コイル装置に所定のパルス幅を有する電流パルスを出力する駆動回路とを備えた経頭蓋磁気刺激装置の製造方法であって、
 上記パルス幅を所定のパルス幅範囲内に設定し、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定するステップを含むことを特徴とする。
 以上詳述したように、本発明によれば、頭部表面の電場強度をさらに増大させることができ、本発明を、経頭蓋磁気刺激装置用コイル装置、経頭蓋磁気刺激装置用コイル装置の製造方法、上記コイル装置を用いた経頭蓋磁気刺激装置、及び経頭蓋磁気刺激装置の製造方法に広く適用することが可能である。
1…経頭蓋磁気刺激システム、
2…刺激用コイル、
4…ケーブル、
6…磁気刺激制御装置、
20…コイル駆動回路、
21…電源装置、
21a…交流電源、
21b…電源回路、
21c…昇圧回路、
22…コンデンサ、
23…半導体スイッチ、
23a…サイリスタ、
23b…ダイオード、
24…刺激用コイルのインダクタンス成分、
25…刺激用コイルの抵抗成分、
26…制御回路、
M…患者。

Claims (9)

  1.  巻線コイルが頭部表面上又はその近傍に置かれ、電磁誘導によって脳内の磁気刺激対象領域に誘導電場による電流を発生させてニューロンを刺激する経頭蓋磁気刺激装置のためのコイル装置であって、
     上記巻線コイルは、上記頭部表面上又はその近傍に配置された近頭部表面導線部と、上記頭部表面から上記近頭部表面導線部よりも離れて配置された遠頭部表面導線部とを備え、
     上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定したことを特徴とする、経頭蓋磁気刺激装置用コイル装置。
  2.  上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記コイル装置のインダクタンスが所定のインダクタンス範囲に入り、かつ上記誘導電場が頭部表面上の所定の広がり内に入るように変化させて設定したことを特徴とする、請求項1記載の経頭蓋磁気刺激装置用コイル装置。
  3.  上記インダクタンス範囲は、5μH以上でかつ13μH以下であることを特徴とする、請求項2記載の経頭蓋磁気刺激装置用コイル装置。
  4.  上記コイル装置は、ドーム型コイル、8字型コイル、又は偏心8字型コイルであることを特徴とする、請求項1~3のうちのいずれか1つに記載の経頭蓋磁気刺激装置用コイル装置。
  5.  請求項1~4のうちのいずれか1つに記載の経頭蓋磁気刺激装置用コイル装置と、
     上記コイル装置に所定のパルス幅を有する電流パルスを出力する駆動回路とを備えた経頭蓋磁気刺激装置であって、
     上記パルス幅を所定のパルス幅範囲内に設定し、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定したことを特徴とする、経頭蓋磁気刺激装置。
  6.  上記パルス幅範囲は、200μs以上でかつ300μs以下であることを特徴とする、請求項5記載の経頭蓋磁気刺激装置。
  7.  巻線コイルが頭部表面上又はその近傍に置かれ、電磁誘導によって脳内の磁気刺激対象領域に誘導電場による電流を発生させてニューロンを刺激する経頭蓋磁気刺激装置のためのコイル装置の製造方法であって、
     上記巻線コイルは、上記頭部表面上又はその近傍に配置された近頭部表面導線部と、上記頭部表面から上記近頭部表面導線部よりも離れて配置された遠頭部表面導線部とを備え、
     上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定するステップを含むことを特徴とする、経頭蓋磁気刺激装置用コイル装置の製造方法。
  8.  上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記コイル装置のインダクタンスが所定のインダクタンス範囲に入り、かつ上記誘導電場が頭部表面上の所定の広がり内に入るように変化させて設定するステップを含むことを特徴とする、請求項7記載の経頭蓋磁気刺激装置用コイル装置の製造方法。
  9.  請求項1~4のうちのいずれか1つに記載の経頭蓋磁気刺激装置用コイル装置と、
     上記コイル装置に所定のパルス幅を有する電流パルスを出力する駆動回路とを備えた経頭蓋磁気刺激装置の製造方法であって、
     上記パルス幅を所定のパルス幅範囲内に設定し、上記近頭部表面導線部と上記遠頭部表面導線部との間の距離を、上記誘導電場強度が上記磁気刺激対象領域の周辺領域に比較して増大するように変化させて設定するステップを含むことを特徴とする、経頭蓋磁気刺激装置の製造方法。
PCT/JP2016/060492 2015-04-02 2016-03-30 経頭蓋磁気刺激装置用コイル装置 WO2016159139A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2981420A CA2981420C (en) 2015-04-02 2016-03-30 Coil apparatus for use in transcranial magnetic stimulation apparatus
ES16773020T ES2940892T3 (es) 2015-04-02 2016-03-30 Dispositivo de bobina para su uso en dispositivo de estimulación magnética transcraneal
JP2017510138A JP6583699B2 (ja) 2015-04-02 2016-03-30 コイル設計装置及びコイル設計方法
KR1020177029768A KR102556124B1 (ko) 2015-04-02 2016-03-30 경두개 자기 자극 장치용 코일 장치
CN201680020711.2A CN107708611B (zh) 2015-04-02 2016-03-30 经颅磁刺激装置用线圈装置及其制造方法
AU2016240919A AU2016240919B2 (en) 2015-04-02 2016-03-30 Coil apparatus for use in transcranial magnetic stimulation apparatus
US15/563,044 US20180369601A1 (en) 2015-04-02 2016-03-30 Coil apparatus for use in transcranial magnetic stimulation apparatus provided with wound-wire coil disposed on or near head surface
EP16773020.9A EP3278764B1 (en) 2015-04-02 2016-03-30 Coil device for use in transcranial magnetic stimulation device
US16/842,124 US11491343B2 (en) 2015-04-02 2020-04-07 Coil apparatus for use in transcranial magnetic stimulation apparatus provided with wound-wire coil disposed on or near head surface

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562142380P 2015-04-02 2015-04-02
US62/142380 2015-04-02
US201562154295P 2015-04-29 2015-04-29
US62/154295 2015-04-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/563,044 A-371-Of-International US20180369601A1 (en) 2015-04-02 2016-03-30 Coil apparatus for use in transcranial magnetic stimulation apparatus provided with wound-wire coil disposed on or near head surface
US16/842,124 Division US11491343B2 (en) 2015-04-02 2020-04-07 Coil apparatus for use in transcranial magnetic stimulation apparatus provided with wound-wire coil disposed on or near head surface

Publications (1)

Publication Number Publication Date
WO2016159139A1 true WO2016159139A1 (ja) 2016-10-06

Family

ID=57007245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060492 WO2016159139A1 (ja) 2015-04-02 2016-03-30 経頭蓋磁気刺激装置用コイル装置

Country Status (9)

Country Link
US (2) US20180369601A1 (ja)
EP (1) EP3278764B1 (ja)
JP (1) JP6583699B2 (ja)
KR (1) KR102556124B1 (ja)
CN (1) CN107708611B (ja)
AU (1) AU2016240919B2 (ja)
CA (1) CA2981420C (ja)
ES (1) ES2940892T3 (ja)
WO (1) WO2016159139A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101953615B1 (ko) * 2017-10-16 2019-03-04 서울대학교산학협력단 금속판과 숏스텁을 이용한 뇌 자극용 어플리케이터
JPWO2018066171A1 (ja) * 2016-10-06 2019-07-18 新東工業株式会社 表面特性検査方法及び表面特性検査装置
JP2022548193A (ja) * 2019-07-11 2022-11-17 ユナイテッド ステイツ ガバメント アズ リプレゼンテッド バイ ザ デパートメント オブ ベテランズ アフェアーズ 経頭蓋磁気刺激コイルの位置合わせ装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547867B2 (en) 2015-11-04 2023-01-10 Iowa State University Research Foundation, Inc. Deep transcranial magnetic stimulation apparatus and method
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10792508B2 (en) * 2016-11-02 2020-10-06 Iowa State University Research Foundation, Inc. Quadruple butterfly coil
CN108663641B (zh) * 2017-03-28 2022-01-04 中国科学院合肥物质科学研究院 用于磁共振设备的射频线圈
US11986319B2 (en) * 2017-08-25 2024-05-21 NEUROPHET Inc. Patch guide method and program
KR101950815B1 (ko) * 2017-08-25 2019-02-21 뉴로핏 주식회사 패치 가이드 방법 및 프로그램
CN108721783B (zh) * 2018-07-02 2024-06-18 兰州交通大学 一种深部经颅磁刺激调节及支撑装置及其系统
US11497924B2 (en) * 2019-08-08 2022-11-15 Realize MedTech LLC Systems and methods for enabling point of care magnetic stimulation therapy
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
JP2023515722A (ja) 2020-05-04 2023-04-13 ビーティーエル ヘルスケア テクノロジーズ エー.エス. 患者の非アテンド式治療のためのデバイスおよび方法
CN111643727B (zh) * 2020-06-02 2021-02-09 中国人民解放军总医院 具有电磁感应功能的神经导管及其使用方法和制备方法
TWI755130B (zh) * 2020-10-30 2022-02-11 國立中央大學 可撓式多層線圈結構的腦部磁波刺激裝置
KR102313422B1 (ko) 2021-03-15 2021-10-15 주식회사 에이티앤씨 경두개 자극기의 코일체 및 경두개 자극기
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
CN115910356B (zh) * 2022-11-11 2023-07-25 深圳职业技术学院 基于经颅磁刺激线圈电磁场模拟的磁场刺激效果评估方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543416A (ja) * 2005-06-16 2008-12-04 ブレインズウェイ インコーポレイテッド 経頭蓋磁気刺激システムおよび方法
JP2009039326A (ja) * 2007-08-09 2009-02-26 Tohoku Univ 経頭蓋磁気刺激用収束磁界発生コイル
JP2012125546A (ja) * 2010-11-25 2012-07-05 Osaka Univ 磁気コイル及び経頭蓋磁気刺激装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622157B2 (ja) * 1995-04-12 2005-02-23 日本光電工業株式会社 生体用磁気刺激装置
EP1326681B1 (en) * 2000-10-20 2007-01-10 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Coil for magnetic stimulation
US7196603B2 (en) * 2003-04-18 2007-03-27 Board Of Regents, The University Of Texas System Magnetic coil design using optimization of sinusoidal coefficients
US7857746B2 (en) * 2004-10-29 2010-12-28 Nueronetics, Inc. System and method to reduce discomfort using nerve stimulation
CA2697822A1 (en) * 2007-10-09 2009-04-16 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
US8457731B2 (en) * 2009-02-16 2013-06-04 Wisconsin Alumni Research Foundation Method for assessing anesthetization
BRPI1007623A2 (pt) * 2009-03-02 2016-02-16 Yeda Res & Dev esquema de regulagem e configuração magnética para estimulação magnética transcraniana
WO2010147064A1 (ja) 2009-06-15 2010-12-23 国立大学法人大阪大学 磁気刺激装置
CN202015424U (zh) * 2010-04-20 2011-10-26 约翰·玛特奈兹 电磁疗法装置
WO2013166434A1 (en) * 2012-05-03 2013-11-07 Cervel Neurotech, Inc. Hinged transcranial magnetic stimulation array for novel coil alignment
CN102814001B (zh) * 2012-08-08 2015-05-13 深圳先进技术研究院 经颅磁刺激导航系统及经颅磁刺激线圈定位方法
US9248308B2 (en) * 2013-02-21 2016-02-02 Brainsway, Ltd. Circular coils for deep transcranial magnetic stimulation
US9533168B2 (en) * 2013-02-21 2017-01-03 Brainsway, Ltd. Unilateral coils for deep transcranial magnetic stimulation
US9254394B2 (en) * 2013-02-21 2016-02-09 Brainsway, Ltd. Central base coils for deep transcranial magnetic stimulation
CN105324154A (zh) * 2013-06-03 2016-02-10 奈科斯迪姆公司 具有重叠的线圈绕组的mTMS线圈设备
US9849301B2 (en) * 2014-01-15 2017-12-26 Neuronetics, Inc. Magnetic stimulation coils and ferromagnetic components for reduced surface stimulation and improved treatment depth
WO2015122506A1 (ja) 2014-02-14 2015-08-20 国立大学法人大阪大学 コイル装置及び経頭蓋磁気刺激システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543416A (ja) * 2005-06-16 2008-12-04 ブレインズウェイ インコーポレイテッド 経頭蓋磁気刺激システムおよび方法
JP2009039326A (ja) * 2007-08-09 2009-02-26 Tohoku Univ 経頭蓋磁気刺激用収束磁界発生コイル
JP2012125546A (ja) * 2010-11-25 2012-07-05 Osaka Univ 磁気コイル及び経頭蓋磁気刺激装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278764A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018066171A1 (ja) * 2016-10-06 2019-07-18 新東工業株式会社 表面特性検査方法及び表面特性検査装置
KR101953615B1 (ko) * 2017-10-16 2019-03-04 서울대학교산학협력단 금속판과 숏스텁을 이용한 뇌 자극용 어플리케이터
JP2022548193A (ja) * 2019-07-11 2022-11-17 ユナイテッド ステイツ ガバメント アズ リプレゼンテッド バイ ザ デパートメント オブ ベテランズ アフェアーズ 経頭蓋磁気刺激コイルの位置合わせ装置
JP7397963B2 (ja) 2019-07-11 2023-12-13 ユナイテッド ステイツ ガバメント アズ リプレゼンテッド バイ ザ デパートメント オブ ベテランズ アフェアーズ 経頭蓋磁気刺激コイルの位置合わせ装置

Also Published As

Publication number Publication date
EP3278764A4 (en) 2019-01-09
US11491343B2 (en) 2022-11-08
CN107708611A (zh) 2018-02-16
ES2940892T3 (es) 2023-05-12
CA2981420A1 (en) 2016-10-06
JP6583699B2 (ja) 2019-10-02
JPWO2016159139A1 (ja) 2018-02-08
KR20170134495A (ko) 2017-12-06
AU2016240919B2 (en) 2020-05-14
CA2981420C (en) 2023-07-11
CN107708611B (zh) 2020-12-22
US20180369601A1 (en) 2018-12-27
EP3278764B1 (en) 2023-03-08
KR102556124B1 (ko) 2023-07-14
EP3278764A1 (en) 2018-02-07
AU2016240919A1 (en) 2017-10-19
US20200230431A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
JP6583699B2 (ja) コイル設計装置及びコイル設計方法
KR102121673B1 (ko) 코일 및 그것을 사용한 자기 자극 장치
ES2747623T3 (es) Método de simulación de corriente intracerebral y dispositivo del mismo, y sistema de estimulación magnética transcraneal que incluye un dispositivo de simulación de corriente intracerebral
JP6344772B2 (ja) 治療用磁気コイルユニット及び経頭蓋磁気刺激装置
US10603506B2 (en) Coil apparatus for use in transcranial magnetic stimulation apparatus for increasing current generated by induced electric field
JP6384967B2 (ja) コイル装置及び経頭蓋磁気刺激システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510138

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2981420

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016773020

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029768

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016240919

Country of ref document: AU

Date of ref document: 20160330

Kind code of ref document: A