WO2016158723A1 - Optical member, illumination device, display device, television reception device, and manufacturing method for optical member - Google Patents

Optical member, illumination device, display device, television reception device, and manufacturing method for optical member Download PDF

Info

Publication number
WO2016158723A1
WO2016158723A1 PCT/JP2016/059559 JP2016059559W WO2016158723A1 WO 2016158723 A1 WO2016158723 A1 WO 2016158723A1 JP 2016059559 W JP2016059559 W JP 2016059559W WO 2016158723 A1 WO2016158723 A1 WO 2016158723A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical member
wavelength conversion
light
quantum dot
Prior art date
Application number
PCT/JP2016/059559
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 鎌田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016158723A1 publication Critical patent/WO2016158723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an optical member, a lighting device, a display device, a television receiver, and an optical member manufacturing method.
  • An illumination device using a phosphor film containing a quantum dot phosphor (Quantum Dot Phosphor) as an optical member is known (for example, Patent Document 1).
  • primary light for example, blue light
  • a part of the light excites the quantum dot phosphor in the film, and the rest Light will be transmitted through the film.
  • secondary light green light and red light
  • white light is emitted from the phosphor film as a result.
  • the quantum dot phosphor is dispersed in the binder resin layer.
  • the barrier layer for protecting a quantum dot fluorescent substance from moisture, air, etc. is each laminated
  • This type of barrier layer is generally made of a metal oxide film such as alumina.
  • the barrier layer has a function of shielding oxygen and moisture
  • the barrier layer may be peeled off from the binder resin layer, which is a problem.
  • the barrier layer is partially peeled from the binder resin layer, air and moisture are likely to accumulate at such a peeled portion, so that the quantum dot phosphor in the binder resin layer cannot be protected.
  • optical unevenness due to the air layer may occur.
  • An object of the present invention is to provide a technique capable of reliably protecting a binder resin layer containing a quantum dot phosphor with a barrier layer.
  • An optical member according to the present invention includes a wavelength conversion layer that includes an acrylic resin, a quantum dot phosphor dispersed in the acrylic resin, and a pair of first resins that sandwich the wavelength conversion layer.
  • a support layer and a pair of barrier layers which are made of a metal oxide film and are arranged outside the first support layer and sandwich at least the wavelength conversion layer via the first support layer.
  • the wavelength conversion layer containing the acrylic resin is sandwiched between the pair of first support layers made of the polyester resin, the wavelength conversion layer containing the acrylic resin is assumed to be a gold-loss oxide.
  • the adhesiveness between the wavelength conversion layer and the first support layer is high. And it can avoid that a barrier layer contacts a wavelength conversion layer directly by setting it as the arrangement
  • the barrier layer may be laminated on the first support layer. In this way, since the structure is simple, the tact time for manufacturing is shortened and the manufacturing cost can be reduced. In this way, the overall thickness of the optical member can be reduced.
  • the barrier layer is laminated, the barrier layer is arranged on the inner side, or the barrier layer is arranged on the outer side, than the first support layer.
  • the barrier layer is disposed on the outside, interposed between the first support layer and the barrier layer.
  • a pair of adhesive layers interposed between the first support layer and the second support layer may be provided.
  • the barrier layer may be formed by physical vapor deposition or chemical vapor deposition.
  • the quantum dot phosphor may include at least a green quantum dot phosphor that emits light in a green wavelength region.
  • the quantum dot phosphor may include at least a red quantum dot phosphor that emits light in a red wavelength region.
  • the wavelength conversion layer may include a scattering agent.
  • an illumination device includes any one of the optical members described above and a light source that emits excitation light that excites the quantum dot phosphor included in the wavelength conversion layer.
  • the display device includes the illumination device and a display panel that displays an image using light supplied from the illumination device.
  • the display panel may be a liquid crystal panel.
  • the television receiver according to the present invention comprises the display device.
  • the manufacturing method of the optical member which concerns on this invention is equipped with the 1st support layer which consists of polyester resin, and the barrier layer which is laminated
  • a composition liquid in which quantum dot phosphors are dispersed in an ultraviolet curable acrylic resin is applied.
  • the optical member manufacturing method includes a pair of a wavelength conversion layer including an acrylic resin and a quantum dot phosphor dispersed in the acrylic resin, and a polyester resin sandwiching the wavelength conversion layer.
  • a bonding step of bonding to the agent layer is provided.
  • the adhesive layer may be made of an OCA film.
  • the barrier layer may be formed by physical vapor deposition or chemical vapor deposition.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • Explanatory drawing which shows an example of the manufacturing method of a fluorescent substance sheet
  • Sectional drawing which represented a part of structure of the fluorescent substance sheet which concerns on Embodiment 2 typically Explanatory drawing which shows an example of the manufacturing method of the fluorescent substance sheet which concerns on Embodiment 2.
  • FIG. Sectional drawing which represented a part of structure of the fluorescent substance sheet which concerns on Embodiment 3 typically Sectional drawing which represented typically the schematic structure of the liquid crystal display device with which the fluorescent substance sheet which concerns on Embodiment 4 is utilized.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • a phosphor sheet used as the optical member 15 in the liquid crystal display device 10 such as the television receiver 10TV is illustrated.
  • an X axis, a Y axis, and a Z axis are shown in a part of each drawing.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver 10TV according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the television receiver 10TV mainly includes a liquid crystal display device (an example of a display device) 10 and both front and back cabinets 10Ca and 10Cb that hold the liquid crystal display device 10 so as to be sandwiched from both front and rear (front and back) sides.
  • a power source 10P a power source 10P, a tuner (reception unit) 10T that receives a television signal, and a stand 10S.
  • the liquid crystal display device 10 of the present embodiment generally has a horizontally long rectangular shape extending long in the left-right direction. Further, as shown in FIG. 2, the liquid crystal display device 10 mainly includes a liquid crystal panel 11 used as a display panel, and a backlight device (illumination device) as an external light source that supplies light to the liquid crystal panel 11. 12 and a frame-like bezel 13 for holding the liquid crystal panel 11, the backlight device 12, and the like.
  • a backlight device illumination device
  • the liquid crystal panel 11 mainly comprises a pair of transparent substrates and a liquid crystal layer sealed in a form sandwiched between them, using light emitted from the backlight device 12, An image is displayed on the panel surface in a visible state.
  • the liquid crystal panel 11 generally has a horizontally long rectangular shape in plan view.
  • One of the pair of substrates constituting the liquid crystal panel 11 is an array substrate, and TFTs (Thin Film Transistors), pixel electrodes, etc., which are switching elements, are arranged in a matrix on a transparent glass substrate. It consists of the set.
  • the other substrate is a color filter (hereinafter referred to as CF) substrate, which is formed by arranging color filters of red, green, and blue in a matrix on a transparent glass substrate.
  • CF color filter
  • the backlight device 12 is a device that is arranged on the back side of the liquid crystal panel 11 and supplies light toward the liquid crystal panel 11.
  • the backlight device 12 is configured to emit white light.
  • the backlight device 12 of the present embodiment is a so-called edge light type (or side light type).
  • the backlight device 12 includes a chassis 14, an optical member 15, a frame 16, an LED 17, an LED substrate 18, a light guide plate 19, a reflection sheet 20, and the like.
  • the chassis 14 has a substantially box shape opened to the front side, and is made of, for example, a metal plate such as an aluminum plate or an electrogalvanized steel plate (SECC).
  • Various members such as the LED 17, the LED substrate 18, the reflection sheet 20, the light guide plate 19, and the optical member 15 are accommodated inside the chassis 14.
  • the reflection sheet 20, the light guide plate 19, and the optical member 15 are accommodated in a state of being stacked in this order from the back side.
  • a board such as a control board and an LED driving board (not shown) is attached to the outside of the chassis 14.
  • the optical member 15 has a horizontally long and substantially rectangular shape in plan view, like the liquid crystal panel 11 and the like.
  • the optical member 15 is placed on the front side of the light guide plate 19 so as to be arranged on the back side of the liquid crystal panel 11.
  • the optical member 15 has a function of transmitting light emitted from the light guide plate 19 to the liquid crystal panel 11 side while providing a predetermined optical action.
  • the optical member 15 is composed of a plurality of sheet-like members (optical sheets) stacked on each other.
  • optical sheets include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like.
  • the optical member 15 of the present embodiment includes a phosphor sheet 150 containing a quantum dot phosphor as an essential member (optical sheet). The phosphor sheet 150 will be described later.
  • the frame 16 has a frame shape (frame shape) covering the outer peripheral end of the light guide plate 19 and is assembled to the opening portion of the chassis 14 from the front side.
  • the frame 16 is made of synthetic resin, for example.
  • the reflection sheet 20 is a light-reflective sheet-like member, and is disposed in the chassis 14 so as to cover the bottom surface of the chassis 14.
  • the reflection sheet 20 is made of, for example, a white foamed polyethylene terephthalate sheet.
  • the light guide plate 19 is made of a synthetic resin material (for example, acrylic resin such as PMMA, polycarbonate resin, etc.) that has a refractive index sufficiently higher than air, is transparent, and is excellent in light transmittance. Similar to the liquid crystal panel 11 and the like, the light guide plate 19 is made of a plate-like member having a substantially rectangular shape in plan view, the front surface 19 a faces the liquid crystal panel 11, and the back surface 19 c faces the reflection sheet 20. Is housed inside.
  • the surface 19a of the light guide plate 19 is a light emitting surface 19a that emits light toward the liquid crystal panel 11 side.
  • the optical member 15 described above is placed on the light emitting surface 19a. Among the optical members 15, the phosphor sheet 150 is disposed closest to the light emitting surface 19 a side.
  • LED (an example of a light source) 17 contains a chip-like blue LED element (blue light emitting element) that is a light emitting source, a transparent sealing material that seals the blue LED element, and a blue LED element and a sealing material. And a substantially box-shaped case portion configured to emit blue light.
  • the blue LED element is a semiconductor made of, for example, IGaN, and light (ie, blue light) included in the wavelength region of blue light (about 420 nm to about 500 nm) when a voltage is applied in the forward direction. Is emitted.
  • the LED 17 is a so-called top emission type and is surface-mounted on a long LED substrate 18.
  • a plurality of LEDs 17 are mounted on the LED substrate 18 so as to be arranged in a line at equal intervals.
  • the LED 17 is housed in the chassis 14 so that the light emitting surface 17 a faces the long-side end surface 19 b of the light guide plate 19 in a state where the LED 17 is mounted on the LED substrate 18.
  • the two long side end surfaces 19b of the light guide plate 19 are light incident surfaces 19b on which light (blue light) from the LEDs 17 is incident.
  • FIG. 3 is a cross-sectional view schematically showing a part of the configuration of the phosphor sheet 150.
  • the phosphor sheet 150 is a kind of the optical member 15 and is used together with other members (optical sheets) constituting the optical member 15.
  • the phosphor sheet 150 is disposed at a location closest to the light guide plate 19 among the plurality of members constituting the optical member 15.
  • the phosphor sheet 150 has a substantially rectangular shape in plan view, like the liquid crystal panel 11 and the like.
  • the phosphor sheet 150 transmits a part of the light (blue light) from the LED 17 as it is, absorbs a part of the light (blue light) from the LED 17 and transmits the light (blue light) in another wavelength region. It has the function of converting to light and emitting it.
  • a phosphor sheet 150 includes a wavelength conversion layer 151, a pair of first support layers 152, 152, and a pair of barrier layers 153, 153.
  • the wavelength conversion layer 151 contains an acrylic resin as a binder resin and a quantum dot phosphor blended in a dispersed state in the acrylic resin.
  • the acrylic resin is transparent, has optical transparency, and has adhesion to the first support layer 152.
  • the first support layer 152 is made of a polyester resin. Therefore, the acrylic resins can be adhered to the first support layer 152 by electrostatic action or the like.
  • Quantum dot phosphors are phosphors with excellent quantum efficiency. They confine electrons, holes, and excitons in all directions in a three-dimensional space in a nano-sized semiconductor crystal (for example, about 2 nm to 10 nm in diameter). The peak wavelength (emission color) of emitted light can be freely selected by changing the size of the dot having discrete energy levels.
  • a green quantum dot phosphor that emits green light (wavelength region of about 500 nm to about 570 nm) and a red light (about 600 nm to about 780 nm).
  • the red quantum dot phosphor that emits light in the wavelength region of (a).
  • the emission spectrum of green light and the emission spectrum of red light emitted from the green quantum dot phosphor and the red quantum dot phosphor have sharp peaks, respectively, and their half-value widths are narrowed.
  • the purity of each color of red light is extremely high, and the color gamut thereof is also widened.
  • the green quantum dot phosphor absorbs light from the LED 17 (blue light, excitation light) and is excited to emit green light (wavelength range of about 500 nm to about 570 nm). That is, the green quantum dot phosphor has a function of converting light (blue light, excitation light) from the LED 17 into other light (green light) having a different wavelength region.
  • the red quantum dot phosphor absorbs and excites light (blue light, excitation light) from the LED 17 and emits red light (wavelength range of about 600 nm to about 780 nm). That is, the red quantum dot phosphor has a function of converting light (blue light, excitation light) from the LED 17 into other light (red light) having a different wavelength region.
  • Materials used for the quantum dot phosphor include a combination of Zn, Cd, Pb and the like that can be a divalent cation and O, S, Se, Te, and the like that can be a divalent anion (for example, , Cadmium selenide (CdCe), zinc sulfide (ZnS), etc.), a combination of Ga, In, etc., which can be a trivalent cation, and P, As, Sb, etc., which can be a trivalent anion (for example, phosphorus Indium phosphide (InP), gallium arsenide (GaAs), and the like, and chalcopyrite type compounds (CuInSe 2 and the like).
  • CdSe is used as an example of the material of the quantum dot phosphor.
  • the quantum dot phosphors (green quantum dot phosphor and red quantum dot phosphor) are dispersed and blended in the acrylic resin constituting the wavelength conversion layer 151 so as to be substantially uniform.
  • the quantum dot phosphor is unstable with respect to moisture (moisture), oxygen, and the like, and when it comes into contact with them, the performance decreases. Therefore, the quantum dot phosphor in the wavelength conversion layer 151 is protected by the barrier layer 153 so as not to come into contact with water or oxygen as much as possible.
  • the wavelength conversion layer 151 may be blended with a scattering agent that scatters light incident on the wavelength conversion layer 151 or light emitted from the wavelength conversion layer 151 in addition to the acrylic resin and the quantum dot phosphor. Further, other components may be added to the wavelength conversion layer 151 as long as the object of the present invention is not impaired.
  • the first support layer 152 is made of a polyester resin such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), and is made of a pair of layers sandwiching the wavelength conversion layer 151.
  • the first support layer 152 is a sheet-like (film-like) member having a predetermined thickness, and is attached to each side of the wavelength conversion layer 151 one by one.
  • the first support layer 152 is bonded so as to sandwich the wavelength conversion layer 151 to support the wavelength conversion layer 151 and ensure the rigidity of the phosphor sheet 150.
  • the first support layer 152 is transparent and has excellent light transmittance.
  • the pair of first support layers 152, 152 are set to the same thickness.
  • the barrier layer 153 is made of a metal oxide film such as alumina or silicon oxide, and is disposed on the outer side of the first support layer 152.
  • the pair of barrier layers 153 sandwich the wavelength conversion layer 151 from both sides via at least the first support layer 152. Consists of things.
  • the barrier layer 153 has a function (for example, oxygen barrier property, water vapor barrier property) of shielding a causative substance that degrades the quantum dot phosphor such as moisture and oxygen.
  • the barrier layer 153 is made of a film (film) of a metal oxide such as alumina or silicon oxide, and includes, for example, a vacuum evaporation method (electron beam evaporation method, resistance heating evaporation method), sputtering method, ion plating method, ion beam. And chemical vapor deposition (CVD) methods such as physical vapor deposition (PVD) methods such as ion assisted methods and laser ablation methods, thermal CVD methods, photo CVD methods, and plasma CVD methods.
  • PVD physical vapor deposition
  • a film made of alumina is formed on the first support layer 152 by using a vacuum deposition method.
  • the barrier layer 153 is laminated in a state of being in close contact with the first support layer 152 made of a polyester resin.
  • the barrier layer 153 is formed on the first support layer 152 because sufficient adhesion to the acrylic resin constituting the wavelength conversion layer 151 cannot be obtained.
  • the barrier layer 153 is made of a metal oxide film such as alumina, and the oxygen atoms constituting the metal oxide repel each other electrostatically with the oxygen atoms contained in the acrylic resin. It is presumed that the adhesion to the wavelength conversion layer 151 is weak due to reasons such as mutual contact.
  • the barrier layer 153 is formed as a flat (smooth) film on the first support layer 152 by a vacuum deposition method or the like, a so-called anchor effect cannot be expected, and the acrylic resin constituting the wavelength conversion layer 151 However, sufficient adhesion cannot be obtained. Note that the barrier layer 153 is transparent and has excellent light transmittance.
  • FIG. 4 is an explanatory view showing an example of a method for manufacturing the phosphor sheet 150.
  • the manufacturing method of the phosphor sheet 150 of the present embodiment includes an application layer forming step (a-1), a bonding step (a-2), and a curing step (a-3).
  • a first support layer 152 made of a polyester resin and a barrier layer 153 made of a metal oxide film are laminated on one surface of the first support layer 152.
  • a liquid is applied to form a coating layer 51 made of the applied product.
  • the first unit member U1 is obtained by forming a barrier layer 153 in advance on a sheet-like (film-like) first support layer 152 made of a polyester-based resin such as PET using a vacuum deposition method or the like.
  • One set of such first unit members U1 is prepared (see 4A in FIG. 4).
  • a composition liquid for forming the wavelength conversion layer 151 is applied on the surface on the first support layer 152 side (FIG. 4). 4).
  • the composition liquid is a liquid monomer component constituting an acrylic resin such as acrylic acid or methacrylic acid, a photopolymerization initiator for polymerizing the monomer component, a quantum dot phosphor (green quantum dot phosphor, red quantum dot) Phosphor), a scattering agent, and the like.
  • the method for applying the composition liquid is not particularly limited, and for example, the composition liquid is applied onto the first support layer 153 of the first unit member U1 using a known coater or the like.
  • the bonding step (a-2) is a step of bonding the other first unit member U1 so that the coating layer 51 is sandwiched between the one first unit member U1 described above. At that time, the other first unit member U1 is attached so that the first support layer 152 made of polyester resin is in contact with the coating layer 51 (see 4C in FIG. 4).
  • the curing step (a-3) is a step of obtaining the wavelength conversion layer 151 by irradiating the coating layer 51 with ultraviolet UV through the first unit member U1 to cure the coating layer 51.
  • the ultraviolet ray UV is applied to the coating layer 51 only from one first unit member U1 side (that is, one side) (see 4C in FIG. 4), but in other embodiments. May be irradiated from both first unit members U1 side (that is, both sides).
  • the coating layer 51 is irradiated with ultraviolet rays, the coating layer 51 is cured to become the wavelength conversion layer 151, and the phosphor sheet 150 is obtained.
  • the LED 17 when the LED 17 is driven to turn on, the LED 17 emits blue light toward the light incident surface 19 b of the light guide plate 19. Blue light from the LED 17 enters the light guide plate 19 from the light incident surface 19b and propagates while being repeatedly reflected on the back surface 19c of the light guide plate 19 and the front surface (light emitting surface 19a). The light that has jumped out of the back surface 19c of the light guide plate 19 is reflected by the reflection sheet 20 and returned again to the light guide plate 19 side.
  • the light reflected by the reflection sheet 20 or the dot-like reflection pattern (not shown) formed on the back surface 19b of the light guide plate 19 jumps out from the light emission surface 19a and is supplied to the phosphor sheet 150. .
  • a part of the light (blue light) supplied to the phosphor sheet 150 is converted in wavelength by the wavelength conversion layer 151 of the phosphor sheet 150, and is emitted toward the other optical member 15 as green light or red light. Is done.
  • the other part of the light (blue light) supplied to the phosphor sheet 150 is transmitted without being converted in wavelength by the wavelength conversion layer 151.
  • light that has been wavelength-converted by the phosphor sheet 150 or light that has passed through the phosphor sheet 150 may be supplied to the liquid crystal panel 11 through the other optical member 15 as it is. Is reflected (retroreflected) a plurality of times by a reflective polarizing sheet or the like provided in the optical member 15 and then supplied to the liquid crystal panel 11.
  • the light supplied from the lighting device 12 to the liquid crystal panel 11 is in a so-called white light state. That is, from the lighting device 12, blue light emitted from the LED 17, green light obtained by wavelength conversion by the phosphor sheet 150, and red light obtained by wavelength conversion by the phosphor sheet 150 are mixed with each other. The combined light is emitted. When such light (white light) from the illuminating device 12 is irradiated toward the liquid crystal panel 11, an image is displayed in a visible state on the panel surface of the liquid crystal panel 11.
  • the barrier layer 153 is not directly laminated on the binder resin layer containing the quantum dot phosphor (that is, the wavelength conversion layer 151), but is made of a polyester resin. By forming via the first support layer 152, the wavelength conversion layer 151 can be reliably protected by the barrier layer 153.
  • Embodiment 2 of the present invention will be described with reference to FIGS. 5 and 6.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted as appropriate.
  • FIG. 5 is a cross-sectional view schematically showing a part of the configuration of the phosphor sheet 150A according to the second embodiment.
  • the phosphor sheet 150 ⁇ / b> A of the present embodiment has a pair of first support layers 152 formed on both surfaces of the wavelength conversion layer 151 so as to sandwich the wavelength conversion layer 151 and the wavelength conversion layer 151. , 152.
  • the pair of first support layers 152 and 152 are attached to the wavelength conversion layer 151 is referred to as a second unit member U2 in this specification.
  • the phosphor sheet 150A of the present embodiment is obtained by attaching a pair (a set) of third unit members U3 including the barrier layer 153 to both surfaces of the second unit member U2 via the adhesive layer 155, respectively. Become.
  • the third unit member U3 includes a second support layer 154 and a barrier layer 153 formed on the second support layer 154 using a vacuum deposition method or the like.
  • the 2nd support layer 154 consists of a sheet-like (film form) member which consists of polyester-type resin, such as PET, like the 1st support layer 152 mentioned above.
  • one set (a pair) of third unit members U3 is prepared.
  • the adhesive layer 155 is not particularly limited as long as it is a transparent light-transmitting material that bonds the second unit member U2 and the third unit member U3 to each other, and is appropriately selected from known ones.
  • Examples of such an adhesive layer 155 include an OCA (Optical Clear Clear) film.
  • the third unit member U3 is adhesive with the barrier layer 153 disposed on the inner side (that is, the second unit member U2 side) with respect to the second unit member U2. Affixed via layer 155. That is, the adhesive layer 155 is interposed between the first support layer 152 of the second unit member U2 and the barrier layer 153 of the third unit member U3, and fixes the first support layer 152 and the barrier layer 153 to each other. To do.
  • the barrier layer 153 is not directly formed on the wavelength conversion layer 151, but the third unit member U3 is disposed on the second unit member U2 including the wavelength conversion layer 151 via the adhesive layer 155. You may paste.
  • the phosphor sheet 150 ⁇ / b> A of the present embodiment includes many layers as compared with the first embodiment, and light is likely to be multiply reflected, and the light conversion efficiency by the quantum dot phosphor included in the wavelength conversion layer 151 is high. It will be a thing. Therefore, the amount of the quantum dot phosphor blended in the wavelength conversion layer 151 can be reduced as compared with the first embodiment, and the manufacturing cost can be suppressed.
  • FIG. 6 is an explanatory diagram illustrating an example of a method for manufacturing the phosphor sheet 150A according to the second embodiment.
  • the manufacturing method of the phosphor sheet 150A of the present embodiment includes an adhesive layer forming step (b-1) and a bonding step (b-2).
  • the adhesive layer forming step (b-1) is a step of forming the adhesive layers 155 and 155 on both surfaces of the second unit member U2.
  • the second unit member U2 is a pair of sandwiching the wavelength conversion layer 151 including the acrylic resin, the quantum dot phosphor dispersed in the acrylic resin, and the polyester resin.
  • the first support layer 152 As shown in 6A of FIG. 6, such a second unit member U2 is prepared in advance.
  • the bonding step (b-2) includes a second support layer 154 made of a polyester-based resin and a barrier layer 153 made of a metal oxide film that is laminated on one surface of the second support layer 154.
  • the pair of third unit members U3 are bonded to the adhesive layer 155 in such a manner that the barrier layer 153 is arranged on the inner side (second unit member U2 side).
  • the barrier layer 153 is arranged on the inner side (second unit member U2 side), and one third unit member U3 is bonded to the adhesive layer 155. It is done.
  • the top and bottom of the laminate of the third unit member U3 and the second unit member U2 are inverted, and the other surface of the second unit member U2 (that is, the other first support layer). 152 surface) is subjected to an adhesive layer forming step (b-1). That is, as shown in 6D of FIG. 6, an adhesive layer 155 made of an OCA film is formed on the other surface of the second unit member U2.
  • the bonding step (b-2) is performed on the adhesive layer 155, and the other third unit member is bonded.
  • the phosphor sheet 150A of the present embodiment can be manufactured. Such a phosphor sheet 150A may be used in place of the phosphor sheet 150 of the first embodiment.
  • FIG. 7 is a cross-sectional view schematically showing a partial configuration of the phosphor sheet 150B according to the third embodiment.
  • a pair (a set) of third unit members U3 and U3 are bonded to the second unit member U2 via the adhesive layer 155, as in the second embodiment. It consists of things. However, in the case of the present embodiment, the direction of the third unit member U3 when the third unit member U3 is bonded to the second unit member U2 is different. That is, in the case of the present embodiment, the third unit member U3 is bonded to the second unit member U2 so that the barrier layer 153 is disposed on the outside.
  • the adhesive layer 155 is interposed between the first support layer 152 of the second unit member U2 and the second support layer 154 of the third unit member U3, and the first support layer 152 and the second support layer 154 are interposed therebetween.
  • the upper and lower arrangements of the third unit member U3 may be interchanged and bonded to the second unit member U2.
  • the phosphor sheet 150B of the present embodiment includes many layers as compared with the first embodiment, and light is likely to be multiply reflected, and the light conversion efficiency by the quantum dot phosphor included in the wavelength conversion layer 151 is high. It will be a thing. Therefore, the amount of the quantum dot phosphor blended in the wavelength conversion layer 151 can be reduced as compared with the first embodiment, and the manufacturing cost can be suppressed.
  • the phosphor sheet 150B of the present embodiment is in a state where the position of the barrier layer 153 is further away from the wavelength conversion layer 151 than the second embodiment. Therefore, it can be said that the second embodiment is preferable from the viewpoint of more reliably suppressing moisture, oxygen, and the like entering from the outside.
  • the manufacturing method of the phosphor sheet 150B of the present embodiment is basically the same as that described above except that it is bonded to the second unit member U2 via the adhesive layer 155 so that the barrier layer 153 is arranged on the outside. This is the same as the manufacturing method of the second embodiment.
  • Such a phosphor sheet 150B may be used in place of the phosphor sheet 150 of the first embodiment.
  • FIG. 8 is a cross-sectional view schematically illustrating a schematic configuration of a liquid crystal display device 10C in which the phosphor sheet 150C according to the fourth embodiment is used.
  • the liquid crystal display device 10 ⁇ / b> C of the present embodiment includes a direct-type backlight device (illumination device) 12 ⁇ / b> C in which the LEDs 17 ⁇ / b> C are arranged on the back side (directly below) of the liquid crystal panel 11. .
  • the phosphor sheet 150C may be used as a part of the optical member 15C together with the diffusion plate and the like.
  • the backlight device 12C includes a chassis made of a shallow box as shown in FIG. 14C, a reflection sheet 20C laid on the bottom of the chassis 14, an LED board 18C for mounting the LED 17C, a frame 16C, a bezel 13C, and the like disposed on the bottom side of the chassis 14.
  • the quantum dot phosphors included in the phosphor sheet are the green quantum dot phosphor and the red quantum dot phosphor.
  • the present invention is not limited to this, and is excited by light from the light source. It may be a quantum dot phosphor that emits other colors.
  • an LED emitting blue light is used as a light source.
  • an LED emitting another color excitation light
  • a pair (one set) of barrier layers are used so as to sandwich the wavelength conversion layer 151.
  • two or more sets of barrier layers 153 may be used.
  • a configuration in which a plurality of barrier layers 153 are provided only on one side with respect to the wavelength conversion layer 151 may be employed.
  • the television receiver provided with the tuner is exemplified as the actual device, but the present invention is also applicable to a display device not provided with the tuner. Specifically, the present invention can be applied to a liquid crystal display device used as an electronic signboard (digital signage) or an electronic blackboard.
  • the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified.
  • the present invention is not limited to this, and the display device using another type of display panel (for example, a Colton signboard) is used.
  • the present invention is also applicable.
  • the LED is used as the light source.
  • the present invention is not limited to this, and other light sources such as an organic EL may be used.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel, 12 ... Backlight device (illuminating device), 13 ... Bezel, 14 ... Chassis, 15 ... Optical member, 150 ... phosphor sheet (an example of an optical member), 151 ... wavelength conversion layer, 152 ... first support layer, 153 ... barrier layer, 154 ... second support layer, 155 ... Adhesive layer, 16 ... frame, 17 ... LED (light source), 18 ... LED substrate, 19 ... light guide plate, 20 ... reflection sheet, U1 ... first unit member, U2 ... second unit member, U3 ... third unit member

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This optical member is provided with: a wavelength conversion layer 151 that contains an acrylic resin and a quantum dot fluorescent body dispersed in the acrylic resin; a pair of first supporting layers 152, 152 that are formed from a polyester resin and sandwich the wavelength conversion layer 151; and a pair of barrier layers 153, 153 that are formed from a metal oxide film, are disposed further outward than the first supporting layers 152, and sandwich the wavelength conversion layer 151 via the first supporting layers 152.

Description

光学部材、照明装置、表示装置、テレビ受信装置及び光学部材の製造方法OPTICAL MEMBER, LIGHTING DEVICE, DISPLAY DEVICE, TV RECEPTION DEVICE, AND OPTICAL MEMBER MANUFACTURING METHOD
 本発明は、光学部材、照明装置、表示装置、テレビ受信装置及び光学部材の製造方法に関する。 The present invention relates to an optical member, a lighting device, a display device, a television receiver, and an optical member manufacturing method.
 量子ドット蛍光体(Quantum Dot Phosphor)を含む蛍光体フィルムを光学部材として利用した照明装置が知られている(例えば、特許文献1)。この種の照明装置では、光源から出射された一次光(例えば、青色光)が蛍光体フィルムに供給されると、その光の一部が、フィルム中の量子ドット蛍光体を励起し、残りの光がフィルム中を透過することになる。量子ドット蛍光体が一次光によって励起されると、その量子ドット蛍光体からは、一次光とは異なった波長の二次光(緑色光及び赤色光)が放出される。フィルムから放出された二次光は、フィルムを透過する一次光と互いに混ざり合うため、結果的に、蛍光体フィルムからは、白色光が出射される。 An illumination device using a phosphor film containing a quantum dot phosphor (Quantum Dot Phosphor) as an optical member is known (for example, Patent Document 1). In this type of lighting device, when primary light (for example, blue light) emitted from a light source is supplied to a phosphor film, a part of the light excites the quantum dot phosphor in the film, and the rest Light will be transmitted through the film. When the quantum dot phosphor is excited by the primary light, secondary light (green light and red light) having a wavelength different from that of the primary light is emitted from the quantum dot phosphor. Since the secondary light emitted from the film is mixed with the primary light transmitted through the film, white light is emitted from the phosphor film as a result.
 なお、蛍光体フィルムにおいて、量子ドット蛍光体は、バインダ樹脂層中に分散されている。そして、そのバインダ樹脂層の両面側には、量子ドット蛍光体を、湿気や空気等から保護するためのバリア層がそれぞれ積層されている(特許文献1参照)。この種のバリア層は、一般的に、アルミナ等の金属酸化物膜からなる。 In the phosphor film, the quantum dot phosphor is dispersed in the binder resin layer. And the barrier layer for protecting a quantum dot fluorescent substance from moisture, air, etc. is each laminated | stacked on the both surfaces side of the binder resin layer (refer patent document 1). This type of barrier layer is generally made of a metal oxide film such as alumina.
特表2013-544018号公報Special table 2013-544018 gazette
(発明が解決しようとする課題)
 上記バリア層は、酸素や湿気を遮蔽する機能を備えているものの、バインダ樹脂層に対して十分な密着性が得られない場合があった。そのような場合、バリア層がバインダ樹脂層から剥離する虞があり、問題となっていた。例えば、バリア層がバインダ樹脂層に対して部分的に剥離した場合、そのような剥離個所では空気や湿気が溜まり易くなるため、かえってバインダ樹脂層中の量子ドット蛍光体を保護できなくなることや、空気層に起因する光学ムラが発生する虞がある。
(Problems to be solved by the invention)
Although the barrier layer has a function of shielding oxygen and moisture, there are cases where sufficient adhesion to the binder resin layer cannot be obtained. In such a case, the barrier layer may be peeled off from the binder resin layer, which is a problem. For example, when the barrier layer is partially peeled from the binder resin layer, air and moisture are likely to accumulate at such a peeled portion, so that the quantum dot phosphor in the binder resin layer cannot be protected. There is a possibility that optical unevenness due to the air layer may occur.
 本発明の目的は、量子ドット蛍光体を含むバインダ樹脂層をバリア層によって確実に保護することが可能な技術を提供することである。 An object of the present invention is to provide a technique capable of reliably protecting a binder resin layer containing a quantum dot phosphor with a barrier layer.
(課題を解決するための手段)
 本発明に係る光学部材は、アクリル系樹脂と、前記アクリル系樹脂中に分散される量子ドット蛍光体とを含む波長変換層と、ポリエステル系樹脂からなり、前記波長変換層を挟み込む一対の第1支持層と、金属酸化物の膜からなり、前記第1支持層よりも外側に配され、少なくとも前記第1支持層を介して前記波長変換層を挟み込む一対のバリア層とを備える。このように、アクリル系樹脂を含有する波長変換層が、ポリエステル系樹脂からなる一対の第1支持層により挟み込まれているので、仮にアクリル系樹脂を含有する波長変換層が、金損酸化物の膜からなる一対のバリア層により挟み込まれる構成とした場合に比べると、波長変換層と第1支持層との密着性が高いものとなる。そして、バリア層と波長変換層との間に少なくとも第1支持層が介在する配置とされることで、バリア層が波長変換層に直に接触することを避けることができる。その結果、バリア層が剥離する事態が回避される。これにより、波長変換層に含有される量子ドット蛍光体が湿気や酸素等と接触して劣化することを、バリア層によってより確実に防ぐことが可能となる。
(Means for solving the problem)
An optical member according to the present invention includes a wavelength conversion layer that includes an acrylic resin, a quantum dot phosphor dispersed in the acrylic resin, and a pair of first resins that sandwich the wavelength conversion layer. A support layer and a pair of barrier layers which are made of a metal oxide film and are arranged outside the first support layer and sandwich at least the wavelength conversion layer via the first support layer. As described above, since the wavelength conversion layer containing the acrylic resin is sandwiched between the pair of first support layers made of the polyester resin, the wavelength conversion layer containing the acrylic resin is assumed to be a gold-loss oxide. Compared with the case where it is configured to be sandwiched between a pair of barrier layers made of a film, the adhesiveness between the wavelength conversion layer and the first support layer is high. And it can avoid that a barrier layer contacts a wavelength conversion layer directly by setting it as the arrangement | positioning which at least a 1st support layer interposes between a barrier layer and a wavelength conversion layer. As a result, a situation where the barrier layer is peeled off is avoided. Thereby, it becomes possible to prevent more reliably that the quantum dot fluorescent substance contained in a wavelength conversion layer contacts and degrades with moisture, oxygen, etc. by a barrier layer.
 前記光学部材において、前記バリア層は、前記第1支持層上に積層されるものであってもよい。このようにすれば、構造が簡単なものとなるので、製造に係るタクトタイムが短縮化されると共に、製造コストを抑えることができる。また、このようにすれば、光学部材の全体的な厚みを小さくすることも可能である。 In the optical member, the barrier layer may be laminated on the first support layer. In this way, since the structure is simple, the tact time for manufacturing is shortened and the manufacturing cost can be reduced. In this way, the overall thickness of the optical member can be reduced.
 前記光学部材において、ポリエステル系樹脂からなり、前記バリア層が積層され、前記バリア層が内側に配される形で、又は前記バリア層が外側に配される形で、前記第1支持層よりも外側に配される一対の第2支持層と、前記バリア層が内側に配される場合、前記第1支持層と前記バリア層との間に介在され、前記バリア層が外側に配される場合、前記第1支持層と前記第2支持層との間に介在される一対の接着剤層とを備えるものであってもよい。このようにすれば、光が多重反射し易くなるので、量子ドット蛍光体による光の変換効率が高いものとなる。これにより、波長変換層における量子ドット蛍光体の含有量を低減させることができるので、低コスト化を図る上で好適である。 In the optical member, made of a polyester-based resin, the barrier layer is laminated, the barrier layer is arranged on the inner side, or the barrier layer is arranged on the outer side, than the first support layer. When the pair of second support layers disposed on the outside and the barrier layer are disposed on the inside, the barrier layer is disposed on the outside, interposed between the first support layer and the barrier layer. A pair of adhesive layers interposed between the first support layer and the second support layer may be provided. In this way, the light is likely to be multiple-reflected, so that the light conversion efficiency by the quantum dot phosphor is high. Thereby, since content of the quantum dot fluorescent substance in a wavelength conversion layer can be reduced, it is suitable when aiming at cost reduction.
 前記光学部材において、前記バリア層は、物理気相成長法又は化学気相成長法により形成されるものであってもよい。 In the optical member, the barrier layer may be formed by physical vapor deposition or chemical vapor deposition.
 前記光学部材において、前記量子ドット蛍光体は、緑色の波長領域の光を発する緑色量子ドット蛍光体を少なくとも含むものであってもよい。 In the optical member, the quantum dot phosphor may include at least a green quantum dot phosphor that emits light in a green wavelength region.
 前記光学部材において、前記量子ドット蛍光体は、赤色の波長領域の光を発する赤色量子ドット蛍光体を少なくとも含むものであってもよい。 In the optical member, the quantum dot phosphor may include at least a red quantum dot phosphor that emits light in a red wavelength region.
 前記光学部材において、前記波長変換層は、散乱剤を含むものであってもよい。 In the optical member, the wavelength conversion layer may include a scattering agent.
 また、本発明に係る照明装置は、前記何れか記載の光学部材と、前記波長変換層に含まれる前記量子ドット蛍光体を励起する励起光を発する光源と、を備えるものからなる。 Further, an illumination device according to the present invention includes any one of the optical members described above and a light source that emits excitation light that excites the quantum dot phosphor included in the wavelength conversion layer.
 また、本発明に係る表示装置は、前記照明装置と、前記照明装置から供給される光を利用して画像を表示する表示パネルとを備えるものからなる。 The display device according to the present invention includes the illumination device and a display panel that displays an image using light supplied from the illumination device.
 前記表示装置において、前記表示パネルは、液晶パネルからなるものであってもよい。 In the display device, the display panel may be a liquid crystal panel.
 また、本発明に係るテレビ受信装置は、前記表示装置を備えるものからなる。 The television receiver according to the present invention comprises the display device.
 また、本発明に係る光学部材の製造方法は、ポリエステル系樹脂からなる第1支持層と、この第1支持層の一方の面上に積層され、金属酸化物の膜からなるバリア層とを備える1組の第1ユニット部材のうち、一方の第1ユニット部材における前記第1支持層の面上に、紫外線硬化型のアクリル系樹脂に量子ドット蛍光体を分散させてなる組成物液を塗布し、その塗布物からなる塗布層を形成する塗布層形成工程と、前記一方の第1ユニット部材との間で、前記塗布層を挟み込むように、他方の第1ユニット部材を貼り合わせる貼合工程と、前記第1ユニット越しに前記塗布層に向けて紫外線を照射し、前記塗布層を硬化させて、波長変換層を得る硬化工程とを備える。 Moreover, the manufacturing method of the optical member which concerns on this invention is equipped with the 1st support layer which consists of polyester resin, and the barrier layer which is laminated | stacked on one surface of this 1st support layer, and consists of a film | membrane of a metal oxide. On the surface of the first support layer in one of the first unit members, a composition liquid in which quantum dot phosphors are dispersed in an ultraviolet curable acrylic resin is applied. An application layer forming step of forming an application layer made of the applied product, and a bonding step of bonding the other first unit member so as to sandwich the application layer between the one first unit member. And a curing step of irradiating the coating layer through the first unit with ultraviolet rays to cure the coating layer to obtain a wavelength conversion layer.
 また、本発明に係る光学部材の製造方法は、アクリル系樹脂及び前記アクリル系樹脂中に分散される量子ドット蛍光体を含む波長変換層と、ポリエステル系樹脂からなり前記波長変換層を挟み込む一対の第1支持層とを有する第2ユニット部材の両面に接着剤層を形成する接着剤層形成工程と、ポリエステル系樹脂からなる第2支持層と、この第2支持層の一方の面上に積層され、金属酸化物の膜からなるバリア層とを有する1組の第3ユニット部材を、前記バリア層が内側に配される形で、又は前記バリア層が外側に配される形で、前記接着剤層に貼り合わせる貼合工程とを備える。 The optical member manufacturing method according to the present invention includes a pair of a wavelength conversion layer including an acrylic resin and a quantum dot phosphor dispersed in the acrylic resin, and a polyester resin sandwiching the wavelength conversion layer. An adhesive layer forming step for forming an adhesive layer on both surfaces of a second unit member having a first support layer, a second support layer made of a polyester-based resin, and lamination on one surface of the second support layer A pair of third unit members each having a barrier layer made of a metal oxide film, in such a manner that the barrier layer is disposed on the inner side or the barrier layer is disposed on the outer side. And a bonding step of bonding to the agent layer.
 前記接着剤層形成工程において、前記接着剤層は、OCAフィルムからなるものであってもよい。 In the adhesive layer forming step, the adhesive layer may be made of an OCA film.
 前記光学部材の製造方法において、前記バリア層は、物理気相成長法又は化学気相成長法により形成されるものであってもよい。 In the optical member manufacturing method, the barrier layer may be formed by physical vapor deposition or chemical vapor deposition.
(発明の効果)
 本発明によれば、量子ドット蛍光体を含むバインダ樹脂層をバリア層によって確実に保護することが可能な技術を提供することができる。
(The invention's effect)
ADVANTAGE OF THE INVENTION According to this invention, the technique which can protect reliably the binder resin layer containing quantum dot fluorescent substance with a barrier layer can be provided.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. 図1のA-A線断面図AA line sectional view of FIG. 蛍光体シートの一部の構成を模式的に表した断面図Cross-sectional view schematically showing a part of the structure of the phosphor sheet 蛍光体シートの製造方法の一例を示す説明図Explanatory drawing which shows an example of the manufacturing method of a fluorescent substance sheet 実施形態2に係る蛍光体シートの一部の構成を模式的に表した断面図Sectional drawing which represented a part of structure of the fluorescent substance sheet which concerns on Embodiment 2 typically 実施形態2に係る蛍光体シートの製造方法の一例を示す説明図Explanatory drawing which shows an example of the manufacturing method of the fluorescent substance sheet which concerns on Embodiment 2. FIG. 実施形態3に係る蛍光体シートの一部の構成を模式的に表した断面図Sectional drawing which represented a part of structure of the fluorescent substance sheet which concerns on Embodiment 3 typically 実施形態4に係る蛍光体シートが利用される液晶表示装置の概略構成を模式的に表した断面図Sectional drawing which represented typically the schematic structure of the liquid crystal display device with which the fluorescent substance sheet which concerns on Embodiment 4 is utilized.
 <実施形態1>
 本発明の実施形態1を、図1~図4を参照しつつ説明する。本実施形態では、テレビ受信装置10TV等の液晶表示装置10における光学部材15として利用される蛍光体シートについて例示する。なお、各図面の一部には、説明の便宜上、X軸、Y軸及びZ軸が示されている。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS. In the present embodiment, a phosphor sheet used as the optical member 15 in the liquid crystal display device 10 such as the television receiver 10TV is illustrated. For convenience of explanation, an X axis, a Y axis, and a Z axis are shown in a part of each drawing.
 先ず、蛍光体シートが利用されるテレビ受信装置10TV及び液晶表示装置10について、図1及び図2を参照しつつ説明する。図1は、本発明の実施形態1に係るテレビ受信装置10TVの概略構成を示す分解斜視図であり、図2は、図1のA-A線断面図である。 First, a television receiver 10TV and a liquid crystal display device 10 using a phosphor sheet will be described with reference to FIGS. FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver 10TV according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.
 テレビ受信装置10TVは、図1に示されるように、主として、液晶表示装置(表示装置の一例)10と、その液晶表示装置10を前後(表裏)両側から挟むようにして収容する表裏両キャビネット10Ca,10Cbと、電源10Pと、テレビ信号を受信するチューナー(受信部)10Tと、スタンド10Sとを備えている。 As shown in FIG. 1, the television receiver 10TV mainly includes a liquid crystal display device (an example of a display device) 10 and both front and back cabinets 10Ca and 10Cb that hold the liquid crystal display device 10 so as to be sandwiched from both front and rear (front and back) sides. A power source 10P, a tuner (reception unit) 10T that receives a television signal, and a stand 10S.
 本実施形態の液晶表示装置10は、全体的には、左右方向に長く延びた横長の矩形状をなしている。また、液晶表示装置10は、図2に示されるように、主として、表示パネルとして利用される液晶パネル11と、液晶パネル11に対して光を供給する外部光源としてのバックライト装置(照明装置)12と、液晶パネル11及びバックライト装置12等を保持する枠状のベゼル13等を備えている。 The liquid crystal display device 10 of the present embodiment generally has a horizontally long rectangular shape extending long in the left-right direction. Further, as shown in FIG. 2, the liquid crystal display device 10 mainly includes a liquid crystal panel 11 used as a display panel, and a backlight device (illumination device) as an external light source that supplies light to the liquid crystal panel 11. 12 and a frame-like bezel 13 for holding the liquid crystal panel 11, the backlight device 12, and the like.
 液晶パネル11は、主として、一対の透明な基板と、それらの間で挟まれる形で封止される液晶層とを備えたものからなり、バックライト装置12から出射される光を利用して、パネル面上に視認可能な状態で画像を表示させる。液晶パネル11は、全体的には、平面視で横長の矩形状をなしている。液晶パネル11を構成する一対の基板のうち、一方の基板は、アレイ基板であり、透明なガラス製の基板上に、スイッチング素子であるTFT(Thin Film Transistor)や画素電極等がマトリクス状に配設されたものからなる。また、他方の基板は、カラーフィルタ(以下、CF)基板であり、透明なガラス製の基板上に、赤色、緑色、青色の各色からなるカラーフィルタがマトリクス状に配設されたものからなる。 The liquid crystal panel 11 mainly comprises a pair of transparent substrates and a liquid crystal layer sealed in a form sandwiched between them, using light emitted from the backlight device 12, An image is displayed on the panel surface in a visible state. The liquid crystal panel 11 generally has a horizontally long rectangular shape in plan view. One of the pair of substrates constituting the liquid crystal panel 11 is an array substrate, and TFTs (Thin Film Transistors), pixel electrodes, etc., which are switching elements, are arranged in a matrix on a transparent glass substrate. It consists of the set. The other substrate is a color filter (hereinafter referred to as CF) substrate, which is formed by arranging color filters of red, green, and blue in a matrix on a transparent glass substrate.
 バックライト装置12は、液晶パネル11の背面側に配され、液晶パネル11に向けて光を供給する装置である。バックライト装置12は、白色光を出射するように構成されている。なお、本実施形態のバックライト装置12は、所謂エッジライト型(又はサイドライト型)である。 The backlight device 12 is a device that is arranged on the back side of the liquid crystal panel 11 and supplies light toward the liquid crystal panel 11. The backlight device 12 is configured to emit white light. Note that the backlight device 12 of the present embodiment is a so-called edge light type (or side light type).
 バックライト装置12は、図2に示されるように、シャーシ14、光学部材15、フレーム16、LED17、LED基板18、導光板19、反射シート20等を備えている。 As shown in FIG. 2, the backlight device 12 includes a chassis 14, an optical member 15, a frame 16, an LED 17, an LED substrate 18, a light guide plate 19, a reflection sheet 20, and the like.
 シャーシ14は、表側に開口した略箱型をなし、例えば、アルミニウム板や電気亜鉛めっき鋼板(SECC)等の金属板から構成される。シャーシ14の内側には、LED17、LED基板18、反射シート20、導光板19、光学部材15等の各種部材が収容される。シャーシ14内において、反射シート20、導光板19及び光学部材15は、背面側からこの順で積層された状態で、収容されている。なお、シャーシ14の外側には、図示されないコントロール基板やLED駆動基板等の基板類が取り付けられている。 The chassis 14 has a substantially box shape opened to the front side, and is made of, for example, a metal plate such as an aluminum plate or an electrogalvanized steel plate (SECC). Various members such as the LED 17, the LED substrate 18, the reflection sheet 20, the light guide plate 19, and the optical member 15 are accommodated inside the chassis 14. In the chassis 14, the reflection sheet 20, the light guide plate 19, and the optical member 15 are accommodated in a state of being stacked in this order from the back side. A board such as a control board and an LED driving board (not shown) is attached to the outside of the chassis 14.
 光学部材15は、液晶パネル11等と同様、平面視で横長の略矩形状をなしている。光学部材15は、液晶パネル11の背面側に配されるように導光板19の表側に載せられる。光学部材15は、所定の光学的作用を付与しつつ、導光板19から出射された光を液晶パネル11側へ透過させる機能を備えている。光学部材15は、互いに積層される複数枚のシート状の部材(光学シート)からなる。 The optical member 15 has a horizontally long and substantially rectangular shape in plan view, like the liquid crystal panel 11 and the like. The optical member 15 is placed on the front side of the light guide plate 19 so as to be arranged on the back side of the liquid crystal panel 11. The optical member 15 has a function of transmitting light emitted from the light guide plate 19 to the liquid crystal panel 11 side while providing a predetermined optical action. The optical member 15 is composed of a plurality of sheet-like members (optical sheets) stacked on each other.
 光学部材15を構成する具体的な部材(光学シート)としては、例えば、拡散シート、レンズシート、反射型偏光シート等が挙げられる。特に、本実施形態の光学部材15は、必須の部材(光学シート)として、量子ドット蛍光体を含有する蛍光体シート150を備えている。蛍光体シート150については、後述する。 Specific members (optical sheets) constituting the optical member 15 include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like. In particular, the optical member 15 of the present embodiment includes a phosphor sheet 150 containing a quantum dot phosphor as an essential member (optical sheet). The phosphor sheet 150 will be described later.
 フレーム16は、導光板19の外周端部を覆うような枠状(額縁状)をなし、シャーシ14の開口部分に表側から組み付けられる。フレーム16は、例えば、合成樹脂からなる。 The frame 16 has a frame shape (frame shape) covering the outer peripheral end of the light guide plate 19 and is assembled to the opening portion of the chassis 14 from the front side. The frame 16 is made of synthetic resin, for example.
 反射シート20は、光反射性のシート状の部材であり、シャーシ14の底面を覆うようにシャーシ14内に配される。反射シート20は、例えば、白色の発泡ポリエチレンテレフタレートシート等からなる。 The reflection sheet 20 is a light-reflective sheet-like member, and is disposed in the chassis 14 so as to cover the bottom surface of the chassis 14. The reflection sheet 20 is made of, for example, a white foamed polyethylene terephthalate sheet.
 導光板19は、屈折率が空気よりも十分に高く、透明であり、光透過性に優れる合成樹脂材料(例えば、PMMA等のアクリル系樹脂、ポリカーボネート樹脂等)からなる。導光板19は、液晶パネル11等と同様、平面視で略矩形状をなす板状部材からなり、表面19aが液晶パネル11と対向し、裏面19cが反射シート20と対向する形で、シャーシ14内に収容されている。なお、導光板19の表面19aは、液晶パネル11側に向けて光を出射する光出射面19aとなっている。光出射面19a上には、上述した光学部材15が載せられている。光学部材15のうち、蛍光体シート150が最も光出射面19a側に配されている。 The light guide plate 19 is made of a synthetic resin material (for example, acrylic resin such as PMMA, polycarbonate resin, etc.) that has a refractive index sufficiently higher than air, is transparent, and is excellent in light transmittance. Similar to the liquid crystal panel 11 and the like, the light guide plate 19 is made of a plate-like member having a substantially rectangular shape in plan view, the front surface 19 a faces the liquid crystal panel 11, and the back surface 19 c faces the reflection sheet 20. Is housed inside. The surface 19a of the light guide plate 19 is a light emitting surface 19a that emits light toward the liquid crystal panel 11 side. The optical member 15 described above is placed on the light emitting surface 19a. Among the optical members 15, the phosphor sheet 150 is disposed closest to the light emitting surface 19 a side.
 LED(光源の一例)17は、発光源であるチップ状の青色LED素子(青色発光素子)と、その青色LED素子を封止する透明な封止材と、青色LED素子及び封止材を収容する略箱型のケース部とを備えており、青色光を発光するように構成されている。なお、青色LED素子は、例えば、IGaN等からなる半導体であり、順方向に電圧が印加されることで、青色光の波長領域(約420nm~約500nm)に含まれる光(つまり、青色光)を出射する。 LED (an example of a light source) 17 contains a chip-like blue LED element (blue light emitting element) that is a light emitting source, a transparent sealing material that seals the blue LED element, and a blue LED element and a sealing material. And a substantially box-shaped case portion configured to emit blue light. The blue LED element is a semiconductor made of, for example, IGaN, and light (ie, blue light) included in the wavelength region of blue light (about 420 nm to about 500 nm) when a voltage is applied in the forward direction. Is emitted.
 LED17は、所謂、頂面発光型であり、長尺状をなしたLED基板18上に表面実装されている。LED17は、LED基板18上に、等間隔で一列に並ぶように複数個実装されている。LED17は、LED基板18に実装された状態で、発光面17aが導光板19の長辺側端面19bと対向するように、シャーシ14内に収容されている。なお、導光板19の2つの長辺側端面19bは、それぞれLED17からの光(青色光)が入射される光入射面19bとなっている。 The LED 17 is a so-called top emission type and is surface-mounted on a long LED substrate 18. A plurality of LEDs 17 are mounted on the LED substrate 18 so as to be arranged in a line at equal intervals. The LED 17 is housed in the chassis 14 so that the light emitting surface 17 a faces the long-side end surface 19 b of the light guide plate 19 in a state where the LED 17 is mounted on the LED substrate 18. Note that the two long side end surfaces 19b of the light guide plate 19 are light incident surfaces 19b on which light (blue light) from the LEDs 17 is incident.
 ここで、蛍光体シート150について、詳細に説明する。図3は、蛍光体シート150の一部の構成を模式的に表した断面図である。蛍光体シート150は、光学部材15の一種であり、光学部材15を構成する他の部材(光学シート)と共に利用される。蛍光体シート150は、光学部材15を構成する複数の部材のうち、最も導光板19に近い個所配される。なお、蛍光体シート150は、液晶パネル11等と同様、平面視略矩形状をなしている。 Here, the phosphor sheet 150 will be described in detail. FIG. 3 is a cross-sectional view schematically showing a part of the configuration of the phosphor sheet 150. The phosphor sheet 150 is a kind of the optical member 15 and is used together with other members (optical sheets) constituting the optical member 15. The phosphor sheet 150 is disposed at a location closest to the light guide plate 19 among the plurality of members constituting the optical member 15. The phosphor sheet 150 has a substantially rectangular shape in plan view, like the liquid crystal panel 11 and the like.
 蛍光体シート150は、LED17からの光(青色光)の一部をそのまま透過させると共に、LED17からの光(青色光)の一部を吸収してその光(青色光)を他の波長領域の光に変換して放出する機能を備えている。このような蛍光体シート150は、波長変換層151と、一対の第1支持層152,152と、一対のバリア層153,153とを備えている。 The phosphor sheet 150 transmits a part of the light (blue light) from the LED 17 as it is, absorbs a part of the light (blue light) from the LED 17 and transmits the light (blue light) in another wavelength region. It has the function of converting to light and emitting it. Such a phosphor sheet 150 includes a wavelength conversion layer 151, a pair of first support layers 152, 152, and a pair of barrier layers 153, 153.
 波長変換層151は、バインダ樹脂としてのアクリル系樹脂と、そのアクリル系樹脂中に分散した状態で配合される量子ドット蛍光体とを含有する。アクリル系樹脂は、透明であり、光透過性を有すると共に、第1支持層152に対する接着性を備えている。第1支持層152は、後述するように、ポリエステル系樹脂からなる。そのため、アクリル系樹脂は、第1支持層152に対して、静電気的な作用等により、相互に密着することができる。 The wavelength conversion layer 151 contains an acrylic resin as a binder resin and a quantum dot phosphor blended in a dispersed state in the acrylic resin. The acrylic resin is transparent, has optical transparency, and has adhesion to the first support layer 152. As will be described later, the first support layer 152 is made of a polyester resin. Therefore, the acrylic resins can be adhered to the first support layer 152 by electrostatic action or the like.
 量子ドット蛍光体は、優れた量子効率を有する蛍光体であり、ナノサイズ(例えば、直径2nm~10nm程度)の半導体結晶中に、電子・正孔や励起子を三次元空間全方位で閉じ込めることで、離散的エネルギー準位を有し、そのドットのサイズを変えることで発光光のピーク波長(発光色)等を自由に選択することができる。 Quantum dot phosphors are phosphors with excellent quantum efficiency. They confine electrons, holes, and excitons in all directions in a three-dimensional space in a nano-sized semiconductor crystal (for example, about 2 nm to 10 nm in diameter). The peak wavelength (emission color) of emitted light can be freely selected by changing the size of the dot having discrete energy levels.
 本実施形態の場合、波長変換層151中には、量子ドット蛍光体として、緑色光(約500nm~約570nmの波長領域)を発光する緑色量子ドット蛍光体と、赤色光(約600nm~約780nmの波長領域)を発光する赤色量子ドット蛍光体とが配合される。緑色量子ドット蛍光体及び赤色量子ドット蛍光体から発せられる緑色光の発光スペクトル及び赤色光の発光スペクトルは、それぞれシャープなピークを有しており、それらの半値幅が狭くなることから、緑色光及び赤色光の各色純度は、極めて高くなり、それらの色域も広くなる。 In the case of the present embodiment, in the wavelength conversion layer 151, as the quantum dot phosphor, a green quantum dot phosphor that emits green light (wavelength region of about 500 nm to about 570 nm) and a red light (about 600 nm to about 780 nm). The red quantum dot phosphor that emits light in the wavelength region of (a). The emission spectrum of green light and the emission spectrum of red light emitted from the green quantum dot phosphor and the red quantum dot phosphor have sharp peaks, respectively, and their half-value widths are narrowed. The purity of each color of red light is extremely high, and the color gamut thereof is also widened.
 緑色量子ドット蛍光体は、LED17からの光(青色光、励起光)を吸収して励起し、緑色光(約500nm~約570nmの波長領域)を放出する。つまり、緑色量子ドット蛍光体は、LED17からの光(青色光、励起光)を、波長領域の異なる他の光(緑色光)に変換する機能を備えている。 The green quantum dot phosphor absorbs light from the LED 17 (blue light, excitation light) and is excited to emit green light (wavelength range of about 500 nm to about 570 nm). That is, the green quantum dot phosphor has a function of converting light (blue light, excitation light) from the LED 17 into other light (green light) having a different wavelength region.
 赤色量子ドット蛍光体は、LED17からの光(青色光、励起光)を吸収して励起し、赤色光(約600nm~約780nmの波長領域)を放出する。つまり、赤色量子ドット蛍光体は、LED17からの光(青色光、励起光)を、波長領域の異なる他の光(赤色光)に変換する機能を備えている。 The red quantum dot phosphor absorbs and excites light (blue light, excitation light) from the LED 17 and emits red light (wavelength range of about 600 nm to about 780 nm). That is, the red quantum dot phosphor has a function of converting light (blue light, excitation light) from the LED 17 into other light (red light) having a different wavelength region.
 量子ドット蛍光体に用いられる材料としては、2価の陽イオンになり得るZn、Cd、Pb等と、2価の陰イオンになり得るO、S、Se、Te等とを組み合わせた材料(例えば、セレン化カドミウム(CdCe)、硫化亜鉛(ZnS)等)、3価の陽イオンとなり得るGa、In等と3価の陰イオンとなり得るP、As、Sb等とを組み合わせた材料(例えば、リン化インジウム(InP)、ヒ化ガリウム(GaAs)等)、更にはカルコパイライト型化合物(CuInSe等)等が挙げられる。本実施形態では、量子ドット蛍光体の材料の一例として、CdSeが用いられる。 Materials used for the quantum dot phosphor include a combination of Zn, Cd, Pb and the like that can be a divalent cation and O, S, Se, Te, and the like that can be a divalent anion (for example, , Cadmium selenide (CdCe), zinc sulfide (ZnS), etc.), a combination of Ga, In, etc., which can be a trivalent cation, and P, As, Sb, etc., which can be a trivalent anion (for example, phosphorus Indium phosphide (InP), gallium arsenide (GaAs), and the like, and chalcopyrite type compounds (CuInSe 2 and the like). In this embodiment, CdSe is used as an example of the material of the quantum dot phosphor.
 本実施形態において、量子ドット蛍光体(緑色量子ドット蛍光体、及び赤色量子ドット蛍光体)は、波長変換層151を構成するアクリル系樹脂中に、略均一となるように分散配合される。 In this embodiment, the quantum dot phosphors (green quantum dot phosphor and red quantum dot phosphor) are dispersed and blended in the acrylic resin constituting the wavelength conversion layer 151 so as to be substantially uniform.
 なお、量子ドット蛍光体は、湿気(水分)や酸素等に対して不安定であり、それらと接触すると、性能が低下する。そのため、波長変換層151中の量子ドット蛍光体は、水や酸素等と極力、接触しないように、バリア層153によって保護されている。 Note that the quantum dot phosphor is unstable with respect to moisture (moisture), oxygen, and the like, and when it comes into contact with them, the performance decreases. Therefore, the quantum dot phosphor in the wavelength conversion layer 151 is protected by the barrier layer 153 so as not to come into contact with water or oxygen as much as possible.
 波長変換層151は、アクリル系樹脂や量子ドット蛍光体以外に、波長変換層151に入射した光や、波長変換層151から放出される光を散乱させる散乱剤が配合されてもよい。また、波長変換層151中には、本願発明の目的を損なわない範囲で、他の成分が添加されてもよい。 The wavelength conversion layer 151 may be blended with a scattering agent that scatters light incident on the wavelength conversion layer 151 or light emitted from the wavelength conversion layer 151 in addition to the acrylic resin and the quantum dot phosphor. Further, other components may be added to the wavelength conversion layer 151 as long as the object of the present invention is not impaired.
 第1支持層152は、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂からなり、波長変換層151を挟み込む一対のものからなる。第1支持層152は、所定の厚みを有するシート状(フィルム状)の部材であり、波長変換層151の両面にそれぞれ1枚ずつ貼り付けられる。 The first support layer 152 is made of a polyester resin such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), and is made of a pair of layers sandwiching the wavelength conversion layer 151. The first support layer 152 is a sheet-like (film-like) member having a predetermined thickness, and is attached to each side of the wavelength conversion layer 151 one by one.
 第1支持層152は、波長変換層151を挟み込む形で接着して、波長変換層151を支持すると共に、蛍光体シート150の剛性を確保する。なお、第1支持層152は、透明であり、光透過性に優れる。本実施形態の場合、一対の第1支持層152,152同士は、互いに同じ厚みに設定されている。 The first support layer 152 is bonded so as to sandwich the wavelength conversion layer 151 to support the wavelength conversion layer 151 and ensure the rigidity of the phosphor sheet 150. The first support layer 152 is transparent and has excellent light transmittance. In the present embodiment, the pair of first support layers 152, 152 are set to the same thickness.
 バリア層153は、アルミナ、酸化ケイ素等の金属酸化物の膜からなり、第1支持層152よりも外側に配され、少なくとも第1支持層152を介して波長変換層151を両側から挟み込む一対のものからなる。 The barrier layer 153 is made of a metal oxide film such as alumina or silicon oxide, and is disposed on the outer side of the first support layer 152. The pair of barrier layers 153 sandwich the wavelength conversion layer 151 from both sides via at least the first support layer 152. Consists of things.
 バリア層153は、湿気や酸素等の量子ドット蛍光体を劣化させる原因物質を遮蔽する機能(例えば、酸素バリア性、水蒸気バリア性)を備えている。バリア層153は、アルミナ、酸化ケイ素等の金属酸化物の膜(フィルム)からなり、例えば、真空蒸着法(電子線ビーム蒸着法、抵抗加熱蒸着法)、スパッタリング法、イオンプレーティング法、イオンビーム法、イオンアシスト法、レーザーアブレーション法等の物理的気相成長(PVD)法、熱CVD法、光CVD法、プラズマCVD法等の化学的気相成長(CVD)法等が挙げられる。本実施形態のバリア層153は、第1支持層152上に、真空蒸着法を利用してアルミナからなる膜が形成される。 The barrier layer 153 has a function (for example, oxygen barrier property, water vapor barrier property) of shielding a causative substance that degrades the quantum dot phosphor such as moisture and oxygen. The barrier layer 153 is made of a film (film) of a metal oxide such as alumina or silicon oxide, and includes, for example, a vacuum evaporation method (electron beam evaporation method, resistance heating evaporation method), sputtering method, ion plating method, ion beam. And chemical vapor deposition (CVD) methods such as physical vapor deposition (PVD) methods such as ion assisted methods and laser ablation methods, thermal CVD methods, photo CVD methods, and plasma CVD methods. In the barrier layer 153 of this embodiment, a film made of alumina is formed on the first support layer 152 by using a vacuum deposition method.
 バリア層153は、ポリエステル系樹脂からなる第1支持層152に対して密着した状態で積層される。バリア層153は、波長変換層151を構成するアクリル系樹脂に対して十分な密着性が得られないため、第1支持層152に対して形成される。また、バリア層153は、上述したように、アルミナ等の金属酸化物の膜からなり、金属酸化物を構成する酸素原子が、アクリル系樹脂中に含まれる酸素原子とが互いに静電的に反発し合う等の理由により、波長変換層151に対する密着性が弱いと推測される。特に、バリア層153が、第1支持層152に対して真空蒸着法等により平坦(平滑)な膜として形成された場合、いわゆるアンカー効果が期待できず、波長変換層151を構成するアクリル系樹脂に対して十分な密着性が得られない。なお、バリア層153は、透明であり、光透過性に優れる。 The barrier layer 153 is laminated in a state of being in close contact with the first support layer 152 made of a polyester resin. The barrier layer 153 is formed on the first support layer 152 because sufficient adhesion to the acrylic resin constituting the wavelength conversion layer 151 cannot be obtained. Further, as described above, the barrier layer 153 is made of a metal oxide film such as alumina, and the oxygen atoms constituting the metal oxide repel each other electrostatically with the oxygen atoms contained in the acrylic resin. It is presumed that the adhesion to the wavelength conversion layer 151 is weak due to reasons such as mutual contact. In particular, when the barrier layer 153 is formed as a flat (smooth) film on the first support layer 152 by a vacuum deposition method or the like, a so-called anchor effect cannot be expected, and the acrylic resin constituting the wavelength conversion layer 151 However, sufficient adhesion cannot be obtained. Note that the barrier layer 153 is transparent and has excellent light transmittance.
 次いで、蛍光体シート150の製造方法の一例を、図4を参照しつつ説明する。図4は、蛍光体シート150の製造方法の一例を示す説明図である。 Next, an example of a method for manufacturing the phosphor sheet 150 will be described with reference to FIG. FIG. 4 is an explanatory view showing an example of a method for manufacturing the phosphor sheet 150.
 本実施形態の蛍光体シート150の製造方法は、塗布層形成工程(a-1)と、貼合工程(a-2)と、硬化工程(a-3)とを備えている。 The manufacturing method of the phosphor sheet 150 of the present embodiment includes an application layer forming step (a-1), a bonding step (a-2), and a curing step (a-3).
 塗布層形成工程(a-1)は、ポリエステル系樹脂からなる第1支持層152と、この第1支持層152の一方の面上に積層され、金属酸化物の膜からなるバリア層153とを備える1組の第1ユニット部材U1,U1のうち、一方の第1ユニット部材U1における第1支持層152の面上に、紫外線硬化型のアクリル系樹脂に量子ドット蛍光体を分散させてなる組成物液を塗布し、その塗布物からなる塗布層51を形成する工程である。 In the coating layer forming step (a-1), a first support layer 152 made of a polyester resin and a barrier layer 153 made of a metal oxide film are laminated on one surface of the first support layer 152. Among the set of first unit members U1 and U1, a composition in which quantum dot phosphors are dispersed in an ultraviolet curable acrylic resin on the surface of the first support layer 152 in one first unit member U1. In this step, a liquid is applied to form a coating layer 51 made of the applied product.
 第1ユニット部材U1は、PET等のポリエステル系樹脂からなるシート状(フィルム状)の第1支持層152に対して、真空蒸着法等を用いて予めバリア層153が形成されたものである。このような第1ユニット部材U1が、1組用意される(図4の4A参照)。そのような第1ユニット部材U1のうち、一方の第1ユニット部材U1において、第1支持層152側の表面上に、波長変換層151を形成するための組成物液が塗布される(図4の4)。 The first unit member U1 is obtained by forming a barrier layer 153 in advance on a sheet-like (film-like) first support layer 152 made of a polyester-based resin such as PET using a vacuum deposition method or the like. One set of such first unit members U1 is prepared (see 4A in FIG. 4). Among such first unit members U1, in one first unit member U1, a composition liquid for forming the wavelength conversion layer 151 is applied on the surface on the first support layer 152 side (FIG. 4). 4).
 組成物液は、アクリル酸、メタクリル酸等のアクリル系樹脂を構成する液状の各種モノマー成分、モノマー成分を重合させるための光重合開始剤、量子ドット蛍光体(緑色量子ドット蛍光体、赤色量子ドット蛍光体)、散乱剤等から構成される。また、組成物液を塗布する方法としては、特に制限されず、例えば、公知のコーター等を利用して第1ユニット部材U1の第1支持層153上に塗布される。 The composition liquid is a liquid monomer component constituting an acrylic resin such as acrylic acid or methacrylic acid, a photopolymerization initiator for polymerizing the monomer component, a quantum dot phosphor (green quantum dot phosphor, red quantum dot) Phosphor), a scattering agent, and the like. The method for applying the composition liquid is not particularly limited, and for example, the composition liquid is applied onto the first support layer 153 of the first unit member U1 using a known coater or the like.
 貼合工程(a-2)は、上述した一方の第1ユニット部材U1との間で、塗布層51を挟み込むように、他方の第1ユニット部材U1を貼り合わせる工程である。その際、他方の第1ユニット部材U1は、ポリエステル系樹脂からなる第1支持層152が塗布層51に接触するように貼り付けられる(図4の4C参照)。 The bonding step (a-2) is a step of bonding the other first unit member U1 so that the coating layer 51 is sandwiched between the one first unit member U1 described above. At that time, the other first unit member U1 is attached so that the first support layer 152 made of polyester resin is in contact with the coating layer 51 (see 4C in FIG. 4).
 硬化工程(a-3)は、第1ユニット部材U1越しに塗布層51に向けて紫外線UVを照射し、塗布層51を硬化させて、波長変換層151を得る工程である。本実施形態では、紫外線UVは、塗布層51に対して、一方の第1ユニット部材U1側(つまり、片面側)からのみ照射しているが(図4の4C参照)、他の実施形態においては、両方の第1ユニット部材U1側(つまり、両面側)から照射してもよい。このように、塗布層51に紫外線が照射されると、塗布層51が硬化して、波長変換層151となり、蛍光体シート150が得られる。 The curing step (a-3) is a step of obtaining the wavelength conversion layer 151 by irradiating the coating layer 51 with ultraviolet UV through the first unit member U1 to cure the coating layer 51. In the present embodiment, the ultraviolet ray UV is applied to the coating layer 51 only from one first unit member U1 side (that is, one side) (see 4C in FIG. 4), but in other embodiments. May be irradiated from both first unit members U1 side (that is, both sides). As described above, when the coating layer 51 is irradiated with ultraviolet rays, the coating layer 51 is cured to become the wavelength conversion layer 151, and the phosphor sheet 150 is obtained.
 以上のような、蛍光体シート150を有する照明装置12において、LED17が点灯駆動すると、LED17は、導光板19の光入射面19bに向けて青色光を出射する。LED17からの青色光は、光入射面19bより導光板19内に入射し、導光板19の裏面19cや表側の面(光出射面19a)で反射等を繰り返しながら伝播する。なお、導光板19の裏面19cより外側に飛び出した光は、反射シート20で反射等されて、再び導光板19側へ戻される。 In the illumination device 12 having the phosphor sheet 150 as described above, when the LED 17 is driven to turn on, the LED 17 emits blue light toward the light incident surface 19 b of the light guide plate 19. Blue light from the LED 17 enters the light guide plate 19 from the light incident surface 19b and propagates while being repeatedly reflected on the back surface 19c of the light guide plate 19 and the front surface (light emitting surface 19a). The light that has jumped out of the back surface 19c of the light guide plate 19 is reflected by the reflection sheet 20 and returned again to the light guide plate 19 side.
 反射シート20や、導光板19の裏面19bに形成されているドット状の反射パターン(不図示)によって反射等された光は、光出射面19aから外側へ飛び出し、蛍光体シート150へ供給される。蛍光体シート150に供給された光(青色光)の一部は、蛍光体シート150の波長変換層151で波長が変換され、緑色光や赤色光となって他の光学部材15に向かって出射される。また、蛍光体シート150に供給された光(青色光)の他の一部は、波長変換層151で波長が変換されずに、透過する。なお、蛍光体シート150で波長変換された光や、蛍光体シート150を透過した光は、そのまま他の光学部材15を通過して、液晶パネル11に供給されることもあるが、それらの多くは、光学部材15が備える反射型偏光シート等によって複数回、反射(再帰反射)されてから、液晶パネル11に供給されることになる。 The light reflected by the reflection sheet 20 or the dot-like reflection pattern (not shown) formed on the back surface 19b of the light guide plate 19 jumps out from the light emission surface 19a and is supplied to the phosphor sheet 150. . A part of the light (blue light) supplied to the phosphor sheet 150 is converted in wavelength by the wavelength conversion layer 151 of the phosphor sheet 150, and is emitted toward the other optical member 15 as green light or red light. Is done. The other part of the light (blue light) supplied to the phosphor sheet 150 is transmitted without being converted in wavelength by the wavelength conversion layer 151. Note that light that has been wavelength-converted by the phosphor sheet 150 or light that has passed through the phosphor sheet 150 may be supplied to the liquid crystal panel 11 through the other optical member 15 as it is. Is reflected (retroreflected) a plurality of times by a reflective polarizing sheet or the like provided in the optical member 15 and then supplied to the liquid crystal panel 11.
 液晶パネル11に照明装置12から供給される光は、所謂、白色光の状態となっている。つまり、照明装置12からは、LED17から出射された青色光と、蛍光体シート150で波長変換されて得られる緑色光と、同じく蛍光体シート150で波長変換されて得られる赤色光とが互いに混ざり合った状態の光が出射される。このような照明装置12からの光(白色光)が、液晶パネル11に向かって照射されると、液晶パネル11のパネル面上に視認可能な状態で画像が表示される。 The light supplied from the lighting device 12 to the liquid crystal panel 11 is in a so-called white light state. That is, from the lighting device 12, blue light emitted from the LED 17, green light obtained by wavelength conversion by the phosphor sheet 150, and red light obtained by wavelength conversion by the phosphor sheet 150 are mixed with each other. The combined light is emitted. When such light (white light) from the illuminating device 12 is irradiated toward the liquid crystal panel 11, an image is displayed in a visible state on the panel surface of the liquid crystal panel 11.
 以上のように、本実施形態によれば、量子ドット蛍光体を含むバインダ樹脂層(つまり、波長変換層151)に対して、バリア層153を直接、積層するのではなく、ポリエステル系樹脂からなる第1支持層152を介して形成することにより、波長変換層151をバリア層153によって確実に保護することができる。 As described above, according to the present embodiment, the barrier layer 153 is not directly laminated on the binder resin layer containing the quantum dot phosphor (that is, the wavelength conversion layer 151), but is made of a polyester resin. By forming via the first support layer 152, the wavelength conversion layer 151 can be reliably protected by the barrier layer 153.
 <実施形態2>
 以下、本発明の実施形態2を、図5及び図6を参照しつつ説明する。なお、以降の各実施形態の説明において、上述した実施形態1と同じ構成については、実施形態1と同じ符号を付し、その詳細説明は適宜、省略する。
<Embodiment 2>
Hereinafter, Embodiment 2 of the present invention will be described with reference to FIGS. 5 and 6. In the following description of each embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted as appropriate.
 図5は、実施形態2に係る蛍光体シート150Aの一部の構成を模式的に表した断面図である。本実施形態の蛍光体シート150Aは、図5に示されるように、波長変換層151と、波長変換層151を挟み込む形で、波長変換層151の両面に形成される一対の第1支持層152,152とを備えている。なお、説明の便宜上、波長変換層151に一対の第1支持層152,152を貼り付けたものを、本明細書では、第2ユニット部材U2と称する。 FIG. 5 is a cross-sectional view schematically showing a part of the configuration of the phosphor sheet 150A according to the second embodiment. As shown in FIG. 5, the phosphor sheet 150 </ b> A of the present embodiment has a pair of first support layers 152 formed on both surfaces of the wavelength conversion layer 151 so as to sandwich the wavelength conversion layer 151 and the wavelength conversion layer 151. , 152. In addition, for convenience of explanation, the one in which the pair of first support layers 152 and 152 are attached to the wavelength conversion layer 151 is referred to as a second unit member U2 in this specification.
 本実施形態の蛍光体シート150Aは、第2ユニット部材U2の両面に、バリア層153を含む一対(一組)の第3ユニット部材U3を、接着剤層155を介してそれぞれ貼り付けたものからなる。 The phosphor sheet 150A of the present embodiment is obtained by attaching a pair (a set) of third unit members U3 including the barrier layer 153 to both surfaces of the second unit member U2 via the adhesive layer 155, respectively. Become.
 第3ユニット部材U3は、第2支持層154と、この第2支持層154に真空蒸着法等を利用して形成されるバリア層153とを備えるものからなる。第2支持層154は、上述した第1支持層152と同様、PET等のポリエステル系樹脂からなるシート状(フィルム状)の部材からなる。本実施形態の場合、第3ユニット部材U3は、一組(一対)用意される。 The third unit member U3 includes a second support layer 154 and a barrier layer 153 formed on the second support layer 154 using a vacuum deposition method or the like. The 2nd support layer 154 consists of a sheet-like (film form) member which consists of polyester-type resin, such as PET, like the 1st support layer 152 mentioned above. In the case of the present embodiment, one set (a pair) of third unit members U3 is prepared.
 接着剤層155は、第2ユニット部材U2と、第3ユニット部材U3とを互いに接着する透明な光透過性のものであれば、特に制限はなく、公知のものから適宜、選択して用いられる。このような接着剤層155としは、例えば、OCA(Optical Clear Adhesive)フィルムが挙げられる。 The adhesive layer 155 is not particularly limited as long as it is a transparent light-transmitting material that bonds the second unit member U2 and the third unit member U3 to each other, and is appropriately selected from known ones. . Examples of such an adhesive layer 155 include an OCA (Optical Clear Clear) film.
 本実施形態の蛍光体シート150Aでは、第2ユニット部材U2に対して、第3ユニット部材U3は、バリア層153が内側(つまり、第2ユニット部材U2側)に配された状態で、接着剤層155を介して、貼り付けられている。つまり、接着剤層155は、第2ユニット部材U2の第1支持層152と、第3ユニット部材U3のバリア層153との間に介在され、第1支持層152とバリア層153とを互いに固定する。 In the phosphor sheet 150A of the present embodiment, the third unit member U3 is adhesive with the barrier layer 153 disposed on the inner side (that is, the second unit member U2 side) with respect to the second unit member U2. Affixed via layer 155. That is, the adhesive layer 155 is interposed between the first support layer 152 of the second unit member U2 and the barrier layer 153 of the third unit member U3, and fixes the first support layer 152 and the barrier layer 153 to each other. To do.
 このように、バリア層153を、波長変換層151に対して直接、形成するのではなく、波長変換層151を含む第2ユニット部材U2に、第3ユニット部材U3を、接着剤層155を介して貼り付けてもよい。 In this way, the barrier layer 153 is not directly formed on the wavelength conversion layer 151, but the third unit member U3 is disposed on the second unit member U2 including the wavelength conversion layer 151 via the adhesive layer 155. You may paste.
 本実施形態の蛍光体シート150Aは、実施形態1と比べて、多くの層を含んでおり、光が多重反射し易く、波長変換層151に含まれる量子ドット蛍光体による光の変換効率が高いものとなる。そのため、波長変換層151中に配合する量子ドット蛍光体の量を、実施形態1等と比べて、減らすことが可能であり、製造コストを抑えることができる。 The phosphor sheet 150 </ b> A of the present embodiment includes many layers as compared with the first embodiment, and light is likely to be multiply reflected, and the light conversion efficiency by the quantum dot phosphor included in the wavelength conversion layer 151 is high. It will be a thing. Therefore, the amount of the quantum dot phosphor blended in the wavelength conversion layer 151 can be reduced as compared with the first embodiment, and the manufacturing cost can be suppressed.
 次いで、蛍光体シート150Aの製造方法の一例を説明する。図6は、実施形態2に係る蛍光体シート150Aの製造方法の一例を示す説明図である。 Next, an example of a method for manufacturing the phosphor sheet 150A will be described. FIG. 6 is an explanatory diagram illustrating an example of a method for manufacturing the phosphor sheet 150A according to the second embodiment.
 本実施形態の蛍光体シート150Aの製造方法は、接着剤層形成工程(b-1)と、貼合工程(b-2)とを備えている。 The manufacturing method of the phosphor sheet 150A of the present embodiment includes an adhesive layer forming step (b-1) and a bonding step (b-2).
 接着剤層形成工程(b-1)は、第2ユニット部材U2の両面に接着剤層155,155を形成する工程である。第2ユニット部材U2は、上述したように、アクリル系樹脂と、そのアクリル系樹脂中に分散される量子ドット蛍光体を含む波長変換層151と、ポリエステル系樹脂からなる波長変換層151を挟み込む一対の第1支持層152とを有するものからなる。図6の6Aに示されるように、このような第2ユニット部材U2が予め用意される。 The adhesive layer forming step (b-1) is a step of forming the adhesive layers 155 and 155 on both surfaces of the second unit member U2. As described above, the second unit member U2 is a pair of sandwiching the wavelength conversion layer 151 including the acrylic resin, the quantum dot phosphor dispersed in the acrylic resin, and the polyester resin. And the first support layer 152. As shown in 6A of FIG. 6, such a second unit member U2 is prepared in advance.
 そして、そのような第2ユニット部材U2に対して、OCAフィルムからなる接着剤層155が積層される。 And the adhesive layer 155 which consists of OCA films is laminated | stacked with respect to such 2nd unit member U2.
 貼合工程(b-2)は、ポリエステル系樹脂からなる第2支持層154と、この第2支持層154の一方の面上に積層され、金属酸化物の膜からなるバリア層153とを有する1組の第3ユニット部材U3を、バリア層153が内側(第2ユニット部材U2側)に配される形で、接着剤層155に貼り合わせる工程である。 The bonding step (b-2) includes a second support layer 154 made of a polyester-based resin and a barrier layer 153 made of a metal oxide film that is laminated on one surface of the second support layer 154. In this step, the pair of third unit members U3 are bonded to the adhesive layer 155 in such a manner that the barrier layer 153 is arranged on the inner side (second unit member U2 side).
 図6の6Cに示されるように、本実施形態では、バリア層153が内側(第2ユニット部材U2側)に配される形で、一方の第3ユニット部材U3が接着剤層155に貼り合わせられる。 As shown in 6C of FIG. 6, in this embodiment, the barrier layer 153 is arranged on the inner side (second unit member U2 side), and one third unit member U3 is bonded to the adhesive layer 155. It is done.
 第3ユニット部材U3が貼り合わされた後、第3ユニット部材U3と第2ユニット部材U2との積層物の上下が反転され、第2ユニット部材U2の他方の表面(つまり、他方の第1支持層152の表面)に対して、接着剤層形成工程(b-1)が行われる。つまり、図6の6Dに示されるように、第2ユニット部材U2の他方の表面に、OCAフィルムからなる接着剤層155が形成される。 After the third unit member U3 is bonded, the top and bottom of the laminate of the third unit member U3 and the second unit member U2 are inverted, and the other surface of the second unit member U2 (that is, the other first support layer). 152 surface) is subjected to an adhesive layer forming step (b-1). That is, as shown in 6D of FIG. 6, an adhesive layer 155 made of an OCA film is formed on the other surface of the second unit member U2.
 その後、その接着剤層155に対して、貼合工程(b-2)が行われ、他方の第3ユニット部材が貼り合わせられる。 Thereafter, the bonding step (b-2) is performed on the adhesive layer 155, and the other third unit member is bonded.
 以上のような工程を経ることにより、本実施形態の蛍光体シート150Aを製造することができる。このような蛍光体シート150Aを、実施形態1の蛍光体シート150に代えて用いてもよい。 Through the above-described steps, the phosphor sheet 150A of the present embodiment can be manufactured. Such a phosphor sheet 150A may be used in place of the phosphor sheet 150 of the first embodiment.
 <実施形態3>
 次いで、本発明の実施形態3に係る蛍光体シート150Bを、図7を参照しつつ説明する。図7は、実施形態3に係る蛍光体シート150Bの一部の構成を模式的に表した断面図である。
<Embodiment 3>
Next, a phosphor sheet 150B according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view schematically showing a partial configuration of the phosphor sheet 150B according to the third embodiment.
 本実施形態の蛍光体シート150Bは、上述した実施形態2と同様、第2ユニット部材U2に対して、接着剤層155を介して一対(一組)の第3ユニット部材U3,U3を貼り合せたものからなる。ただし、本実施形態の場合、第3ユニット部材U3を、第2ユニット部材U2に対して貼り合わせる際の第3ユニット部材U3の向きが異なっている。つまり、本実施形態の場合、第3ユニット部材U3は、第2ユニット部材U2に対して、バリア層153が外側に配される形貼り合わせられる。そのため、接着剤層155は、第2ユニット部材U2の第1支持層152と、第3ユニット部材U3の第2支持層154との間に介在され、第1支持層152と第2支持層154とを互いに固定する。このように、第3ユニット部材U3の上下配置を入れ替えて、第2ユニット部材U2に貼り合わせてもよい。 In the phosphor sheet 150B of the present embodiment, a pair (a set) of third unit members U3 and U3 are bonded to the second unit member U2 via the adhesive layer 155, as in the second embodiment. It consists of things. However, in the case of the present embodiment, the direction of the third unit member U3 when the third unit member U3 is bonded to the second unit member U2 is different. That is, in the case of the present embodiment, the third unit member U3 is bonded to the second unit member U2 so that the barrier layer 153 is disposed on the outside. Therefore, the adhesive layer 155 is interposed between the first support layer 152 of the second unit member U2 and the second support layer 154 of the third unit member U3, and the first support layer 152 and the second support layer 154 are interposed therebetween. Are fixed to each other. In this manner, the upper and lower arrangements of the third unit member U3 may be interchanged and bonded to the second unit member U2.
 本実施形態の蛍光体シート150Bは、実施形態1と比べて、多くの層を含んでおり、光が多重反射し易く、波長変換層151に含まれる量子ドット蛍光体による光の変換効率が高いものとなる。そのため、波長変換層151中に配合する量子ドット蛍光体の量を、実施形態1等と比べて、減らすことが可能であり、製造コストを抑えることができる。 The phosphor sheet 150B of the present embodiment includes many layers as compared with the first embodiment, and light is likely to be multiply reflected, and the light conversion efficiency by the quantum dot phosphor included in the wavelength conversion layer 151 is high. It will be a thing. Therefore, the amount of the quantum dot phosphor blended in the wavelength conversion layer 151 can be reduced as compared with the first embodiment, and the manufacturing cost can be suppressed.
 なお、本実施形態の蛍光体シート150Bは、実施形態2と比べると、バリア層153の位置が波長変換層151から外側により遠ざかった状態となっている。そのため、外部から侵入する湿気や酸素等をより確実に抑制する観点からは、実施形態2の方が好ましいと言える。 In addition, the phosphor sheet 150B of the present embodiment is in a state where the position of the barrier layer 153 is further away from the wavelength conversion layer 151 than the second embodiment. Therefore, it can be said that the second embodiment is preferable from the viewpoint of more reliably suppressing moisture, oxygen, and the like entering from the outside.
 本実施形態の蛍光体シート150Bの製造方法は、バリア層153が外側に配されるように、接着剤層155を介して第2ユニット部材U2に貼り合わせること以外は、基本的には、上述した実施形態2の製造方法と同様である。このような蛍光体シート150Bを、実施形態1の蛍光体シート150に代えて用いてもよい。 The manufacturing method of the phosphor sheet 150B of the present embodiment is basically the same as that described above except that it is bonded to the second unit member U2 via the adhesive layer 155 so that the barrier layer 153 is arranged on the outside. This is the same as the manufacturing method of the second embodiment. Such a phosphor sheet 150B may be used in place of the phosphor sheet 150 of the first embodiment.
 <実施形態4>
 次いで、本発明の実施形態4を、図8を参照しつつ説明する。図8は、実施形態4に係る蛍光体シート150Cが利用される液晶表示装置10Cの概略構成を模式的に表した断面図である。図8に示されるように、本実施形態の液晶表示装置10Cは、液晶パネル11の背面側(真下)に、LED17Cが配置されている直下型のバックライト装置(照明装置)12Cを備えている。このような構成のバックライト装置12Cにおいても、拡散板等と共に光学部材15Cの一部として、蛍光体シート150Cを利用してもよい。なお、バックライト装置12Cは、青色光を発するLED17Cや、緑色量子ドット蛍光体及び赤色量子ドット蛍光体を含む蛍光体シート150C以外に、図8に示されるように、浅底の箱からなるシャーシ14C、シャーシ14の底に敷かれる反射シート20C、シャーシ14の底側に配される、LED17Cを実装するためのLED基板18C、フレーム16C、ベゼル13C等を備えている。
<Embodiment 4>
Next, Embodiment 4 of the present invention will be described with reference to FIG. FIG. 8 is a cross-sectional view schematically illustrating a schematic configuration of a liquid crystal display device 10C in which the phosphor sheet 150C according to the fourth embodiment is used. As shown in FIG. 8, the liquid crystal display device 10 </ b> C of the present embodiment includes a direct-type backlight device (illumination device) 12 </ b> C in which the LEDs 17 </ b> C are arranged on the back side (directly below) of the liquid crystal panel 11. . Also in the backlight device 12C having such a configuration, the phosphor sheet 150C may be used as a part of the optical member 15C together with the diffusion plate and the like. In addition to the LED 17C that emits blue light and the phosphor sheet 150C that includes the green quantum dot phosphor and the red quantum dot phosphor, the backlight device 12C includes a chassis made of a shallow box as shown in FIG. 14C, a reflection sheet 20C laid on the bottom of the chassis 14, an LED board 18C for mounting the LED 17C, a frame 16C, a bezel 13C, and the like disposed on the bottom side of the chassis 14.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
 (1)上記実施形態において、蛍光体シートに含まれる量子ドット蛍光体は、緑色量子ドット蛍光体及び赤色量子ドット蛍光体であったが、本発明はこれに限られず、光源からの光により励起された他の色を放出する量子ドット蛍光体であってもよい。 (1) In the above embodiment, the quantum dot phosphors included in the phosphor sheet are the green quantum dot phosphor and the red quantum dot phosphor. However, the present invention is not limited to this, and is excited by light from the light source. It may be a quantum dot phosphor that emits other colors.
 (2)上記実施形態において、光源として青色光を発するLEDを利用したが、本発明はこれに限られず、他の色(励起光)を発するLEDを光源として利用してもよい。 (2) In the above embodiment, an LED emitting blue light is used as a light source. However, the present invention is not limited to this, and an LED emitting another color (excitation light) may be used as a light source.
 (3)上記実施形態において、バリア層は、波長変換層151を挟むように一対(一組)利用されていたが、他の実施形態においては、2組以上のバリア層153を利用してもよいし、例えば、波長変換層151に対して片側のみ、バリア層153を複数備える構成としてもよい。 (3) In the above embodiment, a pair (one set) of barrier layers are used so as to sandwich the wavelength conversion layer 151. However, in other embodiments, two or more sets of barrier layers 153 may be used. For example, a configuration in which a plurality of barrier layers 153 are provided only on one side with respect to the wavelength conversion layer 151 may be employed.
 (4)上記実施形態では、表実装置としてチューナーを備えたテレビ受信装置を例示したが、本発明は、チューナーを備えていない表示装置に対しても適用可能である。具体的には、電子看板(デジタルサイネージ)や電子黒板として使用される液晶表示装置にも、本発明を適用することができる。 (4) In the above embodiment, the television receiver provided with the tuner is exemplified as the actual device, but the present invention is also applicable to a display device not provided with the tuner. Specifically, the present invention can be applied to a liquid crystal display device used as an electronic signboard (digital signage) or an electronic blackboard.
 (5)上記実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、本発明はこれに限られず、他の種類の表示パネルを用いた表示装置(例えば、コルトン看板)にも本発明は適用可能である。 (5) In the above embodiment, the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified. However, the present invention is not limited to this, and the display device using another type of display panel (for example, a Colton signboard) is used. The present invention is also applicable.
 (6)上記実施形態では、光源として、LEDを利用したが、本発明はこれに限られず、例えば、有機EL等の他の光源を利用してもよい。 (6) In the above embodiment, the LED is used as the light source. However, the present invention is not limited to this, and other light sources such as an organic EL may be used.
 10...液晶表示装置(表示装置)、11...液晶パネル、12...バックライト装置(照明装置)、13...ベゼル、14...シャーシ、15...光学部材、150...蛍光体シート(光学部材の一例)、151...波長変換層、152...第1支持層、153...バリア層、154...第2支持層、155...接着剤層、16...フレーム、17...LED(光源)、18...LED基板、19...導光板、20...反射シート、U1...第1ユニット部材、U2...第2ユニット部材、U3...第3ユニット部材 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device), 11 ... Liquid crystal panel, 12 ... Backlight device (illuminating device), 13 ... Bezel, 14 ... Chassis, 15 ... Optical member, 150 ... phosphor sheet (an example of an optical member), 151 ... wavelength conversion layer, 152 ... first support layer, 153 ... barrier layer, 154 ... second support layer, 155 ... Adhesive layer, 16 ... frame, 17 ... LED (light source), 18 ... LED substrate, 19 ... light guide plate, 20 ... reflection sheet, U1 ... first unit member, U2 ... second unit member, U3 ... third unit member

Claims (15)

  1.  アクリル系樹脂と、前記アクリル系樹脂中に分散される量子ドット蛍光体とを含む波長変換層と、
     ポリエステル系樹脂からなり、前記波長変換層を挟み込む一対の第1支持層と、
     金属酸化物の膜からなり、前記第1支持層よりも外側に配され、少なくとも前記第1支持層を介して前記波長変換層を挟み込む一対のバリア層とを備える光学部材。
    A wavelength conversion layer comprising an acrylic resin and a quantum dot phosphor dispersed in the acrylic resin;
    A pair of first support layers made of a polyester resin and sandwiching the wavelength conversion layer;
    An optical member including a pair of barrier layers made of a metal oxide film, disposed on the outer side of the first support layer, and sandwiching at least the wavelength conversion layer via the first support layer.
  2.  前記バリア層は、前記第1支持層上に積層される請求項1に記載の光学部材。 The optical member according to claim 1, wherein the barrier layer is laminated on the first support layer.
  3.  ポリエステル系樹脂からなり、前記バリア層が積層され、前記バリア層が内側に配される形で、又は前記バリア層が外側に配される形で、前記第1支持層よりも外側に配される一対の第2支持層と、
     前記バリア層が内側に配される場合、前記第1支持層と前記バリア層との間に介在され、前記バリア層が外側に配される場合、前記第1支持層と前記第2支持層との間に介在される一対の接着剤層とを備える請求項1に記載の光学部材。
    Made of polyester resin, the barrier layer is laminated, and the barrier layer is arranged on the inner side, or the barrier layer is arranged on the outer side, and arranged on the outer side than the first support layer. A pair of second support layers;
    When the barrier layer is disposed inside, the first support layer and the second support layer are interposed between the first support layer and the barrier layer, and when the barrier layer is disposed outside, The optical member according to claim 1, further comprising a pair of adhesive layers interposed between the optical members.
  4.  前記バリア層は、物理気相成長法又は化学気相成長法により形成される請求項1から請求項3の何れか一項に記載の光学部材。 The optical member according to any one of claims 1 to 3, wherein the barrier layer is formed by physical vapor deposition or chemical vapor deposition.
  5.  前記量子ドット蛍光体は、緑色の波長領域の光を発する緑色量子ドット蛍光体を少なくとも含む請求項1から請求項4の何れか一項に記載の光学部材。 The optical member according to any one of claims 1 to 4, wherein the quantum dot phosphor includes at least a green quantum dot phosphor that emits light in a green wavelength region.
  6.  前記量子ドット蛍光体は、赤色の波長領域の光を発する赤色量子ドット蛍光体を少なくとも含む請求項1から請求項5の何れか一項に記載の光学部材。 The optical member according to any one of claims 1 to 5, wherein the quantum dot phosphor includes at least a red quantum dot phosphor that emits light in a red wavelength region.
  7.  前記波長変換層は、散乱剤を含む請求項1から請求項6の何れか一項に記載の光学部材。 The optical member according to any one of claims 1 to 6, wherein the wavelength conversion layer includes a scattering agent.
  8.  請求項1から請求項7の何れか一項に記載の光学部材と、前記波長変換層に含まれる前記量子ドット蛍光体を励起する励起光を発する光源と、を備える照明装置。 An illumination device comprising: the optical member according to any one of claims 1 to 7; and a light source that emits excitation light that excites the quantum dot phosphor included in the wavelength conversion layer.
  9.  請求項8に記載の照明装置と、前記照明装置から供給される光を利用して画像を表示する表示パネルとを備える表示装置。 A display device comprising: the illumination device according to claim 8; and a display panel that displays an image using light supplied from the illumination device.
  10.  前記表示パネルは、液晶パネルからなる請求項9に記載の表示装置。 The display device according to claim 9, wherein the display panel is a liquid crystal panel.
  11.  請求項9又は請求項10に記載の表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 9 or 10.
  12.  ポリエステル系樹脂からなる第1支持層と、この第1支持層の一方の面上に積層され、金属酸化物の膜からなるバリア層とを備える1組の第1ユニット部材のうち、一方の第1ユニット部材における前記第1支持層の面上に、紫外線硬化型のアクリル系樹脂に量子ドット蛍光体を分散させてなる組成物液を塗布し、その塗布物からなる塗布層を形成する塗布層形成工程と、
     前記一方の第1ユニット部材との間で、前記塗布層を挟み込むように、他方の第1ユニット部材を貼り合わせる貼合工程と、
     前記第1ユニット越しに前記塗布層に向けて紫外線を照射し、前記塗布層を硬化させて、波長変換層を得る硬化工程とを備える光学部材の製造方法。
    One set of first unit members including a first support layer made of a polyester-based resin and a barrier layer made of a metal oxide film and laminated on one surface of the first support layer. On the surface of the first support layer in one unit member, a coating layer in which a quantum dot phosphor is dispersed in an ultraviolet curable acrylic resin is coated to form a coating layer made of the coating material. Forming process;
    A bonding step of bonding the other first unit member so as to sandwich the coating layer between the one first unit member;
    An optical member manufacturing method comprising: a curing step of irradiating ultraviolet rays toward the coating layer through the first unit to cure the coating layer to obtain a wavelength conversion layer.
  13.  アクリル系樹脂及び前記アクリル系樹脂中に分散される量子ドット蛍光体を含む波長変換層と、ポリエステル系樹脂からなり前記波長変換層を挟み込む一対の第1支持層とを有する第2ユニット部材の両面に接着剤層を形成する接着剤層形成工程と、
     ポリエステル系樹脂からなる第2支持層と、この第2支持層の一方の面上に積層され、金属酸化物の膜からなるバリア層とを有する1組の第3ユニット部材を、前記バリア層が内側に配される形で、又は前記バリア層が外側に配される形で、前記接着剤層に貼り合わせる貼合工程とを備える光学部材の製造方法。
    Both surfaces of a second unit member having an acrylic resin and a wavelength conversion layer containing a quantum dot phosphor dispersed in the acrylic resin, and a pair of first support layers made of a polyester resin and sandwiching the wavelength conversion layer Forming an adhesive layer on the adhesive layer forming step;
    A pair of third unit members having a second support layer made of a polyester-based resin and a barrier layer made of a metal oxide film laminated on one surface of the second support layer, An optical member manufacturing method comprising: a bonding step of bonding to the adhesive layer in a form arranged on the inside or in a form in which the barrier layer is arranged on the outside.
  14.  前記接着剤層形成工程において、前記接着剤層は、OCAフィルムからなる請求項13に記載の光学部材の製造方法。 The method for manufacturing an optical member according to claim 13, wherein in the adhesive layer forming step, the adhesive layer is made of an OCA film.
  15.  前記バリア層は、物理気相成長法又は化学気相成長法により形成される請求項12から請求項14の何れか一項に記載の光学部材の製造方法。 The method for manufacturing an optical member according to any one of claims 12 to 14, wherein the barrier layer is formed by a physical vapor deposition method or a chemical vapor deposition method.
PCT/JP2016/059559 2015-04-01 2016-03-25 Optical member, illumination device, display device, television reception device, and manufacturing method for optical member WO2016158723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-074895 2015-04-01
JP2015074895 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016158723A1 true WO2016158723A1 (en) 2016-10-06

Family

ID=57005848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059559 WO2016158723A1 (en) 2015-04-01 2016-03-25 Optical member, illumination device, display device, television reception device, and manufacturing method for optical member

Country Status (1)

Country Link
WO (1) WO2016158723A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043483A1 (en) * 2015-09-07 2017-03-16 凸版印刷株式会社 Wavelength-conversion-sheet protection film, method for manufacturing same, wavelength conversion sheet, and back light
CN108111646A (en) * 2017-12-19 2018-06-01 广东欧珀移动通信有限公司 Cover component, display module and mobile terminal
WO2019141269A1 (en) * 2017-08-28 2019-07-25 Shenzhen Skyworth-Rgb Electronic Co., Ltd. Display system
WO2021132330A1 (en) * 2019-12-26 2021-07-01 住友化学株式会社 Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502947A (en) * 2004-06-09 2008-01-31 イーストマン コダック カンパニー Direct-view display device using vertical cavity laser array
WO2012138038A1 (en) * 2011-04-05 2012-10-11 Lg Innotek Co., Ltd. Optical member and display device including the same
JP2013508923A (en) * 2009-10-24 2013-03-07 スリーエム イノベイティブ プロパティズ カンパニー Light source and display system incorporating the light source
JP2014527261A (en) * 2011-08-04 2014-10-09 アポトロニクス(チャイナ)コーポレイション Illumination device and projection device
JP2015057640A (en) * 2013-08-12 2015-03-26 富士フイルム株式会社 Optical film, barrier film, optical conversion member, backlight unit, and liquid crystal display device
WO2015041316A1 (en) * 2013-09-20 2015-03-26 富士フイルム株式会社 Liquid crystal display device and light conversion member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502947A (en) * 2004-06-09 2008-01-31 イーストマン コダック カンパニー Direct-view display device using vertical cavity laser array
JP2013508923A (en) * 2009-10-24 2013-03-07 スリーエム イノベイティブ プロパティズ カンパニー Light source and display system incorporating the light source
WO2012138038A1 (en) * 2011-04-05 2012-10-11 Lg Innotek Co., Ltd. Optical member and display device including the same
JP2014527261A (en) * 2011-08-04 2014-10-09 アポトロニクス(チャイナ)コーポレイション Illumination device and projection device
JP2015057640A (en) * 2013-08-12 2015-03-26 富士フイルム株式会社 Optical film, barrier film, optical conversion member, backlight unit, and liquid crystal display device
WO2015041316A1 (en) * 2013-09-20 2015-03-26 富士フイルム株式会社 Liquid crystal display device and light conversion member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043483A1 (en) * 2015-09-07 2017-03-16 凸版印刷株式会社 Wavelength-conversion-sheet protection film, method for manufacturing same, wavelength conversion sheet, and back light
US11214038B2 (en) 2015-09-07 2022-01-04 Toppan Printing Co., Ltd. Wavelength conversion sheet protective films and methods of producing the same, wavelength conversion sheets and backlight units
WO2019141269A1 (en) * 2017-08-28 2019-07-25 Shenzhen Skyworth-Rgb Electronic Co., Ltd. Display system
CN108111646A (en) * 2017-12-19 2018-06-01 广东欧珀移动通信有限公司 Cover component, display module and mobile terminal
WO2021132330A1 (en) * 2019-12-26 2021-07-01 住友化学株式会社 Display device
EP4083707A4 (en) * 2019-12-26 2024-04-03 Sumitomo Chemical Company, Limited Display device

Similar Documents

Publication Publication Date Title
JP6554594B2 (en) Lighting device, display device, and television receiver
JP6360966B2 (en) Lighting device, display device, and television receiver
US10890705B2 (en) Display apparatus and method of manufacturing the same
KR102090036B1 (en) Backlight assembly and display divece having the same
KR101936116B1 (en) Optical member, display device having the same and method for fabricating the same
US20150301266A1 (en) Lighting device and display device
US10184640B2 (en) Lighting device, display device, and television device
WO2012141094A1 (en) Light source module, and electronic apparatus provided with same
WO2016158723A1 (en) Optical member, illumination device, display device, television reception device, and manufacturing method for optical member
CN102662256B (en) Optical bonding film and the flat panel display equipment with this optical bonding film
JP2009283441A (en) Light-emitting device, display device, and color-converting sheet
US20160131827A1 (en) Backlight assembly and display device having the same
US10393938B2 (en) Display apparatus
KR102513512B1 (en) Backlight unit and liquid crystal display using the same
WO2012081395A1 (en) Illumination device and liquid crystal display device comprising same
WO2015132943A1 (en) Display apparatus
KR20190009863A (en) Display device and manufacturing method thereof
CN104835419B (en) Show equipment
US9234997B2 (en) Liquid crystal display device and assembly method thereof
WO2012063917A1 (en) Illumination device and liquid crystal display device provided with same
CN111665662B (en) Lighting device and display device
JP2010218839A (en) El element, backlight device for liquid crystal display, lighting system, electronic signboard device, display device, and light extraction film
JP2013149559A (en) Lighting system, display device, and television receiver
JP6357581B2 (en) Lighting device, display device, and television receiver
WO2012105118A1 (en) Lighting unit and liquid crystal display device equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP