WO2016158605A1 - 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物 - Google Patents

低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物 Download PDF

Info

Publication number
WO2016158605A1
WO2016158605A1 PCT/JP2016/059160 JP2016059160W WO2016158605A1 WO 2016158605 A1 WO2016158605 A1 WO 2016158605A1 JP 2016059160 W JP2016059160 W JP 2016059160W WO 2016158605 A1 WO2016158605 A1 WO 2016158605A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower alcohol
fatty acid
alcohol fatty
epa
product
Prior art date
Application number
PCT/JP2016/059160
Other languages
English (en)
French (fr)
Inventor
小林 英明
亮祐 保科
一美 片桐
Original Assignee
キユーピー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キユーピー株式会社 filed Critical キユーピー株式会社
Publication of WO2016158605A1 publication Critical patent/WO2016158605A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a method for producing a composition containing a lower alcohol fatty acid ester and a composition containing a lower alcohol fatty acid ester.
  • Polyunsaturated fatty acids and derivatives thereof have many physiological activities such as reduction of blood fat and have been used as raw materials for pharmaceuticals, cosmetics, foods and the like for a long time. Therefore, methods for purifying highly pure and good-quality polyunsaturated fatty acids and their derivatives have been studied.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 59-113099 describes a method of obtaining a lower alcohol fatty acid ester by treating fats and oils containing fatty acid glycerides under alkaline conditions.
  • the present invention provides a method for producing a lower alcohol fatty acid ester-containing composition and a composition containing a lower alcohol fatty acid ester which can efficiently obtain a high-purity lower alcohol fatty acid ester-containing composition by a simple method. To do.
  • the inventor of the present application treats raw material fats and oils containing EPA-containing glycerides using lipase, thereby selectively obtaining a lower alcohol EPA esterified product without treatment under alkaline conditions.
  • the present inventors have found that a high lower alcohol EPA esterified product can be obtained, and have completed the present invention. More specifically, according to the method for producing a composition containing a lower alcohol fatty acid ester product according to the present invention, a highly pure lower alcohol EPA ester product having a small amount of isomerized product without undergoing treatment under alkaline conditions. Obtainable.
  • the method for producing a lower alcohol fatty acid ester-containing composition comprises treating a raw oil and fat containing EPA-containing glycerides with lipase to contain a lower alcohol EPA esterified product. Including a step of obtaining a containing composition, wherein the water content in the reaction solution of the treatment is 0.4% by mass or more.
  • the lower alcohol in the treatment, can be added continuously or stepwise to the reaction solution of the treatment.
  • an immobilized enzyme in which the lipase is immobilized can be used in the treatment.
  • the immobilized enzyme in the treatment, may be particulate.
  • the acid value of the reaction solution may be 2 or more.
  • the molar ratio A of the lower alcohol EPA esterified product to the lower alcohol DHA esterified product can be more than the molar ratio B of EPA to DHA (EPA / DHA) in the fatty acid constituting the fatty acid glyceride contained in the raw material fat.
  • the method for producing a lower alcohol fatty acid ester-containing composition according to any one of 7 to 10, wherein the lower alcohol fatty acid ester-containing composition further includes a lower alcohol DHA esterified product, and the lower alcohol fatty acid ester-containing composition includes The method may further include a step of distilling the composition to separate a mixture of the lower alcohol EPA esterified product and the lower alcohol DHA esterified product from components other than the mixture.
  • the lower alcohol DHA esterified product can be contained in the following molar ratio. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30
  • the method may further comprise contacting the mixture with an aqueous silver salt solution.
  • the mixture is distilled to separate a lower alcohol fatty acid ester other than the lower alcohol EPA ester, A step of obtaining a lower alcohol EPA esterified product can be further included.
  • the lower alcohol fatty acid ester product-containing composition comprises 40% by mass or more and 90% by mass or less of the lower alcohol fatty acid ester product,
  • the lower alcohol fatty acid ester product includes a lower alcohol EPA ester product and a lower alcohol DHA ester product in the following molar ratio. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30
  • the lower alcohol fatty acid ester product-containing composition includes 90% by mass or more of a lower alcohol fatty acid ester product, and the lower alcohol fatty acid ester product includes a lower alcohol EPA ester product and a lower alcohol DHA ester product as follows. The molar ratio is included. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30
  • 21 The lower alcohol fatty acid ester-containing composition according to any one of 17 to 20, wherein the acid value can be less than 5.
  • the method for producing a composition containing a lower alcohol fatty acid ester according to one aspect of the present invention comprises distilling the composition containing a lower alcohol fatty acid ester according to the above 17, and the composition containing the lower alcohol fatty acid ester according to the above 20. Separating the product and components other than the composition.
  • the method for producing a composition containing a lower alcohol fatty acid ester according to one embodiment of the present invention includes a step of bringing the lower alcohol fatty acid ester containing product according to 19 or 20 into contact with an aqueous silver salt solution.
  • the method for producing a composition containing a lower alcohol fatty acid ester according to one embodiment of the present invention is a method of distilling the composition containing a lower alcohol fatty acid ester according to any one of the above 19 to 21 to obtain a composition other than the above-mentioned lower alcohol EPA esterified product.
  • the lower alcohol fatty acid esterified composition containing a lower alcohol EPA esterified product according to one embodiment of the present invention contains 96.5% by mass or more of a lower alcohol EPA esterified product, and has a peak intensity around 1736 cm ⁇ 1 in FT-IR spectrum analysis. , The ratio of the peak intensities appearing around 966 cm ⁇ 1 is 0.085 or less.
  • the method for producing a food composition according to one aspect of the present invention includes a lower alcohol fatty acid ester-containing composition obtained by the production method according to any one of 11 to 16 and 22 to 24, and the lower composition according to 25. Including a step of obtaining a food composition using at least one selected from an alcohol fatty acid ester-containing composition.
  • the method for producing a capsule according to one embodiment of the present invention includes a composition containing a lower alcohol fatty acid esterified product obtained by the production method according to any one of 11 to 16 and 22 to 24 described above, and 25. Including a step of obtaining a capsule using at least one selected from a composition containing a lower alcohol fatty acid ester.
  • the immobilized enzyme after the treatment is repeatedly used, wherein the water content in the reaction solution of the treatment is 0.4% by mass or more and the acid value of the reaction solution is 2 or more and 12 or less.
  • a raw oil containing EPA-containing glycerides is treated with lipase to obtain a composition containing a lower alcohol fatty acid ester containing a lower alcohol EPA esterified product.
  • a water content in the reaction solution of the treatment is 0.4% by mass or more, whereby a low-alcohol EPA esterified product with high purity can be obtained efficiently and the enzyme (lipase) is stable. Can increase the sex.
  • the enzyme can be used repeatedly, so that the production cost can be reduced and the resources can be saved. Moreover, since a lower alcohol EPA esterified product can be obtained without treatment under alkaline conditions, the generation of isomerized products can be reduced. Furthermore, EPA-containing glycerides can be selectively converted into a lower alcohol EPA esterified product from a plurality of fatty acid glycerides by treatment with the lipase.
  • FIG. 1 shows the flowchart of the manufacturing method of the lower alcohol fatty-acid ester containing composition which concerns on one Embodiment of this invention.
  • a method for producing a composition containing a lower alcohol fatty acid ester product according to an embodiment of the present invention uses raw oils and fats containing EPA (eicosapentaenoic acid, C20: 5) glycerides. And a treatment using lipase to obtain a lower alcohol fatty acid esterified composition containing a lower alcohol EPA esterified product (hereinafter also referred to as “composition according to this embodiment”), and the reaction of the treatment
  • the water content in the liquid is 0.4% by mass or more.
  • lower alcohol refers to a monoalcohol (methanol, ethanol, n-propyl alcohol, isopropyl alcohol) having 1, 2 or 3 carbon atoms.
  • the “lower alcohol fatty acid esterified product” refers to a compound in which a carboxyl group (—CO 2 H) constituting a fatty acid is esterified with a lower alcohol.
  • the “lower alcohol EPA esterified product” refers to a compound in which the carboxyl group (—CO 2 H) constituting EPA (eicosapentaenoic acid) is esterified with a lower alcohol.
  • the “lower alcohol DHA esterified product” refers to a compound in which a carboxyl group constituting DHA (docosahexaenoic acid) is esterified with a lower alcohol.
  • glyceride is a concept of glycerin fatty acid ester including monoglyceride, diglyceride, and triglyceride.
  • the “EPA-containing glyceride” refers to a compound in which a part or all of the fatty acid residues constituting the glycerin fatty acid ester product including monoglyceride, diglyceride, and triglyceride is EPA. It is a concept that includes diglycerides and EPA-containing triglycerides.
  • DHA-containing glyceride refers to a compound in which a part or all of fatty acid residues constituting a glycerin fatty acid ester product including monoglyceride, diglyceride, and triglyceride is DHA, and includes DHA-containing monoglyceride, DHA-containing diglyceride and It is a concept that includes DHA-containing triglycerides.
  • FIG. 1 shows a flowchart of the manufacturing method according to the present embodiment.
  • a raw material fat containing EPA-containing glycerides is treated with lipase (step S1 in FIG. 1), and the composition according to the present embodiment includes a lower alcohol EPA esterified product. Get.
  • raw material fat containing EPA-containing glycerides is treated with an enzyme (lipase). More specifically, the raw oil containing EPA-containing glyceride is contacted with lipase and lower alcohol, and the lipase is allowed to act on the EPA-containing glyceride, whereby the EPA-containing glyceride is selectively converted into a lower alcohol EPA esterified product. Convert it.
  • lipase enzyme
  • the raw material fat used in the production method according to the present embodiment may be a fat containing glycerin fatty acid ester (EPA-containing glyceride) containing EPA as a constituent fatty acid, and the content of EPA in the fatty acid composition is 12% by mass or more ( Usually, oils and fats of 25% by mass or less are preferred.
  • raw material fats and oils may contain glycerides containing fatty acids other than EPA as constituent fatty acids such as DHA (C22: 6).
  • raw material fats and oils contain the glyceride which contains DHA as a constituent fatty acid
  • the fats and oils whose DHA content in a fatty-acid composition is 15 mass% or less are preferable.
  • the fatty acid triglycerides other than EPA contained in the raw oil and fat may be triglycerides of polyunsaturated fatty acids.
  • the polyunsaturated fatty acid is an unsaturated fatty acid having 16 or more carbon atoms and having two or more double bonds in the molecule.
  • arachidonic acid C20: 4
  • docosapentaene examples include acid (C22: 5), stearidonic acid (C18: 4), linolenic acid (C18: 3), and linoleic acid (C18: 2).
  • oils and fats usually means triglycerides, but in the present invention, fats and oils may also contain other glycerides on which enzymes (lipases) act, such as diglycerides and monoglycerides.
  • ⁇ Raw oil and fat examples include fish oil, animal oil other than fish oil, vegetable oil, algae, oil produced by microorganisms, mixed fats and oils thereof, and waste oils thereof.
  • the ratio of the triglyceride in the raw material fat used in the present invention is 70% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, and 90% by mass or more and 100% by mass or less.
  • Fish oils include sardine oil (EPA 8 mass% to 25 mass%), tuna oil (EPA 3 mass% to 10 mass%), bonito oil (EPA 5 mass% to 10 mass%), cod liver oil (EPA 5 mass% or more) 15% by mass or less), salmon oil (EPA 5% by mass to 15% by mass), squid oil (EPA 10% by mass to 18% by mass), Menhaden oil (EPA 5% by mass to 15% by mass).
  • the content of EPA in each fish oil refers to a ratio of containing EPA as a fatty acid constituting glyceride in the fish oil.
  • Vegetable oil usually does not contain EPA or DHA, but for example, soybean oil, rapeseed oil, palm oil, olive oil, etc. containing EPA or DHA by a genetic recombination technique can be used as the raw oil.
  • Algae and microorganism-derived oils include arachidonic acid-containing oils such as Mortierella alpina, Euglena gracilis, etc., EPA-containing oils of chrome, alame, wakame, hijiki, havanori, hibamata, Crypthecodinum cohrihumum, Vibriotrum, Vibrium
  • animal oils other than fish oil such as DHA-containing oil, etc. include whale oil, sheep fat, beef tallow, pork fat, milk fat, egg yolk oil and the like.
  • the acid value of raw material fats and oils is 0 or more and 2.5 or less normally, and can be 0 or more and 2 or less.
  • raw material fats and oils may contain moisture.
  • “waste oil” is used fish oil, vegetable oil, or animal oil, and may contain moisture.
  • the raw oil / fat contains both EPA and DHA
  • the molar ratio of EPA and DHA in the fatty acid constituting the fatty acid glyceride contained in the raw oil / fat can be further increased in the proportion of the lower alcohol EPA esterified product obtained.
  • EPA / DHA 0.5 or more and 6 or less is preferable, and 1 or more and 3 or less is more preferable.
  • the properties of the enzyme used in the production method according to this embodiment may be any of crude purification, partial purification, and purification. Moreover, it may be a free form or may be immobilized, but it is an immobilized enzyme in which the lipase is immobilized in that it can be reused and the post-treatment after the enzyme treatment is simple. preferable.
  • the immobilized enzyme may be an enzyme immobilized on a carrier.
  • the water content of the reaction solution for the enzyme treatment is 0.4% by mass or more, the stability of the enzyme is enhanced. As a result, the enzyme can be used repeatedly. Therefore, the immobilized enzyme on which the lipase is immobilized is used. When used, the immobilized enzyme can be taken out of the reaction solution, washed with water or the like as necessary, and then used again. For this reason, it is excellent in reusability, handleability, and economy.
  • the carrier examples include organic carriers such as ion exchange resin, porous resin, ceramics, calcium carbonate, celite, glass beads, activated carbon, inorganic carriers, and organic-inorganic composite carriers. In consideration of durability, affinity with lipase, and the like, the carrier is preferably made of an ion exchange resin, a porous resin, and ceramics.
  • immobilization methods include inclusion method, cross-linking method, physical adsorption method, ion adsorption method, covalent bond method, hydrophobic bond method, etc. In terms of high bond strength, the inclusion method, cross-linking method, or covalent method The bonding method is preferred.
  • the immobilized enzyme is preferably in the form of particles in that it has a large contact area with the raw oil and fat and can be uniformly dispersed in the raw fat and oil. Alternatively, the immobilized enzyme may be immobilized on a film or membrane.
  • the enzyme can be immobilized on a particulate carrier.
  • the particle diameter of the carrier is preferably 0.01 mm or more and 3 mm or less, and more preferably 0.05 mm or more and 1.5 mm or less.
  • specific gravity is 0.2 or more and 2.5 or less at the point which is excellent in the dispersibility with raw material fats and oils, a lower alcohol, and water.
  • the enzyme is preferably a lipase, for example, in that it has an action of catalyzing transesterification.
  • the lipase is scientifically identified by showing the international enzyme classification as “lipase (EC 3.1.1.3)”.
  • the lipase used in the production method in the present embodiment may be 1,3-position-specific or non-specific.
  • the lipase has a specific action only on the 1,3-position specific lipase, ie, the 1,3-position of triacylglycerol, in that the molar ratio of the lower alcohol EPA ester can be increased.
  • An enzyme or an enzyme that acts preferentially at positions 1 and 3 over position 2 is preferred.
  • the lipases for example, Rhizomucor genus (Rhizomucor miehei), Mucor (Mucor miehei, Mucor javanicus), Aspergillus (Aspergillus oryzae, Aspergillus niger), Rhizopus (Rhizopus sp.), Penicillium (Penicillium roqueforti, Penicillium camemberti) Filamentous fungi belonging to the genus Thermomyces lanuginosus, etc., yeasts belonging to the genus Candida antarctica, Candida rugosa, Candida cylindracea, Pichia, etc.
  • lipases derived from animals such as bacteria belonging to the genus Achrobacter sp., Burkholderia sp., Alcaligenes sp., Pseudozyma sp. . Commercially available lipases are also used.
  • Rhizopus oryzae lipase (Lipase DF: Amano Enzyme), Candida rugosa (Lipase OF: Meisho Sangyo) and Pseudomanas lipase (Lipase PS, Lipase AK: Amano Pharmaceutical)
  • examples of the oxidase include Rhizomucor miehei lipase (Lipozyme IM60: Novozymes, Lipozyme RMIM: Novozymes), and Pseudozyma antarctica lipase (Novozymes 435: Novozymes).
  • the amount of the enzyme used for the reaction is not particularly defined because it is determined by the reaction temperature, time, etc.
  • a free enzyme generally 1 unit (U) or more and 10,000 U per gram of the reaction solution, preferably May be added as appropriate, and may be set as appropriate.
  • 1 U of enzyme activity is the amount of enzyme that liberates 1 ⁇ mol of fatty acid per minute in the hydrolysis of olive oil in the case of lipase.
  • the enzyme immobilized relative to the mass of the reaction solution is 0.1% by mass or more and 200% by mass or less, preferably 1% by mass or more and 20% by mass or less (mass including the mass of the carrier). What is necessary is just to add so that it may become.
  • the reaction solution for the enzyme treatment contains raw material fats and oils (an immobilized enzyme when an immobilized enzyme is used).
  • the water content in the reaction solution of the enzyme treatment is 0.4% by mass or more, the stability of the enzyme is enhanced.
  • the enzyme can be used repeatedly, and glycerin generated by the enzyme reaction is submerged in the water. By inducing it, glycerin can be prevented from solidifying in oil, and the enzyme reaction can proceed smoothly.
  • the water content in the reaction solution of the enzyme treatment is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 2% by mass or more, and 80% by mass. % Or less, more preferably 50% by mass or less, for example, 0.4% by mass or more and 10% by mass or less.
  • the reaction liquid for the enzyme treatment is 9.5 masses of the raw material fats and oils.
  • the lower alcohol may be further contained in an amount of 0.1 to 2.5 parts by mass with respect to parts.
  • the lower alcohol can be used as an ester site of the lower alcohol EPA esterified product.
  • the content of the lower alcohol in the enzyme-treated reaction solution is 0.1 parts by mass or more (preferably with respect to 9.5 parts by mass of the raw material fats and oils) in that the yield of the ester of the lower alcohol EPA can be increased. Is preferably 0.3 parts by mass or more.
  • the content of the lower alcohol in the enzyme-treated reaction solution increases, the enzyme tends to be deactivated, so that the enzyme activity can be maintained, so that the content of the lower alcohol in the enzyme-treated reaction solution is It is preferable that it is 2.5 mass parts or less (preferably 2 mass parts or less) with respect to 9.5 mass parts of said raw material fats and oils.
  • the lower alcohol may be added to the reaction solution of the enzyme treatment continuously, stepwise, or collectively. Also good.
  • “lower alcohol is continuously added” means that lower alcohol is continuously added, and “lower alcohol is added stepwise” is not continuous, but lower alcohol Is added multiple times.
  • the amount of the lower alcohol added at a time is preferably 0.1 parts by mass or more with respect to 9.5 parts by mass of the raw material fat. On the other hand, it is preferably 2.5 parts by mass or less (more preferably 1 part by mass or less).
  • the total amount of the lower alcohol added is preferably 0.1 parts by mass or more with respect to 9.5 parts by mass of the raw material fats and oils ( It is more preferably 0.3 parts by mass or more), on the other hand, it is preferably 2.5 parts by mass or less (more preferably 2 parts by mass or less).
  • the lower alcohol is preferably methanol and / or ethanol, more preferably ethanol, from the viewpoint of excellent miscibility with water.
  • the temperature of the reaction solution is usually more than 25 ° C. and 80 ° C. or less (preferably 28 ° C. or more, more preferably 30 ° C. or more, on the other hand, preferably 50 ° C. or less, more preferably 45 ° C. or less, 35 ° C. or less. ). What is necessary is just to determine the temperature of the reaction liquid in an enzyme process with the kind of enzyme to be used.
  • the reaction time is usually 2 hours to 48 hours, preferably 4 hours to 36 hours, and more preferably 20 hours to 30 hours.
  • the acid value of the reaction solution for the enzyme treatment is preferably 2 or more, and more preferably 2.2 or more and 12 or less.
  • the acid value of the reaction solution is a value measured and calculated by the following method.
  • the acid value of the reaction solution for enzyme treatment being 2 or more (preferably 2.2 or more and 12 or less) means that the concentration of free fatty acid in the reaction solution is high. That is, by increasing the concentration of free fatty acid in the reaction solution, as explained in the section of ⁇ Reaction Path> described later, the ratio of free fatty acid and lipase binding in the reaction solution increases. The stability of lipase (enzyme) can be increased.
  • “free fatty acid” refers to a fatty acid that is not present as a fatty acid ester (non-ester-linked fatty acid).
  • the acid value of the reaction solution for the enzyme treatment is preferably 2 or more, and more preferably 2 or more and 12 or less, 2.2 or more and 12 or less, and 2.2 or more and 10 or less.
  • Acid value 5.611 ⁇ A ⁇ F / B (3) (In the formula, A is the amount (mL) of 0.1 mol / L ethanolic potassium hydroxide used, B is the sampled amount (g), and F is the factor of ethanolic potassium hydroxide. is there.)
  • a raw oil / fat containing EPA-containing glycerides is subjected to enzyme treatment (treatment using lipase), and a lower alcohol fatty acid esterified composition containing a lower alcohol EPA esterified product.
  • the enzyme stability can be enhanced by the water content in the reaction solution for the enzyme treatment being 0.4% by mass or more.
  • the raw fats and oils are hydrolyzed by the water contained in the reaction solution to generate free fatty acids. Since the concentration of free fatty acid in the reaction solution is increased, enzyme stability is enhanced.
  • the water content in the enzyme-treated reaction solution is less than 0.4% by mass, it is difficult to maintain the stability of the lipase (enzyme).
  • the reason for this is that, since the water content in the reaction solution is as low as less than 0.4% by mass, hydrolysis of the raw oil and fat is unlikely to proceed, and as a result, free fatty acids are hardly generated. Therefore, since it is hard to produce the coupling
  • a raw material fat containing EPA-containing glycerides can be treated with lipase to obtain a composition containing a lower alcohol fatty acid esterified product, and in particular, a lower alcohol EPA.
  • An esterified product can be obtained efficiently. That is, the EPA-containing glyceride can be efficiently converted into a lower alcohol EPA esterified product by treating the raw oil and fat containing the EPA-containing glyceride with lipase.
  • the lower alcohol fatty acid esterified product obtained can be an esterified product of polyunsaturated fatty acid including a lower alcohol EPA esterified product.
  • the molar ratio A of the lower alcohol EPA ester product to the lower alcohol DHA ester product is the molar ratio B of EPA to DHA in the fatty acid constituting the fatty acid glyceride contained in the raw oil. More than (EPA / DHA).
  • the molar ratio A and the molar ratio B preferably have a relationship represented by the following formula (1), and more preferably have a relationship represented by the following formula (2).
  • the finally obtained lower alcohol fatty acid esterified composition contains 40% by mass to 90% by mass of the lower alcohol fatty acid esterified product, and the lower alcohol fatty acid esterified product contained in the lower alcohol fatty acid esterified composition contains
  • the molar ratio of the lower alcohol EPA esterified product to the lower alcohol DHA esterified product can be 3.0 or more and 30 or less, more specifically, It is preferably 3.0 or more and 20 or less, and more preferably 3.0 or more and 15 or less.
  • the content of the EPA ethyl ester product in the composition is preferably 15% by mass or more and 30% by mass or less, and the content of the DHA ethyl ester product in the composition is 7% by mass or less (more preferably 5% by mass or less) is preferable.
  • the lower alcohol fatty acid ester-containing composition obtained by the enzyme treatment contains 40% by mass to 90% by mass of the lower alcohol fatty acid esterified product (more specifically, 50% by mass to 80% by mass).
  • the lower alcohol fatty acid esterified product comprises a lower alcohol EPA esterified product and a lower alcohol DHA esterified product in a molar ratio of 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30 ( Preferably, a molar ratio of 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 20, more preferably 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 15). Can be included.
  • the content of calcium oxide or magnesium oxide is 0.4% by mass or less with respect to the raw material fat. It is preferable that it is 0.08% by mass or less, less than 0.01% by mass or not contained.
  • the lower alcohol fatty acid esterified composition containing the lower alcohol EPA esterified product obtained by enzyme treatment (treatment using lipase) (step S1 in FIG. 1) is distilled. (Step S2 in FIG. 1) may be further included.
  • Molecular distillation can usually be performed at a degree of vacuum higher than the degree of vacuum in precision distillation described below.
  • the temperature in molecular distillation is 80 ° C. or higher and 200 ° C. or lower (preferably 150 ° C. or higher and 200 ° C. or lower), and the degree of vacuum is 0.001 Torr or higher and 5 Torr or lower (preferably 0.01 Torr or higher and 1 Torr or lower). Specifically, the temperature is 140 ° C. or more and 160 ° C. or less and the degree of vacuum is 0.01 Torr or more and 0.1 Torr or less.
  • the molecular distillation is usually performed using an apparatus capable of separating a mixture of the lower alcohol fatty acid ester containing the lower alcohol EPA esterified product and the lower alcohol DHA esterified product and components other than the mixture, and more.
  • an apparatus capable of separating a mixture of the lower alcohol fatty acid ester containing the lower alcohol EPA esterified product and the lower alcohol DHA esterified product and components other than the mixture, and more.
  • it can be generally performed using a commercially available molecular distillation apparatus, and for example, a centrifugal molecular distillation machine, a short path distillation machine, a falling film type distillation machine, or the like can be used.
  • a short pass distiller is preferable.
  • the material to be treated is volatilized through an evaporation tube and then passed through a cooler, so that it can be divided into a low molecular component that is liquefied and a high molecular component that is not liquefied.
  • the molecular distillation is preferably performed before the precision distillation described later, and further, the silver treatment described later is preferably performed after the molecular distillation is performed.
  • a peak appearing near 1736 cm ⁇ 1 indicates an ester bond contained in the lower alcohol fatty acid ester.
  • the peak appearing near 966 cm ⁇ 1 indicates an isomerized product (an isomerized product containing a trans double bond) of a lower alcohol fatty acid ester product contained in the lower alcohol fatty acid ester product (quantification of trans fatty acid by FT-IR, SHIMAZU APPLICATION NEWS No. 430A, Shimadzu Corporation).
  • an “isomer” of a compound means a compound (isomer) having the same molecular formula as that of a compound but having a molecular structure different from that of the compound, and changing a compound into its isomer. Is called isomerization.
  • fatty acids such as EPA and DHA constituting natural fats and oils have all cis-coordinate double bonds, and the double bonds have a non-conjugated structure.
  • isomerization of fatty acid include that at least a part of the double bond of the fatty acid is changed to the trans coordination, and that the double bond is moved to a conjugate position.
  • the mixture contains 90% by mass or more of the lower alcohol fatty acid esterified product, More preferably, the alcohol EPA esterified product and the lower alcohol DHA esterified product are contained in the following molar ratio. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30.
  • the content of the EPA ethyl ester product in the mixture is preferably 15% by mass or more and 30% by mass or less, and the content of the DHA ethyl ester product in the mixture is 7% by mass or less (more preferably 5% by mass). % Or less).
  • the EPA-containing glyceride can be selectively converted into a lower alcohol fatty acid ester by the enzyme treatment, and therefore, the lower alcohol EPA ester and
  • the lower alcohol fatty acid esterified product containing the lower alcohol DHA esterified product and other components can be separated relatively easily by a general separation treatment. .
  • the lower alcohol EPA esterified product with high purity can be efficiently obtained by a simple method by the precision distillation step described later.
  • step S2 in FIG. 1 the mixture containing the lower alcohol EPA esterified product and the lower alcohol DHA esterified product obtained by molecular distillation (step S2 in FIG. 1) is distilled (precision distillation, FIG. 1).
  • Step S3 by separating lower alcohol fatty acid esterified products other than the lower alcohol EPA esterified product, lower alcohol EPA esterified products (preferably a purity of 96.5% by mass or more, more preferably 98% by mass or more and about 100% by mass). % Or less) can be further included.
  • Precision distillation is distillation performed under a lower vacuum than the above-described molecular distillation. Specifically, the liquid and steam are brought into countercurrent contact in the column and appropriately refluxed, This is a continuous distillation operation in which the degree of separation is increased by repeating evaporation and vapor condensation, and is most often used for separation and purification of liquid mixtures.
  • any lower alcohol fatty acid esterified product can be separated from the lower alcohol fatty acid esterified product containing an esterified product of a plurality of types of fatty acids. Therefore, in the precision distillation step according to this embodiment, a lower alcohol EPA esterified product can be selectively obtained from a plurality of types of lower alcohol fatty acid esterified products obtained by the molecular distillation step.
  • Precision distillation can usually be performed at a vacuum level lower than the vacuum level in the molecular distillation described above.
  • the temperature in precision distillation is 150 ° C. or more and 250 ° C. or less (preferably 160 ° C. or more and 230 ° C. or less), and the degree of vacuum is 0.01 Torr or more and 10 Torr or less (preferably 0.1 Torr or more and 5 Torr or less). Specifically, the temperature is 170 ° C. or higher and 220 ° C. or lower and the degree of vacuum is 0.5 Torr or higher and 3 Torr or lower.
  • the precision distillation is usually performed using an apparatus capable of separating a lower alcohol fatty acid ester product other than the lower alcohol EPA ester product from the lower alcohol EPA ester product, and more specifically, has a rectifying column. It can be carried out using a distillation apparatus or a falling film type distillation apparatus, and as the rectifying column, for example, a plate type, a packed type, or a spring type can be used, and in particular, it has a plate structure. It is preferable to use a tray type or a filling type distillation apparatus. In a distillation apparatus with a shelf structure, the volatilized substance rises, but because the shelf stage that stays depends on the type of substance, the shelf stage is set so that the target substance rises to the shelf with the outlet.
  • the distillation method for precision distillation may be either a batch type or a continuous type, but a continuous type is preferred.
  • the number of theoretical plates in the rectification column can be set as appropriate, but it is preferably 2 or more, preferably 5 or more (usually 2 or more and 10 or less).
  • the number and order of precision distillation are not limited. That is, the precision distillation may be performed twice or more (usually 2 times or more and 4 times or less), or the silver treatment may be performed after the precision distillation, or the precision distillation is performed after the silver treatment. May be. Furthermore, after performing precision distillation and silver processing, you may perform precision distillation again.
  • the manufacturing method according to the present embodiment can further include silver treatment (treatment of bringing the lower alcohol fatty acid esterified composition-containing composition according to the present embodiment into contact with a silver salt aqueous solution).
  • the inventors of the present application have a case where the reaction solution of the enzyme treatment contains moisture (for example, the moisture content in the reaction solution of the enzyme treatment is 0.4% by mass or more). ) And found that free fatty acids tend to be produced in the enzyme treatment.
  • the content of free fatty acid in the lower alcohol fatty acid ester-containing composition according to this embodiment is reduced by performing a silver treatment step after performing the enzyme treatment. Can do.
  • the acid value of the lower alcohol fatty acid ester-containing composition according to this embodiment is set to less than 5 (preferably less than 4). it can.
  • the silver treatment is preferably performed after the enzyme treatment in that free fatty acids generated by the enzyme treatment can be reduced.
  • the mixture obtained by the enzyme treatment for example, the first mixture) 1 composition
  • the lower alcohol fatty acid ester-containing composition obtained after molecular distillation for example, the second composition
  • a silver treatment may be performed on the lower alcohol fatty acid esterified composition (eg, the second composition) obtained after precision distillation.
  • the silver salt used in the silver treatment can be any silver salt that can form a complex with the unsaturated bond in the unsaturated fatty acid, such as silver nitrate, silver perchlorate, silver acetate, trichloroacetic acid. Examples thereof include silver and silver trifluoroacetate. These silver salts are dissolved in water so as to have a concentration of preferably 15% by mass or more, more preferably 20% by mass or more, and still more preferably 40% by mass or more to obtain a silver salt aqueous solution.
  • the silver salt concentration in the silver salt aqueous solution may be the saturation concentration as the upper limit.
  • the silver salt aqueous solution may be contacted with the adsorbent before being collected and reused. Examples of the adsorbent include activated carbon, activated alumina, activated clay, acidic clay, silica gel, diatomaceous earth, aluminum oxide, and magnesium oxide, and one or more of these can be used. .
  • the contact method between the silver salt aqueous solution and the adsorbent is not particularly limited.
  • the aqueous silver salt solution may be collected and extracted with an organic solvent by dilution / concentration adjustment before reuse.
  • the concentration of the recovered silver salt aqueous solution can be adjusted by evaporating water by reducing pressure or heating, or by adding silver salt or water appropriately while measuring the specific gravity.
  • silver is added to a silver treatment object (for example, a mixture obtained by the enzyme treatment (for example, the first composition) or a composition obtained by the molecular distillation (for example, the second composition)).
  • a silver treatment object for example, a mixture obtained by the enzyme treatment (for example, the first composition) or a composition obtained by the molecular distillation (for example, the second composition)
  • An aqueous salt solution is added, and the mixture is preferably stirred for 5 minutes to 4 hours, more preferably 10 minutes to 2 hours to form a water-soluble silver salt-free fatty acid complex. It can be selectively dissolved in an aqueous silver salt solution. By removing the aqueous silver salt solution, free fatty acids can be removed. Thereby, the acid value of a lower alcohol fatty-acid ester containing composition can be made into less than 5 (preferably less than 4).
  • reaction temperature between the silver treatment object and the silver salt aqueous solution may be a lower limit as long as the silver salt aqueous solution is liquid, and the upper limit is up to 100 ° C., but the lower alcohol fatty acid ester-containing composition is oxidized
  • a reaction temperature of 10 ° C. or higher and 30 ° C. or lower is preferable in consideration of stability, solubility of silver salt in water, complex formation rate, and the like.
  • the light treatment should be performed in an inert gas, for example, in a nitrogen atmosphere, while shielding light. Is preferred.
  • an organic solvent that is immiscible with water can be added to the aqueous silver salt solution after contact with the silver treatment object. After adding the organic solvent, the organic phase is recovered, whereby the lower alcohol fatty acid ester-containing composition can be recovered.
  • the water-immiscible organic solvent is preferably 10% by mass to 200% by mass with respect to 100% by mass of the silver salt aqueous solution, 30% by mass or more, and 150% by mass or less. More preferably.
  • water-immiscible organic solvents include linear aliphatic hydrocarbons (for example, n-pentane, n-hexane, n-heptane, n-hexene, n-octane, isooctane and the like having 5 or more carbon atoms).
  • cycloaliphatic hydrocarbons cycloaliphatic hydrocarbons having 5 to 10 carbon atoms, such as cyclohexane, cyclohexene, and methylcyclohexene
  • aromatic hydrocarbons eg, toluene, benzene
  • Hydrocarbons such as ethylbenzene, xylene, styrene and the like having 5 to 10 carbon atoms, or petroleum ether.
  • recovery process can be implemented repeatedly in multiple times.
  • the lower alcohol EPA esterified product can be used as a raw material for pharmaceuticals, cosmetics, foods and the like.
  • Examples of the lower alcohol EPA esterified product include EPA methyl ester, EPA ethyl ester, EPAn-propyl ester, and EPA isopropyl ester, and among them, EPA ethyl ester (also referred to as “EPAEE” in the present specification).
  • EPAEE EPA ethyl ester
  • it is used as a therapeutic agent for cardiovascular diseases such as hyperlipidemia and obstructive arteriosclerosis. Therefore, the lower alcohol EPA esterified product may be EPAEE, and the lower alcohol DHA esterified product may be DHA ethyl ester (also referred to herein as “DHAEE”).
  • the lower alcohol EPA esterified product and the lower alcohol DHA esterified product can be used as a raw material for food compositions such as supplements and capsules.
  • a Manufacturing method of known lower alcohol fatty acid esterified composition In a known method for producing a composition containing a lower alcohol fatty acid ester product (described in Patent Document 1), first, a raw fat / oil containing a fatty acid glyceride having a plurality of fatty acids at the lower alcohol fatty acid ester moiety is treated with an alcohol under alkaline conditions. Thus, a lower alcohol fatty acid esterified product is obtained by a transesterification reaction between a fatty acid glyceride and an alcohol. In this method, a mixture of a plurality of types of lower alcohol fatty acid ester is obtained.
  • distillation generally requires a large-scale apparatus and tends to increase production costs.
  • the alkaline liquid to be used is generated as a waste liquid, so that there is a problem that the waste liquid needs to be treated.
  • isomerization may occur in the double bond contained in the esterified product of lower alcohol fatty acid under alkaline conditions. Isomerization usually tends to occur by alkali treatment or heating.
  • an isomerized product of a lower alcohol fatty acid ester product is difficult to separate from a lower alcohol fatty acid ester product by ordinary impurity removal treatment (eg, distillation, chromatography). Therefore, once the isomerized product of the lower alcohol fatty acid ester is formed by the treatment under the alkaline conditions as described above (hereinafter also simply referred to as “alkali treatment”) or the heat treatment, the isomerate of the lower alcohol fatty acid ester is generated from the lower alcohol fatty acid ester. Removal of the isomerate is generally difficult. That is, this isomerized product is one causative substance that lowers the purity of the lower alcohol fatty acid esterified product.
  • raw material fat containing EPA-containing glycerides is subjected to enzyme treatment (treatment using lipase) to obtain a lower alcohol EPA esterified product.
  • enzyme treatment treatment using lipase
  • the lower alcohol EPA esterified substance with high purity can be obtained efficiently.
  • the lower alcohol EPA esterified product can be obtained without undergoing an alkali treatment, the generation of isomerized products can be suppressed. Therefore, a lower alcohol EPA esterified product with high purity can be obtained efficiently. Further, in the manufacturing method according to the present embodiment, since there is no problem of waste liquid treatment as in the case of using an alkali, there is little influence on the environment.
  • the molar ratio of the lower alcohol EPA ester product to the lower alcohol DHA ester product can be increased (specifically, 3.0 ⁇ (lower alcohol EPA ester product). / Lower alcohol DHA esterified product) ⁇ 30, preferably 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 20).
  • the lower alcohol EPA esterified product and the lower alcohol DHA esterified product are reduced to 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30 (more preferably 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 20) can be obtained, and a lower alcohol fatty acid esterified composition-containing composition can be obtained, and DHA that has not been converted into a lower alcohol DHA esterified product. Will remain as DHA-containing glycerides.
  • the lower alcohol EPA esterified product and other components tend to be relatively easily separated by a general impurity removal treatment such as distillation or chromatography.
  • the lower alcohol EPA esterified product and other lower alcohol fatty acid esterified products that are usually used after the alkali treatment described above are used. It is not necessary to carry out a precisely controlled distillation for separating the water and the loss during distillation can be reduced. From this, according to the production method according to this embodiment, by increasing the molar ratio of the lower alcohol EPA ester product to the lower alcohol DHA ester product, the lower alcohol EPA ester product having a high purity can be efficiently obtained by a simple method. Obtainable.
  • the production method according to the present embodiment is obtained by first subjecting raw material fats and oils containing EPA-containing glycerides to enzyme treatment to obtain a composition containing a lower alcohol fatty acid esterified product in which the content of the lower alcohol EPA esterified product is increased. It is useful in that a lower alcohol EPA esterified product having a reduced isomerized product can be easily and more isolated by performing a distillation treatment.
  • the acid value of the reaction solution is set to 2 or more (preferably 12 or less), thereby ensuring the stability of the enzyme and at the same time efficiently obtaining the lower alcohol EPA esterified product. it can. More specifically, since the free fatty acid and the target lower alcohol ester are similar in molecular weight, the lower alcohol ester can be efficiently distilled by keeping the free fatty acid in the reaction liquid constant. can do.
  • the lower alcohol fatty acid ester-containing composition (hereinafter also referred to as “first composition”) according to an embodiment of the present invention comprises 40% by mass to 90% by mass (more specifically, lower alcohol fatty acid esterified product).
  • the lower alcohol fatty acid esterified product contains a lower alcohol EPA esterified product and a lower alcohol DHA esterified product in the following molar ratio.
  • the first composition can be obtained, for example, by the above-described enzyme treatment or the above-mentioned enzyme treatment followed by silver treatment. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30
  • the molar ratio is preferably the following molar ratio. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 20
  • the molar ratio is more preferably the following molar ratio. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 15
  • the first composition the FT-IR spectrum analysis, to the intensity of the peak appearing in the vicinity of 1736 cm -1, is the ratio of the intensity of the peak appearing near 966cm -1 is 0.15 or less (preferably 0.13 or less) be able to. Therefore, in the first composition, the isomerized product is reduced.
  • the first composition may have a free fatty acid content reduced by the above-described silver treatment, and an acid value of less than 5 (preferably less than 4).
  • the method for producing a lower alcohol fatty acid ester-containing composition includes a lower alcohol fatty acid ester containing the lower alcohol EPA esterified product and the lower alcohol DHA esterified product obtained by distilling the first composition.
  • the process of obtaining the 2nd composition mentioned later is included by isolate
  • the step of distilling the first composition to obtain the second composition described later corresponds to the molecular distillation step described above.
  • the lower alcohol EPA esterified product can be selectively obtained in the above-mentioned precision distillation by including a step of distilling the first composition to obtain a second composition to be described later. Can do.
  • the lower alcohol fatty acid ester-containing composition (hereinafter also referred to as “second composition”) according to an embodiment of the present invention is 90% by mass or more (more specifically, 95% by mass) of the lower alcohol fatty acid ester.
  • the lower alcohol fatty acid esterified product contains a lower alcohol EPA esterified product and a lower alcohol DHA esterified product in the following molar ratio.
  • the second composition can be obtained by the above-described molecular distillation treatment or the above-described molecular distillation treatment followed by silver treatment. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 30
  • the molar ratio is more preferably the following molar ratio. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 20
  • the molar ratio is more preferably the following molar ratio. 3.0 ⁇ (lower alcohol EPA esterified product / lower alcohol DHA esterified product) ⁇ 15
  • the second composition is in the FT-IR spectrum analysis, to the intensity of the peak appearing in the vicinity of 1736 cm -1, a ratio of the intensity of the peak appearing near 966cm -1 is 0.075 or less (preferably 0.070 or less) are be able to. Therefore, the isomerized product is reduced in the second composition.
  • a lower alcohol EPA esterified product having a small amount of isomerized product can be obtained.
  • the content of free fatty acid in the second composition is reduced, and the acid value can be less than 5 (preferably less than 4).
  • the content of free fatty acid can be reduced by, for example, the above-described silver treatment.
  • the second composition can be used as a raw material for food compositions such as supplements and capsules.
  • the method for producing a lower alcohol fatty acid ester-containing composition includes distilling the second composition to separate lower alcohol fatty acid ester other than the lower alcohol EPA esterified product, A step of obtaining a lower alcohol EPA esterified product (third composition to be described later).
  • the step of distilling the second composition to obtain a lower alcohol EPA esterified product corresponds to the above-described precision distillation step.
  • the lower alcohol EPA esterified product can be selectively obtained by including a step of distilling the second composition to obtain a lower alcohol EPA esterified product.
  • the highly purified lower alcohol EPA esterified product can be used, for example, as a raw material for food compositions such as supplements and capsules.
  • the lower alcohol fatty acid ester-containing composition (hereinafter also referred to as “third composition”) according to an embodiment of the present invention contains 96.5% by mass or more (more preferably 98% by mass) of the lower alcohol EPA esterified product. It comprises at least about 100 wt% or less), and, in the FT-IR spectrum analysis, to the intensity of the peak appearing in the vicinity of 1736 cm -1, a ratio of the intensity of the peak appearing near 966cm -1 is 0.085 or less.
  • the third composition can be obtained through the precision distillation process described above.
  • the third composition can be suitably used as a raw material for food compositions such as supplements and capsules, for example, because the content of isomerized products is extremely small.
  • Example 1 (enzyme treatment) 1 kg of purified fish oil (sardine oil, acid value 0, triglyceride content 90% by mass, EPA content 18 mol%, DHA content 12 mol%) was put in a separable flask (volume 3 L), and 52.5 g of ethanol was added. The flask was mixed and ethanol was evenly dispersed in the fish oil. Next, 21 g of water (water content in the reaction solution: 2% by mass) was added and stirred, and water was dispersed in a fish oil-ethanol mixture to prepare a reaction solution.
  • water water content in the reaction solution: 2% by mass
  • reaction solution 52.5 g of ethanol was added to the reaction solution at the time of 2 hours, 4 hours, and 6 hours from the start of the reaction, and nitrogen substitution was performed in the sample bottle.
  • the reaction for 24 hours was defined as 1 cycle, and the reaction was repeated 3 cycles.
  • oil and immobilized enzyme are separated from the reaction solution by suction filtration, the separated immobilized enzyme is transferred to a reaction vessel, and then the required amount of oil, lower alcohol, and water are added, Repeated use for next cycle reaction.
  • a trace amount of the reaction solution was collected at 0, 2, 4, 6, 8, and 24 hours (at the end of the reaction) from the start of the reaction, and component analysis was performed.
  • the acid value of the reaction solution of Example 1 (reaction for 24 hours in the first cycle) measured and calculated by the method described in the above embodiment is 5.95, and Example 1 (8 in the third cycle). The acid value of the reaction solution for time reaction was 6.17.
  • Examples 2 to 8 (enzyme treatment)
  • the amount of water used is 5.25 g (water content in the reaction solution: 0.5% by mass), 10.5 g (water content in the reaction solution: 1% by mass), 52.5 g (water content in the reaction solution) : 5% by mass), 105 g (water content in the reaction solution: 9% by mass), 210 g (water content in the reaction solution: 17% by mass), 525 g (water content in the reaction solution: 33% by mass), 1050 g ( The lower alcohol fatty acid ester-containing composition of Examples 2 to 8 containing EPAEE and DHAEE was obtained by performing the same treatment as in Example 1, except that the water content in the reaction solution was 50% by mass).
  • Example 3 the reaction for 24 hours is defined as one cycle, and the reaction is repeated for 3 cycles. After each cycle, the reaction solution is subjected to oil filtration by suction filtration. The immobilized enzyme was fractionated, and the separated immobilized enzyme was transferred to a reaction vessel, and then required amounts of oil, lower alcohol, and water were added and repeatedly used in the next cycle reaction.
  • Comparative Example 1 (enzyme treatment)
  • Comparative Example 2 (Enzyme treatment)
  • the lower alcohol of Comparative Example 2 was subjected to the same treatment as in Example 1 except that the amount of water used was 3.15 g (water content in the reaction solution: 0.3% by mass), and contained EPAEE and DHAEE.
  • a fatty acid ester-containing composition was obtained.
  • the acid value of the reaction solution of Comparative Example 1 measured and calculated by the method described in the above-described embodiment was 1.0, and the acid value of the reaction solution of Comparative Example 2 was 1.5.
  • the content of the lower alcohol fatty acid ester is 40% by mass or more and 90% by mass by setting the water content of the reaction solution to 0.4% by mass or more. %, And a molar ratio of EPAEE to DHAEE (EPAEE / DHAEE) of 3.0 to 30 could be obtained.
  • Example 9 (molecular distillation treatment)
  • the first composition obtained in Example 1 was molecularly distilled at a temperature of 80 ° C. or higher and 200 ° C. or lower at a vacuum degree of 0.1 Torr or less using a short path distillation machine (manufactured by Shinko Environmental Solution Co., Ltd.).
  • EPAEE and DHAEE a composition containing a lower alcohol fatty acid esterified product (second composition) was obtained.
  • Example 10 precision distillation treatment
  • the second composition obtained in Example 9 was subjected to a degree of vacuum of 3 Torr or less, a temperature of 150 ° C. to 250 ° C., and a theoretical plate number of 5 Precision distillation was performed on the plate to obtain EPAEE (third composition, purity: approximately 100% by mass).
  • the lower alcohol fatty acid ester-containing composition of Comparative Example 3 was subjected to the same distillation treatment as in Example 9 to obtain a mixture of EPAEE and DHAEE.
  • Preparation Example 2 (Preparation of immobilized enzyme)] 70% by mass of divinylbenzene (DVB), 15% by mass of glycidyl methacrylate and 15% by mass of DEAE methacrylate were copolymerized by a usual method to obtain a particulate resin carrier.
  • the resin carrier had an average pore diameter of 11.5 nm, a pore volume of 0.5 cm 3 / g, an average particle diameter of 0.5 mm, and a specific gravity of 0.2.
  • Examples 11, 12, 13, and 14 [enzyme treatment)]
  • the immobilized enzyme used was replaced with the immobilized enzyme obtained in Preparation Example 2 and replaced with the enzyme amount, ethanol amount, and water content described in Table 2, Example 1
  • the reaction was carried out for 1 cycle, and the component analysis was conducted.
  • 105 g of ethanol was added at the start of the reaction and 4 hours after the start of the reaction.
  • 210 g of ethanol was added at the start of the reaction.
  • the acid value of the reaction solution of Example 11 (at 24 hours from the start of the reaction) measured and calculated by the method described in the above embodiment was 4.6.
  • the content of the lower alcohol fatty acid ester was 40% by mass or more and 90% by mass by setting the water content of the reaction solution to 0.4% by mass or more. %, And a molar ratio of the EPAEE to DHAEE (EPAEE / DHAEE) is 3.0 or more and 15.0 or less.
  • Example 15 (silver treatment) 10 g of the second composition obtained in Example 9 was mixed with 40 g of an aqueous silver salt solution (silver nitrate concentration: 50% by mass) under a light-shielded atmosphere in a nitrogen atmosphere at 20 ° C. for 20 minutes. Contacted with an aqueous salt solution (test number 1 in Table 3). Moreover, the same process was performed by changing the usage-amount of the said silver salt aqueous solution (the test numbers 2 and 3 of Table 3). The organic phase separated after contact is discarded, and 40 g of toluene is added to the remaining aqueous silver salt solution, followed by stirring at 60 ° C. for 1 hour. After recovering the toluene layer containing EPAEE and DHAEE, the toluene is removed and EPAEE is removed. And a mixture of DHAEE was obtained.
  • an aqueous silver salt solution silicarate concentration: 50% by mass
  • Table 3 shows the acid value before and after the silver treatment and the value of EPAEE / DHAEE content (molar ratio).
  • the acid value of the lower alcohol fatty acid ester-containing composition could be reduced to less than 5 while maintaining the ratio of EPA ethyl ester / DHA ethyl ester by the silver treatment of this example.
  • the free fatty acid contained in trace amount was able to be removed by performing the silver processing similar to a present Example.
  • Example 16 precision distillation treatment
  • the second composition obtained after the silver treatment obtained in Example 15 was subjected to a degree of vacuum of 3 Torr or less, a temperature of 150 ° C. to 200 ° C., and a theoretical plate number of 5 Precision distillation was performed on the plate to obtain EPAEE (third composition, purity: approximately 100% by mass, acid value: approximately 0).
  • Example 17 (enzyme treatment, molecular distillation treatment and precision distillation treatment)]
  • the enzyme treatment of Example 1, the molecular distillation treatment of Example 9, and the precision distillation treatment of Example 10 were performed on a scale of 1,000 times, 2,000 times, and 2,000 times, respectively.
  • the components of the first composition obtained by the enzyme treatment of this example (the content (mass%) of the lower alcohol fatty acid ester in the lower alcohol fatty acid ester product, the content of EPAEE in the lower alcohol fatty acid ester product) (Mol%), DHAEE content in lower alcohol fatty acid esterified product (mol%), EPAEE / DHAEE (molar ratio)), and appears in the vicinity of 1736 cm ⁇ 1 in the FT-IR spectrum analysis of the reaction solution (mixture)
  • the ratio of the intensity of the peak appearing near 966 cm ⁇ 1 to the intensity of the peak, and the acid value were the same as those of the first composition obtained in Example 1.
  • the content of lower alcohol fatty acid ethyl ester and EPAEE / DHAEEE (molar ratio) contained in the second composition obtained by the molecular distillation treatment of this example are the same as those of the second composition obtained in Example 9. It was the same. Furthermore, the FT-IR spectrum analysis of the second composition obtained in the molecular distillation process of this embodiment, the ratio of the intensity of the peak appearing in the vicinity of 966cm -1 to the intensity of the peak appearing in the vicinity of 1736 cm -1, and the acid value was the same as the second composition obtained in Example 9.
  • the ratio of EPAEE contained in the third composition obtained by the precision distillation treatment of this example was the same as that of the third composition obtained in Example 10. Furthermore, the FT-IR spectrum analysis of the third composition obtained by precision distillation process obtained in the present example, the ratio of the intensity of the peak appearing in the vicinity of 966cm -1 to the intensity of the peak appearing in the vicinity of 1736 cm -1, The acid value was the same as that of the third composition obtained in Example 10.
  • Example 18 (food composition: cookie)]
  • a cookie was prepared with the following composition. Shortening and the lower alcohol fatty acid esterified composition obtained in Example 9 were put into a stirrer (Kitchen Aid K5SS, manufactured by Kitchen Aid) and mixed for 1 minute with a speed control lever 6 to form a cream, whole egg powder, sugar Was added and mixed. Next, fresh water was gradually added to adjust the specific gravity to 0.8 g / ml. After mixing in advance, sieved flour and baking powder were added, and stirring was continued for 30 seconds to prepare a dough. The obtained dough was allowed to stand in a refrigerator for 2 hours, then extended to a thickness of about 3 to 5 mm, removed from the mold, and baked in an oven at 180 ° C. for 13 to 15 minutes to obtain cookies.
  • Example 19 soft capsule
  • soft capsules having the following composition were prepared.

Abstract

EPAグリセリドを含有する原料油脂を、リパーゼを用いて処理して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る工程を含み、前記処理の反応液中における水分含量が0.4質量%以上である、低級アルコール脂肪酸エステル化物含有組成物の製造方法。

Description

低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物
 本発明は、低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物に関する。
 多価不飽和脂肪酸およびその誘導体は、血中脂肪の低減等の多くの生理活性を有し、古くから医薬品、化粧品、食品等の原料として使用されてきた。そこで、高純度かつ良好な品位の多価不飽和脂肪酸およびその誘導体の精製方法が検討されている。
 例えば、特許文献1(特開昭59-113099号公報)には、脂肪酸グリセリドを含む油脂を、アルカリ性条件下で処理して、低級アルコール脂肪酸エステル化物を得る方法が記載されている。
 しかしながら、油脂をアルカリ性条件下で処理した場合、低級アルコール脂肪酸エステル化物の不飽和結合が異性化された異性化物が生じることがある。この異性化物は、異性化していない低級アルコール脂肪酸エステル化物との分離が困難である場合が多い。このため、異性化物の含有量が少ない低級アルコール脂肪酸エステル化物を効率良く得る方法が求められている。
特開昭59-113099号公報
 本発明は、簡便な方法にて、純度が高い低級アルコール脂肪酸エステル化物含有組成物を効率良く得ることができる低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物を提供する。
 本願発明者は、EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理することで、低級アルコールEPAエステル化物を選択的に得る方法により、アルカリ性条件下での処理を経ずに、純度の高い低級アルコールEPAエステル化物が得られることを見出し、本発明を完成するに至った。より具体的には、本発明に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法によれば、アルカリ性条件下での処理を経ずに、異性化物が少ない、純度の高い低級アルコールEPAエステル化物を得ることができる。
 1.本発明の一態様に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法は、EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る工程を含み、前記処理の反応液中における水分含量が0.4質量%以上である。
 2.上記1に記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記処理の反応液は、前記原料油脂9.5質量部に対して0.1質量部以上2.5質量部以下の低級アルコールをさらに含むことができる。
 3.上記2に記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記処理において、前記処理の反応液に前記低級アルコールを連続的にまたは段階的に添加することができる。
 4.上記1ないし3のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法では、前記処理において、前記リパーゼが固定化された固定化酵素を用いることができる。
 5.上記1ないし4のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法では、前記処理において、前記固定化酵素は粒子状であることができる。
 6.上記1ないし5のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記リパーゼが1,3位特異リパーゼであることができる。
 7.上記1ないし6のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記反応液の酸価が2以上であることができる。
 8.上記1ないし7のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記原料油脂は、DHA含有グリセリドをさらに含み、前記低級アルコール脂肪酸エステル化物含有組成物は、低級アルコールDHAエステル化物をさらに含み、前記低級アルコール脂肪酸エステル化物含有組成物に含まれる低級アルコール脂肪酸エステル化物における、前記低級アルコールDHAエステル化物に対する前記低級アルコールEPAエステル化物のモル比率A(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)は、前記原料油脂に含まれる脂肪酸グリセリドを構成する脂肪酸における、DHAに対するEPAのモル比率B(EPA/DHA)より多いことができる。
 9.上記8に記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記モル比率Aおよび前記モル比率Bが以下の式(1)で示される関係を有することができる。
1.5≦A/B ・・・・・(1)
 10.上記8または9に記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記低級アルコール脂肪酸エステル化物含有組成物は、低級アルコール脂肪酸エステル化物を40質量%以上90質量%以下含み、前記低級アルコール脂肪酸エステル化物における、前記低級アルコールDHAエステル化物に対する前記低級アルコールEPAエステル化物のモル比率(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)が3.0以上30以下であることができる。
 11.上記7ないし10のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記低級アルコール脂肪酸エステル化物含有組成物は、低級アルコールDHAエステル化物をさらに含み、前記低級アルコール脂肪酸エステル化物含有組成物を蒸留して、前記低級アルコールEPAエステル化物および前記低級アルコールDHAエステル化物の混合物と、該混合物以外の成分とを分離する工程をさらに含むことができる。
 12.上記11に記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記混合物のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.075以下であることができる。
 13.上記11または12に記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記混合物は、低級アルコール脂肪酸エステル化物を90質量%以上含み、前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含むことができる。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30
 14.上記11ないし13のいずれかの低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記混合物を銀塩の水溶液と接触させる工程をさらに含むことができる。
 15.上記14に記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記銀塩の水溶液と接触させた後の前記混合物を蒸留して、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、前記低級アルコールEPAエステル化物を得る工程をさらに含むことができる。
 16.上記11ないし13のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物の製造方法において、前記混合物を蒸留して、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、前記低級アルコールEPAエステル化物を得る工程をさらに含むことができる。
 17.本発明の一態様に係る低級アルコール脂肪酸エステル化物含有組成物は、低級アルコール脂肪酸エステル化物を40質量%以上90質量%以下含み、
前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含む。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエ
ステル化物)≦30
 18.上記17に記載の低級アルコール脂肪酸エステル化物含有組成物において、FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.15以下であることができる。
 19.本発明の一態様に係る低級アルコール脂肪酸エステル化物含有組成物は、低級アルコール脂肪酸エステル化物を90質量%以上含み、前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含む。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30
 20.上記19に記載の低級アルコール脂肪酸エステル化物含有組成物において、FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.075以下であることができる。
 21.上記17ないし20のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物において、酸価が5未満であることができる。
 22.本発明の一態様に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法は、上記17に記載の低級アルコール脂肪酸エステル化物含有組成物を蒸留して、上記20に記載の低級アルコール脂肪酸エステル化物含有組成物と、前記組成物以外の成分とを分離する工程を含む。
 23.本発明の一態様に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法は、上記19又は20に記載の低級アルコール脂肪酸エステル化物含有物を銀塩の水溶液で接触させる工程を含む。
 24.本発明の一態様に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法は、上記19ないし21のいずれかに記載の低級アルコール脂肪酸エステル化物含有組成物を蒸留して、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、低級アルコールEPAエステル化物を得る工程を含む。
 25.本発明の一態様に係る低級アルコール脂肪酸エステル化物含有組成物は、低級アルコールEPAエステル化物を96.5質量%以上含み、かつ、FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.085以下である。
 26.本発明の一態様に係る食品組成物の製造方法は、上記11ないし16および22ないし24のいずれかに記載の製造方法により得られた低級アルコール脂肪酸エステル化物含有組成物及び上記25に記載の低級アルコール脂肪酸エステル化物含有組成物から選ばれる少なくとも1種を使用して食品組成物を得る工程を含む。
 27.本発明の一態様に係るカプセル剤の製造方法は、上記11ないし16および22ないし24のいずれか1項に記載の製造方法により得られた低級アルコール脂肪酸エステル化物含有組成物及び上記25に記載の低級アルコール脂肪酸エステル化物含有組成物から選ばれる少なくとも1種を使用してカプセル剤を得る工程を含む。
 28.EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る処理において、前記リパーゼが固定化された固定化酵素であり、前記処理の反応液中における水分含量が0.4質量%以上であり、前記反応液の酸価が2以上12以下である、前記処理後の固定化酵素を繰り返し利用する方法である。
 上記低級アルコール脂肪酸エステル化物含有組成物の製造方法によれば、EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る工程を含み、前記処理の反応液中における水分含量が0.4質量%以上であることにより、純度が高い低級アルコールEPAエステル化物を効率良く得ることができ、かつ、酵素(リパーゼ)の安定性を高めることができる。
 より具体的には、酵素の安定性が高められる結果、酵素の繰り返し使用が可能になるため、製造コストの低減および省資源化を図ることができる。また、アルカリ性条件下での処理を経ずに低級アルコールEPAエステル化物が得られるため、異性化物の発生を低減することができる。さらに、前記リパーゼを用いた処理により、複数の脂肪酸グリセリドの中から、EPA含有グリセリドを低級アルコールEPAエステル化物へと選択的に変換させることができる。
図1は、本発明の一実施形態に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法のフローチャートを示す。
 以下、図面を参照しつつ、本発明を詳細に説明する。なお、本発明において、格別に断らない限り、「部」は「質量部」を意味し、「%」は「質量%」を意味する。ただし、グリセリドにおける各種構成脂肪酸の「比率」および「%」、ならびに低級アルコール脂肪酸エステル化物における各種脂肪酸エステル化物の「比率」および「%」は、それぞれ構成する脂肪酸の「モル比率」および「モル%」を意味する。
 <低級アルコール脂肪酸エステル化物含有組成物の製造方法>
本発明の一実施形態に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法(以下、単に「製造方法」ともいう。)は、EPA(エイコサペンタエン酸、C20:5)グリセリドを含有する原料油脂を、リパーゼを用いて処理して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物(以下、「本実施形態に係る組成物」ともいう。)を得る工程を含み、前記処理の反応液中における水分含量が0.4質量%以上である。
 <低級アルコール:定義>
本発明において、「低級アルコール」とは、炭素原子数が1、2または3のモノアルコール(メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール)をいう。
 <低級アルコール脂肪酸エステル化物:定義>
また、本発明において、「低級アルコール脂肪酸エステル化物」とは、脂肪酸を構成するカルボキシル基(-COH)が低級アルコールにてエステル化された化合物をいう。
 <低級アルコールEPAエステル化物>
また、本発明において、「低級アルコールEPAエステル化物」とは、EPA(エイコサペンタエン酸)を構成するカルボキシル基(-COH)が低級アルコールにてエステル化された化合物をいう。加えて、本発明において、「低級アルコールDHAエステル化物」とは、DHA(ドコサヘキサエン酸)を構成するカルボキシル基が低級アルコールにてエステル化された化合物をいう。
 <グリセリドの定義>
また、本発明において、「グリセリド」とは、モノグリセリド、ジグリセリド、およびトリグリセリドを含むグリセリン脂肪酸エステルの概念である。
 <EPA含有グリセリドの定義>
さらに、本発明において「EPA含有グリセリド」とは、モノグリセリド、ジグリセリド、およびトリグリセリドを含むグリセリン脂肪酸エステル化物を構成する脂肪酸残基の一部または全部がEPAである化合物をいい、EPA含有モノグリセリド、EPA含有ジグリセリドおよびEPA含有トリグリセリドを含む概念である。本発明において「DHA含有グリセリド」とは、モノグリセリド、ジグリセリド、およびトリグリセリドを含むグリセリン脂肪酸エステル化物を構成する脂肪酸残基の一部または全部がDHAである化合物をいい、DHA含有モノグリセリド、DHA含有ジグリセリドおよびDHA含有トリグリセリドを含む概念である。
 <図1の説明>
図1は、本実施形態に係る製造方法のフローチャートを示す。本実施形態に係る製造方法では、まず、EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理して(図1のステップS1)、低級アルコールEPAエステル化物を含む本実施形態に係る組成物を得る。
 <酵素処理(リパーゼを用いた処理)>
本実施形態に係る製造方法では、EPA含有グリセリドを含む原料油脂を酵素(リパーゼ)で処理する。より具体的には、EPA含有グリセリドを含む原料油脂をリパーゼ及び低級アルコールと接触させて、該EPA含有グリセリドにリパーゼを作用させることにより、該EPA含有グリセリドを選択的に低級アルコールEPAエステル化物へと変換させる。
 <原料油脂>
本実施形態に係る製造方法で使用する原料油脂は、EPAを構成脂肪酸として含むグリセリン脂肪酸エステル(EPA含有グリセリド)を含む油脂であればよく、脂肪酸組成中のEPAの含有量が12質量%以上(通常、25質量%以下)である油脂が好ましい。なお、原料油脂には、DHA(C22:6)等、EPA以外の脂肪酸を構成脂肪酸として含有するグリセリドを含んでいてもよい。原料油脂が、DHAを構成脂肪酸として含有するグリセリドを含む場合、脂肪酸組成中のDHAの含有量が15質量%以下である油脂が好ましい。また、原料油脂に含まれる、EPA以外の脂肪酸トリグリセリドは、多価不飽和脂肪酸のトリグリセリドであってもよい。多価不飽和脂肪酸とは、炭素数16以上でかつ分子内に二重結合を2個以上有する不飽和脂肪酸をいい、上述のEPAやDHAのほか、アラキドン酸(C20:4)、ドコサペンタエン酸(C22:5)、ステアリドン酸(C18:4)、リノレン酸(C18:3)、リノール酸(C18:2)が挙げられる。
 <油脂>
「油脂」とは、通常、トリグリセリドを意味するが、本発明では、油脂は、ジグリセリド、モノグリセリド等、酵素(リパーゼ)が作用するその他のグリセリドも含んでいてもよい。
 <原料油脂>
原料油脂としては、例えば、魚油、魚油以外の動物油、植物油、藻類、微生物が生産する油、これらの混合油脂、またはこれらの廃油が挙げられる。本発明で使用する原料油脂中のトリグリセリドの割合は、70質量%以上100質量%以下であり、さらに80質量%以上100質量%以下、90質量%以上100質量%以下であるとよい。
 魚油としては、イワシ油(EPA8質量%以上25質量%以下)、マグロ油(EPA3質量%以上10質量%以下)、カツオ油(EPA5質量%以上10質量%以下)、タラ肝油(EPA5質量%以上15質量%以下)、サケ油(EPA5質量%以上15質量%以下)、イカ油(EPA10質量%以上18質量%以下)、メンヘーデン油(EPA5質量%以上15質量%以下)が挙げられる。
 ここで、各魚油におけるEPAの含有量は、該魚油においてグリセリドを構成する脂肪酸としてEPAを含む割合をいう。植物油は通常EPAやDHAを含有しないが、例えば、遺伝子組み換え技術によりEPAやDHAを含有する、大豆油、菜種油、パーム油、オリーブ油等を原料油脂として用いることができる。藻類、微生物由来油としては、Mortierella alpina、Euglena gracilis等によるアラキドン酸含有油、クロメ、アラメ、ワカメ、ヒジキ、ハバノリ、ヒバマタの一種によるEPA含有油、Crypthecodinium cohnii、Vibrio marinus、Thraustochytrium aureum、Shewanella属細菌等によるDHA含有油等、魚油以外の動物油としては、例えば、鯨油、羊脂、牛脂、豚脂、乳脂肪、卵黄油等が挙げられる。また、原料油脂の酸価は通常、0以上2.5以下であり、0以上2以下であることができる。
 なお、原料油脂は水分を含むものであってもよい。また、本発明において、「廃油」とは、使用済みの魚油、植物性油脂、または動物性油脂であり、水分が含まれていてもよい。原料油脂がEPAおよびDHAの両方を含む場合、得られる低級アルコールEPAエステル化物の割合をより高めることができる点で、原料油脂に含まれる脂肪酸グリセリドを構成する脂肪酸におけるEPAとDHAのモル比率は、EPA/DHA=0.5以上6以下であることが好ましく、1以上3以下であることがより好ましい。
 <酵素>
本実施形態に係る製造方法で使用する酵素の性状は、粗精製、部分精製、精製のいずれでもよい。また遊離型でもよいし、固定化されていてもよいが、再利用可能である点、酵素処理後の後処理が簡便である点で、前記リパーゼが固定化された固定化酵素であることが好ましい。
 固定化酵素は、酵素を担体に固定化されたものであってもよい。前記酵素処理の反応液の水分含量が0.4質量%以上であることにより、酵素の安定性が高められる結果、酵素の繰り返し使用が可能になるため、リパーゼが固定化された固定化酵素を使用する場合、固定化酵素を反応液中から取り出して、必要に応じて水等で洗浄後、再度使用することができる。このため、再利用性、取扱性、および経済性に優れている。
 <担体>
担体としては、イオン交換樹脂、多孔性樹脂、セラミックス、炭酸カルシウム、セライト、ガラスビーズ、活性炭等の有機担体、無機担体、有機無機複合担体が挙げられる。耐久性、リパーゼとの親和性などを考慮すると、担体は、イオン交換樹脂、多孔性樹脂、セラミックスからなることが好ましい。固定化の方法としては、包括法、架橋法、物理的吸着法、イオン吸着法、共有結合法、疎水結合法等が挙げられるが、結合強度が高い点で、包括法、架橋法、または共有結合法が好ましい。原料油脂との接触面積が大きく、かつ、原料油脂中で均一に分散できる点で、固定化酵素は粒子状であることが好ましい。あるいは、固定化酵素は、フィルムや膜に固定化したものであってもよい。
 固定化酵素が粒子状である場合、粒子状の担体に酵素が固定化されているものであることができる。この場合、担体の粒子径が0.01mm以上3mm以下であることが好ましく、0.05mm以上1.5mm以下であることがより好ましい。また、原料油脂、低級アルコールおよび水との分散性に優れている点で比重は0.2以上2.5以下であることが好ましい。
 <リパーゼ>
エステル交換を触媒する作用を有する点で、酵素は、例えば、リパーゼであることが好ましい。リパーゼは「リパーゼ(E.C.3.1.1.3)」と国際酵素分類を示すことで、科学的に特定される。
 <リパーゼの種類>
本実施形態に製造方法で使用するリパーゼは、1,3位-特異的であっても、非特異的であってもよい。本実施形態に係る組成物において低級アルコールEPAエステルのモル比率を高くすることができる点で、リパーゼは、1,3位特異リパーゼ、すなわち、トリアシルグリセロールの1,3位にのみ特異的作用する酵素または2位よりも1,3位に優先的に作用する酵素であることが好ましい。
 <リパーゼの具体例>
リパーゼとしては、例えば、リゾムコール属(Rhizomucor miehei)、ムコール属(Mucor miehei,Mucor javanicus)、アスペルギルス属(Aspergillus oryzae,Aspergillus niger)、リゾプス属(Rhizopus sp.)、ペニシリウム属(Penicillium roqueforti,Penicillium camemberti)、サーモマイセス属(Thermomyces lanuginosus)等に属する糸状菌、キャンディダ属(Candida antarctica,Candida rugosa,Candida cylindracea)、ピヒア(Pichia)等に属する酵母、シュードモナス属(Pseudomonas sp.)、アクロモバクター属(Achromobacter sp.)、ブルクホルデリア属(Burkholderia sp.)、アルカリゲネス属(Alcaligenes sp.)、シュードザイマ属(Pseudozyma sp.)等に属する細菌、豚膵臓等の動物に由来するリパーゼが挙げられる。市販のリパーゼも用いられる。例えば、Rhizopus oryzaeのリパーゼ(リパーゼDF:天野エンザイム社製)、Candida rugosa(リパーゼOF:名糖産業社製)およびPseudomanas属のリパーゼ(リパーゼPS、リパーゼAK:天野製薬社製)が挙げられ、固定化酵素としては、Rhizomucor mieheiのリパーゼ(リポザイムIM60:ノボザイムズ社製、リポザイムRMIM:ノボザイムズ社製)、Pseudozyma antarcticaのリパーゼ(ノボザイム435:ノボザイムズ社製)が挙げられる。
 <酵素の使用量>
反応に使用する酵素の量は、反応温度や時間等により決定されるため特に規定されないが、遊離型の酵素の場合、一般的には反応液1g当たり1単位(U)以上10,000U、好ましくは5U以上1,000U添加すればよく、適宜設定することができる。ここでの酵素活性の1Uとは、リパーゼの場合はオリーブ油の加水分解において1分間に1μmolの脂肪酸を遊離する酵素量である。固定化酵素を用いる場合は、反応液の質量に対して固定化した酵素が0.1質量%以上200質量%以下、好ましくは1質量%以上20質量%以下(担体の質量を含む質量)になるように添加すればよい。
 <反応条件>
本実施形態に係る製造方法において、前記酵素処理の反応液は、原料油脂および酵素(固定化酵素を使用する場合は固定化酵素)を含む。前記酵素処理の反応液中における水分含量が0.4質量%以上であることにより、酵素の安定性が高められる結果、酵素の繰り返し使用が可能になり、かつ、酵素反応により生じるグリセリンを水中に誘導させることで、グリセリンが油中で固まるのを防止し、酵素反応を円滑に進行させることができる。前記酵素処理の反応液中における水分含量は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であるのがさらに好ましく、また、80質量%以下であることが好ましく、50質量%以下であることがより好ましく、例えば0.4質量%以上10質量%以下であることができる。
 <水分含量>
前記酵素処理の反応液中における水分含量が0.4質量%未満であると、反応により生じるグリセリン等によって、酵素の触媒作用が阻害されることがあり、また、酵素の安定性が低下することがあり、一方、80質量%を超えると、EPA含有トリグリセリドと酵素との接触が少なくなり、低級アルコール脂肪酸エステル化物含有組成物中の、得られる低級アルコール脂肪酸エステル化物の含有量が少なくなることがある。なお、水は、反応液中に逐次的に添加してもよいし、連続して添加してもよいし、または一括して添加してもよい。
 <低級アルコール>
脂肪酸をエステル化してエステル化物を得、かつ、水および油脂の双方と混和することにより酵素反応を円滑に進行させることができる観点から、前記酵素処理の反応液は、前記原料油脂9.5質量部に対して0.1質量部以上2.5質量部以下の低級アルコールをさらに含むことができる。
 本実施形態に係る製造方法における原料油脂の酵素処理において、低級アルコールは、低級アルコールEPAエステル化物のエステル部位として利用されることができる。
 低級アルコールEPAエステル化物の収率を高めることができる点で、前記酵素処理の反応液における前記低級アルコールの含有量は、前記原料油脂9.5質量部に対して0.1質量部以上(好ましくは、0.3質量部以上)であることが好ましい。一方、前記酵素処理の反応液における前記低級アルコールの含有量が増えると酵素が失活しやすくなることから、酵素活性を維持できる点で、前記酵素処理の反応液における前記低級アルコールの含有量は、前記原料油脂9.5質量部に対して2.5質量部以下(好ましくは、2質量部以下)であることが好ましい。
 なお、前記低級アルコールは、前記酵素処理において、前記酵素処理の反応液に前記低級アルコールを連続的に添加してもよいし、段階的に添加してもよいし、または一括して添加してもよい。本発明において、「低級アルコールを連続的に添加する」とは、低級アルコールを継続して添加することをいい、「低級アルコールを段階的に添加する」とは、継続的ではないが、低級アルコールを複数回添加することをいう。
 また、前記低級アルコールを反応液に段階的に添加する場合、1回に添加する前記低級アルコールの量は、前記原料油脂9.5質量部に対して0.1質量部以上であることが好ましく(0.3質量部以上であることがより好ましい)、一方、2.5質量部以下であることが好ましい(1質量部以下であることがより好ましい)。前記低級アルコールを反応液に段階的にまたは連続的に添加する場合、添加する前記低級アルコールの総量は、前記原料油脂9.5質量部に対して0.1質量部以上であることが好ましく(0.3質量部以上であることがより好ましい)、一方、2.5質量部以下であることが好ましい(2質量部以下であることがより好ましい)。
 <低級アルコールの具体例>
低級アルコールとしては、水との混和性に優れている点で、メタノールおよび/またはエタノールであることが好ましく、エタノールであることがより好ましい。
 <反応温度および反応時間>
酵素処理は、反応液の温度を、通常25℃超80℃以下(好ましくは28℃以上、より好ましくは30℃以上、一方、好ましくは50℃以下、より好ましくは45℃以下、35℃以下。)にて行うことができる。酵素処理における反応液の温度は、用いる酵素の種類により決定すればよい。また、反応時間は、通常2時間以上48時間以下、好ましくは4時間以上36時間以下、より好ましくは20時間以上30時間以下である。
 <酸価>
前記酵素処理では、酵素の安定性をより高めることができる観点で、該酵素処理の反応液の酸価が2以上であることが好ましく、2.2以上12以下であることがより好ましい。
 本発明において、反応液の酸価は、以下の方法により測定及び算出された値である。前記酵素処理の反応液の酸価が2以上(好ましくは2.2以上12以下)であることは、該反応液中の遊離脂肪酸の濃度が高いことを意味する。すなわち、該反応液中の遊離脂肪酸の濃度を高くすることにより、後述する<反応経路>の欄で説明するように、該反応液中で遊離脂肪酸とリパーゼとが結合する割合が高くなるため、リパーゼ(酵素)の安定性を高めることができる。なお、本発明において、「遊離脂肪酸」とは、脂肪酸エステル化物として存在していない脂肪酸(非エステル結合型脂肪酸)をいう。
 しかしながら、遊離脂肪酸と目的物である低級アルコールエステル化物とは分子量が近似していることから、反応液中に遊離脂肪酸が多量に存在すると、後述の蒸留工程で低級アルコールエステル化物を単離する際に、大幅にロスが生じてしまう。したがって、該酵素処理の反応液の酸価は2以上であるとよく、さらに2以上12以下、2.2以上12以下、2.2以上10以下であるとよい。
 <酸価の測定方法>
酸価の値は、公益社団法人日本油化学会制定の基準油脂分析試験法(日本油化学会規格試験法委員会編、基準油脂分析試験法(Standard methods for the analysis of fats,oils and related materials):日本油化学会制定、2013年版、1.5 抽出油の酸価)により測定することができる。具体的には、まず、試料(反応終了後の反応液)をその推定酸価に対応する採取量に準じて三角フラスコに正しく測り取り、エタノール/ジエチルエーテル=1/1(w/w)の混合溶媒100mLを加え、試料を完全に溶解させた。次いで、0.1mol/Lのエタノール性水酸化カリウムで滴定し、指示薬として加えたフェノールフタレイン溶液の変色が30秒間以上続いた点を終点とする。酸価は以下の式(3)により算出された。
酸価=5.611×A×F/B ・・・・(3)
(式中、Aは、0.1mol/Lのエタノール性水酸化カリウムの使用量(mL)であり、Bは、試料採取量(g)であり、Fは、エタノール性水酸化カリウムのファクターである。)
 <反応経路>
エステル交換反応は通常、水の含有量が少ない条件下(例えば、特許文献1の実施例に記載される、水分含量0.1%)でアルコールとグリセリドとを反応させる。その理由として、得られた脂肪酸エステル化物のエステル結合が水によって加水分解されるのを防ぐためであることが挙げられる。
 これに対して、本実施形態に係る製造方法では、EPA含有グリセリドを含有する原料油脂を酵素処理(リパーゼを用いた処理)して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る工程において、前記酵素処理の反応液中における水分含量が0.4質量%以上であることにより、酵素安定性を高めることができる。
 より具体的には、前記酵素処理の反応液中における水分含量が0.4質量%以上であることにより、反応液中に含まれる水分により、原料油脂が加水分解されて遊離脂肪酸が生成する結果、該反応液中の遊離脂肪酸の濃度が高くなるため、酵素安定性が高められる。
 反応液中の遊離脂肪酸の濃度が高くなると、酵素安定性が高まるのは、以下の機構によるものと推察される。遊離脂肪酸は一般に、タンパク質と結合しやすい。なぜなら、遊離脂肪酸のアルキル鎖部分の疎水性とカルボキシル基部分の親水性部位が、タンパク質分子内の疎水性部位、親水性部位と相互作用しやすいからである。このため、反応液中に遊離脂肪酸が存在することで、タンパク質であるリパーゼに遊離脂肪酸が結合することにより、反応液中の反応基質以外の物質(例えば、反応液中の低級アルコール)がリパーゼに直接接触することにより引き起こされるリパーゼの失活を防ぐことができ、これにより、リパーゼ(酵素)の安定性を高めることができると推察される。
 一方、前記酵素処理の反応液中における水分含量が0.4質量%未満である場合、リパーゼ(酵素)の安定性を維持することが困難である。その理由としては、反応液中における水分含量が0.4質量%未満と少ないため、原料油脂の加水分解が進行しにくく、その結果、遊離脂肪酸が生じにくいことが挙げられる。よって、遊離脂肪酸とタンパク質との結合が生じ難いため、上述した遊離脂肪酸によるタンパク質(リパーゼ)の失活を防止されず、リパーゼの安定性を高めることが困難であると推察される。
 <反応生成物>
本実施形態に係る製造方法では、EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理することにより、低級アルコール脂肪酸エステル化物を含有する組成物を得ることができ、なかでも、低級アルコールEPAエステル化物を効率的に得ることができる。すなわち、EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理することにより、EPA含有グリセリドを低級アルコールEPAエステル化物へと効率的に変換することができる。なお、得られる低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物を含む多価不飽和脂肪酸のエステル化物であることができる。
 例えば、原料油脂がEPA含有グリセリドおよびDHA含有グリセリドの両方を含むものである場合、上述のリパーゼを用いた処理によって、最終的に得られる本実施形態に係る組成物に含まれる低級アルコール脂肪酸エステル化物において、低級アルコールDHAエステル化物に対する低級アルコールEPAエステル化物のモル比率A(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)を、原料油脂に含まれる脂肪酸グリセリドを構成する脂肪酸における、DHAに対するEPAのモル比率B(EPA/DHA)より多くさせることができる。
 この場合、前記モル比率Aおよび前記モル比率Bが以下の式(1)で示される関係を有することが好ましく、式(2)で示される関係を有することがより好ましい。
1.5≦A/B ・・・・・(1)
2.0≦A/B≦25 ・・・・・(2)
 <低級アルコール脂肪酸エステル化物の含有量、および、低級アルコールEPAエステル化物:低級アルコールDHAエステル化物>
また、最終的に得られる低級アルコール脂肪酸エステル化物含有組成物は、低級アルコール脂肪酸エステル化物を40質量%以上90質量%以下含み、該低級アルコール脂肪酸エステル化物含有組成物に含まれる低級アルコール脂肪酸エステル化物において、前記低級アルコールDHAエステル化物に対する前記低級アルコールEPAエステル化物のモル比率(低級アルコールEPAエステル化物:低級アルコールDHAエステル化物)は3.0以上30以下であることができ、より具体的には、3.0以上20以下であることが好ましく、3.0以上15以下であることがより好ましい。また、前記組成物中のEPAエチルエステル化物の含有量は15質量%以上30質量%以下であることが好ましく、前記組成物中のDHAエチルエステル化物の含有量は7質量%以下(より好ましくは5質量%以下)であることが好ましい。
 より具体的には、酵素処理で得られた低級アルコール脂肪酸エステル化物含有組成物は、低級アルコール脂肪酸エステル化物を40質量%以上90質量%以下(より具体的には、50質量%以上80質量%以下)含み、前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を、3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30のモル比率で含む(好ましくは、3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦20、より好ましくは、3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦15)のモル比率で含むことができる。
 また、エステル化反応の速度低下を防止できる観点、及び遊離脂肪酸の過剰発生を防止できる観点から、カルシウム酸化物やマグネシウム酸化物の含有量は、前記原料油脂に対して0.4質量%以下であるとよく、さらに0.08質量%以下、0.01質量%未満あるいは含有しないとよい。
 <分子蒸留>
次に、本実施形態に係る製造方法では、酵素処理(リパーゼを用いた処理)(図1のステップS1)で得られた、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を蒸留する工程(いわゆる、分子蒸留、図1のステップS2)をさらに含むことができる。
 分子蒸留(molecular distillation)は、高真空度下で行われる蒸留である。分子蒸留工程により、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を含む低級アルコール脂肪酸エステル化物の混合物と、該混合物以外の成分(低級アルコール脂肪酸エステル化物以外の脂肪酸モノグリセリド、脂肪酸ジグリセリドおよび脂肪酸トリグリセリド)とを分離することができる。
 分子蒸留は通常、後述する精密蒸留における真空度よりも高い真空度で行なうことができる。
 例えば、分子蒸留における温度は、80℃以上200℃以下(好ましくは150℃以上200℃以下)であり、真空度は0.001Torr以上5Torr以下(好ましくは0.01Torr以上1Torr以下)であり、より具体的には、温度140℃以上160℃以下でかつ真空度0.01Torr以上0.1Torr以下である。
 分子蒸留は、通常、前記低級アルコールEPAエステル化物および前記低級アルコールDHAエステル化物を含む低級アルコール脂肪酸エステル化物の混合物と、該混合物以外の成分とを分離することができる装置を用いて行われ、より具体的には、一般的に市販の分子蒸留装置を使用して行うことができ、例えば、遠心式分子蒸留機、ショートパス蒸留機、流下膜式蒸留機等を用いることができる。特に、ショートパス蒸留機が好ましい。分子蒸留装置では、蒸発管を通して被処理物を揮発させた後、冷却器内に通すことで、液化する低分子成分と、液化しない高分子成分とに分けることができる。
 また、分子蒸留は、後述する精密蒸留の前に行うことが好ましく、さらには、分子蒸留を行った後で、後述する銀処理を行うことが好ましい。
 <ピーク強度比>
この混合物のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.075以下であることが好ましく、0.07以下であることがより好ましい。
 <ピーク強度比の意義>
前記混合物のFT-IRスペクトル解析において、1736cm-1付近に現れるピークは、低級アルコール脂肪酸エステル化物に含まれるエステル結合を示す。また、966cm-1付近に現れるピークは、低級アルコール脂肪酸エステル化物に含まれる低級アルコール脂肪酸エステル化物の異性化物(トランス二重結合を含む異性化物)を示す(FT-IRによるトランス脂肪酸の定量、SHIMAZU APPLICATION NEWS No.430A,株式会社島津製作所)。
 よって、この混合物のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度が大きいほど、異性化物が低級アルコール脂肪酸エステル化物に多く含まれていることを示している。したがって、該混合物のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.075以下であることは、該混合物に含まれる異性化物が少ないことを示している。
 <異性化物の定義>
なお、本発明において、ある化合物の「異性化物」とは、ある化合物と分子式は等しいが、該化合物と分子構造の異なる化合物のこと(異性体)をいい、ある化合物をその異性体に変えることを異性化という。
 例えば、天然油脂を構成するEPA、DHAなどの脂肪酸は、その二重結合が全てシス配位であり、かつ、該二重結合が非共役の構造を有する。脂肪酸の異性化としては、例えば、脂肪酸の二重結合の少なくとも一部がトランス配位に変化することや、該二重結合が共役となる位置に移動すること等が挙げられる。
 <混合物の組成>
また、後述する精密蒸留で得られる低級アルコールEPAエステル化物の純度をより高めることができる観点で、前記混合物は、低級アルコール脂肪酸エステル化物を90質量%以上含み、前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含むことがより好ましい。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30。
 より好ましくは、3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦20である。また、前記混合物中のEPAエチルエステル化物の含有量は15質量%以上30質量%以下であることが好ましく、前記混合物中のDHAエチルエステル化物の含有量は7質量%以下(より好ましくは5質量%以下)であることが好ましい。
 本実施形態に係る製造方法によれば、上記酵素処理によって、EPA含有グリセリドを低級アルコール脂肪酸エステル化物へと選択的に変換させることができるため、上記分子蒸留工程によって、前記低級アルコールEPAエステル化物および前記低級アルコールDHAエステル化物を含む低級アルコール脂肪酸エステル化物と、他の成分(低級アルコール脂肪酸エステル化物以外の脂肪酸グリセリド、グリセリン)とを、一般的な分離処理にて比較的容易に分離することができる。これにより、後述する精密蒸留工程によって、純度の高い低級アルコールEPAエステル化物を簡便な方法にて効率良く得ることができる。
 <精密蒸留>
次に、本実施形態に係る製造方法では、分子蒸留(図1のステップS2)で得られた、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を含む混合物を蒸留して(精密蒸留、図1のステップS3)、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、低級アルコールEPAエステル化物(好ましくは純度96.5質量%以上、より好ましくは98質量%以上約100質量%以下)を得る工程をさらに含むことができる。
 精密蒸留(rectification)は上記の分子蒸留と比べて低真空度下で行われる蒸留であって、具体的には、塔内で液と蒸気を向流接触させると共に、適当な還流を行い、液の蒸発と蒸気の凝縮を繰り返すことによって分離の度合いを高める連続蒸留操作であり、液体混合物の分離精製に最も多く用いられる蒸留である。精密蒸留工程により、複数種類の脂肪酸のエステル化物を含む低級アルコール脂肪酸エステル化物から、任意の低級アルコール脂肪酸エステル化物を分離することができる。したがって、本実施形態に係る精密蒸留工程では、前記分子蒸留工程により得られた、複数種類の低級アルコール脂肪酸エステル化物の中から、低級アルコールEPAエステル化物を選択的に得ることができる。
 精密蒸留は通常、上記の分子蒸留における真空度よりも低い真空度で行うことができる。
 例えば、精密蒸留における温度は、150℃以上250℃以下(好ましくは160℃以上230℃以下)であり、真空度は0.01Torr以上10Torr以下(好ましくは0.1Torr以上5Torr以下)であり、より具体的には、温度170℃以上220℃以下でかつ真空度0.5Torr以上3Torr以下である。
 精密蒸留は、通常、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を前記低級アルコールEPAエステル化物と分離することができる装置を用いて行われ、より具体的には、精留塔を有する蒸留装置又は流下膜式の蒸留装置を使用して行うことができ、精留塔としては、例えば、棚段式、充填式、又はスプリング式等を用いることができ、特に、棚段構造を有する棚段式又は充填式の蒸留装置を使用することが好ましい。棚段構造を有する蒸留装置では、揮発した物質が上昇するが、物質の種類によって滞留する棚段が異なるため、排出口が付いている棚段まで目的物質が上昇するように棚段が設定されている。また、加熱方式としては、比較的加熱履歴の少ない流下型薄膜式が好ましい。また、精密蒸留の蒸留法としては、バッチ式または連続式のいずれでもよいが、連続式が好ましい。なお、精留塔の理論段数は適宜設定できるが、2段以上、好ましくは5段以上(通常2段以上10以下)が好ましい。
 また、精密蒸留の回数および順序は限定されない。すなわち、精密蒸留を2回以上(通常2回以上4回以下)行ってもよいし、また、精密蒸留の後に銀処理を行ってもよいし、あるいは、銀処理を行った後に精密蒸留を行ってもよい。さらには、精密蒸留および銀処理を行った後に、精密蒸留を再度行ってもよい。
 <銀処理>
本実施形態に係る製造方法は、銀処理(本実施形態に係る低級アルコール脂肪酸エステル化物含有組成物を銀塩水溶液と接触させる処理)をさらに含むことができる。
 本実施形態に係る製造方法において、本願発明者らは、前記酵素処理の反応液が水分を含む場合(例えば、前記酵素処理の前記反応液中の水分含量が0.4質量%以上である場合)、該酵素処理において遊離脂肪酸が生じる傾向があることを見出した。
 本実施形態に係る製造方法によれば、前記酵素処理を行った後に銀処理工程を行うことにより、本実施形態に係る低級アルコール脂肪酸エステル化物含有組成物中の遊離脂肪酸の含有量を低減することができる。
 すなわち、該銀処理によって遊離脂肪酸の含有量を低減することができるため、例えば、本実施形態に係る低級アルコール脂肪酸エステル化物含有組成物の酸価を5未満(好ましくは4未満)にすることができる。
 本実施形態に係る製造方法において、酵素処理で生じた遊離脂肪酸を低減することができる点で、銀処理は、酵素処理後に行うことが好ましく、例えば、酵素処理で得られた前記混合物(例えば第1組成物)について銀処理を行ってもよいし、あるいは、分子蒸留の後に得られた低級アルコール脂肪酸エステル化物含有組成物(例えば第2組成物)について銀処理を行ってもよいし、あるいは、精密蒸留の後に得られた低級アルコール脂肪酸エステル化物含有組成物(例えば第2組成物)について銀処理を行ってもよい。
 <銀の濃度>
銀処理で使用する銀塩は、不飽和脂肪酸中の不飽和結合と錯体を形成しうる銀塩であればいずれも使用することができ、例えば、硝酸銀、過塩素酸銀、酢酸銀、トリクロロ酢酸銀、トリフルオロ酢酸銀等が挙げられる。これらの銀塩を、好ましくは15質量%以上、より好ましくは20質量%以上、さらに好ましくは40質量%以上の濃度となるように水に溶解して銀塩水溶液とする。また、銀塩水溶液中の銀塩濃度は、飽和濃度を上限とすればよい。また、銀処理において、銀塩水溶液を回収し、再利用する前に、吸着剤と接触してもよい。上記吸着剤としては、例えば、活性炭、活性アルミナ、活性白土、酸性白土、シリカゲル、ケイソウ土、酸化アルミニウム、酸化マグネシウム等が挙げられ、これらのうちの1種または2種以上を使用することができる。
 上記銀塩水溶液と上記吸着剤との接触方法は、特に限定されるものではないが、例えば、上記銀塩水溶液中に上記吸着剤を投入し、撹拌する方法や、上記吸着剤を充填したカラムに上記銀塩水溶液を通液する方法等が挙げられる。また、銀塩水溶液を回収し、再利用する前に、希釈・濃度調整することによって、あるいは、有機溶媒で抽出してもよい。回収した銀塩水溶液の濃度調整は、減圧・加熱による水の蒸発により、あるいは比重を測定しながら適宜銀塩や水を加えることにより行なうことができる。
 また、銀処理において、銀処理対象物(例えば、上記酵素処理で得られた混合物(例えば第1組成物)、または、上記分子蒸留で得られた組成物(例えば第2組成物))に銀塩の水溶液を加え、好ましくは5分以上4時間以下の時間、より好ましくは10分以上2時間以下の時間撹拌することにより、水溶性の銀塩-遊離脂肪酸の錯体を形成させ、該錯体を選択的に銀塩水溶液に溶かすことができる。該銀塩水溶液を除去することにより、遊離脂肪酸を除去することができる。これにより、低級アルコール脂肪酸エステル化物含有組成物の酸価を5未満(好ましくは4未満)にすることができる。
 また、銀処理対象物と銀塩水溶液との反応温度は、下限は銀塩水溶液が液体でありさえすればよく、上限は100℃までで行われるが、低級アルコール脂肪酸エステル化物含有組成物の酸化安定性、銀塩の水への溶解性、錯体の生成速度などへの配慮から、10℃以上30℃以下の反応温度が好ましい。
 銀処理対象物と銀塩水溶液との接触時には、低級アルコール脂肪酸エステル化物含有組成物の酸化安定性、銀塩の安定性を考慮し、不活性ガス、例えば窒素雰囲気下で、遮光して行うのが好ましい。
 また、銀処理対象物と接触後の銀塩水溶液には、水に難混和性の有機溶媒を添加することができる。有機溶媒添加後、有機相を回収することにより、低級アルコール脂肪酸エステル化物含有組成物を回収することができる。この場合、水に難混和性の有機溶媒は、銀塩の水溶液100質量%に対して10質量%以上200質量%以下であるのが好ましく、30質量%以上であり、また150質量%以下であることがより好ましい。
 水に難混和性の有機溶媒としては、例えば、直鎖状脂肪族炭化水素(例えば、n-ペンタン,n-ヘキサン,n-ヘプタン,n-ヘキセン,n-オクタン,イソオクタン等の炭素数5以上10以下の直鎖状脂肪族炭化水素)、環状脂肪族炭化水素(シクロヘキサン,シクロヘキセン,メチルシクロヘキセン等の炭素数5以上10以下の環状脂肪族炭化水素)、芳香族炭化水素(例えば、トルエン,ベンゼン,エチルベンゼン,キシレン,スチレン等の炭素数5以上10以下の芳香族炭化水素)等の炭化水素類、または石油エーテルが挙げられる。なお、前記回収工程は、複数回繰り返し実施することができる。
 <低級アルコールEPAエステル化物の具体例>
低級アルコールEPAエステル化物は、医薬品、化粧品、食品等の原料として使用することができる。低級アルコールEPAエステル化物としては、例えば、EPAメチルエステル、EPAエチルエステル、EPAn-プロピルエステル、EPAイソプロピルエステルが挙げられ、このうち、EPAエチルエステル(本明細書において、「EPAEE」ともいう。)は、例えば高脂血症、閉塞性動脈硬化等の循環器系疾患治療薬として用いられている。したがって、低級アルコールEPAエステル化物はEPAEEであってもよく、低級アルコールDHAエステル化物はDHAエチルエステル(本明細書において、「DHAEE」ともいう。)であってもよい。
 <低級アルコールEPAエステル化物の用途>
また、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物は、サプリメント等の食品組成物およびカプセル剤の原料として使用することができる。
 <作用効果-公知の低級アルコール脂肪酸エステル化物含有組成物の製造方法>
本実施形態に係る製造方法の作用効果を説明するにあたり、まず、公知の低級アルコール脂肪酸エステル化物含有組成物の製造方法について説明する。
 <公知の低級アルコール脂肪酸エステル化物含有組成物の製造方法>
公知の低級アルコール脂肪酸エステル化物含有組成物の製造方法(特許文献1に記載)では、まず、複数の脂肪酸を低級アルコール脂肪酸エステル部位に有する脂肪酸グリセリドを含む原料油脂を、アルカリ性条件下でアルコールと処理することで、脂肪酸グリセリドとアルコールとのエステル交換反応によって、低級アルコール脂肪酸エステル化物を得る。この方法では、複数種類の低級アルコール脂肪酸エステル化物の混合物が得られる。
 <公知の低級アルコール脂肪酸エステル化物含有組成物の製造方法-課題>
複数種類の低級アルコール脂肪酸エステルの混合物から所望の低級アルコール脂肪酸エステル化物を分離するためには、例えば、条件(例えば、真空度、加熱温度、加熱方法、加熱時間)を非常に厳密に制御した蒸留を行う必要がある。このように、条件の厳しい蒸留を行うことは、製造プロセス上、負担が大きい。
 例えば、EPA含有グリセリドおよびDHA含有グリセリドを含む油脂をアルカリ性条件下でエステル交換反応を行う場合、EPAとDHAとは炭素数や二重結合数が近似するため、得られる低級アルコールEPAエステル化物と低級アルコールDHAエステル化物とを分離するためには、非常に精密に制御された条件下で蒸留することが必要とされ、製造プロセス上、非常に負担が大きい。また、通常、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物の一方のみを単離することが困難であるため、蒸留時にロスが生じる傾向がある。
 また、蒸留は一般に、大規模な装置を必要とすることが多く、製造コストが増大する傾向がある。さらに、アルカリ性条件下で処理を行う場合、使用するアルカリ性液が廃液として生じるため、該廃液を処理する必要が生じるという問題がある。
 さらに、上記エステル交換反応では、アルカリ性条件下において、低級アルコール脂肪酸エステル化物に含まれる二重結合に異性化が生じることがある。異性化は、通常、アルカリ処理や加熱によって生じやすい。
 低級アルコール脂肪酸エステル化物の異性化物は一般に、通常の不純物除去処理(例えば、蒸留、クロマトグラフィー)では、低級アルコール脂肪酸エステル化物との分離が困難である。したがって、上述したようなアルカリ条件下での処理(以下、単に「アルカリ処理」ともいう。)や加熱処理によって、低級アルコール脂肪酸エステル化物の異性化物が一旦生成すると、低級アルコール脂肪酸エステル化物中からの該異性化物の除去は一般に困難である。すなわち、この異性化物は、低級アルコール脂肪酸エステル化物の純度を低下させる一原因物質である。
 <本実施形態に係る製造方法の作用効果>
(i)これに対して、本実施形態に係る製造方法によれば、第1に、EPA含有グリセリドを含有する原料油脂を酵素処理(リパーゼを用いた処理)して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る工程を含むことにより、純度が高い低級アルコールEPAエステル化物を効率良く得ることができる。
 より具体的には、本実施形態に係る製造方法によれば、アルカリ処理を経なくても低級アルコールEPAエステル化物が得られるため、異性化物の発生を抑えることができる。よって、純度が高い低級アルコールEPAエステル化物を効率良く得ることができる。また、上記本実施形態に係る製造方法では、アルカリを用いる場合のような廃液処理の問題が生じないため、環境に与える影響が少ない。
 (ii)第2に、前記酵素処理を行うことにより、低級アルコールDHAエステル化物に対する低級アルコールEPAエステル化物のモル比率を高めることができる(具体的には、3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30、好ましくは、3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)
≦20)。
 より具体的には、前記酵素処理を行うことにより、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を、3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30(より好ましくは3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦20)のモル比率で含む低級アルコール脂肪酸エステル化物含有組成物を得ることができ、低級アルコールDHAエステル化物に変換されなかったDHAは、DHA含有グリセリドとして残存することになる。
 低級アルコールEPAエステル化物と、他の成分(主に、DHA含有グリセリド、グリセリン)とは、蒸留やクロマトグラフィー等の一般的な不純物除去処理によって比較的容易に分離できる傾向がある。
 したがって、低級アルコールEPAエステル化物と、低級アルコール脂肪酸エステル化物ではない他の成分とを分離する際には、上述のアルカリ処理の後に通常行われる、低級アルコールEPAエステル化物と他の低級アルコール脂肪酸エステル化物とを分離するための精密に制御された蒸留を行う必要がないうえに、蒸留時のロスを少なくすることができる。このことから、本実施形態に係る製造方法によれば、低級アルコールDHAエステル化物に対する低級アルコールEPAエステル化物のモル比率を高めることにより、純度が高い低級アルコールEPAエステル化物を簡便な方法にて効率良く得ることができる。
 原料油脂をリパーゼによって処理する工程においては、EPAを脂肪酸エステル部位として有する脂肪酸グリセリドが、DHAを脂肪酸エステル部位として含有する脂肪酸グリセリドよりも優先的にエチルエステル化されると推測される。このため、後の工程において、低級アルコールEPAエステル化物と低級アルコールDHAエステル化物とのモル比率(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)を高めることができる。
 したがって、本実施形態に係る製造方法は、EPA含有グリセリドを含有する原料油脂をまず酵素処理して、低級アルコールEPAエステル化物の含有割合が高められた低級アルコール脂肪酸エステル化物含有組成物を得てから、蒸留処理を行なうことにより、異性化物が低減された低級アルコールEPAエステル化物を容易に、かつ、より多く単離することができる点で有用である。
 さらに、本実施形態に係る製造方法では、反応液の酸価を2以上(好ましくは12以下)にすることで、酵素の安定性を確保し、同時に低級アルコールEPAエステル化物を効率よく得ることができる。より具体的には、遊離脂肪酸と目的物である低級アルコールエステル化物とは分子量が近似していることから、反応液中の遊離脂肪酸を一定量に保つことで、低級アルコールエステル化物を効率よく蒸留することができる。
 (iii)第3に、前記酵素処理における水分含量が0.4質量%以上であることにより、反応液中に含まれる該水分により、酵素反応により生じるグリセリンを水中に誘導させることで、グリセリンが油中で固まるのを防止し、酵素反応を円滑に進行させることができる。また、反応液中に含まれる該水分により、酵素安定性が高められる。その結果、酵素の繰り返し使用が可能になるため、製造コストの低減および省資源化を図ることができる。したがって、前記酵素処理は、再利用性、取扱性および経済性に優れていることから、小規模スケールでの処理のみならず、大規模スケールでの処理に好適である。
 <第1組成物>
本発明の一実施形態に係る低級アルコール脂肪酸エステル化物含有組成物(以下、「第1組成物」ともいう。)は、低級アルコール脂肪酸エステル化物を40質量%以上90質量%以下(より具体的には、50質量%以上80質量%以下)含み、前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含む。第1組成物は、例えば、上述の酵素処理又は上述の酵素処理とそれに続く銀処理により得ることができる。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30
 上記モル比率は、以下のモル比率であることが好ましい。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦20
 上記モル比率は、以下のモル比率であることがより好ましい。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエ
ステル化物)≦15
 第1組成物は、FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.15以下(好ましくは0.13以下)であることができる。したがって、第1組成物では、異性化物が低減されている。この第1組成物を上述の分子蒸留に供することにより、異性化物が少ない、第2組成物を得ることができる。また、第1組成物は、上述の銀処理によって、遊離脂肪酸の含有量が低減されており、酸価が5未満(好ましくは4未満)であることができる。
 <第1組成物を用いた分子蒸留>
本発明の一実施形態に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法は、上記第1組成物を蒸留して、前記低級アルコールEPAエステル化物および前記低級アルコールDHAエステル化物を含む低級アルコール脂肪酸エステル化物の混合物と、該混合物以外の成分とを分離することにより、後述する第2組成物を得る工程を含む。
 本実施形態に係る製造方法において、第1組成物を蒸留して、後述する第2組成物を得る工程は、上述の分子蒸留工程に相当する。
 本実施形態に係る製造方法によれば、第1組成物を蒸留して、後述する第2組成物を得る工程を含むことにより、上述の精密蒸留において低級アルコールEPAエステル化物を選択的に得ることができる。
 <第2組成物>
本発明の一実施形態に係る低級アルコール脂肪酸エステル化物含有組成物(以下、「第2組成物」ともいう。)は、低級アルコール脂肪酸エステル化物を90質量%以上(より具体的には、95質量%以上100質量%以下)含み、前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含む。第2組成物は、上述の分子蒸留処理又は上述の分子蒸留処理とこれに続く銀処理にて得ることができる。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30
 上記モル比率は、以下のモル比率であることがより好ましい。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦20
 上記モル比率は、以下のモル比率であることがさらに好ましい。
3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦15
 第2組成物は、FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.075以下(好ましくは0.070以下)であることができる。したがって、第2組成物では、異性化物が低減されている。この第2組成物を上述の精密蒸留に供することにより、異性化物が少ない、低級アルコールEPAエステル化物を得ることができる。
 また、第2組成物は、遊離脂肪酸の含有量が低減されており、酸価が5未満(好ましくは4未満)であることができる。遊離脂肪酸の含量量の低減は例えば、上述の銀処理によって行うことができる。第2組成物は例えば、サプリメント等の食品組成物およびカプセル剤の原料として使用することができる。
 <第2組成物を用いた精密蒸留>
本発明の一実施形態に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法は、上記第2組成物を蒸留して、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、低級アルコールEPAエステル化物(後述する第3組成物)を得る工程を含む。
 本実施形態に係る製造方法において、第2組成物を蒸留して、低級アルコールEPAエステル化物を得る工程は、上述の精密蒸留工程に相当する。
 本実施形態に係る製造方法によれば、第2組成物を蒸留して、低級アルコールEPAエステル化物を得る工程を含むことにより、低級アルコールEPAエステル化物を選択的に得ることができる。純度の高い低級アルコールEPAエステル化物は例えば、サプリメント等の食品組成物およびカプセル剤の原料として使用することができる。
 <第3組成物>
本発明の一実施形態に係る低級アルコール脂肪酸エステル化物含有組成物
(以下、「第3組成物」ともいう。)は、低級アルコールEPAエステル化物を96.5質量%以上(より好ましくは98質量%以上約100質量%以下)含み、かつ、FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.085以下である。
 第3組成物は、上述の精密蒸留工程を経て得ることができる。第3組成物は、異性化物の含量がきわめて少ないため、例えば、サプリメント等の食品組成物およびカプセル剤の原料として好適に使用することができる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明は実施例に限定されない。
 [調製例1(固定化酵素の調製)]
サーモマイセス・ラヌギノーゼ(Thermomyces lanuginosus)の400gの溶液(940KLU/mL)を、大川原製作所製流動層造粒装置を用いて1kgのセライト545(ジョンマンビル社、粒径0.02-0.1mm)上に噴霧した。前記リパーゼ溶液はペリスタポンプ(東京理化器械株式会社製)を経由して供給した。100m/時の空気流により吸い込み口の空気の温度は57℃であり、そして固定化産物の温度は約40℃であった。固定化終了後、流動層中で更に5分間乾燥して、粒子状の固定化酵素(平均粒子径600μm、比重2)を得た。
 [実施例1(酵素処理)]
精製魚油(イワシ油、酸価0、トリグリセリド含量90質量%、EPA含量18モル%、DHA含量12モル%)1kgをセパラブルフラスコ(容量3L)に入れ、エタノール52.5gを添加した。フラスコを混ぜ、エタノールを魚油中に均一に分散させた。次に、水21g(反応液中の水分含量:2質量%)を入れ、撹拌し、水を魚油-エタノール混合物中に分散させて、反応液を調製した。次いで、調製例1で調製した固定化酵素105gを添加し、サンプル瓶中の大気を窒素で置換してから、撹拌機を使用し、サンプルを150rpm、30℃にて24時間反応させて、EPAEEおよびDHAEEを含む低級アルコール脂肪酸エステル化物含有組成物(第1組成物)を得た。反応開始から0時間、2時間、4時間、6時間、および24時間の時点でそれぞれ、反応液200μL採取し、成分分析(低級アルコール脂肪酸エステル化物含有組成物中の低級アルコール脂肪酸エステル化物の含有量(質量%)、低級アルコール脂肪酸エステル化物中のEPAEEの含有量(モル%)、低級アルコール脂肪酸エステル化物中のDHAEEの含有量(モル%)、EPAEE/DHAEE(モル比率))を行った。また、反応開始から2時間、4時間、6時間の時点でエタノール52.5gを反応液に追加し、かつ、サンプル瓶中で窒素置換を行った。また、24時間の反応を1サイクルとし、該反応を3サイクル繰り返して行った。各サイクルの終了後に、反応液から吸引ろ過にて油と固定化酵素とを分別し、分別した固定化酵素を反応容器に移し、その後、必要量の油、低級アルコール、および水を加えて、次サイクルの反応に繰り返し使用した。さらに、反応開始から0時間、2時間、4時間、6時間、8時間、24時間(反応終了時)の時点で反応液を微量採取して、成分分析を行った。
 上述した実施形態に記載された方法により測定および算出された、実施例1(1サイクル目の24時間反応)の反応液の酸価は5.95であり、実施例1(3サイクル目の8時間反応)の反応液の酸価は6.17あった。
 また、実施例1(1サイクル目の24時間反応)の反応液のFT-IRスペクトル解析(測定装置:1回反射型全反射測定装置MIRacleA(ZnSeプリズム))において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比は0.12であった。
 [実施例2ないし8(酵素処理)]
使用する水の量を5.25g(反応液中の水分含量:0.5質量%)、10.5g(反応液中の水分含量:1質量%)、52.5g(反応液中の水分含量:5質量%)、105g(反応液中の水分含量:9質量%)、210g(反応液中の水分含量:17質量%)、525g(反応液中の水分含量:33質量%)、1050g(反応液中の水分含量:50質量%)とした以外は、実施例1と同様の処理を行ない、EPAEE及びDHAEEを含む、実施例2ないし8の低級アルコール脂肪酸エステル化物含有組成物を得た。
 なお、実施例3ないし5においては、実施例1と同様に、24時間の反応を1サイクルとし、該反応を3サイクル繰り返して行い、各サイクルの終了後に、反応液から吸引ろ過にて油と固定化酵素とを分別し、分別した固定化酵素を反応容器に移し、その後、必要量の油、低級アルコール、および水を加えて、次サイクルの反応に繰り返し使用した。
 上述した実施形態に記載された方法により測定および算出された、実施例2ないし8の反応液の酸価はそれぞれ2.2以上12以下の範囲内であった。
 また、実施例2ないし8の反応液のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比はいずれも0.15以下であった。
 [比較例1(酵素処理)]
使用する水の量を0g(反応液中の水分含量:0%)とした以外は、実施例1と同様の処理を行ない、EPAEE及びDHAEEを含む、比較例1の低級アルコール脂肪酸エステル化物含有組成物を得た。
 [比較例2(酵素処理)]
使用する水の量を3.15g(反応液中の水分含量:0.3質量%)とした以外は、実施例1と同様の処理を行ない、EPAEE及びDHAEEを含む、比較例2の低級アルコール脂肪酸エステル化物含有組成物を得た。
 上述した実施形態に記載された方法により測定および算出された、比較例1の反応液の酸価は1.0であり、比較例2の反応液の酸価は1.5であった。
 実施例1ないし8および比較例1および2の各低級アルコール脂肪酸エステル化物含有組成物に含まれる、低級アルコール脂肪酸エステル化物含有組成物中の低級アルコール脂肪酸エステル化物の含有量(質量%)、低級アルコール脂肪酸エステル化物中のEPAEEの含有量(モル%)、低級アルコール脂肪酸エステル化物中のDHAEEの含有量(モル%)、およびEPAEE/DHAEE(モル比率)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、実施例1ないし8において、反応開始から2時間で、低級アルコール脂肪酸エステル化物中におけるEPAEEの含有量は急激に増加し、反応時間の増加に伴い、反応液中の低級アルコール脂肪酸エステル化物の含有量が増加するともに、低級アルコール脂肪酸エステル化物中のEPAEEの含有量およびDHAEEの含有量が増加する傾向があり、結果として、反応前の原料油脂に含まれる脂肪酸グリセリドを構成するEPA/DHAの値と比較して、反応液におけるEPAEEの含有量/DHAEE含有量の値を高めることができたことが理解できる。
 また、実施例1ないし8によれば、前記酵素処理の反応液の水分含量が0.4質量%以上であることにより、酵素の安定性が高められる結果、酵素の繰り返し使用が可能になるため、固定化酵素を反応液中から取り出して再度使用できることが理解できる。
 さらに、実施例1ないし8によれば、リパーゼを用いた処理において、反応液の水分含量を0.4質量%以上としたことにより、低級アルコール脂肪酸エステル化物の含有量が40質量%以上90質量%以下であり、かつ、DHAEEに対する前記EPAEEのモル比率(EPAEE/DHAEE)が3.0以上30以下である低級アルコール脂肪酸エステル化物含有組成物を得ることができた。
 なお、反応前の原料油脂に含まれる脂肪酸グリセリドを構成する脂肪酸における、EPAの含有量およびDHAの含有量はそれぞれ、18モル%、12モル%(EPA/DHA=3/2)である。このことから、上記処理により、EPA含有グリセリドを含む原料油脂からEPAEEを選択的に得ることができることが理解できる。
 これに対して、比較例1および2によれば、リパーゼを用いた処理において、反応液の水分含量が0.4質量%未満である場合、酵素の安定性が低く、反応液における低級アルコール脂肪酸エステル化物の含有量が実施例1ないし8で得られた反応液よりも少なかった。
 [実施例9(分子蒸留処理)]
実施例1で得られた第1組成物を、ショートパス蒸留機(株式会社神鋼環境ソリューション製)を使用して、真空度0.1Torr以下で80℃以上200℃以下の温度にて分子蒸留し、EPAEEおよびDHAEE)を含む低級アルコール脂肪酸エステル化物含有組成物(第2組成物)を得た。
 実施例9で得られた第2組成物のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比は0.069であり、該第2組成物に含まれる低級アルコール脂肪酸エチルエステルの含有量はほぼ100質量%であり、第2組成物の酸価は10.1であり、ならびに、第2組成物におけるEPAEE/DHAEE(モル比率)は6.0であった。
 [実施例10(精密蒸留処理)]
実施例9で得られた第2組成物を、流下型薄膜式の精密蒸留機(株式会社旭製作所製)を使用して、真空度3Torr以下、150℃以上250℃以下の温度、理論段数5段にて精密蒸留して、EPAEE(第3組成物、純度:ほぼ100質量%)を得た。
 実施例10のEPAEEのFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比は0.081であり、該第3組成物に含まれるEPAEEの含有量はほぼ100質量%であり、該第3組成物の酸価はほぼ0であった。
 [比較例3(アルカリ処理による低級アルコール脂肪酸エステル化物含有組成物の調製、ならびにEPAEEおよびDHAEEの混合物の調製)]
2Lの共栓付き三角フラスコ(アルミホイルにて遮光)に、実施例1で使用したものと同じ精製魚油800g(カールフィッシャー法で測定された水分測定値0.04質量%)を添加した。別のビーカーにエタノール240mLを入れ、水酸化ナトリウム4.8gを添加して、2%(w/w)水酸化ナトリウムエタノール溶液を調製した。この2%(w/w)水酸化ナトリウムエタノール溶液を前記三角フラスコに添加した後、該三角フラスコ内を窒素置換した。次いで、該三角フラスコを30℃恒温水槽に浸して、スターラー目盛り8にて室温(25℃)にて18時間撹拌を行った。その後、反応液を分液漏斗に移し、純水50gを添加して水洗し、約20分間静置した後、下相(水相)を廃棄する洗浄操作を行った。次いで、純水50gを添加して同様の洗浄操作を行った後、同様の洗浄操作をさらに4回(添加する純水の量、1回目:50g、2回目:240g、3回目:240g、4回目:240g)を行った。続いて、油相が中性であることを確認した後、無水硫酸ナトリウムを添加して一晩静置し、4℃で保管することにより、比較例3の低級アルコール脂肪酸エステル化物含有組成物を得た。
 この比較例3の低級アルコール脂肪酸エステル化物含有組成物について、実施例9と同様の蒸留処理を行うことにより、EPAEEおよびDHAEEの混合物を得た。
 比較例3の反応液のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比は0.095であり、該反応液に含まれる脂肪酸エチルエステルの含有量はほぼ100質量%であった。
 このことから、本発明に係る低級アルコール脂肪酸エステル化物含有組成物の製造方法(実施例9)によれば、アルカリ処理を行う方法(比較例3)
と比較して、低級アルコール脂肪酸エステル化物含有組成物に含まれる異性
化物の量を低減できた。
 [調製例2(固定化酵素の調製)]
ジビニルベンゼン(DVB)70質量%とメタクリル酸グリシジル15質量%とDEAEメタクレート15質量%を通常の方法で共重合し、粒子状の樹脂担体を得た。この樹脂担体の平均細孔径は11.5nmで細孔容積は0.5cm3/g、平均粒子径は0.5mm、比重0.2であった。得られた樹脂担体1kgにRhizopus sp.由来のリパーゼFAP-15(天野エンザイム(株)製 155,000u/g)の2質量%水溶液10Lを加え、3時間25℃で攪拌しながら固定化を行った。濾過、洗浄後、真空乾燥器で2時間乾燥し、固定化酵素を得た。
 [実施例11、12、13、14(酵素処理)]
実施例1の酵素処理において、使用する固定化酵素を、調製例2で得られた固定化酵素に置き換え、表2に記載の酵素量、エタノール量、水分含量に置き換えた以外は、実施例1と同様の方法で1サイクル反応させ、成分分析を行った。なお、実施例13では、反応開始時および反応開始から4時間の時点でそれぞれ、エタノールを105g添加した。実施例14では、反応開始時にエタノールを210g添加した。
 上述した実施形態に記載された方法により測定および算出された、実施例11の反応液(反応開始から24時間の時点)の酸価は4.6であった。
Figure JPOXMLDOC01-appb-T000002
 表2によれば、実施例11ないし14において、反応開始から2時間で、低級アルコール脂肪酸エステル化物中におけるEPAEEの含有量は急激に増加し、反応時間の増加に伴い、反応液中の低級アルコール脂肪酸エステル化物の含有量が増加するともに、低級アルコール脂肪酸エステル化物中のEPAEEの含有量およびDHAEEの含有量が増加する傾向があり、結果として、反応前の原料油脂に含まれる脂肪酸グリセリドを構成するEPA/DHAの値と比較して、反応液におけるEPAEEの含有量/DHAEE含有量の値を高めることができたことが理解できる。
 また、実施例11ないし14によれば、リパーゼを用いた処理において、反応液の水分含量を0.4質量%以上としたことにより、低級アルコール脂肪酸エステル化物の含有量が40質量%以上90質量%以下であり、かつ、DHAEEに対する前記EPAEEのモル比率(EPAEE/DHAEE)が3.0以上15.0以下である低級アルコール脂肪酸エステル化物含有組成物を得ることができた。
 また、実施例11ないし14の反応液のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比はいずれも0.15以下であった。
 [実施例15(銀処理)]
実施例9で得られた第2組成物10gを銀塩水溶液(硝酸銀の濃度:50質量%)40gと窒素雰囲気下遮光下で、20℃、20分間混合することにより、該組成物と該銀塩水溶液とを接触させた(表3の試験番号1)。また、上記銀塩水溶液の使用量を変えて同様の処理を行った(表3の試験番号2、3)。接触後に分離した有機相を廃棄し、残りの当該銀塩水溶液にトルエン40gを添加した後、60℃で1時間撹拌し、EPAEEおよびDHAEEを含むトルエン層を回収した後トルエンを除去して、EPAEEおよびDHAEEの混合物を得た。
 銀処理前後における酸価およびEPAEEの含有量/DHAEE含有量の値(モル比率)を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3によれば、本実施例の銀処理によって、EPAエチルエステル/DHAエチルエステルの比率を保持したまま、低級アルコール脂肪酸エステル化物含有組成物の酸価を5未満に低減できたことが理解できる。なお、実施例10で得られたEPAEEについても、本実施例と同様の銀処理を行うことにより、微量含まれる遊離脂肪酸を除去することができた。
 [実施例16(精密蒸留処理)]
実施例15で得られた、銀処理後の第2組成物を、精密蒸留機(株式会社旭製作所製)を使用して、真空度3Torr以下、150℃以上200℃以下の温度、理論段数5段にて精密蒸留して、EPAEE(第3組成物、純度:ほぼ100質量モル%、酸価:ほぼ0)を得た。
 実施例16のEPAEEのFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比は0.078であり、該第3組成物に含まれる脂肪酸エチルエステルの含有量はほぼ100質量%であった。
 [実施例17(酵素処理、分子蒸留処理および精密蒸留処理)]
実施例1の酵素処理、実施例9の分子蒸留処理及び実施例10の精密蒸留処理をそれぞれ、1,000倍、2,000倍及び2,000倍のスケールで行った。その結果、本実施例の酵素処理で得られた第1組成物の成分(低級アルコール脂肪酸エステル化物中の低級アルコール脂肪酸エステルの含有量(質量%)、低級アルコール脂肪酸エステル化物中のEPAEEの含有量(モル%)、低級アルコール脂肪酸エステル化物中のDHAEEの含有量(モル%)、EPAEE/DHAEE(モル比率))、前記反応液(混合物)のFT-IRスペクトル解析における、1736cm-1付近に現れるピークの強度に対する966cm-1付近に現れるピークの強度の比、ならびに酸価は、実施例1で得られた第1組成物と同様であった。
 また、本実施例の分子蒸留処理で得られた第2組成物に含まれる低級アルコール脂肪酸エチルエステルの含有量ならびにEPAEE/DHAEE(モル比率)は、実施例9で得られた第2組成物と同様であった。さらに、本実施例の分子蒸留処理で得られた第2組成物のFT-IRスペクトル解析における、1736cm-1付近に現れるピークの強度に対する966cm-1付近に現れるピークの強度の比、ならびに酸価は、実施例9で得られた第2組成物と同様であった。
 さらに、本実施例の精密蒸留処理で得られた第3組成物に含まれるEPAEEの割合は、実施例10で得られた第3組成物と同様であった。さらに、本実施例で得られた精密蒸留処理で得られた第3組成物のFT-IRスペクトル解析における、1736cm-1付近に現れるピークの強度に対する966cm-1付近に現れるピークの強度の比、ならびに酸価は、実施例10で得られた第3組成物と同様であった。
 [実施例18(食品組成物:クッキー)]
下記配合にてクッキーを調製した。ショートニングおよび実施例9で得られた低級アルコール脂肪酸エステル化物含有組成物を攪拌機(Kitchen Aid社製 Kitchen Aid K5SS)に投入し速度調節レバー6で1分間混ぜ合わせてクリーム状にし、粉末全卵、砂糖を加えミキシグを行った。次に、除々に清水を加え比重を0.8g/mlに調整し、予め混合してから篩った小麦粉とベーキングパウダーを加えてから30秒間攪拌を続けて生地を調製した。得られた生地を冷蔵庫で2時間ねかせた後、厚さ3~5mm程度に延ばし、型を抜き、180℃のオーブンで13~15分間焼成し、クッキーを得た。
 <配合>
小麦粉                         200g
ベーキングパウダー                     1g
低級アルコール脂肪酸エステル化物含有組成物(実施例9)   1g
ショートニング                     120g
上白糖                          80g
粉末全卵                         12g
清水                           24g
―――――――――――――――――――――――――――――――――
合計                          438g
 [実施例19(ソフトカプセル)]
実施例10で得られた低級アルコール脂肪酸エステル化物含有組成物を使用して、内容物が下記の配合であるソフトカプセルを製した。
 <配合割合>
EPAEE(実施例10)            20%
オリーブ油                   50%
ミツロウ                    10%
中鎖脂肪酸トリグリセリド            10%
乳化剤                     10%
―――――――――――――――――――――――――――
合計                     100%

Claims (28)

  1.  EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る工程を含み、
    前記処理の反応液中における水分含量が0.4質量%以上である、
    低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  2.  請求項1において、
    前記処理の反応液は、前記原料油脂9.5質量部に対して0.1質量部以上2.5質量部以下の低級アルコールをさらに含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  3.  請求項2において、
    前記処理において、前記処理の反応液に前記低級アルコールを連続的にまたは段階的に添加する、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  4.  請求項1ないし3のいずれか1項において、
    前記処理において、前記リパーゼが固定化された固定化酵素を用いる、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  5.  請求項1ないし4のいずれか1項において、
    前記処理において、前記固定化酵素は粒子状である、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  6.  請求項1ないし5のいずれか1項において、
    前記リパーゼが1,3位特異リパーゼである、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  7.  請求項1ないし6のいずれか1項において、
    前記反応液の酸価が2以上である、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  8.  請求項1ないし7のいずれか1項において、
    前記原料油脂は、DHA含有グリセリドをさらに含み、
    前記低級アルコール脂肪酸エステル化物含有組成物は、低級アルコールDHAエステル化物をさらに含み、
    前記低級アルコール脂肪酸エステル化物含有組成物に含まれる低級アルコール脂肪酸エステル化物における、前記低級アルコールDHAエステル化物に対する前記低級アルコールEPAエステル化物のモル比率A(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)は、前記原料油脂に含まれる脂肪酸グリセリドを構成する脂肪酸における、DHAに対するEPAのモル比率B(EPA/DHA)より多い、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  9.  請求項8において、
    前記モル比率Aおよび前記モル比率Bが以下の式(1)で示される関係を有する、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
    1.5≦A/B ・・・・・(1)
  10.  請求項8または9において、
    前記低級アルコール脂肪酸エステル化物含有組成物は、低級アルコール脂肪酸エステル化物を40質量%以上90質量%以下含み、
    前記低級アルコール脂肪酸エステル化物における、前記低級アルコールDHAエステル化物に対する前記低級アルコールEPAエステル化物のモル比率(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)が3.0以上30以下である、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  11.  請求項7ないし10のいずれか1項において、
    前記低級アルコール脂肪酸エステル化物含有組成物は、低級アルコールDHAエステル化物をさらに含み、
    前記低級アルコール脂肪酸エステル化物含有組成物を蒸留して、前記低級アルコールEPAエステル化物および前記低級アルコールDHAエステル化物を含む低級アルコール脂肪酸エステル化物の混合物と、該混合物以外の成分とを分離する工程をさらに含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  12.  請求項11において、
    前記混合物のFT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.075以下である、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  13.  請求項11または12において、
    前記混合物は、低級アルコール脂肪酸エステル化物を90質量%以上含み、
    前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
    3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30
  14.  請求項11ないし13のいずれか1項において、
    前記混合物を銀塩の水溶液と接触させる工程を含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  15.  請求項14において、
    前記銀塩の水溶液と接触させた後の前記混合物を蒸留して、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、前記低級アルコールEPAエステル化物を得る工程をさらに含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  16.  請求項11ないし13のいずれか1項において、
    前記混合物を蒸留して、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、前記低級アルコールEPAエステル化物を得る工程をさらに含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  17.  低級アルコール脂肪酸エステル化物を40質量%以上90質量%以下含み、
    前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含む、低級アルコール脂肪酸エステル化物含有組成物。
    3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30
  18.  請求項17において、
    FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.15以下である、低級アルコール脂肪酸エステル化物含有組成物。
  19.  低級アルコール脂肪酸エステル化物を90質量%以上含み、
    前記低級アルコール脂肪酸エステル化物は、低級アルコールEPAエステル化物および低級アルコールDHAエステル化物を以下のモル比率で含む、低級アルコール脂肪酸エステル化物含有組成物。
    3.0≦(低級アルコールEPAエステル化物/低級アルコールDHAエステル化物)≦30
  20.  請求項19において、
    FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.075以下である、低級アルコール脂肪酸エステル化物含有組成物。
  21.  請求項17ないし20のいずれか1項において、
    酸価が5未満である、低級アルコール脂肪酸エステル化物含有組成物。
  22.  請求項17に記載の低級アルコール脂肪酸エステル化物含有組成物を蒸留して、請求項20に記載の低級アルコール脂肪酸エステル化物含有組成物と、前記組成物以外の成分とを分離する工程を含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  23.  請求項19又は20に記載の低級アルコール脂肪酸エステル化物含有物を銀塩の水溶液で接触させる工程を含む、低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  24.  請求項19ないし21のいずれか1項に記載の低級アルコール脂肪酸エステル化物含有組成物を蒸留して、前記低級アルコールEPAエステル化物以外の低級アルコール脂肪酸エステル化物を分離することにより、前記低級アルコールEPAエステル化物を得る工程を含む、
    低級アルコール脂肪酸エステル化物含有組成物の製造方法。
  25.  低級アルコールEPAエステル化物を96.5質量%以上含み、かつ、FT-IRスペクトル解析において、1736cm-1付近に現れるピークの強度に対する、966cm-1付近に現れるピークの強度の比が0.085以下である、低級アルコール脂肪酸エステル化物含有組成物。
  26.  請求項11ないし16および22ないし24のいずれか1項に記載の製造方法により得られた低級アルコール脂肪酸エステル化物含有組成物、又は請求項25に記載の低級アルコール脂肪酸エステル化物含有組成物を使用して食品組成物を得る工程を含む、食品組成物の製造方法。
  27.  請求項11ないし16および22ないし24のいずれか1項に記載の製造方法により得られた低級アルコール脂肪酸エステル化物含有組成物、又は請求項25に記載の低級アルコール脂肪酸エステル化物含有組成物を使用してカプセル剤を得る工程を含む、カプセル剤の製造方法。
  28.  EPA含有グリセリドを含有する原料油脂を、リパーゼを用いて処理して、低級アルコールEPAエステル化物を含む低級アルコール脂肪酸エステル化物含有組成物を得る処理において、
    前記リパーゼが固定化された固定化酵素であり、
    前記処理の反応液中における水分含量が0.4質量%以上であり、
    前記反応液の酸価が2以上12以下である、
    前記処理後の固定化酵素を繰り返し利用する方法。
PCT/JP2016/059160 2015-04-01 2016-03-23 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物 WO2016158605A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015075487A JP2018085931A (ja) 2015-04-01 2015-04-01 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物
JP2015-075487 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016158605A1 true WO2016158605A1 (ja) 2016-10-06

Family

ID=57005816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059160 WO2016158605A1 (ja) 2015-04-01 2016-03-23 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物

Country Status (2)

Country Link
JP (1) JP2018085931A (ja)
WO (1) WO2016158605A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257446A (zh) * 2019-07-08 2019-09-20 青岛和合汇途工程技术有限公司 一种高纯度epa甘油酯和dha甘油酯的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242895A (ja) * 1993-03-16 1995-09-19 Ikeda Shiyotsuken Kk 高純度エイコサペンタエン酸又はその低級アルコールエステルの分離精製法
JP2006506483A (ja) * 2002-11-14 2006-02-23 プロノヴァ・バイオケア・アーエス リパーゼ触媒した海産油のエステル化
WO2007119811A1 (ja) * 2006-04-13 2007-10-25 Nippon Suisan Kaisha, Ltd. 高度不飽和脂肪酸濃縮油の製造方法
WO2009017102A1 (ja) * 2007-07-30 2009-02-05 Nippon Suisan Kaisha, Ltd. Epa濃縮油およびdha濃縮油の製造方法
WO2015046436A1 (ja) * 2013-09-26 2015-04-02 キユーピー株式会社 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242895A (ja) * 1993-03-16 1995-09-19 Ikeda Shiyotsuken Kk 高純度エイコサペンタエン酸又はその低級アルコールエステルの分離精製法
JP2006506483A (ja) * 2002-11-14 2006-02-23 プロノヴァ・バイオケア・アーエス リパーゼ触媒した海産油のエステル化
WO2007119811A1 (ja) * 2006-04-13 2007-10-25 Nippon Suisan Kaisha, Ltd. 高度不飽和脂肪酸濃縮油の製造方法
WO2009017102A1 (ja) * 2007-07-30 2009-02-05 Nippon Suisan Kaisha, Ltd. Epa濃縮油およびdha濃縮油の製造方法
WO2015046436A1 (ja) * 2013-09-26 2015-04-02 キユーピー株式会社 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGSACHART, P. ET AL.: "Use of immobilized lipase on the enrichment of eicosapentaenoic acid and docosahexaenoic acid from fish oil.", CHIANG MAI J. SCI., vol. 31, no. 2, 2003, pages 139 - 149, XP055318187 *
ZUYI, L. ET AL.: "Lipase-catalyzed alcoholysis to concentrate the n-3 polyunsaturated fatty acid of cod liver oil.", ENZYME MICROB. TECHNOL., vol. 15, 1993, pages 601 - 606, XP023791122 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257446A (zh) * 2019-07-08 2019-09-20 青岛和合汇途工程技术有限公司 一种高纯度epa甘油酯和dha甘油酯的制备方法
CN110257446B (zh) * 2019-07-08 2023-01-13 青岛和合汇途工程技术有限公司 一种高纯度epa甘油酯和dha甘油酯的制备方法

Also Published As

Publication number Publication date
JP2018085931A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP7213184B2 (ja) グリセリドの形態におけるn-3脂肪酸の酵素的濃縮
Wang et al. From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids
Namal Senanayake et al. Enzymatic incorporation of docosahexaenoic acid into borage oil
JP6302310B2 (ja) 高純度オメガ3系脂肪酸エチルエステルの生産方法
CA2803477C (en) Process for separating polyunsaturated fatty acids from long chain unsaturated or less saturated fatty acids
JP2020513750A5 (ja)
JP2002027995A (ja) リパーゼを用いたグリセライドの製造方法
CA2693070A1 (en) Method for producing epa-enriched oil and dha-enriched oil
JP5753963B1 (ja) 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物
Diao et al. Preparation of diacylglycerol from lard by enzymatic glycerolysis and its compositional characteristics
JP2005287510A (ja) 不飽和脂肪酸のトリグリセリドを酵素合成するための方法
JP6166984B2 (ja) 油脂組成物
JP2024001122A (ja) 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
JP6175198B2 (ja) Dha含有グリセリド含有組成物の製造方法
WO2016158605A1 (ja) 低級アルコール脂肪酸エステル化物含有組成物の製造方法および低級アルコール脂肪酸エステル化物含有組成物
JP2017073980A (ja) 高度不飽和脂肪酸の製造方法
JP5836025B2 (ja) 高度不飽和脂肪酸濃縮油の製造方法
JP2004285182A (ja) グリセリドおよびその製造方法
JP4310387B2 (ja) ω−3系高度不飽和脂肪酸含有部分グリセリド組成物及びその製造方法
WO2013043641A1 (en) Method for enrichment of eicosapentaenoic acid and docosahexaenoic acid in source oils
JP2016182046A (ja) 低級アルコール脂肪酸エステル化物含有組成物の製造方法
JP2020174570A (ja) 高度不飽和脂肪酸及び中鎖脂肪酸含有トリグリセリドの製造方法
JP7382942B2 (ja) リパーゼ加水分解反応を用いるドコサヘキサエン酸含有グリセリドの製造方法
JP2008278781A (ja) 2位よりも1,3位のdha含有率が高いトリアシルグリセロールの製造方法
JP2000342291A (ja) 高度不飽和脂肪酸含有グリセリドの酵素的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP