WO2016158538A1 - 宇宙航行体用の推進薬タンク及び宇宙航行体 - Google Patents

宇宙航行体用の推進薬タンク及び宇宙航行体 Download PDF

Info

Publication number
WO2016158538A1
WO2016158538A1 PCT/JP2016/058870 JP2016058870W WO2016158538A1 WO 2016158538 A1 WO2016158538 A1 WO 2016158538A1 JP 2016058870 W JP2016058870 W JP 2016058870W WO 2016158538 A1 WO2016158538 A1 WO 2016158538A1
Authority
WO
WIPO (PCT)
Prior art keywords
propellant
tank
holding
spacecraft
liquid phase
Prior art date
Application number
PCT/JP2016/058870
Other languages
English (en)
French (fr)
Inventor
佳太郎 石川
太一 青山
紀世志 杵淵
耕一 沖田
渉 更江
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP16772420.2A priority Critical patent/EP3260378B1/en
Priority to US15/561,636 priority patent/US10604279B2/en
Publication of WO2016158538A1 publication Critical patent/WO2016158538A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/605Reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/008Details of vessels or of the filling or discharging of vessels for use under microgravity conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/088Mounting arrangements for vessels for use under microgravity conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/401Liquid propellant rocket engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants
    • B64G1/4021Tank construction; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0194Applications for fluid transport or storage in the air or in space for use under microgravity conditions, e.g. space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0197Rockets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a propellant tank and a spacecraft for a spacecraft that store liquid phase propellants.
  • a tank that is provided in the upper stage of a rocket and stores fuel is known (for example, see Patent Document 1).
  • the tank is provided with a gas supply and extraction device, and the fuel in the tank is extracted by supplying gas into the tank.
  • a propellant tank that is placed in a zero-gravity or microgravity environment and contains a thruster for artificial satellite thrusters is known (for example, see Patent Document 2).
  • This propellant tank includes a tank main body and a propellant supply pipe that allows the propellant to flow in along the circumferential direction of the inner wall surface of the tank main body. For this reason, the propellant tank can perform gas-liquid separation so that the tank inner wall surface side is in the liquid phase and the tank center side is in the vapor phase.
  • JP 2008-189304 A Japanese Patent No. 4660966
  • the tank receives radiation heat from the sun. For this reason, liquid phase propellants such as liquid hydrogen or liquid oxygen stored in the tank will evaporate when they come into contact with the inner wall of the tank.
  • the propellant since the propellant must be supplied to the rocket engine in a liquid phase state, if the propellant evaporates, the propellant usable in the rocket engine is reduced. In particular, when the spacecraft travels in space, the amount of propellant that evaporates increases, making it difficult to execute a predetermined mission using the propellant.
  • an object of the present invention is to provide a propellant tank for a spacecraft and a spacecraft that can suppress evaporation of a liquid propellant stored in the propellant tank.
  • the propellant tank for a spacecraft is a propellant tank for a spacecraft capable of discharging the propellant stored in the interior toward the engine by being pressurized by the working gas.
  • the tank main body for storing the propellant in a liquid phase state is provided inside the tank main body, and is disposed with a predetermined gap from the inner wall of the tank main body.
  • a holding container capable of holding the propellant in a liquid phase in a microgravity state or a weightless state.
  • the spacecraft of the present invention includes a tank main body for storing a propellant in a liquid phase, and is provided inside the tank main body, and is disposed with a predetermined gap from an inner wall of the tank main body.
  • a propellant tank having a storage portion capable of holding the propellant in a liquid phase when the inside of the tank body is in a microgravity state or a weightless state; and the propellant to discharge the propellant
  • An air reservoir for supplying a working gas for pressurizing the inside of the tank.
  • the floating liquid propellant when the spacecraft navigates in outer space, the floating liquid propellant can be held inside the holding container while the inside of the tank body is in a microgravity state or a weightless state.
  • a gap is formed between the inner wall of the tank main body and the holding housing portion, it is possible to prevent the liquid phase propellant from coming into contact with the inner wall of the tank main body and evaporating.
  • evaporation of a liquid phase propellant can be suppressed, it can suppress that the propellant which can be used decreases, and can use a propellant efficiently.
  • the holding and accommodating portion can pass the propellant in a liquid phase state when being pressurized with the working gas.
  • the inside of the tank main body is pressurized with the working gas, so that the propellant stored inside the holding housing portion is allowed to pass through the holding housing portion. It can be discharged outside the tank body.
  • maintenance accommodating part can be suitably supplied toward an engine.
  • the holding and accommodating portion is configured using a material capable of acting on the surface tension of the propellant in a liquid phase state.
  • the liquid phase propellant can be held inside the holding container by surface tension. For this reason, when the working gas is not pressurized, the liquid phase propellant is held inside the holding housing portion, while when the working gas is pressurized, the liquid phase propellant is placed outside from the holding housing portion. Can be discharged.
  • the material capable of acting on the surface tension of the propellant in the liquid phase include a mesh material having a mesh or a porous sheet material.
  • the holding and accommodating portion is configured using a mesh material having a mesh.
  • the holding and accommodating portion can be configured using a net material, the surface tension can be easily set depending on the number of meshes of the net material.
  • maintenance accommodating part should just be the net
  • the mesh material is preferably a wire mesh.
  • the mesh material can be formed of a wire mesh, even when using cryogenic liquid oxygen or cryogenic liquid hydrogen as the propellant, it retains resistance to the propellant. It can be a housing part.
  • the net member is a net composed of polytetrafluoroethylene.
  • the net material can be constituted by a net (PTFE net) using polytetrafluoroethylene, the case where cryogenic liquid oxygen or cryogenic liquid hydrogen is used as a propellant. Even if it exists, it can be set as the holding
  • the PTFE net is lighter than the wire mesh, the weight of the holding and accommodating portion can be reduced, and an increase in the weight of the spacecraft due to the provision of the holding and accommodating portion can be suppressed.
  • connection member for connecting the inner wall of the tank body and the holding housing portion is further provided, and the connection member is configured using a low heat transfer material.
  • the holding member can be fixed to the inner wall of the tank body while the gap is formed between the holding member and the inner wall of the tank body by the connecting member.
  • the connecting member can be configured using a low heat transfer material, the heat of the tank body can be made difficult to be transmitted to the holding housing portion, and therefore, evaporation of the liquid phase propellant can be further suppressed. Can do.
  • a low heat-transfer material it is a fiber reinforced plastic, for example, and should just have a heat-transfer property lower than the material which comprises a tank main body.
  • a reservoir housing portion provided on the propellant discharge side inside the holding housing portion and capable of holding the propellant in a liquid phase.
  • the liquid phase propellant can be held in the reservoir housing portion, the liquid phase propellant can be held on the propellant discharge side in the holding housing portion. For this reason, it is possible to suitably supply the liquid phase propellant to the engine while suppressing the inflow of the gas phase propellant into the engine at the time of ignition of the engine and before the acceleration at the initial stage of ignition is applied. it can. Thereby, in an engine, a propellant can be burned suitably.
  • the reservoir housing part is provided with a relief valve for discharging the propellant that has become a gas phase inside the reservoir housing part.
  • the gas phase propellant can be discharged from the reservoir housing portion via the relief valve. For this reason, it can suppress that a gaseous phase propellant is supplied to an engine.
  • FIG. 1 is a schematic configuration diagram schematically showing a part of a rocket as a spacecraft according to the present embodiment.
  • FIG. 2 is a schematic configuration diagram schematically showing the inside of the fuel tank and the oxidant tank.
  • FIG. 1 is a schematic configuration diagram schematically showing a part of a rocket as a spacecraft according to the present embodiment
  • FIG. 2 is a schematic configuration schematically showing the inside of a fuel tank and an oxidant tank.
  • the propellant tank of the present embodiment is a tank for storing a propellant used in a spacecraft.
  • the propellant include liquid hydrogen (LH 2 ) as a fuel and liquid oxygen (LO 2 ) as an oxidant. ) Applies. That is, the propellant tank is applied to the fuel tank 6 that stores liquid hydrogen and the oxidant tank 7 that stores liquid oxygen.
  • the spacecraft include a flying object such as a rocket, an artificial satellite, a space base, or the like.
  • the rocket 1 includes a frame 5, a fuel tank 6 supported on one side (the upper side in the figure) of the frame 5, and an oxidant tank supported on the other side (the lower side in the figure) of the frame 5. 7, a rocket engine 8 that burns fuel to generate propulsion, and an air accumulator 9.
  • the frame 5 has a truss structure and is provided between the fuel tank 6 and the oxidant tank 7.
  • the frame 5 has one side fixed to the fuel tank 6 and the other side fixed to the oxidant tank 7, and supports the fuel tank 6 and the oxidant tank 7.
  • the fuel tank 6 is, for example, a liquid hydrogen tank that stores cryogenic liquid hydrogen as fuel.
  • the fuel tank 6 can supply liquid hydrogen to the rocket engine 8 by supplying the working gas from the gas accumulator 9 and pressurizing the inside thereof.
  • the oxidant tank 7 is, for example, a liquid oxygen tank that accumulates cryogenic liquid oxygen as an oxidant.
  • the oxidizer tank 7 can supply liquid oxygen toward the rocket engine 8 by supplying the working gas from the gas accumulator 9 and pressurizing the inside thereof.
  • the oxidant tank 7 is disposed to face the fuel tank 6 with the frame 5 interposed therebetween.
  • the rocket engine 8 is provided on the lower side of the oxidant tank 7, that is, on the opposite side of the fuel tank 6 with the oxidant tank 7 interposed therebetween.
  • the rocket engine 8 mixes the liquid hydrogen supplied from the fuel tank 6 and the liquid oxygen supplied from the oxidant tank 7 and burns them to generate a propulsive force.
  • the rocket engine 8 generates propulsive force using the liquid phase fuel and the oxidant.
  • the gas accumulator 9 is formed in a spherical shape with a hollow inside, and accumulates a working gas for pressurizing the inside of the fuel tank 6 and the oxidant tank 7.
  • the gas accumulator 9 is disposed on the lower side of the oxidant tank 7 and is disposed on the outer peripheral side of the oxidant tank 7.
  • the working gas is appropriately supplied from the air reservoir 9 toward the fuel tank 6 and the oxidant tank 7.
  • the inside of the fuel tank 6 is pressurized by the working gas, and the liquid hydrogen accumulated in the fuel tank 6 is supplied toward the rocket engine 8.
  • the working gas is supplied to the oxidant tank 7, the inside of the oxidant tank 7 is pressurized by the working gas, and the liquid oxygen accumulated inside the oxidant tank 7 is supplied toward the rocket engine 8.
  • the liquid hydrogen and liquid oxygen supplied to the rocket engine 8 are mixed and burned in the rocket engine 8 to give a propulsive force to the rocket 1.
  • the liquid hydrogen stored in the fuel tank 6 is stored on the bottom side (the other side) of the fuel tank 6 by the propulsive force (acceleration).
  • the liquid oxygen stored in the oxidant tank 7 is stored on the bottom side (the other side) of the oxidant tank 7 by the driving force (acceleration).
  • the rocket 1 that travels in outer space is not given propulsive force by the rocket engine 8 when the rocket engine 8 is not burned, that is, when the inside of the fuel tank 6 and the oxidant tank is not pressurized by the working gas. .
  • the inside of the fuel tank 6 and the oxidant tank 7 is in a microgravity state or a weightless state.
  • the microgravity state can be generated by a propulsive force provided by a thruster or the like provided on the rocket 1.
  • the liquid hydrogen stored in the fuel tank 6 floats inside the fuel tank 6 in the microgravity state or the weightless state.
  • the liquid oxygen stored in the oxidant tank 7 floats inside the oxidant tank 7.
  • the rocket 1 navigating outer space is given radiant heat from the sun.
  • tanks such as the fuel tank 6 and the oxidant tank 7 are warmed by radiation heat input.
  • liquid phase propellant such as liquid hydrogen and liquid oxygen floats in the tank such as the fuel tank 6 and the oxidant tank 7, the suspended propellant comes into contact with the inner wall of the tank and evaporates.
  • the inside of the fuel tank 6 and the oxidant tank 7 has a structure shown in FIG. In the following description, the description is applied to the fuel tank 6, but it can also be applied to the oxidant tank 7.
  • the fuel tank 6 includes a tank body 11, a holding container 12 provided inside the tank body 11, a reservoir container 13 provided inside the holding container 12, and the tank body 11. And a spacer (connecting member) 14 provided between the holding housing portion 12.
  • the tank body 11 is formed in a cylindrical shape.
  • the tank main body 11 is formed with a plurality of rib portions 11 a on the inner wall for fixing the holding housing portion 12 via the spacers 14.
  • the tank body 11 has a discharge port (not shown) for discharging liquid hydrogen and a gas pressurization port (not shown) for flowing the working gas supplied from the gas accumulator 9.
  • the holding / accommodating portion 12 is provided inside the tank body 11 and is disposed with a predetermined gap from the inner wall of the tank body 11. For this reason, the holding accommodating portion 12 is a bag-shaped accommodating body that is slightly smaller than the tank main body 11. The holding housing portion 12 is fixed by being connected to the inside of the tank main body 11 via the spacer 14.
  • the holding accommodating portion 12 is configured using a metal mesh having a mesh.
  • the wire mesh is resistant to cryogenic liquid hydrogen.
  • the wire mesh holds liquid hydrogen in the inside of the tank body 11 in a microgravity state or weightless state, while the inside of the tank body 11 is applied with a propulsive force (gravity) due to combustion of the rocket engine 8. It has a function of passing liquid hydrogen.
  • the wire mesh holds liquid hydrogen inside when not pressurized with working gas, and has a function of passing liquid hydrogen when pressurized with working gas.
  • the mesh of the wire mesh is set to a suitable mesh depending on the propellant used, the disturbance, the condition of the microgravity state, or the like.
  • a suitable example of the mesh of a wire mesh it is 400 mesh or more.
  • the wire mesh configured in this way is configured so that the surface tension of liquid hydrogen can act.
  • the holding housing portion 12 allows liquid hydrogen to pass when there is no pressure due to the working gas, when the pressure due to the working gas is smaller than the surface tension of liquid hydrogen, or when the propulsive force of the rocket 1 is smaller than the surface tension.
  • the liquid hydrogen can be held inside by being suppressed.
  • the holding container 12 allows the liquid hydrogen to pass and It will be possible to flow outside.
  • the holding and accommodating portion 12 has a uniform mesh number throughout.
  • the holding housing 12 uses a wire net that is light in weight while being configured so that the surface tension of liquid hydrogen can act. That is, since the holding accommodating portion 12 has a uniform number of meshes throughout, a lightweight wire mesh can be used over the entire portion, and thus an increase in weight can be suppressed.
  • the spacer 14 connects the inner wall of the tank body 11 and the holding housing 12 and is provided at a plurality of locations.
  • the spacer 14 is configured by using a low heat transfer material.
  • a low heat transfer material for example, fiber reinforced plastic (FRP: Fiber Reinforced Plastics) is used.
  • FRP Fiber Reinforced Plastics
  • One of the spacers 14 is connected to the rib portion 11 a formed on the inner wall of the tank body 11, and the other is connected to the outer surface of the holding housing portion 12.
  • a predetermined gap is maintained between the inner wall of the tank body 11 and the holding housing portion 12.
  • the reservoir accommodating portion 13 is provided inside the holding accommodating portion 12, and is provided on the discharge port side (lower side in the figure) for discharging liquid hydrogen.
  • the reservoir housing portion 13 is, for example, a cylindrical bag-shaped housing body, and is attached in contact with the inner surface of the holding housing portion 12.
  • the reservoir accommodating portion 13 is also configured using a metal mesh having a mesh, like the holding accommodating portion 12.
  • the wire mesh of the reservoir accommodating portion 13 has a function of holding liquid hydrogen inside when not pressurized with working gas while passing liquid hydrogen when pressurized with working gas.
  • the wire mesh used in the reservoir housing portion 13 may be the same as or different from the wire mesh used in the holding housing portion 12.
  • the reservoir accommodating portion 13 is provided with a relief valve 15 at a portion opposite to the portion where the holding accommodating portion 12 contacts.
  • the relief valve 15 is a valve for discharging gaseous hydrogen generated inside the reservoir housing 13.
  • the relief valve 15 is opened when the inside of the reservoir housing portion 13 becomes a predetermined pressure or higher, and is closed when the inside of the reservoir housing portion 13 is smaller than the predetermined pressure.
  • the rocket 1 that travels in outer space, even if the inside of the fuel tank 6 is in a microgravity state or a weightless state, if it is pressurized by the working gas, it floats inside the holding container 12 of the fuel tank 6.
  • the liquid hydrogen to be passed passes through the holding housing portion 12 by the pressure of the working gas. For this reason, the liquid hydrogen flows through the holding housing portion 12 toward the discharge port.
  • the liquid hydrogen floating inside the reservoir accommodating portion 13 of the fuel tank 6 passes through the reservoir accommodating portion 13 due to the pressure of the working gas and flows toward the discharge port.
  • the holding propellant 12 holds the liquid phase propellant that floats when the inside of the tank body 11 is in a microgravity state or a weightless state. Can be held inside.
  • a gap is formed between the inner wall of the tank body 11 and the holding housing portion 12, it is possible to prevent the liquid phase propellant from coming into contact with the inner wall of the tank body 11 and evaporating. it can.
  • evaporation of a liquid phase propellant can be suppressed, it can suppress that the propellant which can be used decreases, and can use a propellant efficiently.
  • the propellant accommodated inside the holding housing portion 12 is pressurized by pressurizing the inside of the tank body 11 with the working gas. Can be discharged to the outside of the tank body 11 through the holding housing portion 12.
  • maintenance accommodating part 12 can be suitably supplied toward the rocket engine 8 at the time of use of a propellant.
  • the liquid phase propellant can be held inside the holding housing portion 12 by surface tension. For this reason, while the inside of the tank body 11 is in a microgravity state or a non-gravity state, while holding the liquid phase propellant in the holding housing portion 12 when the working gas is not pressurized, when the working gas is pressurized, The liquid phase propellant can be discharged from the inside of the holding housing portion 12 to the outside.
  • the holding housing portion 12 can be configured using a wire mesh having a mesh, the surface tension can be easily set by the number of meshes of the wire mesh.
  • accommodating accommodating part 12 can be comprised using a metal mesh, even if it is a case where cryogenic liquid oxygen or cryogenic liquid hydrogen is used as a propellant, the holding
  • the holding housing portion 12 can be fixed to the inner wall of the tank body 11 while forming a gap between the holding housing portion 12 and the inner wall of the tank body 11 by the spacer 14. it can.
  • the spacer 14 can be configured using a low heat transfer material, it is possible to make it difficult for the heat of the tank body 11 to be transmitted to the holding housing portion 12, thereby further suppressing evaporation of the propellant in the liquid phase. can do.
  • the liquid phase propellant can be held in the reservoir accommodating portion 13, the liquid phase propellant is placed on the propellant discharge side in the holding accommodating portion 12. Can be held.
  • the gas phase propellant rocket engine The liquid phase propellant can be suitably supplied to the rocket engine 8 while suppressing the inflow to the rocket engine 8.
  • a propellant can be combusted suitably.
  • the gas phase propellant is discharged from the reservoir accommodating portion 13 through the relief valve 15. can do. For this reason, supply of the propellant in the gas phase to the rocket engine 8 can be suppressed.
  • the holding housing portion 12 and the reservoir housing portion 13 are configured using a wire mesh.
  • a net PTFE network configured using polytetrafluoroethylene instead of the wire mesh is used.
  • the material is not limited to a net material such as a wire net and a PTFE net, and any material that can act on the surface tension of a propellant in a liquid phase may be used.
  • a porous sheet material may be used.
  • the holding housing portion 12 may be a wire mesh having at least a part of a mesh, a part of which may be a wire mesh, or the whole of which may be a wire mesh.
  • the holding accommodating portion 12 may have a uniform number of meshes or may be non-uniform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

作動ガスにより内部が加圧されることで、内部に溜められる液体水素及び液体酸素等の推進薬を、ロケットエンジンへ向けて排出する宇宙航行体用の燃料タンク6及び酸化剤タンク等の推進薬タンクであって、液相状態の推進薬を、内部に溜めるタンク本体11と、タンク本体11の内部に設けられ、タンク本体11の内壁と所定の隙間を空けて配置されると共に、タンク本体11の内部が微小重力状態または無重力状態において、液相状態の推進薬を内部に保持可能な保持収容部12と、を備える。

Description

宇宙航行体用の推進薬タンク及び宇宙航行体
 本発明は、液相の推進薬を溜める宇宙航行体用の推進薬タンク及び宇宙航行体に関するものである。
 従来、ロケット上段に設けられ、燃料を貯蔵するタンクが知られている(例えば、特許文献1参照)。このタンクには、ガス供給および取り出し装置が設けられており、タンク内にガスを供給することで、タンク内の燃料を取り出している。
 また、無重力または微小重力環境に配置され、人工衛星のスラスタの推薬を収容する推薬タンクが知られている(例えば、特許文献2参照)。この推薬タンクは、タンク本体と、タンク本体の内壁面の円周方向に沿って推薬を旋回させるように流入させる推薬供給管とを備えている。このため、推薬タンクは、タンク内壁面側が液相、タンク中心側が蒸気相となるように気液分離を行うことができる。
特開2008-189304号公報 特許第4660966号公報
 ところで、宇宙空間において、タンクには、太陽からの輻射入熱が与えられる。このため、タンクの内部に溜められた液体水素または液体酸素等の液相の推進薬が、タンクの内壁に接触すると蒸発してしまう。ここで、ロケットエンジンには、液相の状態で、推進薬を供給しなければならないことから、推進薬が蒸発してしまうと、ロケットエンジンにおいて使用可能な推進薬が減ってしまうことになる。特に、宇宙航行体の宇宙空間内の航行期間が長くなる場合には、蒸発する推進薬の量が多くなってしまうと、推進薬を用いた所定のミッションの実行が困難となってしまう。
 そこで、本発明は、推進薬タンクに溜められる液相の推進薬の蒸発を抑制することができる宇宙航行体用の推進薬タンク及び宇宙航行体を提供することを課題とする。
 本発明の宇宙航行体用の推進薬タンクは、作動ガスにより内部が加圧されることで、内部に溜められる推進薬を、エンジンへ向けて排出可能な宇宙航行体用の推進薬タンクであって、液相状態の前記推進薬を、内部に溜めるタンク本体と、前記タンク本体の内部に設けられ、前記タンク本体の内壁と所定の隙間を空けて配置されると共に、前記タンク本体の内部が微小重力状態または無重力状態において、液相状態の前記推進薬を内部に保持可能な保持収容部と、を備えることを特徴とする。
 また、本発明の宇宙航行体は、液相状態の推進薬を、内部に溜めるタンク本体と、前記タンク本体の内部に設けられ、前記タンク本体の内壁と所定の隙間を空けて配置されると共に、前記タンク本体の内部が微小重力状態または無重力状態において、液相状態の前記推進薬を内部に保持可能な収容部と、を有する推進薬タンクと、前記推進薬を排出すべく、前記推進薬タンクの内部を加圧する作動ガスを供給する気蓄器と、を備えることを特徴とする。
 この構成によれば、宇宙航行体が宇宙空間において航行する場合、タンク本体の内部が微小重力状態または無重力状態において、浮遊する液相の推進薬を保持収容部の内部に保持することができる。このとき、タンク本体の内壁と保持収容部との間には隙間が形成されるため、液相の推進薬が、タンク本体の内壁に接触して、蒸発することを抑制することができる。これにより、液相の推進薬の蒸発を抑制することができるため、使用可能な推進薬が減少してしまうことを抑制することができ、推進薬を効率良く使用することができる。
 また、前記保持収容部は、前記作動ガスによる加圧時において、液相状態の前記推進薬を通過させることができる。
 この構成によれば、推進薬をエンジンへ向けて排出する場合、作動ガスによりタンク本体の内部を加圧することで、保持収容部の内部に収容された推進薬を、保持収容部を通過させてタンク本体の外部へ排出させることができる。これにより、推進薬の使用時において、保持収容部の内部に収容された推進薬を、エンジンへ向けて好適に供給することができる。
 また、前記保持収容部は、液相状態の前記推進薬の表面張力が作用可能な材料を用いて構成されることが好ましい。
 この構成によれば、液相の推進薬を、表面張力により保持収容部の内部に保持することができる。このため、作動ガスの非加圧時において、保持収容部の内部に液相の推進薬を保持する一方で、作動ガスの加圧時において、保持収容部の内部から液相の推進薬を外部へ排出することができる。なお、液相状態の推進薬の表面張力が作用可能な材料としては、例えば、メッシュを有する網材、または多孔のシート材等がある。
 また、前記保持収容部は、メッシュを有する網材を用いて構成されることが好ましい。
 この構成によれば、網材を用いて保持収容部を構成することができるため、網材のメッシュ数などにより、表面張力を容易に設定することが可能となる。なお、保持収容部は、少なくとも一部がメッシュを有する網材であればよい。つまり、保持収容部は、一部が網材であってもよいし、全部が網材であってもよい。また、保持収容部は、そのメッシュ数が均一であってもよいし、不均一であってもよい。
 また、前記網材は、金網であることが好ましい。
 この構成によれば、網材を金網で構成することができるため、推進薬として、極低温の液体酸素、または極低温の液体水素を用いた場合であっても、推進薬に対する耐性を有する保持収容部にすることができる。
 また、前記網材は、ポリテトラフルオロエチレンを用いて構成されるネットであることが好ましい。
 この構成によれば、網材をポリテトラフルオロエチレンを用いたネット(PTFEネット)で構成することができるため、推進薬として、極低温の液体酸素、または極低温の液体水素を用いた場合であっても、推進薬に対する耐性を有する保持収容部にすることができる。また、PTFEネットは、金網に比して軽量であるため、保持収容部の軽量化を図ることができ、保持収容部を設けることによる宇宙航行体の重量の増大を抑制することができる。
 また、前記タンク本体の内壁と前記保持収容部とを連結する連結部材をさらに備え、前記連結部材は、低伝熱材料を用いて構成されることが好ましい。
 この構成によれば、連結部材により、保持収容部とタンク本体の内壁との間に隙間を形成しつつ、タンク本体の内壁に保持収容部を固定することができる。このとき、連結部材を、低伝熱材料を用いて構成することができるため、タンク本体の熱を保持収容部に伝え難くすることができるため、液相の推進薬の蒸発をより抑制することができる。なお、低伝熱材料としては、例えば、繊維強化プラスチックであり、タンク本体を構成する材料よりも伝熱性が低いものであればよい。
 また、前記保持収容部の内部において、前記推進薬の排出側に設けられ、液相状態の前記推進薬を内部に保持可能なリザーバ収容部を、さらに備えることが好ましい。
 この構成によれば、液相の推進薬をリザーバ収容部の内部に保持することができるため、保持収容部内の推進薬の排出側に、液相の推進薬を保持することができる。このため、エンジンの着火時および着火初期の加速度が印加される前の段階において、気相の推進薬のエンジンへの流入を抑制しつつ、液相の推進薬をエンジンに好適に供給することができる。これにより、エンジンでは、推進薬を好適に燃焼させることができる。
 また、前記リザーバ収容部には、前記リザーバ収容部の内部で気相となった前記推進薬を排出するリリーフ弁が設けられていることが好ましい。
 この構成によれば、リザーバ収容部の内部において推進薬が気相となった場合であっても、リリーフ弁を介して気相の推進薬をリザーバ収容部から排出することができる。このため、気相の推進薬がエンジンへ供給されることを抑制することができる。
図1は、本実施例に係る宇宙航行体としてのロケットの一部を模式的に表した概略構成図である。 図2は、燃料タンク及び酸化剤タンクの内部を模式的に表した概略構成図である。
 以下に、本発明に係る実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図1は、本実施例に係る宇宙航行体としてのロケットの一部を模式的に表した概略構成図であり、図2は、燃料タンク及び酸化剤タンクの内部を模式的に表した概略構成図である。本実施例の推進薬タンクは、宇宙航行体で使用される推進薬を溜めるタンクであり、推進薬としては、例えば、燃料としての液体水素(LH)及び酸化剤としての液体酸素(LO)が適用される。つまり、推進薬タンクは、液体水素を溜める燃料タンク6、及び液体酸素を溜める酸化剤タンク7に適用される。ここで、宇宙航行体としては、ロケット等の飛翔体、人工衛星または宇宙基地等があるが、本実施例では、ロケット1に適用して説明する。先ず、図1を参照して、燃料タンク6及び酸化剤タンク7が設けられるロケット1について説明する。
 図1に示すように、ロケット1は、フレーム5と、フレーム5の一方側(図示上側)に支持される燃料タンク6と、フレーム5の他方側(図示下側)に支持される酸化剤タンク7と、燃料を燃焼させて推進力を発生させるロケットエンジン8と、気蓄器9とを備えている。
 フレーム5は、トラス構造となっており、燃料タンク6と酸化剤タンク7との間に設けられている。そして、フレーム5は、その一方側が燃料タンク6に固定され、その他方側が酸化剤タンク7に固定されており、燃料タンク6と酸化剤タンク7とを支持している。
 燃料タンク6は、例えば、燃料として極低温の液体水素を溜める液体水素タンクとなっている。燃料タンク6は、気蓄器9から作動ガスが供給されて内部が加圧されることで、ロケットエンジン8へ向けて液体水素を供給可能となっている。
 酸化剤タンク7は、例えば、酸化剤として極低温の液体酸素を溜める液体酸素タンクとなっている。酸化剤タンク7は、気蓄器9から作動ガスが供給されて内部が加圧されることで、ロケットエンジン8へ向けて液体酸素を供給可能となっている。この酸化剤タンク7は、フレーム5を挟んで、燃料タンク6に対向して配置されている。
 ロケットエンジン8は、酸化剤タンク7の下方側、つまり、酸化剤タンク7を挟んで、燃料タンク6の反対側に設けられている。ロケットエンジン8は、燃料タンク6から供給された液体水素及び酸化剤タンク7から供給された液体酸素を混合して燃焼させることで、推進力を発生させる。このように、ロケットエンジン8は、液相状態の燃料および酸化剤を用いて、推進力を発生させている。
 気蓄器9は、内部が中空となる球状に形成されており、燃料タンク6及び酸化剤タンク7の内部を加圧するための作動ガスを蓄圧している。気蓄機9は、酸化剤タンク7の下方側に配置されると共に、酸化剤タンク7の外周側に配置されている。
 このように、宇宙空間を航行するロケット1は、ロケットエンジン8を燃焼させる場合、気蓄器9から燃料タンク6及び酸化剤タンク7へ向けて作動ガスが適宜供給される。作動ガスが燃料タンク6に供給されると、作動ガスにより燃料タンク6の内部が加圧され、燃料タンク6の内部に溜まった液体水素がロケットエンジン8へ向けて供給される。同様に、作動ガスが酸化剤タンク7に供給されると、作動ガスにより酸化剤タンク7の内部が加圧され、酸化剤タンク7の内部に溜まった液体酸素がロケットエンジン8へ向けて供給される。そして、ロケットエンジン8に供給された液体水素及び液体酸素は、ロケットエンジン8において混合され燃焼が行われることで、ロケット1に推進力が与えられる。なお、推進力が与えられたロケット1において、燃料タンク6に溜められた液体水素は、推進力(加速)によって、燃料タンク6の底部側(他方側)に溜まる。同様に、酸化剤タンク7に溜められた液体酸素は、推進力(加速)によって、酸化剤タンク7の底部側(他方側)に溜まる。
 一方で、宇宙空間を航行するロケット1は、ロケットエンジン8を燃焼させない場合、つまり、作動ガスにより燃料タンク6及び酸化剤タンクの内部が加圧されない場合、ロケットエンジン8による推進力が与えられない。このため、燃料タンク6及び酸化剤タンク7の内部は、微小重力状態または無重力状態となる。なお、微小重力状態は、ロケット1に設けられるスラスタ等によって与えられる推進力により発生させることができる。微小重力状態または無重力状態において、燃料タンク6に溜められた液体水素は、燃料タンク6の内部において浮遊する。同様に、酸化剤タンク7に溜められた液体酸素は、酸化剤タンク7の内部において浮遊する。
 ここで、宇宙空間を航行するロケット1には、太陽からの輻射入熱が与えられる。このため、燃料タンク6及び酸化剤タンク7等のタンクは、輻射入熱により温められる。このとき、燃料タンク6及び酸化剤タンク7等のタンクにおいて、液体水素及び液体酸素等の液相の推進薬が浮遊すると、浮遊した推進薬は、タンク内壁に接触して蒸発してしまう。このため、燃料タンク6及び酸化剤タンク7の内部は、図2に示す構成となっている。なお、以下では、燃料タンク6に適用して説明するが、酸化剤タンク7でも適用可能となっている。
 図2に示すように、燃料タンク6は、タンク本体11と、タンク本体11の内部に設けられる保持収容部12と、保持収容部12の内部に設けられるリザーバ収容部13と、タンク本体11と保持収容部12との間に設けられるスペーサ(連結部材)14とを有している。
 タンク本体11は、円筒形状に形成されている。タンク本体11には、その内壁にスペーサ14を介して保持収容部12を固定するためのリブ部11aが複数形成されている。また、タンク本体11には、液体水素を排出するための図示しない排出口と、気蓄器9から供給される作動ガスを流入させるための図示しないガス加圧口とが形成されている。
 保持収容部12は、タンク本体11の内部に設けられ、タンク本体11の内壁と所定の隙間を空けて配置されている。このため、保持収容部12は、タンク本体11よりも一回り小さい袋状の収容体となっている。この保持収容部12は、スペーサ14を介して、タンク本体11の内部に連結されることで固定される。
 保持収容部12は、メッシュを有する金網を用いて構成されている。金網は、極低温の液体水素に耐性を有するものである。この金網は、タンク本体11の内部が微小重力状態または無重力状態において、液体水素を内部に保持する一方で、タンク本体11の内部がロケットエンジン8の燃焼による推進力(重力)の付与時において、液体水素を通過する機能を有するものとなっている。また、この金網は、作動ガスによる非加圧時において、液体水素を内部に保持する一方で、作動ガスによる加圧時において、液体水素を通過する機能を有するものとなっている。なお、金網のメッシュは、使用する推進薬、外乱、または微小重力状態の条件等によって好適なメッシュに設定される。ここで、金網のメッシュの好適な一例としては、400メッシュ以上である。
 このように構成される金網は、液体水素の表面張力が作用可能な構成となる。つまり、保持収容部12は、作動ガスによる圧力がない場合、作動ガスによる圧力が液体水素の表面張力よりも小さい場合、またはロケット1の推進力が表面張力よりも小さい場合、液体水素の通過を抑制して、液体水素を内部に保持可能となる。一方で、保持収容部12は、作動ガスの圧力が液体水素の表面張力よりも大きい場合、またはロケット1の推進力が表面張力よりも大きい場合、液体水素の通過を許容して、液体水素を外部へ流出可能となる。
 また、保持収容部12は、全体に亘って均一なメッシュ数になっている。このとき、保持収容部12は、液体水素の表面張力が作用可能な構成としつつ、その重量が軽くなるような金網を用いている。つまり、保持収容部12は、全体に亘って均一なメッシュ数とすることで、全体に亘って軽量な金網を用いることができるため、重量の増大を抑制することができる。
 スペーサ14は、タンク本体11の内壁と保持収容部12とを連結するものであり、複数個所に設けられている。スペーサ14は、低伝熱材料を用いて構成されており、低伝熱材料としては、例えば、繊維強化プラスチック(FRP:Fiber Reinforced Plastics)が用いられる。なお、低伝熱材料に限らず、チタン合金等を用いてもよい。このスペーサ14は、一方がタンク本体11の内壁に形成されるリブ部11aに連結され、他方が保持収容部12の外面に連結される。また、このスペーサ14が設けられることで、タンク本体11の内壁と保持収容部12との間は、所定の隙間が維持される。
 リザーバ収容部13は、保持収容部12の内部に設けられ、液体水素を排出する排出口側(図示下側)に設けられている。リザーバ収容部13は、例えば、円筒形となる袋状の収容体となっており、保持収容部12の内面に接して取り付けられている。
 リザーバ収容部13も、保持収容部12と同様に、メッシュを有する金網を用いて構成されている。つまり、リザーバ収容部13の金網は、作動ガスによる非加圧時において、液体水素を内部に保持する一方で、作動ガスによる加圧時において、液体水素を通過する機能を有するものとなっている。なお、リザーバ収容部13で用いられる金網は、保持収容部12で用いられる金網と同様のものであってもよいし、異なるものであってもよい。
 このリザーバ収容部13には、保持収容部12が接する部位とは反対側の部位に、リリーフ弁15が設けられている。リリーフ弁15は、リザーバ収容部13の内部で発生した気相状態の水素を排出するためのバルブである。リリーフ弁15は、リザーバ収容部13の内部が所定圧力以上になると開弁する一方で、リザーバ収容部13の内部が所定圧力よりも小さいと閉弁する。
 宇宙空間を航行するロケット1において、燃料タンク6の内部が微小重力状態または無重力状態であり、作動ガスにより加圧されない場合、燃料タンク6の保持収容部12の内部に浮遊する液体水素は、表面張力によって保持収容部12の通過が抑制される。このため、液体水素は、保持収容部12の内部に保持される。同様に、燃料タンク6のリザーバ収容部13の内部に浮遊する液体水素は、表面張力によってリザーバ収容部13の通過が抑制される。
 一方で、宇宙空間を航行するロケット1において、燃料タンク6の内部が微小重力状態または無重力状態であっても、作動ガスにより加圧される場合、燃料タンク6の保持収容部12の内部に浮遊する液体水素は、作動ガスの圧力によって保持収容部12を通過する。このため、液体水素は、保持収容部12を通過して、排出口へ向けて流れる。同様に、燃料タンク6のリザーバ収容部13の内部に浮遊する液体水素は、作動ガスの圧力によってリザーバ収容部13を通過し、排出口へ向けて流れる。
 続いて、保持収容部12及びリザーバ収容部13で使用される金網の選定方法について説明する。地上において、金網を選定するための実験を行う場合、取り扱いが容易な液体窒素(LN)が用いられる。このとき、液体窒素と液体水素及び液体酸素とは、その表面張力が異なっている。このため、液体窒素で得られた試験結果に対して、液体水素及び液体酸素の表面張力の差異または温度等を考慮して補正を行うことにより、液体水素及び液体酸素に適したメッシュ数及び線径となる金網を選定することが可能となる。
 以上のように、本実施例の構成によれば、ロケット1が宇宙空間において航行する場合、タンク本体11の内部が微小重力状態または無重力状態において、浮遊する液相の推進薬を保持収容部12の内部に保持することができる。このとき、タンク本体11の内壁と保持収容部12との間には隙間が形成されるため、液相の推進薬が、タンク本体11の内壁に接触して、蒸発することを抑制することができる。これにより、液相の推進薬の蒸発を抑制することができるため、使用可能な推進薬が減少してしまうことを抑制することができ、推進薬を効率良く使用することができる。
 また、本実施例の構成によれば、推進薬をロケットエンジン8へ向けて排出する場合、作動ガスによりタンク本体11の内部を加圧することで、保持収容部12の内部に収容された推進薬を、保持収容部12を通過させてタンク本体11の外部へ排出させることができる。これにより、推進薬の使用時において、保持収容部12の内部に収容された推進薬を、ロケットエンジン8へ向けて好適に供給することができる。
 また、本実施例の構成によれば、液相の推進薬を、表面張力により保持収容部12の内部に保持することができる。このため、タンク本体11の内部が微小重力状態または無重力状態において、作動ガスの非加圧時に、保持収容部12の内部に液相の推進薬を保持する一方で、作動ガスの加圧時に、保持収容部12の内部から液相の推進薬を外部へ排出することができる。
 また、本実施例の構成によれば、メッシュを有する金網を用いて保持収容部12を構成することができるため、金網のメッシュ数などにより、表面張力を容易に設定することが可能となる。また、金網を用いて保持収容部12を構成することができるため、推進薬として、極低温の液体酸素、または極低温の液体水素を用いた場合であっても、保持収容部12を、推進薬に対する耐性を有する構成にすることができる。
 また、本実施例の構成によれば、スペーサ14により、保持収容部12とタンク本体11の内壁との間に隙間を形成しつつ、タンク本体11の内壁に保持収容部12を固定することができる。このとき、スペーサ14を、低伝熱材料を用いて構成することができるため、タンク本体11の熱を保持収容部12に伝え難くすることができるため、液相の推進薬の蒸発をより抑制することができる。
 また、本実施例の構成によれば、液相の推進薬をリザーバ収容部13の内部に保持することができるため、保持収容部12内の推進薬の排出側に、液相の推進薬を保持することができる。このため、ロケットエンジン8の着火時および着火初期の加速度(推進力)が印加される前の段階において、作動ガスによりタンク本体11の内部が加圧された場合、気相の推進薬のロケットエンジン8への流入を抑制しつつ、液相の推進薬をロケットエンジン8に好適に供給することができる。これにより、ロケットエンジン8では、推進薬を好適に燃焼させることができる。
 また、本実施例の構成によれば、リザーバ収容部13の内部において推進薬が気相となった場合であっても、リリーフ弁15を介して気相の推進薬をリザーバ収容部13から排出することができる。このため、気相の推進薬がロケットエンジン8へ供給されることを抑制することができる。
 なお、本実施例では、金網を用いて保持収容部12及びリザーバ収容部13を構成したが、この構成に限らない、金網に代えて、ポリテトラフルオロエチレンを用いて構成されるネット(PTFEネット)により保持収容部12及びリザーバ収容部13を構成してもよい。また、金網及びPTFEネット等の網材に限らず、液相状態の推進薬の表面張力が作用可能な材料であればいずれであってもよく、例えば、多孔のシート材を用いてもよい。
 また、本実施例において、保持収容部12は、少なくとも一部がメッシュを有する金網であればよく、一部が金網であってもよいし、全部が金網であってもよい。また、保持収容部12は、そのメッシュ数が均一であってもよいし、不均一であってもよい。
1 ロケット
5 フレーム
6 燃料タンク
7 酸化剤タンク
8 ロケットエンジン
9 気蓄器
11 タンク本体
11a リブ部
12 保持収容部
13 リザーバ収容部
14 スペーサ
15 リリーフ弁

Claims (10)

  1.  作動ガスにより内部が加圧されることで、内部に溜められる推進薬を、エンジンへ向けて排出可能な宇宙航行体用の推進薬タンクであって、
     液相状態の前記推進薬を、内部に溜めるタンク本体と、
     前記タンク本体の内部に設けられ、前記タンク本体の内壁と所定の隙間を空けて配置されると共に、前記タンク本体の内部が微小重力状態または無重力状態において、液相状態の前記推進薬を内部に保持可能な保持収容部と、を備えることを特徴とする宇宙航行体用の推進薬タンク。
  2.  前記保持収容部は、前記作動ガスによる加圧時において、液相状態の前記推進薬を通過させることを特徴とする請求項1に記載の宇宙航行体用の推進薬タンク。
  3.  前記保持収容部は、液相状態の前記推進薬の表面張力が作用可能な材料を用いて構成されることを特徴とする請求項1または2に記載の宇宙航行体用の推進薬タンク。
  4.  前記保持収容部は、メッシュを有する網材を用いて構成されることを特徴とする請求項3に記載の宇宙航行体用の推進薬タンク。
  5.  前記網材は、金網であることを特徴とする請求項4に記載の宇宙航行体用の推進薬タンク。
  6.  前記網材は、ポリテトラフルオロエチレンを用いて構成されるネットであることを特徴とする請求項4に記載の宇宙航行体用の推進薬タンク。
  7.  前記タンク本体の内壁と前記保持収容部とを連結する連結部材を、さらに備え、
     前記連結部材は、低伝熱材料を用いて構成されることを特徴とする請求項1から6のいずれか1項に記載の宇宙航行体用の推進薬タンク。
  8.  前記保持収容部の内部において、前記推進薬の排出側に設けられ、液相状態の前記推進薬を内部に保持可能なリザーバ収容部を、さらに備えることを特徴とする請求項1から7のいずれか1項に記載の宇宙航行体用の推進薬タンク。
  9.  前記リザーバ収容部には、前記リザーバ収容部の内部で気相となった前記推進薬を排出するためのリリーフ弁が設けられていることを特徴とする請求項8に記載の宇宙航行体用の推進薬タンク。
  10.  液相状態の推進薬を、内部に溜めるタンク本体と、前記タンク本体の内部に設けられ、前記タンク本体の内壁と所定の隙間を空けて配置されると共に、前記タンク本体の内部が微小重力状態または無重力状態において、液相状態の前記推進薬を内部に保持可能な収容部と、を有する推進薬タンクと、
     前記推進薬を排出すべく、前記推進薬タンクの内部を加圧する作動ガスを供給する気蓄器と、を備えることを特徴とする宇宙航行体。
PCT/JP2016/058870 2015-03-31 2016-03-18 宇宙航行体用の推進薬タンク及び宇宙航行体 WO2016158538A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16772420.2A EP3260378B1 (en) 2015-03-31 2016-03-18 Propellant tank for spacecraft, and spacecraft
US15/561,636 US10604279B2 (en) 2015-03-31 2016-03-18 Propellant tank for spacecraft and spacecraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074308A JP6590502B2 (ja) 2015-03-31 2015-03-31 宇宙航行体用の推進薬タンク及び宇宙航行体
JP2015-074308 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158538A1 true WO2016158538A1 (ja) 2016-10-06

Family

ID=57006165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058870 WO2016158538A1 (ja) 2015-03-31 2016-03-18 宇宙航行体用の推進薬タンク及び宇宙航行体

Country Status (4)

Country Link
US (1) US10604279B2 (ja)
EP (1) EP3260378B1 (ja)
JP (1) JP6590502B2 (ja)
WO (1) WO2016158538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234705A1 (fr) * 2017-06-22 2018-12-27 Arianegroup Sas Réservoir amélioré pour moteur d'engin spatial

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590502B2 (ja) * 2015-03-31 2019-10-16 三菱重工業株式会社 宇宙航行体用の推進薬タンク及び宇宙航行体
JP2018093585A (ja) 2016-11-30 2018-06-14 ミネベアミツミ株式会社 モータ
CN117262238A (zh) 2017-07-21 2023-12-22 诺思路·格鲁曼系统公司 航天器服务装置及相关组件、系统和方法
SG11202107381PA (en) 2019-01-15 2021-08-30 Northrop Grumman Systems Corp Spacecraft servicing devices and related assemblies, systems, and methods
WO2023151865A1 (de) 2022-02-14 2023-08-17 Linde Gmbh Speicherbehälter für kryogene flüssigkeit, wasserfahrzeug mit entsprechendem speicherbehälter und verfahren zum speichern einer kryogenen flüssigkeit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176882A (en) * 1960-06-09 1965-04-06 Garrett Corp Liquid reservoir
JPS628900U (ja) * 1985-07-03 1987-01-20
JPS6255299A (ja) * 1985-09-04 1987-03-10 三菱電機株式会社 推薬タンク
US4821907A (en) * 1988-06-13 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Surface tension confined liquid cryogen cooler
JPH0448100U (ja) * 1990-08-30 1992-04-23
JPH0656097A (ja) * 1992-08-11 1994-03-01 Mitsubishi Heavy Ind Ltd キャピラリースクリーン
JPH1035595A (ja) * 1996-07-23 1998-02-10 Mitsubishi Heavy Ind Ltd 人工衛星用燃料タンク
JP2008267503A (ja) * 2007-04-20 2008-11-06 Mitsubishi Heavy Ind Ltd 低温流体用貯蔵タンク
WO2014061616A1 (ja) * 2012-10-15 2014-04-24 三菱重工業株式会社 液化燃料用貯蔵タンク
US20140117021A1 (en) * 2011-07-01 2014-05-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic Fluid Tank and Its Use
US20160059970A1 (en) * 2014-08-26 2016-03-03 The Boeing Company Vessel insulation assembly

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001376A (en) * 1957-11-26 1961-09-26 British Oxygen Co Ltd Storage tanks for liquid oxygen and the like in rockets
US3286463A (en) * 1963-08-09 1966-11-22 North American Aviation Inc Expulsion device
US3304729A (en) * 1965-10-22 1967-02-21 William A Chandler Cryogenic storage system
US3486302A (en) * 1968-02-26 1969-12-30 Martin Marietta Corp Zero or reduced gravity storage system for two phase fluid
US3581464A (en) * 1968-12-16 1971-06-01 Trw Inc Method of and apparatus for separating a liquid from liquid vapor and dissolved gases
US3720044A (en) * 1971-01-04 1973-03-13 Lockheed Aircraft Corp Strength compounding capillary array
US3933448A (en) * 1971-08-20 1976-01-20 Peri Leonard J Di Gas separator for liquid supply
US3854905A (en) * 1972-04-24 1974-12-17 Rca Corp Storage system for two phase fluids
US3903924A (en) * 1973-07-23 1975-09-09 Sundstrand Corp Compartmented fuel tank
US4013195A (en) * 1975-02-18 1977-03-22 Rockwell International Corporation Expulsion bladder
US4272257A (en) * 1976-12-06 1981-06-09 Hughes Aircraft Company Liquid-vapor separator
FR2484961A1 (fr) * 1980-06-20 1981-12-24 Europ Propulsion Reservoir a tension superficielle
FR2486624A1 (fr) * 1980-07-08 1982-01-15 Europ Propulsion Dispositif de stockage a tension superficielle avec reservoir-tampon
FR2500908A1 (fr) * 1981-03-02 1982-09-03 Europ Agence Spatiale Installation cryogenique a fonctionnement en l'absence de gravite, notamment pour missions spatiales
US4482365A (en) * 1982-03-01 1984-11-13 Pall Corporation Vortex air cleaner and self-cleaning barrier filter assembly for supercharged engines
US4595398A (en) * 1984-05-21 1986-06-17 Mcdonnell Douglas Corporation Propellant acquisition device
JPS628900A (ja) 1985-07-06 1987-01-16 Tokyo Keiki Co Ltd 操船装置
US4664134A (en) * 1985-09-30 1987-05-12 The Boeing Company Fuel system for flight vehicle
JPH01207151A (ja) * 1988-02-16 1989-08-21 Mitsubishi Heavy Ind Ltd 遠心式気液分離器
US4846854A (en) * 1988-09-30 1989-07-11 The United States Of America As Represented By The United States National Aeronautics And Space Administration System for venting gas from a liquid storage tank
FR2655956B1 (fr) * 1989-12-19 1992-04-17 Europ Propulsion Reservoir a effet capillaire de coque.
JPH0448100A (ja) 1990-06-15 1992-02-18 Nkk Corp 洗浄設備
US5263329A (en) * 1991-12-19 1993-11-23 Lockheed Missiles & Space Company, Inc. Flow management apparatus for cryogenic liquid
US5279323A (en) * 1991-12-19 1994-01-18 Lockheed Missiles & Space Company, Inc. Liquid management apparatus for spacecraft
US5398515A (en) * 1993-05-19 1995-03-21 Rockwell International Corporation Fluid management system for a zero gravity cryogenic storage system
US5613366A (en) * 1995-05-25 1997-03-25 Aerojet General Corporation System and method for regulating the temperature of cryogenic liquids
US5901557A (en) * 1996-10-04 1999-05-11 Mcdonnell Douglas Corporation Passive low gravity cryogenic storage vessel
US6111187A (en) * 1998-03-31 2000-08-29 The United States Of America As Represented By The Secretary Of The Navy Isolated compensated fluid delivery system
US6101816A (en) * 1998-04-28 2000-08-15 Advanced Technology Materials, Inc. Fluid storage and dispensing system
US6343476B1 (en) * 1998-04-28 2002-02-05 Advanced Technology Materials, Inc. Gas storage and dispensing system comprising regulator interiorly disposed in fluid containment vessel and adjustable in situ therein
US6334589B1 (en) * 1998-05-11 2002-01-01 Lockheed Martin Corporation Cyanate ester composites for oxygen containment
US6360546B1 (en) * 2000-08-10 2002-03-26 Advanced Technology Materials, Inc. Fluid storage and dispensing system featuring externally adjustable regulator assembly for high flow dispensing
JP4660966B2 (ja) 2001-05-17 2011-03-30 株式会社Ihi 液体用タンク
US6909839B2 (en) * 2003-07-23 2005-06-21 Advanced Technology Materials, Inc. Delivery systems for efficient vaporization of precursor source material
ITRM20050347A1 (it) * 2005-06-30 2007-01-01 Finmeccanica Spa Liner plastico integrato per serbatoi di propellente per piattaforme e sistemi di trasporto spaziali.
DE102005044534B3 (de) * 2005-09-17 2007-06-06 Astrium Gmbh Treibstofftank für kryogene Flüssigkeiten
DE102005062092B3 (de) * 2005-12-22 2007-03-29 Eads Space Transportation Gmbh Treibstofftank
US7568352B2 (en) * 2006-02-22 2009-08-04 The Boeing Company Thermally coupled liquid oxygen and liquid methane storage vessel
US7900434B2 (en) * 2006-12-20 2011-03-08 The Boeing Company Thermally-integrated fluid storage and pressurization system
DE102007005539B3 (de) * 2007-02-03 2008-08-14 Astrium Gmbh Tank zur Lagerung kryogener Flüssigkeiten oder lagerfähiger flüssiger Treibstoffe
US8785881B2 (en) * 2008-05-06 2014-07-22 Massachusetts Institute Of Technology Method and apparatus for a porous electrospray emitter
US10125052B2 (en) * 2008-05-06 2018-11-13 Massachusetts Institute Of Technology Method of fabricating electrically conductive aerogels
DE102008026320B3 (de) * 2008-06-03 2009-12-03 Astrium Gmbh Tank zur Lagerung kryogener Flüssigkeiten und lagerfähiger Treibstoffe
FR2933475B1 (fr) * 2008-07-04 2010-08-27 Snecma Systeme de stockage de liquide cryogenique pour engin spatial
FR2941678B1 (fr) * 2009-02-05 2011-02-18 Air Liquide Reservoir cryogenique et lanceur spatial comportant un tel reservoir.
DE102009019002B3 (de) * 2009-04-16 2010-11-25 Astrium Gmbh Blasenfalle für Treibstofftanks in Raumflugkörpern
JP5509429B2 (ja) * 2010-03-04 2014-06-04 独立行政法人 宇宙航空研究開発機構 推進薬タンク及びこの推進薬タンクを用いた蒸気噴射装置
JP5509428B2 (ja) * 2010-03-04 2014-06-04 独立行政法人 宇宙航空研究開発機構 蒸気噴射装置
US9395048B1 (en) * 2010-07-13 2016-07-19 The Boeing Company Thermally protected liquid acquisition device for cryogenic fluids
US8511504B2 (en) * 2011-03-21 2013-08-20 Hamilton Sundstrand Corporation Demisable fuel supply system
US8534489B2 (en) * 2011-03-21 2013-09-17 Hamilton Sundstrand Space Systems International, Inc. Demisable fuel supply system
JP5762093B2 (ja) * 2011-03-31 2015-08-12 三菱重工業株式会社 航空機・宇宙機用流体冷却システム及び航空機・宇宙機用流体冷却方法
US10308377B2 (en) * 2011-05-03 2019-06-04 Massachusetts Institute Of Technology Propellant tank and loading for electrospray thruster
US9695983B2 (en) * 2012-07-09 2017-07-04 Gp Strategies Corporation Fuel tank partition and method of use
JP6590502B2 (ja) * 2015-03-31 2019-10-16 三菱重工業株式会社 宇宙航行体用の推進薬タンク及び宇宙航行体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176882A (en) * 1960-06-09 1965-04-06 Garrett Corp Liquid reservoir
JPS628900U (ja) * 1985-07-03 1987-01-20
JPS6255299A (ja) * 1985-09-04 1987-03-10 三菱電機株式会社 推薬タンク
US4821907A (en) * 1988-06-13 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Surface tension confined liquid cryogen cooler
JPH0448100U (ja) * 1990-08-30 1992-04-23
JPH0656097A (ja) * 1992-08-11 1994-03-01 Mitsubishi Heavy Ind Ltd キャピラリースクリーン
JPH1035595A (ja) * 1996-07-23 1998-02-10 Mitsubishi Heavy Ind Ltd 人工衛星用燃料タンク
JP2008267503A (ja) * 2007-04-20 2008-11-06 Mitsubishi Heavy Ind Ltd 低温流体用貯蔵タンク
US20140117021A1 (en) * 2011-07-01 2014-05-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic Fluid Tank and Its Use
WO2014061616A1 (ja) * 2012-10-15 2014-04-24 三菱重工業株式会社 液化燃料用貯蔵タンク
US20160059970A1 (en) * 2014-08-26 2016-03-03 The Boeing Company Vessel insulation assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234705A1 (fr) * 2017-06-22 2018-12-27 Arianegroup Sas Réservoir amélioré pour moteur d'engin spatial
FR3068082A1 (fr) * 2017-06-22 2018-12-28 Airbus Safran Launchers Sas Reservoir ameliore pour moteur d'engin spatial
US11427354B2 (en) 2017-06-22 2022-08-30 Arianegroup Sas Tank for a spacecraft engine

Also Published As

Publication number Publication date
US10604279B2 (en) 2020-03-31
EP3260378B1 (en) 2019-07-03
JP2016193662A (ja) 2016-11-17
JP6590502B2 (ja) 2019-10-16
US20180072436A1 (en) 2018-03-15
EP3260378A4 (en) 2018-03-21
EP3260378A1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
WO2016158538A1 (ja) 宇宙航行体用の推進薬タンク及び宇宙航行体
ES2342861T3 (es) Dispositivo para almacenar liquidos criogenicos y combustibles almacenables.
Hartwig Propellant management devices for low-gravity fluid management: past, present, and future applications
US5961074A (en) Method and apparatus for pressurized feeding of liquid propellants to a rocket engine
Hartwig Liquid acquisition devices for advanced in-space cryogenic propulsion systems
JP2008189304A (ja) 極低温液体および貯蔵可能な燃料を貯蔵するためのタンク
US8881501B2 (en) Propellant tank and vapor jet emitting device including same
US8043396B2 (en) Integrated plastic liner for propellant tanks for micro G conditions
ES2803754T3 (es) Disposición de depósito de propelente de cohete, unidad de propulsión de cohete, y cohete
US8281566B2 (en) Thermally-integrated fluid storage and pressurization system
US8596038B2 (en) Liquid propellant tank and vapor jet emitting device including same
Darr et al. Optimal liquid acquisition device screen weave for a liquid hydrogen fuel depot
US11346306B1 (en) Chemical and cold gas propellant systems and methods
US11719261B2 (en) Vapor-pressure driven pump
Kinefuchi et al. Preliminary study of high power hydrogen electric propulsion for the space exploration
JP2017180461A (ja) 噴射システム
US10883449B2 (en) Jet system
Hartwig A detailed historical review of propellant management devices for low gravity propellant acquisition
Cho et al. Development of hall thruster propulsion system for STSAT-3 application
Marquardt et al. An overview of Ball Aerospace cryogen storage and delivery systems
Guerrieri et al. Optimum Design of Low-Pressure Micro-Resistojet Applied to Nano-and Pico-Satellites
Chivukula Design, optimization and sizing of a Water Electrolysis Propulsion (WEP) system for CubeSats
Hiejima et al. Current Status of Rocket Developments in Universities-Development of a Small Rocket without Combustion Process
Bouquet et al. Space applications of hydrogen storage in carbon nano-structures
Sivolella et al. Maneuvering in space: the orbital maneuvering system and reaction control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772420

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016772420

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561636

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE